Add ubsec ssb from Daniel Mueller <daniel@danm.de> (#2417)
[openwrt/staging/yousong.git] / package / ubsec_ssb / src / openbsd / ubsec.c
1 /* $OpenBSD: ubsec.c,v 1.140 2007/10/01 15:34:48 krw Exp $ */
2
3 /*
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
26 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Effort sponsored in part by the Defense Advanced Research Projects
30 * Agency (DARPA) and Air Force Research Laboratory, Air Force
31 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
32 *
33 */
34
35 #undef UBSEC_DEBUG
36
37 /*
38 * uBsec 5[56]01, 58xx hardware crypto accelerator
39 */
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/errno.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/mbuf.h>
48 #include <sys/device.h>
49 #include <sys/queue.h>
50
51 #include <crypto/cryptodev.h>
52 #include <crypto/cryptosoft.h>
53 #include <dev/rndvar.h>
54 #include <crypto/md5.h>
55 #include <crypto/sha1.h>
56
57 #include <dev/pci/pcireg.h>
58 #include <dev/pci/pcivar.h>
59 #include <dev/pci/pcidevs.h>
60
61 #include <dev/pci/ubsecreg.h>
62 #include <dev/pci/ubsecvar.h>
63
64 /*
65 * Prototypes and count for the pci_device structure
66 */
67 int ubsec_probe(struct device *, void *, void *);
68 void ubsec_attach(struct device *, struct device *, void *);
69 void ubsec_reset_board(struct ubsec_softc *);
70 void ubsec_init_board(struct ubsec_softc *);
71 void ubsec_init_pciregs(struct pci_attach_args *pa);
72 void ubsec_cleanchip(struct ubsec_softc *);
73 void ubsec_totalreset(struct ubsec_softc *);
74 int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
75
76 struct cfattach ubsec_ca = {
77 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
78 };
79
80 struct cfdriver ubsec_cd = {
81 0, "ubsec", DV_DULL
82 };
83
84 int ubsec_intr(void *);
85 int ubsec_newsession(u_int32_t *, struct cryptoini *);
86 int ubsec_freesession(u_int64_t);
87 int ubsec_process(struct cryptop *);
88 void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
89 void ubsec_feed(struct ubsec_softc *);
90 void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
91 void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
92 void ubsec_feed2(struct ubsec_softc *);
93 void ubsec_rng(void *);
94 int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
95 struct ubsec_dma_alloc *, int);
96 void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
97 int ubsec_dmamap_aligned(bus_dmamap_t);
98
99 int ubsec_kprocess(struct cryptkop *);
100 struct ubsec_softc *ubsec_kfind(struct cryptkop *);
101 int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *);
102 int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *);
103 int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *);
104 void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
105 int ubsec_ksigbits(struct crparam *);
106 void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
107 void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
108
109 /* DEBUG crap... */
110 void ubsec_dump_pb(struct ubsec_pktbuf *);
111 void ubsec_dump_mcr(struct ubsec_mcr *);
112 void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
113
114 #define READ_REG(sc,r) \
115 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
116
117 #define WRITE_REG(sc,reg,val) \
118 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
119
120 #define SWAP32(x) (x) = htole32(ntohl((x)))
121 #define HTOLE32(x) (x) = htole32(x)
122
123
124 struct ubsec_stats ubsecstats;
125
126 const struct pci_matchid ubsec_devices[] = {
127 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501 },
128 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601 },
129 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801 },
130 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802 },
131 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805 },
132 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820 },
133 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821 },
134 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822 },
135 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823 },
136 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K },
137 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821 },
138 };
139
140 int
141 ubsec_probe(struct device *parent, void *match, void *aux)
142 {
143 return (pci_matchbyid((struct pci_attach_args *)aux, ubsec_devices,
144 sizeof(ubsec_devices)/sizeof(ubsec_devices[0])));
145 }
146
147 void
148 ubsec_attach(struct device *parent, struct device *self, void *aux)
149 {
150 struct ubsec_softc *sc = (struct ubsec_softc *)self;
151 struct pci_attach_args *pa = aux;
152 pci_chipset_tag_t pc = pa->pa_pc;
153 pci_intr_handle_t ih;
154 const char *intrstr = NULL;
155 struct ubsec_dma *dmap;
156 bus_size_t iosize;
157 u_int32_t i;
158 int algs[CRYPTO_ALGORITHM_MAX + 1];
159 int kalgs[CRK_ALGORITHM_MAX + 1];
160
161 SIMPLEQ_INIT(&sc->sc_queue);
162 SIMPLEQ_INIT(&sc->sc_qchip);
163 SIMPLEQ_INIT(&sc->sc_queue2);
164 SIMPLEQ_INIT(&sc->sc_qchip2);
165 SIMPLEQ_INIT(&sc->sc_q2free);
166
167 sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
168
169 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL &&
170 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601)
171 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
172
173 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
174 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5802 ||
175 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805))
176 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
177
178 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
179 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5822 ||
181 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5823))
182 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
183 UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
184
185 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
186 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5821) ||
187 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
188 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_SCA1K ||
189 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_5821))) {
190 sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
191 BS_STAT_MCR2_ALLEMPTY;
192 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
193 UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
194 }
195
196 if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
197 &sc->sc_st, &sc->sc_sh, NULL, &iosize, 0)) {
198 printf(": can't find mem space\n");
199 return;
200 }
201 sc->sc_dmat = pa->pa_dmat;
202
203 if (pci_intr_map(pa, &ih)) {
204 printf(": couldn't map interrupt\n");
205 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
206 return;
207 }
208 intrstr = pci_intr_string(pc, ih);
209 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc,
210 self->dv_xname);
211 if (sc->sc_ih == NULL) {
212 printf(": couldn't establish interrupt");
213 if (intrstr != NULL)
214 printf(" at %s", intrstr);
215 printf("\n");
216 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
217 return;
218 }
219
220 sc->sc_cid = crypto_get_driverid(0);
221 if (sc->sc_cid < 0) {
222 pci_intr_disestablish(pc, sc->sc_ih);
223 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
224 return;
225 }
226
227 SIMPLEQ_INIT(&sc->sc_freequeue);
228 dmap = sc->sc_dmaa;
229 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
230 struct ubsec_q *q;
231
232 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
233 M_DEVBUF, M_NOWAIT);
234 if (q == NULL) {
235 printf(": can't allocate queue buffers\n");
236 break;
237 }
238
239 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
240 &dmap->d_alloc, 0)) {
241 printf(": can't allocate dma buffers\n");
242 free(q, M_DEVBUF);
243 break;
244 }
245 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
246
247 q->q_dma = dmap;
248 sc->sc_queuea[i] = q;
249
250 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
251 }
252
253 bzero(algs, sizeof(algs));
254 algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
255 algs[CRYPTO_DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
256 algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
257 algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
258 crypto_register(sc->sc_cid, algs, ubsec_newsession,
259 ubsec_freesession, ubsec_process);
260
261 /*
262 * Reset Broadcom chip
263 */
264 ubsec_reset_board(sc);
265
266 /*
267 * Init Broadcom specific PCI settings
268 */
269 ubsec_init_pciregs(pa);
270
271 /*
272 * Init Broadcom chip
273 */
274 ubsec_init_board(sc);
275
276 printf(": 3DES MD5 SHA1");
277
278 #ifndef UBSEC_NO_RNG
279 if (sc->sc_flags & UBS_FLAGS_RNG) {
280 sc->sc_statmask |= BS_STAT_MCR2_DONE;
281
282 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
283 &sc->sc_rng.rng_q.q_mcr, 0))
284 goto skip_rng;
285
286 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
287 &sc->sc_rng.rng_q.q_ctx, 0)) {
288 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
289 goto skip_rng;
290 }
291
292 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
293 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
294 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
295 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
296 goto skip_rng;
297 }
298
299 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
300 if (hz >= 100)
301 sc->sc_rnghz = hz / 100;
302 else
303 sc->sc_rnghz = 1;
304 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
305 printf(" RNG");
306 skip_rng:
307 ;
308 }
309 #endif /* UBSEC_NO_RNG */
310
311 if (sc->sc_flags & UBS_FLAGS_KEY) {
312 sc->sc_statmask |= BS_STAT_MCR2_DONE;
313
314 bzero(kalgs, sizeof(kalgs));
315 kalgs[CRK_MOD_EXP] = CRYPTO_ALG_FLAG_SUPPORTED;
316 #if 0
317 kalgs[CRK_MOD_EXP_CRT] = CRYPTO_ALG_FLAG_SUPPORTED;
318 #endif
319
320 crypto_kregister(sc->sc_cid, kalgs, ubsec_kprocess);
321 printf(" PK");
322 }
323
324 printf(", %s\n", intrstr);
325 }
326
327 /*
328 * UBSEC Interrupt routine
329 */
330 int
331 ubsec_intr(void *arg)
332 {
333 struct ubsec_softc *sc = arg;
334 volatile u_int32_t stat;
335 struct ubsec_q *q;
336 struct ubsec_dma *dmap;
337 int npkts = 0, i;
338
339 stat = READ_REG(sc, BS_STAT);
340
341 stat &= sc->sc_statmask;
342 if (stat == 0)
343 return (0);
344
345 WRITE_REG(sc, BS_STAT, stat); /* IACK */
346
347 /*
348 * Check to see if we have any packets waiting for us
349 */
350 if ((stat & BS_STAT_MCR1_DONE)) {
351 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
352 q = SIMPLEQ_FIRST(&sc->sc_qchip);
353 dmap = q->q_dma;
354
355 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
356 break;
357
358 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
359
360 npkts = q->q_nstacked_mcrs;
361 /*
362 * search for further sc_qchip ubsec_q's that share
363 * the same MCR, and complete them too, they must be
364 * at the top.
