bmips: check for DMA error when refilling Rx
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273 dma_addr_t p;
274
275 if (likely(napi_mode))
276 buf = napi_alloc_frag(priv->rx_frag_size);
277 else
278 buf = netdev_alloc_frag(priv->rx_frag_size);
279
280 if (unlikely(!buf))
281 break;
282
283 p = dma_map_single(&priv->pdev->dev, buf + NET_SKB_PAD,
284 priv->rx_buf_size, DMA_FROM_DEVICE);
285 if (unlikely(dma_mapping_error(&priv->pdev->dev, p))) {
286 skb_free_frag(buf);
287 break;
288 }
289
290 priv->rx_buf[desc_idx] = buf;
291 desc->address = p;
292 }
293
294 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
295 len_stat |= DMADESC_OWNER_MASK;
296 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
297 len_stat |= DMADESC_WRAP_MASK;
298 priv->rx_dirty_desc = 0;
299 } else {
300 priv->rx_dirty_desc++;
301 }
302 wmb();
303 desc->len_stat = len_stat;
304
305 priv->rx_desc_count++;
306
307 /* tell dma engine we allocated one buffer */
308 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
309 }
310
311 /* If rx ring is still empty, set a timer to try allocating
312 * again at a later time. */
313 if (priv->rx_desc_count == 0 && netif_running(dev)) {
314 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
315 priv->rx_timeout.expires = jiffies + HZ;
316 add_timer(&priv->rx_timeout);
317 }
318
319 return 0;
320 }
321
322 /*
323 * timer callback to defer refill rx queue in case we're OOM
324 */
325 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
326 {
327 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
328 struct net_device *dev = priv->net_dev;
329
330 spin_lock(&priv->rx_lock);
331 bcm6368_enetsw_refill_rx(dev, false);
332 spin_unlock(&priv->rx_lock);
333 }
334
335 /*
336 * extract packet from rx queue
337 */
338 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
339 {
340 struct bcm6368_enetsw *priv = netdev_priv(dev);
341 struct device *kdev = &priv->pdev->dev;
342 struct list_head rx_list;
343 struct sk_buff *skb;
344 int processed = 0;
345
346 INIT_LIST_HEAD(&rx_list);
347
348 /* don't scan ring further than number of refilled
349 * descriptor */
350 if (budget > priv->rx_desc_count)
351 budget = priv->rx_desc_count;
352
353 do {
354 struct bcm6368_enetsw_desc *desc;
355 unsigned int frag_size;
356 unsigned char *buf;
357 int desc_idx;
358 u32 len_stat;
359 unsigned int len;
360
361 desc_idx = priv->rx_curr_desc;
362 desc = &priv->rx_desc_cpu[desc_idx];
363
364 /* make sure we actually read the descriptor status at
365 * each loop */
366 rmb();
367
368 len_stat = desc->len_stat;
369
370 /* break if dma ownership belongs to hw */
371 if (len_stat & DMADESC_OWNER_MASK)
372 break;
373
374 processed++;
375 priv->rx_curr_desc++;
376 if (priv->rx_curr_desc == priv->rx_ring_size)
377 priv->rx_curr_desc = 0;
378
379 /* if the packet does not have start of packet _and_
380 * end of packet flag set, then just recycle it */
381 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
382 dev->stats.rx_dropped++;
383 continue;
384 }
385
386 /* valid packet */
387 buf = priv->rx_buf[desc_idx];
388 len = (len_stat & DMADESC_LENGTH_MASK)
389 >> DMADESC_LENGTH_SHIFT;
390 /* don't include FCS */
391 len -= 4;
392
393 if (len < priv->copybreak) {
394 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
395 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
396
397 if (unlikely(!nbuf)) {
398 /* forget packet, just rearm desc */
399 dev->stats.rx_dropped++;
400 continue;
401 }
402
403 dma_sync_single_for_cpu(kdev, desc->address,
404 len, DMA_FROM_DEVICE);
405 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
406 dma_sync_single_for_device(kdev, desc->address,
407 len, DMA_FROM_DEVICE);
408 buf = nbuf;
409 frag_size = nfrag_size;
410 } else {
411 dma_unmap_single(kdev, desc->address,
412 priv->rx_buf_size, DMA_FROM_DEVICE);
413 priv->rx_buf[desc_idx] = NULL;
414 frag_size = priv->rx_frag_size;
415 }
416
417 skb = napi_build_skb(buf, frag_size);
418 if (unlikely(!skb)) {
419 skb_free_frag(buf);
420 dev->stats.rx_dropped++;
