add back the base-files/image code from brcm-2.4 to brcm47xx
[openwrt/svn-archive/archive.git] / target / linux / brcm-2.4 / files / arch / mips / bcm947xx / sbmips.c
1 /*
2 * BCM47XX Sonics SiliconBackplane MIPS core routines
3 *
4 * Copyright 2007, Broadcom Corporation
5 * All Rights Reserved.
6 *
7 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
8 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
9 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
10 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
11 *
12 */
13
14 #include <typedefs.h>
15 #include <bcmdefs.h>
16 #include <osl.h>
17 #include <sbutils.h>
18 #include <bcmdevs.h>
19 #include <bcmnvram.h>
20 #include <sbconfig.h>
21 #include <sbchipc.h>
22 #include <sbextif.h>
23 #include <sbmemc.h>
24 #include <mipsinc.h>
25 #include <sbhndmips.h>
26 #include <hndcpu.h>
27 #include <hndmips.h>
28
29 /* sbipsflag register format, indexed by irq. */
30 static const uint32 sbips_int_mask[] = {
31 0, /* placeholder */
32 SBIPS_INT1_MASK,
33 SBIPS_INT2_MASK,
34 SBIPS_INT3_MASK,
35 SBIPS_INT4_MASK
36 };
37
38 static const uint32 sbips_int_shift[] = {
39 0, /* placeholder */
40 SBIPS_INT1_SHIFT,
41 SBIPS_INT2_SHIFT,
42 SBIPS_INT3_SHIFT,
43 SBIPS_INT4_SHIFT
44 };
45
46 /*
47 * Map SB cores sharing the MIPS hardware IRQ0 to virtual dedicated OS IRQs.
48 * Per-port BSP code is required to provide necessary translations between
49 * the shared MIPS IRQ and the virtual OS IRQs based on SB core flag.
50 *
51 * See sb_irq() for the mapping.
52 */
53 static uint shirq_map_base = 0;
54
55 /* Returns the SB interrupt flag of the current core. */
56 static uint32 sb_getflag(sb_t * sbh)
57 {
58 osl_t *osh;
59 void *regs;
60 sbconfig_t *sb;
61
62 osh = sb_osh(sbh);
63 regs = sb_coreregs(sbh);
64 sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
65
66 return (R_REG(osh, &sb->sbtpsflag) & SBTPS_NUM0_MASK);
67 }
68
69 /*
70 * Returns the MIPS IRQ assignment of the current core. If unassigned,
71 * 0 is returned.
72 */
73 uint sb_irq(sb_t * sbh)
74 {
75 osl_t *osh;
76 uint idx;
77 void *regs;
78 sbconfig_t *sb;
79 uint32 flag, sbipsflag;
80 uint irq = 0;
81
82 osh = sb_osh(sbh);
83 flag = sb_getflag(sbh);
84
85 idx = sb_coreidx(sbh);
86
87 if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
88 (regs = sb_setcore(sbh, SB_MIPS33, 0))) {
89 sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
90
91 /* sbipsflag specifies which core is routed to interrupts 1 to 4 */
92 sbipsflag = R_REG(osh, &sb->sbipsflag);
93 for (irq = 1; irq <= 4; irq++) {
94 if (((sbipsflag & sbips_int_mask[irq]) >>
95 sbips_int_shift[irq]) == flag)
96 break;
97 }
98 if (irq == 5)
99 irq = 0;
100 }
101
102 sb_setcoreidx(sbh, idx);
103
104 return irq;
105 }
106
107 /* Clears the specified MIPS IRQ. */
108 static void BCMINITFN(sb_clearirq) (sb_t * sbh, uint irq) {
109 osl_t *osh;
110 void *regs;
111 sbconfig_t *sb;
112
113 osh = sb_osh(sbh);
114
115 if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
116 !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
117 ASSERT(regs);
118 sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
119
120 if (irq == 0)
121 W_REG(osh, &sb->sbintvec, 0);
122 else
123 OR_REG(osh, &sb->sbipsflag, sbips_int_mask[irq]);
124 }
125
126 /*
127 * Assigns the specified MIPS IRQ to the specified core. Shared MIPS
128 * IRQ 0 may be assigned more than once.