365 */
366 for (i = 0; i < npkts; i++) {
367 if(q->q_stacked_mcr[i])
368 ubsec_callback(sc, q->q_stacked_mcr[i]);
369 else
370 break;
371 }
372 ubsec_callback(sc, q);
373 }
374
375 /*
376 * Don't send any more packet to chip if there has been
377 * a DMAERR.
378 */
379 if (!(stat & BS_STAT_DMAERR))
380 ubsec_feed(sc);
381 }
382
383 /*
384 * Check to see if we have any key setups/rng's waiting for us
385 */
386 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
387 (stat & BS_STAT_MCR2_DONE)) {
388 struct ubsec_q2 *q2;
389 struct ubsec_mcr *mcr;
390
391 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
392 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
393
394 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
395 0, q2->q_mcr.dma_map->dm_mapsize,
396 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
397
398 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
399 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
400 bus_dmamap_sync(sc->sc_dmat,
401 q2->q_mcr.dma_map, 0,
402 q2->q_mcr.dma_map->dm_mapsize,
403 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
404 break;
405 }
406 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
407 ubsec_callback2(sc, q2);
408 /*
409 * Don't send any more packet to chip if there has been
410 * a DMAERR.
411 */
412 if (!(stat & BS_STAT_DMAERR))
413 ubsec_feed2(sc);
414 }
415 }
416
417 /*
418 * Check to see if we got any DMA Error
419 */
420 if (stat & BS_STAT_DMAERR) {
421 #ifdef UBSEC_DEBUG
422 volatile u_int32_t a = READ_REG(sc, BS_ERR);
423
424 printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
425 (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
426 #endif /* UBSEC_DEBUG */
427 ubsecstats.hst_dmaerr++;
428 ubsec_totalreset(sc);
429 ubsec_feed(sc);
430 }
431
432 return (1);
433 }
434
435 /*
436 * ubsec_feed() - aggregate and post requests to chip
437 * It is assumed that the caller set splnet()
438 */
439 void
440 ubsec_feed(struct ubsec_softc *sc)
441 {
442 #ifdef UBSEC_DEBUG
443 static int max;
444 #endif /* UBSEC_DEBUG */
445 struct ubsec_q *q, *q2;
446 int npkts, i;
447 void *v;
448 u_int32_t stat;
449
450 npkts = sc->sc_nqueue;
451 if (npkts > UBS_MAX_AGGR)
452 npkts = UBS_MAX_AGGR;
453 if (npkts < 2)
454 goto feed1;
455
456 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
457 if(stat & BS_STAT_DMAERR) {
458 ubsec_totalreset(sc);
459 ubsecstats.hst_dmaerr++;
460 }
461 return;
462 }
463
464 #ifdef UBSEC_DEBUG
465 printf("merging %d records\n", npkts);
466
467 /* XXX temporary aggregation statistics reporting code */
468 if (max < npkts) {
469 max = npkts;
470 printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
471 }
472 #endif /* UBSEC_DEBUG */
473
474 q = SIMPLEQ_FIRST(&sc->sc_queue);
475 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
476 --sc->sc_nqueue;
477
478 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
479 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
480 if (q->q_dst_map != NULL)
481 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
482 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
483
484 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
485
486 for (i = 0; i < q->q_nstacked_mcrs; i++) {
487 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
488 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
489 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
490 if (q2->q_dst_map != NULL)
491 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
492 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
493 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
494 --sc->sc_nqueue;
495
496 v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
497 sizeof(struct ubsec_mcr_add);
498 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
499 q->q_stacked_mcr[i] = q2;
500 }
501 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
502 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
503 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
504 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
505 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
506 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
507 offsetof(struct ubsec_dmachunk, d_mcr));
508 return;
509
510 feed1:
511 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
512 if ((stat = READ_REG(sc, BS_STAT)) &
513 (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
514 if(stat & BS_STAT_DMAERR) {
515 ubsec_totalreset(sc);
516 ubsecstats.hst_dmaerr++;
517 }
518 break;
519 }
520
521 q = SIMPLEQ_FIRST(&sc->sc_queue);
522
523 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
524 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
525 if (q->q_dst_map != NULL)
526 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
527 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
528 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
529 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
530 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
531
532 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
533 offsetof(struct ubsec_dmachunk, d_mcr));
534 #ifdef UBSEC_DEBUG
535 printf("feed: q->chip %p %08x\n", q,
536 (u_int32_t)q->q_dma->d_alloc.dma_paddr);
537 #endif /* UBSEC_DEBUG */
538 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
539 --sc->sc_nqueue;
540 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
541 }
542 }
543
544 /*
545 * Allocate a new 'session' and return an encoded session id. 'sidp'
546 * contains our registration id, and should contain an encoded session
547 * id on successful allocation.
548 */
549 int
550 ubsec_newsession(u_int32_t *sidp, struct cryptoini *cri)
551 {
552 struct cryptoini *c, *encini = NULL, *macini = NULL;
553 struct ubsec_softc *sc = NULL;
554 struct ubsec_session *ses = NULL;
555 MD5_CTX md5ctx;
556 SHA1_CTX sha1ctx;
557 int i, sesn;
558
559 if (sidp == NULL || cri == NULL)
560 return (EINVAL);
561
562 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
563 sc = ubsec_cd.cd_devs[i];
564 if (sc == NULL || sc->sc_cid == (*sidp))
565 break;
566 }
567 if (sc == NULL)
568 return (EINVAL);
569
570 for (c = cri; c != NULL; c = c->cri_next) {
571 if (c->cri_alg == CRYPTO_MD5_HMAC ||
572 c->cri_alg == CRYPTO_SHA1_HMAC) {
573 if (macini)
574 return (EINVAL);
575 macini = c;
576 } else if (c->cri_alg == CRYPTO_DES_CBC ||
577 c->cri_alg == CRYPTO_3DES_CBC) {
578 if (encini)
579 return (EINVAL);
580 encini = c;
581 } else
582 return (EINVAL);
583 }
584 if (encini == NULL && macini == NULL)
585 return (EINVAL);
586
587 if (sc->sc_sessions == NULL) {
588 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
589 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
590 if (ses == NULL)
591 return (ENOMEM);
592 sesn = 0;
593 sc->sc_nsessions = 1;
594 } else {
595 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
596 if (sc->sc_sessions[sesn].ses_used == 0) {
597 ses = &sc->sc_sessions[sesn];
598 break;
599 }
600 }
601
602 if (ses == NULL) {
603 sesn = sc->sc_nsessions;
604 ses = (struct ubsec_session *)malloc((sesn + 1) *
605 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
606 if (ses == NULL)
607 return (ENOMEM);
608 bcopy(sc->sc_sessions, ses, sesn *
609 sizeof(struct ubsec_session));
610 bzero(sc->sc_sessions, sesn *
611 sizeof(struct ubsec_session));
612 free(sc->sc_sessions, M_DEVBUF);
613 sc->sc_sessions = ses;
614 ses = &sc->sc_sessions[sesn];
615 sc->sc_nsessions++;
616 }
617 }
618
619 bzero(ses, sizeof(struct ubsec_session));
620 ses->ses_used = 1;
621 if (encini) {
622 /* get an IV, network byte order */
623 arc4random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
624
625 /* Go ahead and compute key in ubsec's byte order */
626 if (encini->cri_alg == CRYPTO_DES_CBC) {
627 bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
628 bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
629 bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
630 } else
631 bcopy(encini->cri_key, ses->ses_deskey, 24);
632
633 SWAP32(ses->ses_deskey[0]);
634 SWAP32(ses->ses_deskey[1]);
635 SWAP32(ses->ses_deskey[2]);
636 SWAP32(ses->ses_deskey[3]);
637 SWAP32(ses->ses_deskey[4]);
638 SWAP32(ses->ses_deskey[5]);
639 }
640
641 if (macini) {
642 for (i = 0; i < macini->cri_klen / 8; i++)
643 macini->cri_key[i] ^= HMAC_IPAD_VAL;
644
645 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
646 MD5Init(&md5ctx);
647 MD5Update(&md5ctx, macini->cri_key,
648 macini->cri_klen / 8);
649 MD5Update(&md5ctx, hmac_ipad_buffer,
650 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
651 bcopy(md5ctx.state, ses->ses_hminner,
652 sizeof(md5ctx.state));
653 } else {
654 SHA1Init(&sha1ctx);
655 SHA1Update(&sha1ctx, macini->cri_key,
656 macini->cri_klen / 8);
657 SHA1Update(&sha1ctx, hmac_ipad_buffer,
658 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
659 bcopy(sha1ctx.state, ses->ses_hminner,
660 sizeof(sha1ctx.state));
661 }
662
663 for (i = 0; i < macini->cri_klen / 8; i++)
664 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
665
666 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
667 MD5Init(&md5ctx);
668 MD5Update(&md5ctx, macini->cri_key,
669 macini->cri_klen / 8);
670 MD5Update(&md5ctx, hmac_opad_buffer,
671 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
672 bcopy(md5ctx.state, ses->ses_hmouter,
673 sizeof(md5ctx.state));
674 } else {
675 SHA1Init(&sha1ctx);
676 SHA1Update(&sha1ctx, macini->cri_key,
677 macini->cri_klen / 8);
678 SHA1Update(&sha1ctx, hmac_opad_buffer,
679 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
680 bcopy(sha1ctx.state, ses->ses_hmouter,
681 sizeof(sha1ctx.state));
682 }
683
684 for (i = 0; i < macini->cri_klen / 8; i++)
685 macini->cri_key[i] ^= HMAC_OPAD_VAL;
686 }
687
688 *sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn);
689 return (0);
690 }
691
692 /*
693 * Deallocate a session.