421 continue;
422 }
423
424 skb_reserve(skb, NET_SKB_PAD);
425 skb_put(skb, len);
426 dev->stats.rx_packets++;
427 dev->stats.rx_bytes += len;
428 list_add_tail(&skb->list, &rx_list);
429 } while (processed < budget);
430
431 list_for_each_entry(skb, &rx_list, list)
432 skb->protocol = eth_type_trans(skb, dev);
433 netif_receive_skb_list(&rx_list);
434 priv->rx_desc_count -= processed;
435
436 if (processed || !priv->rx_desc_count) {
437 bcm6368_enetsw_refill_rx(dev, true);
438
439 /* kick rx dma */
440 dmac_writel(priv, priv->dma_chan_en_mask,
441 DMAC_CHANCFG_REG, priv->rx_chan);
442 }
443
444 return processed;
445 }
446
447 /*
448 * try to or force reclaim of transmitted buffers
449 */
450 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force,
451 int budget)
452 {
453 struct bcm6368_enetsw *priv = netdev_priv(dev);
454 unsigned int bytes = 0;
455 int released = 0;
456
457 while (priv->tx_desc_count < priv->tx_ring_size) {
458 struct bcm6368_enetsw_desc *desc;
459 struct sk_buff *skb;
460
461 /* We run in a bh and fight against start_xmit, which
462 * is called with bh disabled */
463 spin_lock(&priv->tx_lock);
464
465 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
466
467 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
468 spin_unlock(&priv->tx_lock);
469 break;
470 }
471
472 /* ensure other field of the descriptor were not read
473 * before we checked ownership */
474 rmb();
475
476 skb = priv->tx_skb[priv->tx_dirty_desc];
477 priv->tx_skb[priv->tx_dirty_desc] = NULL;
478 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
479 DMA_TO_DEVICE);
480
481 priv->tx_dirty_desc++;
482 if (priv->tx_dirty_desc == priv->tx_ring_size)
483 priv->tx_dirty_desc = 0;
484 priv->tx_desc_count++;
485
486 spin_unlock(&priv->tx_lock);
487
488 if (desc->len_stat & DMADESC_UNDER_MASK)
489 dev->stats.tx_errors++;
490
491 bytes += skb->len;
492 napi_consume_skb(skb, budget);
493 released++;
494 }
495
496 netdev_completed_queue(dev, released, bytes);
497
498 if (netif_queue_stopped(dev) && released)
499 netif_wake_queue(dev);
500
501 return released;
502 }
503
504 /*
505 * poll func, called by network core
506 */
507 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
508 {
509 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
510 struct net_device *dev = priv->net_dev;
511 int rx_work_done;
512
513 /* ack interrupts */
514 dmac_writel(priv, priv->dma_chan_int_mask,
515 DMAC_IR_REG, priv->rx_chan);
516 dmac_writel(priv, priv->dma_chan_int_mask,
517 DMAC_IR_REG, priv->tx_chan);
518
519 /* reclaim sent skb */
520 bcm6368_enetsw_tx_reclaim(dev, 0, budget);
521
522 spin_lock(&priv->rx_lock);
523 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
524 spin_unlock(&priv->rx_lock);
525
526 if (rx_work_done >= budget) {
527 /* rx queue is not yet empty/clean */
528 return rx_work_done;
529 }
530
531 /* no more packet in rx/tx queue, remove device from poll
532 * queue */
533 napi_complete_done(napi, rx_work_done);
534
535 /* restore rx/tx interrupt */
536 dmac_writel(priv, priv->dma_chan_int_mask,
537 DMAC_IRMASK_REG, priv->rx_chan);
538 dmac_writel(priv, priv->dma_chan_int_mask,
539 DMAC_IRMASK_REG, priv->tx_chan);
540
541 return rx_work_done;
542 }
543
544 /*
545 * rx/tx dma interrupt handler
546 */
547 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
548 {
549 struct net_device *dev = dev_id;
550 struct bcm6368_enetsw *priv = netdev_priv(dev);
551
552 /* mask rx/tx interrupts */
553 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
554 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
555
556 napi_schedule(&priv->napi);
557
558 return IRQ_HANDLED;
559 }
560
561 /*
562 * tx request callback
563 */
564 static netdev_tx_t
565 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
566 {
567 struct bcm6368_enetsw *priv = netdev_priv(dev);
568 struct bcm6368_enetsw_desc *desc;
569 u32 len_stat;
570 netdev_tx_t ret;
571 dma_addr_t p;
572
573 /* lock against tx reclaim */
574 spin_lock(&priv->tx_lock);
575