129 *
130 * The old assignment to the specified core is removed first.
131 */
132 static void
133 BCMINITFN(sb_setirq) (sb_t * sbh, uint irq, uint coreid, uint coreunit) {
134 osl_t *osh;
135 void *regs;
136 sbconfig_t *sb;
137 uint32 flag;
138 uint oldirq;
139
140 osh = sb_osh(sbh);
141
142 regs = sb_setcore(sbh, coreid, coreunit);
143 ASSERT(regs);
144 flag = sb_getflag(sbh);
145 oldirq = sb_irq(sbh);
146 if (oldirq)
147 sb_clearirq(sbh, oldirq);
148
149 if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
150 !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
151 ASSERT(regs);
152 sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
153
154 if (!oldirq)
155 AND_REG(osh, &sb->sbintvec, ~(1 << flag));
156
157 if (irq == 0)
158 OR_REG(osh, &sb->sbintvec, 1 << flag);
159 else {
160 flag <<= sbips_int_shift[irq];
161 ASSERT(!(flag & ~sbips_int_mask[irq]));
162 flag |= R_REG(osh, &sb->sbipsflag) & ~sbips_int_mask[irq];
163 W_REG(osh, &sb->sbipsflag, flag);
164 }
165 }
166
167 /*
168 * Initializes clocks and interrupts. SB and NVRAM access must be
169 * initialized prior to calling.
170 *
171 * 'shirqmap' enables virtual dedicated OS IRQ mapping if non-zero.
172 */
173 void BCMINITFN(sb_mips_init) (sb_t * sbh, uint shirqmap) {
174 osl_t *osh;
175 ulong hz, ns, tmp;
176 extifregs_t *eir;
177 chipcregs_t *cc;
178 char *value;
179 uint irq;
180
181 osh = sb_osh(sbh);
182
183 /* Figure out current SB clock speed */
184 if ((hz = sb_clock(sbh)) == 0)
185 hz = 100000000;
186 ns = 1000000000 / hz;
187
188 /* Setup external interface timing */
189 if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
190 /* Initialize extif so we can get to the LEDs and external UART */
191 W_REG(osh, &eir->prog_config, CF_EN);
192
193 /* Set timing for the flash */
194 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
195 tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
196 tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
197 W_REG(osh, &eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
198
199 /* Set programmable interface timing for external uart */
200 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
201 tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
202 tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
203 tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
204 W_REG(osh, &eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
205 } else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
206 /* Set timing for the flash */
207 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
208 tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */
209 tmp |= CEIL(120, ns); /* W0 = 120nS */
210 if ((sb_corerev(sbh) < 9) || (sb_chip(sbh) == 0x5365))
211 W_REG(osh, &cc->flash_waitcount, tmp);
212
213 if ((sb_corerev(sbh) < 9) ||
214 ((sb_chip(sbh) == BCM5350_CHIP_ID) && sb_chiprev(sbh) == 0)
215 || (sb_chip(sbh) == 0x5365)) {
216 W_REG(osh, &cc->pcmcia_memwait, tmp);
217 }
218
219 /* Save shared IRQ mapping base */
220 shirq_map_base = shirqmap;
221 }
222
223 /* Chip specific initialization */
224 switch (sb_chip(sbh)) {
225 case BCM4710_CHIP_ID:
226 /* Clear interrupt map */
227 for (irq = 0; irq <= 4; irq++)
228 sb_clearirq(sbh, irq);
229 sb_setirq(sbh, 0, SB_CODEC, 0);
230 sb_setirq(sbh, 0, SB_EXTIF, 0);
231 sb_setirq(sbh, 2, SB_ENET, 1);
232 sb_setirq(sbh, 3, SB_ILINE20, 0);