694 */
695 int
696 ubsec_freesession(u_int64_t tid)
697 {
698 struct ubsec_softc *sc;
699 int card, session;
700 u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
701
702 card = UBSEC_CARD(sid);
703 if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL)
704 return (EINVAL);
705 sc = ubsec_cd.cd_devs[card];
706 session = UBSEC_SESSION(sid);
707 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
708 return (0);
709 }
710
711 int
712 ubsec_process(struct cryptop *crp)
713 {
714 struct ubsec_q *q = NULL;
715 int card, err = 0, i, j, s, nicealign;
716 struct ubsec_softc *sc;
717 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
718 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
719 int sskip, dskip, stheend, dtheend;
720 int16_t coffset;
721 struct ubsec_session *ses;
722 struct ubsec_pktctx ctx;
723 struct ubsec_dma *dmap = NULL;
724
725 if (crp == NULL || crp->crp_callback == NULL) {
726 ubsecstats.hst_invalid++;
727 return (EINVAL);
728 }
729 card = UBSEC_CARD(crp->crp_sid);
730 if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) {
731 ubsecstats.hst_invalid++;
732 return (EINVAL);
733 }
734
735 sc = ubsec_cd.cd_devs[card];
736
737 s = splnet();
738
739 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
740 ubsecstats.hst_queuefull++;
741 splx(s);
742 err = ENOMEM;
743 goto errout2;
744 }
745
746 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
747 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
748 splx(s);
749
750 dmap = q->q_dma; /* Save dma pointer */
751 bzero(q, sizeof(struct ubsec_q));
752 bzero(&ctx, sizeof(ctx));
753
754 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
755 q->q_dma = dmap;
756 ses = &sc->sc_sessions[q->q_sesn];
757
758 if (crp->crp_flags & CRYPTO_F_IMBUF) {
759 q->q_src_m = (struct mbuf *)crp->crp_buf;
760 q->q_dst_m = (struct mbuf *)crp->crp_buf;
761 } else if (crp->crp_flags & CRYPTO_F_IOV) {
762 q->q_src_io = (struct uio *)crp->crp_buf;
763 q->q_dst_io = (struct uio *)crp->crp_buf;
764 } else {
765 err = EINVAL;
766 goto errout; /* XXX we don't handle contiguous blocks! */
767 }
768
769 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
770
771 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
772 dmap->d_dma->d_mcr.mcr_flags = 0;
773 q->q_crp = crp;
774
775 crd1 = crp->crp_desc;
776 if (crd1 == NULL) {
777 err = EINVAL;
778 goto errout;
779 }
780 crd2 = crd1->crd_next;
781
782 if (crd2 == NULL) {
783 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
784 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
785 maccrd = crd1;
786 enccrd = NULL;
787 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
788 crd1->crd_alg == CRYPTO_3DES_CBC) {
789 maccrd = NULL;
790 enccrd = crd1;
791 } else {
792 err = EINVAL;
793 goto errout;
794 }
795 } else {
796 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
797 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
798 (crd2->crd_alg == CRYPTO_DES_CBC ||
799 crd2->crd_alg == CRYPTO_3DES_CBC) &&
800 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
801 maccrd = crd1;
802 enccrd = crd2;
803 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
804 crd1->crd_alg == CRYPTO_3DES_CBC) &&
805 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
806 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
807 (crd1->crd_flags & CRD_F_ENCRYPT)) {
808 enccrd = crd1;
809 maccrd = crd2;
810 } else {
811 /*
812 * We cannot order the ubsec as requested
813 */
814 err = EINVAL;
815 goto errout;
816 }
817 }
818
819 if (enccrd) {
820 encoffset = enccrd->crd_skip;
821 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
822
823 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
824 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
825
826 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
827 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
828 else {
829 ctx.pc_iv[0] = ses->ses_iv[0];
830 ctx.pc_iv[1] = ses->ses_iv[1];
831 }
832
833 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
834 if (crp->crp_flags & CRYPTO_F_IMBUF)
835 m_copyback(q->q_src_m,
836 enccrd->crd_inject,
837 8, ctx.pc_iv);
838 else if (crp->crp_flags & CRYPTO_F_IOV)
839 cuio_copyback(q->q_src_io,
840 enccrd->crd_inject,
841 8, ctx.pc_iv);
842 }
843 } else {
844 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
845
846 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
847 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
848 else if (crp->crp_flags & CRYPTO_F_IMBUF)
849 m_copydata(q->q_src_m, enccrd->crd_inject,
850 8, (caddr_t)ctx.pc_iv);
851 else if (crp->crp_flags & CRYPTO_F_IOV)
852 cuio_copydata(q->q_src_io,
853 enccrd->crd_inject, 8,
854 (caddr_t)ctx.pc_iv);
855 }
856
857 ctx.pc_deskey[0] = ses->ses_deskey[0];
858 ctx.pc_deskey[1] = ses->ses_deskey[1];
859 ctx.pc_deskey[2] = ses->ses_deskey[2];
860 ctx.pc_deskey[3] = ses->ses_deskey[3];
861 ctx.pc_deskey[4] = ses->ses_deskey[4];
862 ctx.pc_deskey[5] = ses->ses_deskey[5];
863 SWAP32(ctx.pc_iv[0]);
864 SWAP32(ctx.pc_iv[1]);
865 }
866
867 if (maccrd) {
868 macoffset = maccrd->crd_skip;
869
870 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
871 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
872 else
873 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
874
875 for (i = 0; i < 5; i++) {
876 ctx.pc_hminner[i] = ses->ses_hminner[i];
877 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
878
879 HTOLE32(ctx.pc_hminner[i]);
880 HTOLE32(ctx.pc_hmouter[i]);
881 }
882 }
883
884 if (enccrd && maccrd) {
885 /*
886 * ubsec cannot handle packets where the end of encryption
887 * and authentication are not the same, or where the
888 * encrypted part begins before the authenticated part.