576 /* make sure the tx hw queue is not full, should not happen
577 * since we stop queue before it's the case */
578 if (unlikely(!priv->tx_desc_count)) {
579 netif_stop_queue(dev);
580 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
581 "available?\n");
582 ret = NETDEV_TX_BUSY;
583 goto out_unlock;
584 }
585
586 /* pad small packets */
587 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
588 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
589 char *data;
590
591 if (unlikely(skb_tailroom(skb) < needed)) {
592 struct sk_buff *nskb;
593
594 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
595 if (!nskb) {
596 ret = NETDEV_TX_BUSY;
597 goto out_unlock;
598 }
599
600 dev_kfree_skb(skb);
601 skb = nskb;
602 }
603 data = skb_put_zero(skb, needed);
604 }
605
606 /* fill descriptor */
607 p = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
608 DMA_TO_DEVICE);
609 if (unlikely(dma_mapping_error(&priv->pdev->dev, p))) {
610 dev_kfree_skb(skb);
611 ret = NETDEV_TX_OK;
612 goto out_unlock;
613 }
614
615 /* point to the next available desc */
616 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
617 priv->tx_skb[priv->tx_curr_desc] = skb;
618 desc->address = p;
619
620 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
621 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
622 DMADESC_OWNER_MASK;
623
624 priv->tx_curr_desc++;
625 if (priv->tx_curr_desc == priv->tx_ring_size) {
626 priv->tx_curr_desc = 0;
627 len_stat |= DMADESC_WRAP_MASK;
628 }
629 priv->tx_desc_count--;
630
631 /* dma might be already polling, make sure we update desc
632 * fields in correct order */
633 wmb();
634 desc->len_stat = len_stat;
635 wmb();
636
637 netdev_sent_queue(dev, skb->len);
638
639 /* kick tx dma */
640 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
641 priv->tx_chan);
642
643 /* stop queue if no more desc available */
644 if (!priv->tx_desc_count)
645 netif_stop_queue(dev);
646
647 dev->stats.tx_bytes += skb->len;
648 dev->stats.tx_packets++;
649 ret = NETDEV_TX_OK;
650
651 out_unlock:
652 spin_unlock(&priv->tx_lock);
653 return ret;
654 }
655
656 /*
657 * disable dma in given channel
658 */
659 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
660 {
661 int limit = 1000;
662
663 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
664
665 do {
666 u32 val;
667
668 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
669 if (!(val & DMAC_CHANCFG_EN_MASK))
670 break;
671
672 udelay(1);
673 } while (limit--);
674 }
675
676 static int bcm6368_enetsw_open(struct net_device *dev)
677 {
678 struct bcm6368_enetsw *priv = netdev_priv(dev);
679 struct device *kdev = &priv->pdev->dev;
680 int i, ret;
681 unsigned int size;
682 void *p;
683 u32 val;
684
685 /* mask all interrupts and request them */
686 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
687 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
688
689 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
690 0, dev->name, dev);
691 if (ret)
692 goto out_freeirq;
693
694 if (priv->irq_tx != -1) {
695 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
696 0, dev->name, dev);
697 if (ret)
698 goto out_freeirq_rx;
699 }
700
701 /* allocate rx dma ring */
702 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
703 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
704 if (!p) {
705 dev_err(kdev, "cannot allocate rx ring %u\n", size);
706 ret = -ENOMEM;
707 goto out_freeirq_tx;
708 }
709
710 memset(p, 0, size);
711 priv->rx_desc_alloc_size = size;
712 priv->rx_desc_cpu = p;
713
714 /* allocate tx dma ring */
715 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
716 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
717 if (!p) {
718 dev_err(kdev, "cannot allocate tx ring\n");
719 ret = -ENOMEM;
720 goto out_free_rx_ring;
721 }
722
723 memset(p, 0, size);
724 priv->tx_desc_alloc_size = size;
725 priv->tx_desc_cpu = p;
726
727 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
728 GFP_KERNEL);
729 if (!priv->tx_skb) {
730 dev_err(kdev, "cannot allocate tx skb queue\n");