233 sb_setirq(sbh, 4, SB_PCI, 0);
234 ASSERT(eir);
235 value = nvram_get("et0phyaddr");
236 if (value && !strcmp(value, "31")) {
237 /* Enable internal UART */
238 W_REG(osh, &eir->corecontrol, CC_UE);
239 /* Give USB its own interrupt */
240 sb_setirq(sbh, 1, SB_USB, 0);
241 } else {
242 /* Disable internal UART */
243 W_REG(osh, &eir->corecontrol, 0);
244 /* Give Ethernet its own interrupt */
245 sb_setirq(sbh, 1, SB_ENET, 0);
246 sb_setirq(sbh, 0, SB_USB, 0);
247 }
248 break;
249 case BCM5350_CHIP_ID:
250 /* Clear interrupt map */
251 for (irq = 0; irq <= 4; irq++)
252 sb_clearirq(sbh, irq);
253 sb_setirq(sbh, 0, SB_CC, 0);
254 sb_setirq(sbh, 0, SB_MIPS33, 0);
255 sb_setirq(sbh, 1, SB_D11, 0);
256 sb_setirq(sbh, 2, SB_ENET, 0);
257 sb_setirq(sbh, 3, SB_PCI, 0);
258 sb_setirq(sbh, 4, SB_USB, 0);
259 break;
260 case BCM4785_CHIP_ID:
261 /* Reassign PCI to irq 4 */
262 sb_setirq(sbh, 4, SB_PCI, 0);
263 break;
264 }
265 }
266
267 uint32
268 BCMINITFN(sb_cpu_clock)(sb_t *sbh)
269 {
270 extifregs_t *eir;
271 chipcregs_t *cc;
272 uint32 n, m;
273 uint idx;
274 uint32 pll_type, rate = 0;
275
276 /* get index of the current core */
277 idx = sb_coreidx(sbh);
278 pll_type = PLL_TYPE1;
279
280 /* switch to extif or chipc core */
281 if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
282 n = R_REG(osh, &eir->clockcontrol_n);
283 m = R_REG(osh, &eir->clockcontrol_sb);
284 } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
285 /* 5354 chip uses a non programmable PLL of frequency 240MHz */
286 if (sb_chip(sbh) == BCM5354_CHIP_ID) {
287 rate = 240000000;
288 goto out;
289 }
290 pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
291 n = R_REG(osh, &cc->clockcontrol_n);
292 if ((pll_type == PLL_TYPE2) ||
293 (pll_type == PLL_TYPE4) ||
294 (pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7))
295 m = R_REG(osh, &cc->clockcontrol_m3);
296 else if (pll_type == PLL_TYPE5) {
297 rate = 200000000;
298 goto out;
299 } else if (pll_type == PLL_TYPE3) {
300 if (sb_chip(sbh) == BCM5365_CHIP_ID) {
301 rate = 200000000;
302 goto out;
303 }
304 /* 5350 uses m2 to control mips */
305 else
306 m = R_REG(osh, &cc->clockcontrol_m2);
307 } else
308 m = R_REG(osh, &cc->clockcontrol_sb);
309 } else
310 goto out;
311
312 /* calculate rate */
313 if (sb_chip(sbh) == 0x5365)
314 rate = 100000000;
315 else
316 rate = sb_clock_rate(pll_type, n, m);
317
318 if (pll_type == PLL_TYPE6)
319 rate = SB2MIPS_T6(rate);
320
321 out:
322 /* switch back to previous core */
323 sb_setcoreidx(sbh, idx);
324
325 return rate;
326 }
327
328 #define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)
329
330 static void BCMINITFN(handler) (void) {
331 __asm__(".set\tmips32\n\t" "ssnop\n\t" "ssnop\n\t"
332 /* Disable interrupts */
333 /* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
334 "mfc0 $15, $12\n\t"
335 /* Just a Hack to not to use reg 'at' which was causing problems on 4704 A2 */
336 "li $14, -31746\n\t"
337 "and $15, $15, $14\n\t"
338 "mtc0 $15, $12\n\t" "eret\n\t" "nop\n\t" "nop\n\t"
339 ".set\tmips0");
340 }
341
342 /* The following MUST come right after handler() */
343 static void BCMINITFN(afterhandler) (void) {
344 }
345
346 /*
347 * Set the MIPS, backplane and PCI clocks as closely as possible.
348 *
349 * MIPS clocks synchronization function has been moved from PLL in chipcommon
350 * core rev. 15 to a DLL inside the MIPS core in 4785.