889 */
890 if (((encoffset + enccrd->crd_len) !=
891 (macoffset + maccrd->crd_len)) ||
892 (enccrd->crd_skip < maccrd->crd_skip)) {
893 err = EINVAL;
894 goto errout;
895 }
896 sskip = maccrd->crd_skip;
897 cpskip = dskip = enccrd->crd_skip;
898 stheend = maccrd->crd_len;
899 dtheend = enccrd->crd_len;
900 coffset = enccrd->crd_skip - maccrd->crd_skip;
901 cpoffset = cpskip + dtheend;
902 #ifdef UBSEC_DEBUG
903 printf("mac: skip %d, len %d, inject %d\n",
904 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
905 printf("enc: skip %d, len %d, inject %d\n",
906 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
907 printf("src: skip %d, len %d\n", sskip, stheend);
908 printf("dst: skip %d, len %d\n", dskip, dtheend);
909 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
910 coffset, stheend, cpskip, cpoffset);
911 #endif
912 } else {
913 cpskip = dskip = sskip = macoffset + encoffset;
914 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
915 cpoffset = cpskip + dtheend;
916 coffset = 0;
917 }
918 ctx.pc_offset = htole16(coffset >> 2);
919
920 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
921 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
922 err = ENOMEM;
923 goto errout;
924 }
925 if (crp->crp_flags & CRYPTO_F_IMBUF) {
926 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
927 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
928 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
929 q->q_src_map = NULL;
930 err = ENOMEM;
931 goto errout;
932 }
933 } else if (crp->crp_flags & CRYPTO_F_IOV) {
934 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
935 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
936 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
937 q->q_src_map = NULL;
938 err = ENOMEM;
939 goto errout;
940 }
941 }
942 nicealign = ubsec_dmamap_aligned(q->q_src_map);
943
944 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
945
946 #ifdef UBSEC_DEBUG
947 printf("src skip: %d\n", sskip);
948 #endif
949 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
950 struct ubsec_pktbuf *pb;
951 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
952 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
953
954 if (sskip >= packl) {
955 sskip -= packl;
956 continue;
957 }
958
959 packl -= sskip;
960 packp += sskip;
961 sskip = 0;
962
963 if (packl > 0xfffc) {
964 err = EIO;
965 goto errout;
966 }
967
968 if (j == 0)
969 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
970 else
971 pb = &dmap->d_dma->d_sbuf[j - 1];
972
973 pb->pb_addr = htole32(packp);
974
975 if (stheend) {
976 if (packl > stheend) {
977 pb->pb_len = htole32(stheend);
978 stheend = 0;
979 } else {
980 pb->pb_len = htole32(packl);
981 stheend -= packl;
982 }
983 } else
984 pb->pb_len = htole32(packl);
985
986 if ((i + 1) == q->q_src_map->dm_nsegs)
987 pb->pb_next = 0;
988 else
989 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
990 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
991 j++;
992 }
993
994 if (enccrd == NULL && maccrd != NULL) {
995 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
996 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
997 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
998 htole32(dmap->d_alloc.dma_paddr +
999 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1000 #ifdef UBSEC_DEBUG
1001 printf("opkt: %x %x %x\n",
1002 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1003 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1004 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1005 #endif
1006 } else {
1007 if (crp->crp_flags & CRYPTO_F_IOV) {
1008 if (!nicealign) {
1009 err = EINVAL;
1010 goto errout;
1011 }
1012 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1013 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1014 &q->q_dst_map) != 0) {
1015 err = ENOMEM;
1016 goto errout;
1017 }
1018 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1019 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1020 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1021 q->q_dst_map = NULL;
1022 goto errout;
1023 }
1024 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1025 if (nicealign) {
1026 q->q_dst_m = q->q_src_m;
1027 q->q_dst_map = q->q_src_map;
1028 } else {
1029 int totlen, len;
1030 struct mbuf *m, *top, **mp;
1031
1032 totlen = q->q_src_map->dm_mapsize;
1033 if (q->q_src_m->m_flags & M_PKTHDR) {
1034 len = MHLEN;
1035 MGETHDR(m, M_DONTWAIT, MT_DATA);
1036 } else {
1037 len = MLEN;
1038 MGET(m, M_DONTWAIT, MT_DATA);
1039 }
1040 if (m == NULL) {
1041 err = ENOMEM;
1042 goto errout;
1043 }
1044 if (len == MHLEN)
1045 M_DUP_PKTHDR(m, q->q_src_m);
1046 if (totlen >= MINCLSIZE) {
1047 MCLGET(m, M_DONTWAIT);
1048 if (m->m_flags & M_EXT)
1049 len = MCLBYTES;
1050 }
1051 m->m_len = len;
1052 top = NULL;
1053 mp = &top;
1054
1055 while (totlen > 0) {
1056 if (top) {
1057 MGET(m, M_DONTWAIT, MT_DATA);
1058 if (m == NULL) {
1059 m_freem(top);
1060 err = ENOMEM;
1061 goto errout;
1062 }
1063 len = MLEN;
1064 }
1065 if (top && totlen >= MINCLSIZE) {
1066 MCLGET(m, M_DONTWAIT);
1067 if (m->m_flags & M_EXT)
1068 len = MCLBYTES;
1069 }
1070 m->m_len = len = min(totlen, len);
1071 totlen -= len;
1072 *mp = m;
1073 mp = &m->m_next;
1074 }
1075 q->q_dst_m = top;
1076 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1077 cpskip, cpoffset);
1078 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1079 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1080 &q->q_dst_map) != 0) {
1081 err = ENOMEM;
1082 goto errout;
1083 }
1084 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1085 q->q_dst_map, q->q_dst_m,
1086 BUS_DMA_NOWAIT) != 0) {
1087 bus_dmamap_destroy(sc->sc_dmat,
1088 q->q_dst_map);
1089 q->q_dst_map = NULL;
1090 err = ENOMEM;
1091 goto errout;
1092 }
1093 }
1094 } else {
1095 err = EINVAL;
1096 goto errout;
1097 }
1098
1099 #ifdef UBSEC_DEBUG
1100 printf("dst skip: %d\n", dskip);
1101 #endif
1102 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1103 struct ubsec_pktbuf *pb;
1104 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1105 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1106
1107 if (dskip >= packl) {
1108 dskip -= packl;
1109 continue;
1110 }
1111
1112 packl -= dskip;
1113 packp += dskip;
1114 dskip = 0;
1115
1116 if (packl > 0xfffc) {
1117 err = EIO;
1118 goto errout;
1119 }
1120
1121 if (j == 0)
1122 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1123 else
1124 pb = &dmap->d_dma->d_dbuf[j - 1];
1125
1126 pb->pb_addr = htole32(packp);
1127
1128 if (dtheend) {
1129 if (packl > dtheend) {
1130 pb->pb_len = htole32(dtheend);
1131 dtheend = 0;
1132 } else {
1133 pb->pb_len = htole32(packl);
1134 dtheend -= packl;
1135 }
1136 } else
1137 pb->pb_len = htole32(packl);
1138
1139 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1140 if (maccrd)
1141 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1142 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1143 else
1144 pb->pb_next = 0;
1145 } else
1146 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1147 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1148 j++;
1149 }
1150 }
1151
1152 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1153 offsetof(struct ubsec_dmachunk, d_ctx));
1154
1155 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1156 struct ubsec_pktctx_long *ctxl;
1157
1158 ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1159 offsetof(struct ubsec_dmachunk, d_ctx));
1160
1161 /* transform small context into long context */
1162 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1163 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1164 ctxl->pc_flags = ctx.pc_flags;
1165 ctxl->pc_offset = ctx.pc_offset;
1166 for (i = 0; i < 6; i++)
1167 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1168 for (i = 0; i < 5; i++)
1169 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1170 for (i = 0; i < 5; i++)
1171 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1172 ctxl->pc_iv[0] = ctx.pc_iv[0];
1173 ctxl->pc_iv[1] = ctx.pc_iv[1];
1174 } else
1175 bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1176 offsetof(struct ubsec_dmachunk, d_ctx),
1177 sizeof(struct ubsec_pktctx));
1178
1179 s = splnet();
1180 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1181 sc->sc_nqueue++;
1182 ubsecstats.hst_ipackets++;
1183 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1184 ubsec_feed(sc);
1185 splx(s);
1186 return (0);
1187
1188 errout:
1189 if (q != NULL) {
1190 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1191 m_freem(q->q_dst_m);
1192
1193 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1194 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1195 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1196 }
1197 if (q->q_src_map != NULL) {
1198 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1199 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1200 }
1201
1202 s = splnet();
1203 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1204 splx(s);
1205 }
1206 if (err == EINVAL)
1207 ubsecstats.hst_invalid++;
1208 else
1209 ubsecstats.hst_nomem++;
1210 errout2:
1211 crp->crp_etype = err;
1212 crypto_done(crp);
1213 return (0);
1214 }
1215
1216 void
1217 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1218 {
1219 struct cryptop *crp = (struct cryptop *)q->q_crp;
1220 struct cryptodesc *crd;
1221 struct ubsec_dma *dmap = q->q_dma;
1222
1223 ubsecstats.hst_opackets++;
1224 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1225
1226 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1227 dmap->d_alloc.dma_map->dm_mapsize,
1228 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1229 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1230 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1231 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1232 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1233 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1234 }