731 ret = -ENOMEM;
732 goto out_free_tx_ring;
733 }
734
735 priv->tx_desc_count = priv->tx_ring_size;
736 priv->tx_dirty_desc = 0;
737 priv->tx_curr_desc = 0;
738 spin_lock_init(&priv->tx_lock);
739
740 /* init & fill rx ring with buffers */
741 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
742 GFP_KERNEL);
743 if (!priv->rx_buf) {
744 dev_err(kdev, "cannot allocate rx buffer queue\n");
745 ret = -ENOMEM;
746 goto out_free_tx_skb;
747 }
748
749 priv->rx_desc_count = 0;
750 priv->rx_dirty_desc = 0;
751 priv->rx_curr_desc = 0;
752
753 /* initialize flow control buffer allocation */
754 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
755 DMA_BUFALLOC_REG(priv->rx_chan));
756
757 if (bcm6368_enetsw_refill_rx(dev, false)) {
758 dev_err(kdev, "cannot allocate rx buffer queue\n");
759 ret = -ENOMEM;
760 goto out;
761 }
762
763 /* write rx & tx ring addresses */
764 dmas_writel(priv, priv->rx_desc_dma,
765 DMAS_RSTART_REG, priv->rx_chan);
766 dmas_writel(priv, priv->tx_desc_dma,
767 DMAS_RSTART_REG, priv->tx_chan);
768
769 /* clear remaining state ram for rx & tx channel */
770 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
771 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
772 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
773 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
774 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
775 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
776
777 /* set dma maximum burst len */
778 dmac_writel(priv, priv->dma_maxburst,
779 DMAC_MAXBURST_REG, priv->rx_chan);
780 dmac_writel(priv, priv->dma_maxburst,
781 DMAC_MAXBURST_REG, priv->tx_chan);
782
783 /* set flow control low/high threshold to 1/3 / 2/3 */
784 val = priv->rx_ring_size / 3;
785 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
786 val = (priv->rx_ring_size * 2) / 3;
787 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
788
789 /* all set, enable mac and interrupts, start dma engine and
790 * kick rx dma channel
791 */
792 wmb();
793 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
794 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
795 DMAC_CHANCFG_REG, priv->rx_chan);
796
797 /* watch "packet transferred" interrupt in rx and tx */
798 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
799 DMAC_IR_REG, priv->rx_chan);
800 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
801 DMAC_IR_REG, priv->tx_chan);
802
803 /* make sure we enable napi before rx interrupt */
804 napi_enable(&priv->napi);
805
806 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
807 DMAC_IRMASK_REG, priv->rx_chan);
808 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
809 DMAC_IRMASK_REG, priv->tx_chan);
810
811 netif_carrier_on(dev);
812 netif_start_queue(dev);
813
814 return 0;
815
816 out:
817 for (i = 0; i < priv->rx_ring_size; i++) {
818 struct bcm6368_enetsw_desc *desc;
819
820 if (!priv->rx_buf[i])
821 continue;
822
823 desc = &priv->rx_desc_cpu[i];
824 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
825 DMA_FROM_DEVICE);
826 skb_free_frag(priv->rx_buf[i]);
827 }
828 kfree(priv->rx_buf);
829
830 out_free_tx_skb:
831 kfree(priv->tx_skb);
832
833 out_free_tx_ring:
834 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
835 priv->tx_desc_cpu, priv->tx_desc_dma);
836
837 out_free_rx_ring:
838 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
839 priv->rx_desc_cpu, priv->rx_desc_dma);
840
841 out_freeirq_tx:
842 if (priv->irq_tx != -1)
843 free_irq(priv->irq_tx, dev);
844
845 out_freeirq_rx:
846 free_irq(priv->irq_rx, dev);
847
848 out_freeirq:
849 return ret;
850 }
851
852 static int bcm6368_enetsw_stop(struct net_device *dev)
853 {
854 struct bcm6368_enetsw *priv = netdev_priv(dev);
855 struct device *kdev = &priv->pdev->dev;
856 int i;
857
858 netif_stop_queue(dev);
859 napi_disable(&priv->napi);
860 del_timer_sync(&priv->rx_timeout);
861
862 /* mask all interrupts */
863 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
864 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