351 */
352 bool
353 BCMINITFN(sb_mips_setclock) (sb_t * sbh, uint32 mipsclock, uint32 sbclock,
354 uint32 pciclock) {
355 extifregs_t *eir = NULL;
356 chipcregs_t *cc = NULL;
357 mipsregs_t *mipsr = NULL;
358 volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci,
359 *clockcontrol_m2;
360 uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm,
361 orig_ratio_cfg;
362 uint32 pll_type, sync_mode;
363 uint ic_size, ic_lsize;
364 uint idx, i;
365
366 /* PLL configuration: type 1 */
367 typedef struct {
368 uint32 mipsclock;
369 uint16 n;
370 uint32 sb;
371 uint32 pci33;
372 uint32 pci25;
373 } n3m_table_t;
374 static n3m_table_t BCMINITDATA(type1_table)[] = {
375 /* 96.000 32.000 24.000 */
376 {
377 96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011},
378 /* 100.000 33.333 25.000 */
379 {
380 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011},
381 /* 104.000 31.200 24.960 */
382 {
383 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009},
384 /* 108.000 32.400 24.923 */
385 {
386 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802},
387 /* 112.000 32.000 24.889 */
388 {
389 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403},
390 /* 115.200 32.000 24.000 */
391 {
392 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011},
393 /* 120.000 30.000 24.000 */
394 {
395 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011},
396 /* 124.800 31.200 24.960 */
397 {
398 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009},
399 /* 128.000 32.000 24.000 */
400 {
401 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305},
402 /* 132.000 33.000 24.750 */
403 {
404 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305},
405 /* 136.000 32.640 24.727 */
406 {
407 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603},
408 /* 140.000 30.000 24.706 */
409 {
410 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02},
411 /* 144.000 30.857 24.686 */
412 {
413 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021},
414 /* 150.857 33.000 24.000 */
415 {
416 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605},
417 /* 152.000 32.571 24.000 */
418 {
419 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02},
420 /* 156.000 31.200 24.960 */
421 {
422 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009},
423 /* 160.000 32.000 24.000 */
424 {
425 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309},
426 /* 163.200 32.640 24.727 */
427 {
428 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603},
429 /* 168.000 32.000 24.889 */
430 {
431 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403},
432 /* 176.000 33.000 24.000 */
433 {
434 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602},};
435
436 /* PLL configuration: type 3 */
437 typedef struct {
438 uint32 mipsclock;
439 uint16 n;
440 uint32 m2; /* that is the clockcontrol_m2 */
441 } type3_table_t;
442 static type3_table_t type3_table[] = {
443 /* for 5350, mips clock is always double sb clock */
444 {150000000, 0x311, 0x4020005},
445 {200000000, 0x311, 0x4020003},
446 };
447
448 /* PLL configuration: type 2, 4, 7 */
449 typedef struct {
450 uint32 mipsclock;
451 uint32 sbclock;
452 uint32 pciclock;
453 uint16 n;
454 uint32 sb;