1235 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1236 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1237 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1238 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1239
1240 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1241 m_freem(q->q_src_m);
1242 crp->crp_buf = (caddr_t)q->q_dst_m;
1243 }
1244
1245 /* copy out IV for future use */
1246 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1247 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1248 if (crd->crd_alg != CRYPTO_DES_CBC &&
1249 crd->crd_alg != CRYPTO_3DES_CBC)
1250 continue;
1251 if (crp->crp_flags & CRYPTO_F_IMBUF)
1252 m_copydata((struct mbuf *)crp->crp_buf,
1253 crd->crd_skip + crd->crd_len - 8, 8,
1254 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1255 else if (crp->crp_flags & CRYPTO_F_IOV) {
1256 cuio_copydata((struct uio *)crp->crp_buf,
1257 crd->crd_skip + crd->crd_len - 8, 8,
1258 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1259 }
1260 break;
1261 }
1262 }
1263
1264 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1265 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1266 crd->crd_alg != CRYPTO_SHA1_HMAC)
1267 continue;
1268 if (crp->crp_flags & CRYPTO_F_IMBUF)
1269 m_copyback((struct mbuf *)crp->crp_buf,
1270 crd->crd_inject, 12,
1271 dmap->d_dma->d_macbuf);
1272 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1273 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1274 crp->crp_mac, 12);
1275 break;
1276 }
1277 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1278 crypto_done(crp);
1279 }
1280
1281 void
1282 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1283 {
1284 int i, j, dlen, slen;
1285 caddr_t dptr, sptr;
1286
1287 j = 0;
1288 sptr = srcm->m_data;
1289 slen = srcm->m_len;
1290 dptr = dstm->m_data;
1291 dlen = dstm->m_len;
1292
1293 while (1) {
1294 for (i = 0; i < min(slen, dlen); i++) {
1295 if (j < hoffset || j >= toffset)
1296 *dptr++ = *sptr++;
1297 slen--;
1298 dlen--;
1299 j++;
1300 }
1301 if (slen == 0) {
1302 srcm = srcm->m_next;
1303 if (srcm == NULL)
1304 return;
1305 sptr = srcm->m_data;
1306 slen = srcm->m_len;
1307 }
1308 if (dlen == 0) {
1309 dstm = dstm->m_next;
1310 if (dstm == NULL)
1311 return;
1312 dptr = dstm->m_data;
1313 dlen = dstm->m_len;
1314 }
1315 }
1316 }
1317
1318 /*
1319 * feed the key generator, must be called at splnet() or higher.
1320 */
1321 void
1322 ubsec_feed2(struct ubsec_softc *sc)
1323 {
1324 struct ubsec_q2 *q;
1325
1326 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1327 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1328 break;
1329 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1330
1331 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1332 q->q_mcr.dma_map->dm_mapsize,
1333 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1334 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1335 q->q_ctx.dma_map->dm_mapsize,
1336 BUS_DMASYNC_PREWRITE);
1337
1338 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1339 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1340 --sc->sc_nqueue2;
1341 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1342 }
1343 }
1344
1345 /*
1346 * Callback for handling random numbers
1347 */
1348 void
1349 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1350 {
1351 struct cryptkop *krp;
1352 struct ubsec_ctx_keyop *ctx;
1353
1354 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1355 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1356 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1357
1358 switch (q->q_type) {
1359 #ifndef UBSEC_NO_RNG
1360 case UBS_CTXOP_RNGSHA1:
1361 case UBS_CTXOP_RNGBYPASS: {
1362 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1363 u_int32_t *p;
1364 int i;
1365
1366 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1367 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1368 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1369 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1370 add_true_randomness(*p);
1371 rng->rng_used = 0;
1372 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1373 break;
1374 }
1375 #endif
1376 case UBS_CTXOP_MODEXP: {
1377 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1378 u_int rlen, clen;
1379
1380 krp = me->me_krp;
1381 rlen = (me->me_modbits + 7) / 8;
1382 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1383
1384 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1385 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1386 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1387 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1388 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1389 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1390 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1391 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1392
1393 if (clen < rlen)
1394 krp->krp_status = E2BIG;
1395 else {
1396 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1397 bzero(krp->krp_param[krp->krp_iparams].crp_p,
1398 (krp->krp_param[krp->krp_iparams].crp_nbits
1399 + 7) / 8);
1400 bcopy(me->me_C.dma_vaddr,
1401 krp->krp_param[krp->krp_iparams].crp_p,
1402 (me->me_modbits + 7) / 8);
1403 } else
1404 ubsec_kshift_l(me->me_shiftbits,
1405 me->me_C.dma_vaddr, me->me_normbits,
1406 krp->krp_param[krp->krp_iparams].crp_p,
1407 krp->krp_param[krp->krp_iparams].crp_nbits);
1408 }
1409 crypto_kdone(krp);
1410
1411 /* bzero all potentially sensitive data */
1412 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1413 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1414 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1415 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1416
1417 /* Can't free here, so put us on the free list. */
1418 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1419 break;
1420 }
1421 case UBS_CTXOP_RSAPRIV: {
1422 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1423 u_int len;
1424
1425 krp = rp->rpr_krp;
1426 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1427 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1428 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1429 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1430
1431 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1432 bcopy(rp->rpr_msgout.dma_vaddr,
1433 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1434
1435 crypto_kdone(krp);
1436
1437 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1438 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1439 bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1440
1441 /* Can't free here, so put us on the free list. */
1442 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1443 break;
1444 }
1445 default:
1446 printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1447 letoh16(ctx->ctx_op));
1448 break;
1449 }
1450 }
1451
1452 #ifndef UBSEC_NO_RNG
1453 void
1454 ubsec_rng(void *vsc)
1455 {
1456 struct ubsec_softc *sc = vsc;
1457 struct ubsec_q2_rng *rng = &sc->sc_rng;
1458 struct ubsec_mcr *mcr;
1459 struct ubsec_ctx_rngbypass *ctx;
1460 int s;
1461
1462 s = splnet();
1463 if (rng->rng_used) {
1464 splx(s);
1465 return;
1466 }
1467 sc->sc_nqueue2++;
1468 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1469 goto out;
1470
1471 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1472 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1473
1474 mcr->mcr_pkts = htole16(1);
1475 mcr->mcr_flags = 0;
1476 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1477 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1478 mcr->mcr_ipktbuf.pb_len = 0;
1479 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1480 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1481 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1482 UBS_PKTBUF_LEN);
1483 mcr->mcr_opktbuf.pb_next = 0;
1484
1485 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1486 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1487 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1488
1489 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1490 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1491
1492 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1493 rng->rng_used = 1;
1494 ubsec_feed2(sc);
1495 splx(s);
1496
1497 return;
1498
1499 out:
1500 /*
1501 * Something weird happened, generate our own call back.
1502 */
1503 sc->sc_nqueue2--;
1504 splx(s);
1505 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1506 }
1507 #endif /* UBSEC_NO_RNG */
1508
1509 int
1510 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1511 struct ubsec_dma_alloc *dma, int mapflags)
1512 {
1513 int r;
1514
1515 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1516 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1517 goto fail_0;
1518
1519 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1520 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1521 goto fail_1;
1522
1523 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1524 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1525 goto fail_2;
1526
1527 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1528 size, NULL, BUS_DMA_NOWAIT)) != 0)
1529 goto fail_3;
1530
1531 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1532 dma->dma_size = size;
1533 return (0);
1534
1535 fail_3:
1536 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1537 fail_2:
1538 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1539 fail_1:
1540 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1541 fail_0:
1542 dma->dma_map = NULL;
1543 return (r);
1544 }
1545
1546 void
1547 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1548 {
1549 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1550 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1551 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1552 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1553 }
1554
1555 /*
1556 * Resets the board. Values in the regesters are left as is
1557 * from the reset (i.e. initial values are assigned elsewhere).