865
866 /* disable dma & mac */
867 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
868 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
869
870 /* force reclaim of all tx buffers */
871 bcm6368_enetsw_tx_reclaim(dev, 1, 0);
872
873 /* free the rx buffer ring */
874 for (i = 0; i < priv->rx_ring_size; i++) {
875 struct bcm6368_enetsw_desc *desc;
876
877 if (!priv->rx_buf[i])
878 continue;
879
880 desc = &priv->rx_desc_cpu[i];
881 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
882 DMA_FROM_DEVICE,
883 DMA_ATTR_SKIP_CPU_SYNC);
884 skb_free_frag(priv->rx_buf[i]);
885 }
886
887 /* free remaining allocated memory */
888 kfree(priv->rx_buf);
889 kfree(priv->tx_skb);
890 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
891 priv->rx_desc_cpu, priv->rx_desc_dma);
892 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
893 priv->tx_desc_cpu, priv->tx_desc_dma);
894 if (priv->irq_tx != -1)
895 free_irq(priv->irq_tx, dev);
896 free_irq(priv->irq_rx, dev);
897
898 netdev_reset_queue(dev);
899
900 return 0;
901 }
902
903 static const struct net_device_ops bcm6368_enetsw_ops = {
904 .ndo_open = bcm6368_enetsw_open,
905 .ndo_stop = bcm6368_enetsw_stop,
906 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
907 };
908
909 static int bcm6368_enetsw_probe(struct platform_device *pdev)
910 {
911 struct bcm6368_enetsw *priv;
912 struct device *dev = &pdev->dev;
913 struct device_node *node = dev->of_node;
914 struct net_device *ndev;
915 struct resource *res;
916 unsigned i;
917 int ret;
918
919 ndev = alloc_etherdev(sizeof(*priv));
920 if (!ndev)
921 return -ENOMEM;
922
923 priv = netdev_priv(ndev);
924
925 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
926 "#power-domain-cells");
927 if (priv->num_pms > 1) {
928 priv->pm = devm_kcalloc(dev, priv->num_pms,
929 sizeof(struct device *), GFP_KERNEL);
930 if (!priv->pm)
931 return -ENOMEM;
932
933 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
934 sizeof(struct device_link *),
935 GFP_KERNEL);
936 if (!priv->link_pm)
937 return -ENOMEM;
938
939 for (i = 0; i < priv->num_pms; i++) {
940 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
941 if (IS_ERR(priv->pm[i])) {
942 dev_err(dev, "error getting pm %d\n", i);
943 return -EINVAL;
944 }
945
946 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
947 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
948 DL_FLAG_RPM_ACTIVE);
949 }
950 }
951
952 pm_runtime_enable(dev);
953 pm_runtime_no_callbacks(dev);
954 ret = pm_runtime_get_sync(dev);
955 if (ret < 0) {
956 pm_runtime_disable(dev);
957 dev_info(dev, "PM prober defer: ret=%d\n", ret);
958 return -EPROBE_DEFER;
959 }
960
961 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
962 priv->dma_base = devm_ioremap_resource(dev, res);
963 if (IS_ERR(priv->dma_base))
964 return PTR_ERR(priv->dma_base);
965
966 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
967 "dma-channels");
968 priv->dma_chan = devm_ioremap_resource(dev, res);
969 if (IS_ERR(priv->dma_chan))
970 return PTR_ERR(priv->dma_chan);
971
972 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
973 priv->dma_sram = devm_ioremap_resource(dev, res);
974 if (IS_ERR(priv->dma_sram))
975 return PTR_ERR(priv->dma_sram);
976
977 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
978 if (!priv->irq_rx)
979 return -ENODEV;
980
981 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
982 if (!priv->irq_tx)
983 return -ENODEV;
984 else if (priv->irq_tx < 0)
985 priv->irq_tx = -1;
986
987 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
988 return -ENODEV;
989
990 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
991 return -ENODEV;
992
993 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
994 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
995
996 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
997
998 priv->copybreak = ENETSW_DEF_CPY_BREAK;
999
1000 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
1001 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