455 uint32 pci33;
456 uint32 m2;
457 uint32 m3;
458 uint32 ratio_cfg;
459 uint32 ratio_parm;
460 uint32 d11_r1;
461 uint32 d11_r2;
462 } n4m_table_t;
463 static n4m_table_t BCMINITDATA(type2_table)[] = {
464 {
465 120000000, 60000000, 32000000, 0x0303, 0x01000200,
466 0x01000600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
467 8 /* ratio 4/8 */ ,
468 0x00aa0055}, {
469 150000000, 75000000, 33333333, 0x0303, 0x01000100,
470 0x01000600, 0x01000100, 0x05000100, 11, 0x0aaa0555,
471 8 /* ratio 4/8 */ ,
472 0x00aa0055}, {
473 180000000, 80000000, 30000000, 0x0403, 0x01010000,
474 0x01020300, 0x01020600, 0x05000100, 8, 0x012a00a9,
475 9 /* ratio 4/9 */ ,
476 0x012a00a9}, {
477 180000000, 90000000, 30000000, 0x0403, 0x01000100,
478 0x01020300, 0x01000100, 0x05000100, 11, 0x0aaa0555,
479 8 /* ratio 4/8 */ ,
480 0x00aa0055}, {
481 200000000, 100000000, 33333333, 0x0303, 0x02010000,
482 0x02040001, 0x02010000, 0x06000001, 11, 0x0aaa0555,
483 8 /* ratio 4/8 */ ,
484 0x00aa0055}, {
485 211200000, 105600000, 30171428, 0x0902, 0x01000200,
486 0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
487 8 /* ratio 4/8 */ ,
488 0x00aa0055}, {
489 220800000, 110400000, 31542857, 0x1500, 0x01000200,
490 0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
491 8 /* ratio 4/8 */ ,
492 0x00aa0055}, {
493 230400000, 115200000, 32000000, 0x0604, 0x01000200,
494 0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
495 8 /* ratio 4/8 */ ,
496 0x00aa0055}, {
497 234000000, 104000000, 31200000, 0x0b01, 0x01010000,
498 0x01010700, 0x01020600, 0x05000100, 8, 0x012a00a9,
499 9 /* ratio 4/9 */ ,
500 0x012a00a9}, {
501 240000000, 120000000, 33333333, 0x0803, 0x01000200,
502 0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
503 8 /* ratio 4/8 */ ,
504 0x00aa0055}, {
505 252000000, 126000000, 33333333, 0x0504, 0x01000100,
506 0x01020500, 0x01000100, 0x05000100, 11, 0x0aaa0555,
507 8 /* ratio 4/8 */ ,
508 0x00aa0055}, {
509 264000000, 132000000, 33000000, 0x0903, 0x01000200,
510 0x01020700, 0x01000200, 0x05000200, 11, 0x0aaa0555,
511 8 /* ratio 4/8 */ ,
512 0x00aa0055}, {
513 270000000, 120000000, 30000000, 0x0703, 0x01010000,
514 0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
515 9 /* ratio 4/9 */ ,
516 0x012a00a9}, {
517 276000000, 122666666, 31542857, 0x1500, 0x01010000,
518 0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
519 9 /* ratio 4/9 */ ,
520 0x012a00a9}, {
521 280000000, 140000000, 31111111, 0x0503, 0x01000000,
522 0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
523 8 /* ratio 4/8 */ ,
524 0x00aa0055}, {
525 288000000, 128000000, 32914285, 0x0604, 0x01010000,
526 0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
527 9 /* ratio 4/9 */ ,
528 0x012a00a9}, {
529 288000000, 144000000, 32000000, 0x0404, 0x01000000,
530 0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
531 8 /* ratio 4/8 */ ,
532 0x00aa0055}, {
533 300000000, 133333333, 33333333, 0x0803, 0x01010000,
534 0x01020600, 0x01010100, 0x05000100, 8, 0x012a00a9,
535 9 /* ratio 4/9 */ ,
536 0x012a00a9}, {
537 300000000, 133333333, 37500000, 0x0803, 0x01010000,
538 0x01020500, 0x01010100, 0x05000100, 8, 0x012a00a9,
539 9 /* ratio 4/9 */ ,
540 0x012a00a9}, {