1558 */
1559 void
1560 ubsec_reset_board(struct ubsec_softc *sc)
1561 {
1562 volatile u_int32_t ctrl;
1563
1564 ctrl = READ_REG(sc, BS_CTRL);
1565 ctrl |= BS_CTRL_RESET;
1566 WRITE_REG(sc, BS_CTRL, ctrl);
1567
1568 /*
1569 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1570 */
1571 DELAY(10);
1572 }
1573
1574 /*
1575 * Init Broadcom registers
1576 */
1577 void
1578 ubsec_init_board(struct ubsec_softc *sc)
1579 {
1580 u_int32_t ctrl;
1581
1582 ctrl = READ_REG(sc, BS_CTRL);
1583 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1584 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1585
1586 if (sc->sc_flags & UBS_FLAGS_KEY)
1587 ctrl |= BS_CTRL_MCR2INT;
1588 else
1589 ctrl &= ~BS_CTRL_MCR2INT;
1590
1591 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1592 ctrl &= ~BS_CTRL_SWNORM;
1593
1594 WRITE_REG(sc, BS_CTRL, ctrl);
1595 }
1596
1597 /*
1598 * Init Broadcom PCI registers
1599 */
1600 void
1601 ubsec_init_pciregs(struct pci_attach_args *pa)
1602 {
1603 pci_chipset_tag_t pc = pa->pa_pc;
1604 u_int32_t misc;
1605
1606 /*
1607 * This will set the cache line size to 1, this will
1608 * force the BCM58xx chip just to do burst read/writes.
1609 * Cache line read/writes are to slow
1610 */
1611 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1612 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1613 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1614 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1615 }
1616
1617 /*
1618 * Clean up after a chip crash.
1619 * It is assumed that the caller is in splnet()
1620 */
1621 void
1622 ubsec_cleanchip(struct ubsec_softc *sc)
1623 {
1624 struct ubsec_q *q;
1625
1626 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1627 q = SIMPLEQ_FIRST(&sc->sc_qchip);
1628 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
1629 ubsec_free_q(sc, q);
1630 }
1631 }
1632
1633 /*
1634 * free a ubsec_q
1635 * It is assumed that the caller is within splnet()
1636 */
1637 int
1638 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1639 {
1640 struct ubsec_q *q2;
1641 struct cryptop *crp;
1642 int npkts;
1643 int i;
1644
1645 npkts = q->q_nstacked_mcrs;
1646
1647 for (i = 0; i < npkts; i++) {
1648 if(q->q_stacked_mcr[i]) {
1649 q2 = q->q_stacked_mcr[i];
1650
1651 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1652 m_freem(q2->q_dst_m);
1653
1654 crp = (struct cryptop *)q2->q_crp;
1655
1656 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1657
1658 crp->crp_etype = EFAULT;
1659 crypto_done(crp);
1660 } else {
1661 break;
1662 }
1663 }
1664
1665 /*
1666 * Free header MCR
1667 */
1668 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1669 m_freem(q->q_dst_m);
1670
1671 crp = (struct cryptop *)q->q_crp;
1672
1673 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1674
1675 crp->crp_etype = EFAULT;
1676 crypto_done(crp);
1677 return(0);
1678 }
1679
1680 /*
1681 * Routine to reset the chip and clean up.
1682 * It is assumed that the caller is in splnet()
1683 */
1684 void
1685 ubsec_totalreset(struct ubsec_softc *sc)
1686 {
1687 ubsec_reset_board(sc);
1688 ubsec_init_board(sc);
1689 ubsec_cleanchip(sc);
1690 }
1691
1692 int
1693 ubsec_dmamap_aligned(bus_dmamap_t map)
1694 {
1695 int i;
1696
1697 for (i = 0; i < map->dm_nsegs; i++) {
1698 if (map->dm_segs[i].ds_addr & 3)
1699 return (0);
1700 if ((i != (map->dm_nsegs - 1)) &&
1701 (map->dm_segs[i].ds_len & 3))
1702 return (0);
1703 }
1704 return (1);
1705 }
1706
1707 struct ubsec_softc *
1708 ubsec_kfind(struct cryptkop *krp)
1709 {
1710 struct ubsec_softc *sc;
1711 int i;
1712
1713 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
1714 sc = ubsec_cd.cd_devs[i];
1715 if (sc == NULL)
1716 continue;
1717 if (sc->sc_cid == krp->krp_hid)
1718 return (sc);
1719 }
1720 return (NULL);
1721 }
1722
1723 void
1724 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
1725 {
1726 switch (q->q_type) {
1727 case UBS_CTXOP_MODEXP: {
1728 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1729
1730 ubsec_dma_free(sc, &me->me_q.q_mcr);
1731 ubsec_dma_free(sc, &me->me_q.q_ctx);
1732 ubsec_dma_free(sc, &me->me_M);
1733 ubsec_dma_free(sc, &me->me_E);
1734 ubsec_dma_free(sc, &me->me_C);
1735 ubsec_dma_free(sc, &me->me_epb);
1736 free(me, M_DEVBUF);
1737 break;
1738 }
1739 case UBS_CTXOP_RSAPRIV: {
1740 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1741
1742 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
1743 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
1744 ubsec_dma_free(sc, &rp->rpr_msgin);
1745 ubsec_dma_free(sc, &rp->rpr_msgout);
1746 free(rp, M_DEVBUF);
1747 break;
1748 }
1749 default:
1750 printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
1751 q->q_type);
1752 break;
1753 }
1754 }
1755
1756 int
1757 ubsec_kprocess(struct cryptkop *krp)
1758 {
1759 struct ubsec_softc *sc;
1760 int r;
1761
1762 if (krp == NULL || krp->krp_callback == NULL)
1763 return (EINVAL);
1764 if ((sc = ubsec_kfind(krp)) == NULL)
1765 return (EINVAL);
1766
1767 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
1768 struct ubsec_q2 *q;
1769
1770 q = SIMPLEQ_FIRST(&sc->sc_q2free);
1771 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
1772 ubsec_kfree(sc, q);
1773 }
1774
1775 switch (krp->krp_op) {
1776 case CRK_MOD_EXP:
1777 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1778 r = ubsec_kprocess_modexp_hw(sc, krp);
1779 else
1780 r = ubsec_kprocess_modexp_sw(sc, krp);
1781 break;
1782 case CRK_MOD_EXP_CRT:
1783 r = ubsec_kprocess_rsapriv(sc, krp);
1784 break;
1785 default:
1786 printf("%s: kprocess: invalid op 0x%x\n",
1787 sc->sc_dv.dv_xname, krp->krp_op);
1788 krp->krp_status = EOPNOTSUPP;
1789 crypto_kdone(krp);
1790 r = 0;
1791 }
1792 return (r);
1793 }
1794
1795 /*
1796 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
1797 */
1798 int
1799 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp)
1800 {
1801 struct ubsec_q2_modexp *me;
1802 struct ubsec_mcr *mcr;
1803 struct ubsec_ctx_modexp *ctx;
1804 struct ubsec_pktbuf *epb;
1805 int err = 0, s;
1806 u_int nbits, normbits, mbits, shiftbits, ebits;
1807
1808 me = malloc(sizeof *me, M_DEVBUF, M_NOWAIT | M_ZERO);
1809 if (me == NULL) {
1810 err = ENOMEM;
1811 goto errout;
1812 }
1813 me->me_krp = krp;
1814 me->me_q.q_type = UBS_CTXOP_MODEXP;
1815
1816 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
1817 if (nbits <= 512)
1818 normbits = 512;
1819 else if (nbits <= 768)
1820 normbits = 768;
1821 else if (nbits <= 1024)
1822 normbits = 1024;
1823 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
1824 normbits = 1536;
1825 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
1826 normbits = 2048;
1827 else {
1828 err = E2BIG;
1829 goto errout;
1830 }
1831
1832 shiftbits = normbits - nbits;
1833
1834 me->me_modbits = nbits;
1835 me->me_shiftbits = shiftbits;
1836 me->me_normbits = normbits;
1837
1838 /* Sanity check: result bits must be >= true modulus bits. */
1839 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
1840 err = ERANGE;
1841 goto errout;
1842 }
1843
1844 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
1845 &me->me_q.q_mcr, 0)) {
1846 err = ENOMEM;
1847 goto errout;
1848 }
1849 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
1850
1851 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
1852 &me->me_q.q_ctx, 0)) {
1853 err = ENOMEM;
1854 goto errout;
1855 }
1856
1857 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
1858 if (mbits > nbits) {
1859 err = E2BIG;
1860 goto errout;
1861 }
1862 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
1863 err = ENOMEM;
1864 goto errout;
1865 }
1866 ubsec_kshift_r(shiftbits,
1867 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
1868 me->me_M.dma_vaddr, normbits);
1869
1870 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
1871 err = ENOMEM;
1872 goto errout;
1873 }
1874 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1875
1876 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
1877 if (ebits > nbits) {
1878 err = E2BIG;
1879 goto errout;
1880 }
1881 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
1882 err = ENOMEM;
1883 goto errout;
1884 }
1885 ubsec_kshift_r(shiftbits,
1886 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
1887 me->me_E.dma_vaddr, normbits);
1888
1889 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
1890 &me->me_epb, 0)) {
1891 err = ENOMEM;
1892 goto errout;
1893 }
1894 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
1895 epb->pb_addr = htole32(me->me_E.dma_paddr);
1896 epb->pb_next = 0;
1897 epb->pb_len = htole32(normbits / 8);
1898
1899 #ifdef UBSEC_DEBUG
1900 printf("Epb ");
1901 ubsec_dump_pb(epb);
1902 #endif
1903
1904 mcr->mcr_pkts = htole16(1);
1905 mcr->mcr_flags = 0;
1906 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
1907 mcr->mcr_reserved = 0;
1908 mcr->mcr_pktlen = 0;
1909
1910 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
1911 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
1912 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
1913
1914 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
1915 mcr->mcr_opktbuf.pb_next = 0;
1916 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
1917
1918 #ifdef DIAGNOSTIC
1919 /* Misaligned output buffer will hang the chip. */
1920 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
1921 panic("%s: modexp invalid addr 0x%x",
1922 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
1923 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
1924 panic("%s: modexp invalid len 0x%x",
1925 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
1926 #endif
1927
1928 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
1929 bzero(ctx, sizeof(*ctx));
1930 ubsec_kshift_r(shiftbits,
1931 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
1932 ctx->me_N, normbits);
1933 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
1934 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
1935 ctx->me_E_len = htole16(nbits);
1936 ctx->me_N_len = htole16(nbits);
1937
1938 #ifdef UBSEC_DEBUG
1939 ubsec_dump_mcr(mcr);
1940 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
1941 #endif
1942
1943 /*
1944 * ubsec_feed2 will sync mcr and ctx, we just need to sync
1945 * everything else.