1002 priv->dma_chan_width = DMA_CHAN_WIDTH;
1003
1004 of_get_mac_address(node, ndev->dev_addr);
1005 if (is_valid_ether_addr(ndev->dev_addr)) {
1006 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
1007 } else {
1008 random_ether_addr(ndev->dev_addr);
1009 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
1010 }
1011
1012 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
1013 priv->dma_maxburst * 4);
1014
1015 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
1016
1017 priv->num_clocks = of_clk_get_parent_count(node);
1018 if (priv->num_clocks) {
1019 priv->clock = devm_kcalloc(dev, priv->num_clocks,
1020 sizeof(struct clk *), GFP_KERNEL);
1021 if (!priv->clock)
1022 return -ENOMEM;
1023 }
1024 for (i = 0; i < priv->num_clocks; i++) {
1025 priv->clock[i] = of_clk_get(node, i);
1026 if (IS_ERR(priv->clock[i])) {
1027 dev_err(dev, "error getting clock %d\n", i);
1028 return -EINVAL;
1029 }
1030
1031 ret = clk_prepare_enable(priv->clock[i]);
1032 if (ret) {
1033 dev_err(dev, "error enabling clock %d\n", i);
1034 return ret;
1035 }
1036 }
1037
1038 priv->num_resets = of_count_phandle_with_args(node, "resets",
1039 "#reset-cells");
1040 if (priv->num_resets) {
1041 priv->reset = devm_kcalloc(dev, priv->num_resets,
1042 sizeof(struct reset_control *),
1043 GFP_KERNEL);
1044 if (!priv->reset)
1045 return -ENOMEM;
1046 }
1047 for (i = 0; i < priv->num_resets; i++) {
1048 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1049 if (IS_ERR(priv->reset[i])) {
1050 dev_err(dev, "error getting reset %d\n", i);
1051 return -EINVAL;
1052 }
1053
1054 ret = reset_control_reset(priv->reset[i]);
1055 if (ret) {
1056 dev_err(dev, "error performing reset %d\n", i);
1057 return ret;
1058 }
1059 }
1060
1061 spin_lock_init(&priv->rx_lock);
1062
1063 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1064
1065 /* register netdevice */
1066 ndev->netdev_ops = &bcm6368_enetsw_ops;
1067 ndev->min_mtu = ETH_ZLEN;
1068 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1069 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1070 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1071 SET_NETDEV_DEV(ndev, dev);
1072
1073 ret = register_netdev(ndev);
1074 if (ret)
1075 goto out_disable_clk;
1076
1077 netif_carrier_off(ndev);
1078 platform_set_drvdata(pdev, ndev);
1079 priv->pdev = pdev;
1080 priv->net_dev = ndev;
1081
1082 return 0;
1083
1084 out_disable_clk:
1085 for (i = 0; i < priv->num_resets; i++)
1086 reset_control_assert(priv->reset[i]);
1087
1088 for (i = 0; i < priv->num_clocks; i++)
1089 clk_disable_unprepare(priv->clock[i]);
1090
1091 return ret;
1092 }
1093
1094 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1095 {
1096 struct device *dev = &pdev->dev;
1097 struct net_device *ndev = platform_get_drvdata(pdev);
1098 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1099 unsigned int i;
1100
1101 unregister_netdev(ndev);
1102
1103 pm_runtime_put_sync(dev);
1104 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1105 dev_pm_domain_detach(priv->pm[i], true);
1106 device_link_del(priv->link_pm[i]);
1107 }
1108
1109 for (i = 0; i < priv->num_resets; i++)
1110 reset_control_assert(priv->reset[i]);
1111
1112 for (i = 0; i < priv->num_clocks; i++)
1113 clk_disable_unprepare(priv->clock[i]);
1114
1115 free_netdev(ndev);
1116
1117 return 0;
1118 }
1119
1120 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1121 { .compatible = "brcm,bcm6318-enetsw", },
1122 { .compatible = "brcm,bcm6328-enetsw", },
1123 { .compatible = "brcm,bcm6362-enetsw", },
1124 { .compatible = "brcm,bcm6368-enetsw", },
1125 { .compatible = "brcm,bcm63268-enetsw", },
1126 { /* sentinel */ }
1127 };
1128 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1129
1130 static struct platform_driver bcm6368_enetsw_driver = {
1131 .driver = {
1132 .name = "bcm6368-enetsw",
1133 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1134 },
1135 .probe = bcm6368_enetsw_probe,
1136 .remove = bcm6368_enetsw_remove,
1137 };
1138 module_platform_driver(bcm6368_enetsw_driver);