541 300000000, 133333333, 42857142, 0x0803, 0x01010000,
542 0x01020400, 0x01010100, 0x05000100, 8, 0x012a00a9,
543 9 /* ratio 4/9 */ ,
544 0x012a00a9}, {
545 300000000, 133333333, 50000000, 0x0803, 0x01010000,
546 0x01020300, 0x01010100, 0x05000100, 8, 0x012a00a9,
547 9 /* ratio 4/9 */ ,
548 0x012a00a9}, {
549 300000000, 133333333, 60000000, 0x0803, 0x01010000,
550 0x01020200, 0x01010100, 0x05000100, 8, 0x012a00a9,
551 9 /* ratio 4/9 */ ,
552 0x012a00a9}, {
553 300000000, 150000000, 33333333, 0x0803, 0x01000100,
554 0x01020600, 0x01010100, 0x05000100, 11, 0x0aaa0555,
555 8 /* ratio 4/8 */ ,
556 0x00aa0055}, {
557 300000000, 150000000, 37500000, 0x0803, 0x01000100,
558 0x01020500, 0x01010100, 0x05000100, 11, 0x0aaa0555,
559 8 /* ratio 4/8 */ ,
560 0x00aa0055}, {
561 300000000, 150000000, 42857142, 0x0803, 0x01000100,
562 0x01020400, 0x01010100, 0x05000100, 11, 0x0aaa0555,
563 8 /* ratio 4/8 */ ,
564 0x00aa0055}, {
565 300000000, 150000000, 50000000, 0x0803, 0x01000100,
566 0x01020300, 0x01010100, 0x05000100, 11, 0x0aaa0555,
567 8 /* ratio 4/8 */ ,
568 0x00aa0055}, {
569 300000000, 150000000, 60000000, 0x0803, 0x01000100,
570 0x01020200, 0x01010100, 0x05000100, 11, 0x0aaa0555,
571 8 /* ratio 4/8 */ ,
572 0x00aa0055}, {
573 330000000, 132000000, 33000000, 0x0903, 0x01000200,
574 0x00020200, 0x01010100, 0x05000100, 0, 0,
575 10 /* ratio 4/10 */ , 0x02520129},
576 {
577 330000000, 146666666, 33000000, 0x0903, 0x01010000,
578 0x00020200, 0x01010100, 0x05000100, 0, 0,
579 9 /* ratio 4/9 */ , 0x012a00a9},
580 {
581 330000000, 165000000, 33000000, 0x0903, 0x01000100,
582 0x00020200, 0x01010100, 0x05000100, 0, 0,
583 8 /* ratio 4/8 */ , 0x00aa0055},
584 {
585 330000000, 165000000, 41250000, 0x0903, 0x01000100,
586 0x00020100, 0x01010100, 0x05000100, 0, 0,
587 8 /* ratio 4/8 */ , 0x00aa0055},
588 {
589 330000000, 165000000, 55000000, 0x0903, 0x01000100,
590 0x00020000, 0x01010100, 0x05000100, 0, 0,
591 8 /* ratio 4/8 */ , 0x00aa0055},
592 {
593 360000000, 120000000, 32000000, 0x0a03, 0x01000300,
594 0x00010201, 0x01010200, 0x05000100, 0, 0,
595 12 /* ratio 4/12 */ , 0x04920492},
596 {
597 360000000, 144000000, 32000000, 0x0a03, 0x01000200,
598 0x00010201, 0x01010200, 0x05000100, 0, 0,
599 10 /* ratio 4/10 */ , 0x02520129},
600 {
601 360000000, 160000000, 32000000, 0x0a03, 0x01010000,
602 0x00010201, 0x01010200, 0x05000100, 0, 0,
603 9 /* ratio 4/9 */ , 0x012a00a9},
604 {
605 360000000, 180000000, 32000000, 0x0a03, 0x01000100,
606 0x00010201, 0x01010200, 0x05000100, 0, 0,
607 8 /* ratio 4/8 */ , 0x00aa0055},
608 {
609 360000000, 180000000, 40000000, 0x0a03, 0x01000100,
610 0x00010101, 0x01010200, 0x05000100, 0, 0,
611 8 /* ratio 4/8 */ , 0x00aa0055},
612 {
613 360000000, 180000000, 53333333, 0x0a03, 0x01000100,
614 0x00010001, 0x01010200, 0x05000100, 0, 0,
615 8 /* ratio 4/8 */ , 0x00aa0055},
616 {
617 390000000, 130000000, 32500000, 0x0b03, 0x01010100,
618 0x00020101, 0x01020100, 0x05000100, 0, 0,
619 12 /* ratio 4/12 */ , 0x04920492},
620 {
621 390000000, 156000000, 32500000, 0x0b03, 0x01000200,
622 0x00020101, 0x01020100, 0x05000100, 0, 0,
623 10 /* ratio 4/10 */ , 0x02520129},
624 {
625 390000000, 173000000, 32500000, 0x0b03, 0x01010000,
626 0x00020101, 0x01020100, 0x05000100, 0, 0,