1946 */
1947 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1948 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1949 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1950 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1952 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1953 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1954 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1955
1956 /* Enqueue and we're done... */
1957 s = splnet();
1958 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
1959 ubsec_feed2(sc);
1960 splx(s);
1961
1962 return (0);
1963
1964 errout:
1965 if (me != NULL) {
1966 if (me->me_q.q_mcr.dma_map != NULL)
1967 ubsec_dma_free(sc, &me->me_q.q_mcr);
1968 if (me->me_q.q_ctx.dma_map != NULL) {
1969 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1970 ubsec_dma_free(sc, &me->me_q.q_ctx);
1971 }
1972 if (me->me_M.dma_map != NULL) {
1973 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1974 ubsec_dma_free(sc, &me->me_M);
1975 }
1976 if (me->me_E.dma_map != NULL) {
1977 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1978 ubsec_dma_free(sc, &me->me_E);
1979 }
1980 if (me->me_C.dma_map != NULL) {
1981 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1982 ubsec_dma_free(sc, &me->me_C);
1983 }
1984 if (me->me_epb.dma_map != NULL)
1985 ubsec_dma_free(sc, &me->me_epb);
1986 free(me, M_DEVBUF);
1987 }
1988 krp->krp_status = err;
1989 crypto_kdone(krp);
1990 return (0);
1991 }
1992
1993 /*
1994 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
1995 */
1996 int
1997 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp)
1998 {
1999 struct ubsec_q2_modexp *me;
2000 struct ubsec_mcr *mcr;
2001 struct ubsec_ctx_modexp *ctx;
2002 struct ubsec_pktbuf *epb;
2003 int err = 0, s;
2004 u_int nbits, normbits, mbits, shiftbits, ebits;
2005
2006 me = malloc(sizeof *me, M_DEVBUF, M_NOWAIT | M_ZERO);
2007 if (me == NULL) {
2008 err = ENOMEM;
2009 goto errout;
2010 }
2011 me->me_krp = krp;
2012 me->me_q.q_type = UBS_CTXOP_MODEXP;
2013
2014 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2015 if (nbits <= 512)
2016 normbits = 512;
2017 else if (nbits <= 768)
2018 normbits = 768;
2019 else if (nbits <= 1024)
2020 normbits = 1024;
2021 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2022 normbits = 1536;
2023 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2024 normbits = 2048;
2025 else {
2026 err = E2BIG;
2027 goto errout;
2028 }
2029
2030 shiftbits = normbits - nbits;
2031
2032 /* XXX ??? */
2033 me->me_modbits = nbits;
2034 me->me_shiftbits = shiftbits;
2035 me->me_normbits = normbits;
2036
2037 /* Sanity check: result bits must be >= true modulus bits. */
2038 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2039 err = ERANGE;
2040 goto errout;
2041 }
2042
2043 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2044 &me->me_q.q_mcr, 0)) {
2045 err = ENOMEM;
2046 goto errout;
2047 }
2048 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2049
2050 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2051 &me->me_q.q_ctx, 0)) {
2052 err = ENOMEM;
2053 goto errout;
2054 }
2055
2056 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2057 if (mbits > nbits) {
2058 err = E2BIG;
2059 goto errout;
2060 }
2061 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2062 err = ENOMEM;
2063 goto errout;
2064 }
2065 bzero(me->me_M.dma_vaddr, normbits / 8);
2066 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2067 me->me_M.dma_vaddr, (mbits + 7) / 8);
2068
2069 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2070 err = ENOMEM;
2071 goto errout;
2072 }
2073 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2074
2075 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2076 if (ebits > nbits) {
2077 err = E2BIG;
2078 goto errout;
2079 }
2080 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2081 err = ENOMEM;
2082 goto errout;
2083 }
2084 bzero(me->me_E.dma_vaddr, normbits / 8);
2085 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2086 me->me_E.dma_vaddr, (ebits + 7) / 8);
2087
2088 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2089 &me->me_epb, 0)) {
2090 err = ENOMEM;
2091 goto errout;
2092 }
2093 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2094 epb->pb_addr = htole32(me->me_E.dma_paddr);
2095 epb->pb_next = 0;
2096 epb->pb_len = htole32((ebits + 7) / 8);
2097
2098 #ifdef UBSEC_DEBUG
2099 printf("Epb ");
2100 ubsec_dump_pb(epb);
2101 #endif
2102
2103 mcr->mcr_pkts = htole16(1);
2104 mcr->mcr_flags = 0;
2105 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2106 mcr->mcr_reserved = 0;
2107 mcr->mcr_pktlen = 0;
2108
2109 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2110 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2111 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2112
2113 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2114 mcr->mcr_opktbuf.pb_next = 0;
2115 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2116
2117 #ifdef DIAGNOSTIC
2118 /* Misaligned output buffer will hang the chip. */
2119 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2120 panic("%s: modexp invalid addr 0x%x",
2121 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2122 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2123 panic("%s: modexp invalid len 0x%x",
2124 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2125 #endif
2126
2127 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2128 bzero(ctx, sizeof(*ctx));
2129 bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2130 (nbits + 7) / 8);
2131 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2132 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2133 ctx->me_E_len = htole16(ebits);
2134 ctx->me_N_len = htole16(nbits);
2135
2136 #ifdef UBSEC_DEBUG
2137 ubsec_dump_mcr(mcr);
2138 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2139 #endif
2140
2141 /*
2142 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2143 * everything else.