627 9 /* ratio 4/9 */ , 0x012a00a9},
628 {
629 390000000, 195000000, 32500000, 0x0b03, 0x01000100,
630 0x00020101, 0x01020100, 0x05000100, 0, 0,
631 8 /* ratio 4/8 */ , 0x00aa0055},
632 };
633 static n4m_table_t BCMINITDATA(type4_table)[] = {
634 {
635 120000000, 60000000, 0, 0x0009, 0x11020009, 0x01030203,
636 0x11020009, 0x04000009, 11, 0x0aaa0555}, {
637 150000000, 75000000, 0, 0x0009, 0x11050002, 0x01030203,
638 0x11050002, 0x04000005, 11, 0x0aaa0555}, {
639 192000000, 96000000, 0, 0x0702, 0x04000011, 0x11030011,
640 0x04000011, 0x04000003, 11, 0x0aaa0555}, {
641 198000000, 99000000, 0, 0x0603, 0x11020005, 0x11030011,
642 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
643 200000000, 100000000, 0, 0x0009, 0x04020011, 0x11030011,
644 0x04020011, 0x04020003, 11, 0x0aaa0555}, {
645 204000000, 102000000, 0, 0x0c02, 0x11020005, 0x01030303,
646 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
647 208000000, 104000000, 0, 0x0802, 0x11030002, 0x11090005,
648 0x11030002, 0x04000003, 11, 0x0aaa0555}, {
649 210000000, 105000000, 0, 0x0209, 0x11020005, 0x01030303,
650 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
651 216000000, 108000000, 0, 0x0111, 0x11020005, 0x01030303,
652 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
653 224000000, 112000000, 0, 0x0205, 0x11030002, 0x02002103,
654 0x11030002, 0x04000003, 11, 0x0aaa0555}, {
655 228000000, 101333333, 0, 0x0e02, 0x11030003, 0x11210005,
656 0x01030305, 0x04000005, 8, 0x012a00a9}, {
657 228000000, 114000000, 0, 0x0e02, 0x11020005, 0x11210005,
658 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
659 240000000, 102857143, 0, 0x0109, 0x04000021, 0x01050203,
660 0x11030021, 0x04000003, 13, 0x254a14a9}, {
661 240000000, 120000000, 0, 0x0109, 0x11030002, 0x01050203,
662 0x11030002, 0x04000003, 11, 0x0aaa0555}, {
663 252000000, 100800000, 0, 0x0203, 0x04000009, 0x11050005,
664 0x02000209, 0x04000002, 9, 0x02520129}, {
665 252000000, 126000000, 0, 0x0203, 0x04000005, 0x11050005,
666 0x04000005, 0x04000002, 11, 0x0aaa0555}, {
667 264000000, 132000000, 0, 0x0602, 0x04000005, 0x11050005,
668 0x04000005, 0x04000002, 11, 0x0aaa0555}, {
669 272000000, 116571428, 0, 0x0c02, 0x04000021, 0x02000909,
670 0x02000221, 0x04000003, 13, 0x254a14a9}, {
671 280000000, 120000000, 0, 0x0209, 0x04000021, 0x01030303,
672 0x02000221, 0x04000003, 13, 0x254a14a9}, {
673 288000000, 123428571, 0, 0x0111, 0x04000021, 0x01030303,
674 0x02000221, 0x04000003, 13, 0x254a14a9}, {
675 300000000, 120000000, 0, 0x0009, 0x04000009, 0x01030203,
676 0x02000902, 0x04000002, 9, 0x02520129}, {
677 300000000, 150000000, 0, 0x0009, 0x04000005, 0x01030203,
678 0x04000005, 0x04000002, 11, 0x0aaa0555}
679 };
680 static n4m_table_t BCMINITDATA(type7_table)[] = {
681 {
682 183333333, 91666666, 0, 0x0605, 0x04000011, 0x11030011,
683 0x04000011, 0x04000003, 11, 0x0aaa0555}, {
684 187500000, 93750000, 0, 0x0a03, 0x04000011, 0x11030011,
685 0x04000011, 0x04000003, 11, 0x0aaa0555}, {
686 196875000, 98437500, 0, 0x1003, 0x11020005, 0x11050011,
687 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
688 200000000, 100000000, 0, 0x0311, 0x04000011, 0x11030011,
689 0x04000009, 0x04000003, 11, 0x0aaa0555}, {