2144 */
2145 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2146 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2147 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2148 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2149 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2150 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2151 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2152 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2153
2154 /* Enqueue and we're done... */
2155 s = splnet();
2156 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2157 ubsec_feed2(sc);
2158 splx(s);
2159
2160 return (0);
2161
2162 errout:
2163 if (me != NULL) {
2164 if (me->me_q.q_mcr.dma_map != NULL)
2165 ubsec_dma_free(sc, &me->me_q.q_mcr);
2166 if (me->me_q.q_ctx.dma_map != NULL) {
2167 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2168 ubsec_dma_free(sc, &me->me_q.q_ctx);
2169 }
2170 if (me->me_M.dma_map != NULL) {
2171 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2172 ubsec_dma_free(sc, &me->me_M);
2173 }
2174 if (me->me_E.dma_map != NULL) {
2175 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2176 ubsec_dma_free(sc, &me->me_E);
2177 }
2178 if (me->me_C.dma_map != NULL) {
2179 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2180 ubsec_dma_free(sc, &me->me_C);
2181 }
2182 if (me->me_epb.dma_map != NULL)
2183 ubsec_dma_free(sc, &me->me_epb);
2184 free(me, M_DEVBUF);
2185 }
2186 krp->krp_status = err;
2187 crypto_kdone(krp);
2188 return (0);
2189 }
2190
2191 int
2192 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp)
2193 {
2194 struct ubsec_q2_rsapriv *rp = NULL;
2195 struct ubsec_mcr *mcr;
2196 struct ubsec_ctx_rsapriv *ctx;
2197 int err = 0, s;
2198 u_int padlen, msglen;
2199
2200 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2201 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2202 if (msglen > padlen)
2203 padlen = msglen;
2204
2205 if (padlen <= 256)
2206 padlen = 256;
2207 else if (padlen <= 384)
2208 padlen = 384;
2209 else if (padlen <= 512)
2210 padlen = 512;
2211 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2212 padlen = 768;
2213 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2214 padlen = 1024;
2215 else {
2216 err = E2BIG;
2217 goto errout;
2218 }
2219
2220 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2221 err = E2BIG;
2222 goto errout;
2223 }
2224
2225 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2226 err = E2BIG;
2227 goto errout;
2228 }
2229
2230 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2231 err = E2BIG;
2232 goto errout;
2233 }
2234
2235 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT | M_ZERO);
2236 if (rp == NULL)
2237 return (ENOMEM);
2238 rp->rpr_krp = krp;
2239 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2240
2241 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2242 &rp->rpr_q.q_mcr, 0)) {
2243 err = ENOMEM;
2244 goto errout;
2245 }
2246 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2247
2248 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2249 &rp->rpr_q.q_ctx, 0)) {
2250 err = ENOMEM;
2251 goto errout;
2252 }
2253 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2254 bzero(ctx, sizeof *ctx);
2255
2256 /* Copy in p */
2257 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2258 &ctx->rpr_buf[0 * (padlen / 8)],
2259 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2260
2261 /* Copy in q */
2262 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2263 &ctx->rpr_buf[1 * (padlen / 8)],
2264 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2265
2266 /* Copy in dp */
2267 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2268 &ctx->rpr_buf[2 * (padlen / 8)],
2269 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2270
2271 /* Copy in dq */
2272 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2273 &ctx->rpr_buf[3 * (padlen / 8)],
2274 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2275
2276 /* Copy in pinv */
2277 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2278 &ctx->rpr_buf[4 * (padlen / 8)],
2279 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2280
2281 msglen = padlen * 2;
2282
2283 /* Copy in input message (aligned buffer/length). */
2284 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2285 /* Is this likely? */
2286 err = E2BIG;
2287 goto errout;
2288 }
2289 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2290 err = ENOMEM;
2291 goto errout;
2292 }
2293 bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2294 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2295 rp->rpr_msgin.dma_vaddr,
2296 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2297
2298 /* Prepare space for output message (aligned buffer/length). */
2299 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2300 /* Is this likely? */
2301 err = E2BIG;
2302 goto errout;
2303 }
2304 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2305 err = ENOMEM;
2306 goto errout;
2307 }
2308 bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2309
2310 mcr->mcr_pkts = htole16(1);
2311 mcr->mcr_flags = 0;
2312 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2313 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2314 mcr->mcr_ipktbuf.pb_next = 0;
2315 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2316 mcr->mcr_reserved = 0;
2317 mcr->mcr_pktlen = htole16(msglen);
2318 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2319 mcr->mcr_opktbuf.pb_next = 0;
2320 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2321
2322 #ifdef DIAGNOSTIC
2323 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2324 panic("%s: rsapriv: invalid msgin %p(0x%x)",
2325 sc->sc_dv.dv_xname, rp->rpr_msgin.dma_paddr,
2326 rp->rpr_msgin.dma_size);
2327 }
2328 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2329 panic("%s: rsapriv: invalid msgout %p(0x%x)",
2330 sc->sc_dv.dv_xname, rp->rpr_msgout.dma_paddr,
2331 rp->rpr_msgout.dma_size);
2332 }
2333 #endif
2334
2335 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2336 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2337 ctx->rpr_q_len = htole16(padlen);
2338 ctx->rpr_p_len = htole16(padlen);
2339
2340 /*
2341 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2342 * everything else.
2343 */
2344 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2345 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2346 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2347 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2348
2349 /* Enqueue and we're done... */
2350 s = splnet();
2351 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2352 ubsec_feed2(sc);
2353 splx(s);
2354 return (0);
2355
2356 errout:
2357 if (rp != NULL) {
2358 if (rp->rpr_q.q_mcr.dma_map != NULL)
2359 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2360 if (rp->rpr_msgin.dma_map != NULL) {
2361 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2362 ubsec_dma_free(sc, &rp->rpr_msgin);
2363 }
2364 if (rp->rpr_msgout.dma_map != NULL) {
2365 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2366 ubsec_dma_free(sc, &rp->rpr_msgout);
2367 }
2368 free(rp, M_DEVBUF);
2369 }
2370 krp->krp_status = err;
2371 crypto_kdone(krp);
2372 return (0);
2373 }
2374
2375 void
2376 ubsec_dump_pb(struct ubsec_pktbuf *pb)
2377 {
2378 printf("addr 0x%x (0x%x) next 0x%x\n",
2379 pb->pb_addr, pb->pb_len, pb->pb_next);
2380 }
2381
2382 void
2383 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2384 {
2385 printf("CTX (0x%x):\n", c->ctx_len);
2386 switch (letoh16(c->ctx_op)) {
2387 case UBS_CTXOP_RNGBYPASS:
2388 case UBS_CTXOP_RNGSHA1:
2389 break;
2390 case UBS_CTXOP_MODEXP:
2391 {
2392 struct ubsec_ctx_modexp *cx = (void *)c;
2393 int i, len;
2394
2395 printf(" Elen %u, Nlen %u\n",
2396 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2397 len = (cx->me_N_len + 7)/8;
2398 for (i = 0; i < len; i++)
2399 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2400 printf("\n");
2401 break;
2402 }
2403 default:
2404 printf("unknown context: %x\n", c->ctx_op);
2405 }
2406 printf("END CTX\n");
2407 }
2408
2409 void
2410 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2411 {
2412 struct ubsec_mcr_add *ma;
2413 int i;
2414
2415 printf("MCR:\n");
2416 printf(" pkts: %u, flags 0x%x\n",
2417 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2418 ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2419 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2420 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2421 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2422 letoh16(ma->mcr_reserved));
2423 printf(" %d: ipkt ", i);
2424 ubsec_dump_pb(&ma->mcr_ipktbuf);
2425 printf(" %d: opkt ", i);
2426 ubsec_dump_pb(&ma->mcr_opktbuf);
2427 ma++;
2428 }
2429 printf("END MCR\n");
2430 }
2431
2432 /*
2433 * Return the number of significant bits of a big number.
2434 */
2435 int
2436 ubsec_ksigbits(struct crparam *cr)
2437 {
2438 u_int plen = (cr->crp_nbits + 7) / 8;
2439 int i, sig = plen * 8;
2440 u_int8_t c, *p = cr->crp_p;
2441
2442 for (i = plen - 1; i >= 0; i--) {
2443 c = p[i];
2444 if (c != 0) {
2445 while ((c & 0x80) == 0) {
2446 sig--;
2447 c <<= 1;
2448 }
2449 break;
2450 }
2451 sig -= 8;
2452 }
2453 return (sig);
2454 }
2455
2456 void
2457 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
2458 u_int8_t *dst, u_int dstbits)
2459 {
2460 u_int slen, dlen;
2461 int i, si, di, n;
2462
2463 slen = (srcbits + 7) / 8;
2464 dlen = (dstbits + 7) / 8;
2465
2466 for (i = 0; i < slen; i++)
2467 dst[i] = src[i];
2468 for (i = 0; i < dlen - slen; i++)
2469 dst[slen + i] = 0;
2470
2471 n = shiftbits / 8;
2472 if (n != 0) {
2473 si = dlen - n - 1;
2474 di = dlen - 1;
2475 while (si >= 0)
2476 dst[di--] = dst[si--];
2477 while (di >= 0)
2478 dst[di--] = 0;
2479 }
2480
2481 n = shiftbits % 8;
2482 if (n != 0) {
2483 for (i = dlen - 1; i > 0; i--)
2484 dst[i] = (dst[i] << n) |
2485 (dst[i - 1] >> (8 - n));
2486 dst[0] = dst[0] << n;
2487 }
2488 }
2489
2490 void
2491 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
2492 u_int8_t *dst, u_int dstbits)
2493 {
2494 int slen, dlen, i, n;
2495
2496 slen = (srcbits + 7) / 8;
2497 dlen = (dstbits + 7) / 8;
2498
2499 n = shiftbits / 8;
2500 for (i = 0; i < slen; i++)
2501 dst[i] = src[i + n];
2502 for (i = 0; i < dlen - slen; i++)
2503 dst[slen + i] = 0;
2504
2505 n = shiftbits % 8;
2506 if (n != 0) {
2507 for (i = 0; i < (dlen - 1); i++)
2508 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2509 dst[dlen - 1] = dst[dlen - 1] >> n;
2510 }
2511 }