690 200000000, 100000000, 0, 0x0311, 0x04020011, 0x11030011,
691 0x04020011, 0x04020003, 11, 0x0aaa0555}, {
692 206250000, 103125000, 0, 0x1103, 0x11020005, 0x11050011,
693 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
694 212500000, 106250000, 0, 0x0c05, 0x11020005, 0x01030303,
695 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
696 215625000, 107812500, 0, 0x1203, 0x11090009, 0x11050005,
697 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
698 216666666, 108333333, 0, 0x0805, 0x11020003, 0x11030011,
699 0x11020003, 0x04000003, 11, 0x0aaa0555}, {
700 225000000, 112500000, 0, 0x0d03, 0x11020003, 0x11030011,
701 0x11020003, 0x04000003, 11, 0x0aaa0555}, {
702 233333333, 116666666, 0, 0x0905, 0x11020003, 0x11030011,
703 0x11020003, 0x04000003, 11, 0x0aaa0555}, {
704 237500000, 118750000, 0, 0x0e05, 0x11020005, 0x11210005,
705 0x11020005, 0x04000005, 11, 0x0aaa0555}, {
706 240000000, 120000000, 0, 0x0b11, 0x11020009, 0x11210009,
707 0x11020009, 0x04000009, 11, 0x0aaa0555}, {
708 250000000, 125000000, 0, 0x0f03, 0x11020003, 0x11210003,
709 0x11020003, 0x04000003, 11, 0x0aaa0555}
710 };
711
712 ulong start, end, dst;
713 bool ret = FALSE;
714
715 volatile uint32 *dll_ctrl = (volatile uint32 *)0xff400008;
716 volatile uint32 *dll_r1 = (volatile uint32 *)0xff400010;
717 volatile uint32 *dll_r2 = (volatile uint32 *)0xff400018;
718
719 /* get index of the current core */
720 idx = sb_coreidx(sbh);
721 clockcontrol_m2 = NULL;
722
723 /* switch to chipc core */
724 /* switch to extif or chipc core */
725 if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
726 pll_type = PLL_TYPE1;
727 clockcontrol_n = &eir->clockcontrol_n;
728 clockcontrol_sb = &eir->clockcontrol_sb;
729 clockcontrol_pci = &eir->clockcontrol_pci;
730 clockcontrol_m2 = &cc->clockcontrol_m2;
731 } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
732 /* 5354 chipcommon pll setting can't be changed.
733 * The PMU on power up comes up with the default clk frequency
734 * of 240MHz
735 */
736 if (sb_chip(sbh) == BCM5354_CHIP_ID) {
737 ret = TRUE;
738 goto done;
739 }
740 pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
741 if (pll_type == PLL_TYPE6) {
742 clockcontrol_n = NULL;
743 clockcontrol_sb = NULL;
744 clockcontrol_pci = NULL;
745 } else {
746 clockcontrol_n = &cc->clockcontrol_n;
747 clockcontrol_sb = &cc->clockcontrol_sb;
748 clockcontrol_pci = &cc->clockcontrol_pci;
749 clockcontrol_m2 = &cc->clockcontrol_m2;
750 }
751 } else
752 goto done;
753
754 if (pll_type == PLL_TYPE6) {
755 /* Silence compilers */
756 orig_n = orig_sb = orig_pci = 0;
757 } else {
758 /* Store the current clock register values */
759 orig_n = R_REG(osh, clockcontrol_n);
760 orig_sb = R_REG(osh, clockcontrol_sb);
761 orig_pci = R_REG(osh, clockcontrol_pci);
762 }
763
764 if (pll_type == PLL_TYPE1) {
765 /* Keep the current PCI clock if not specified */
766 if (pciclock == 0) {
767 pciclock =
768 sb_clock_rate(pll_type, R_REG(osh, clockcontrol_n),
769 R_REG(osh, clockcontrol_pci));
770 pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
771 }
772
773 /* Search for the closest MIPS clock less than or equal to a preferred value */
774 for (i = 0; i < ARRAYSIZE(type1_table); i++) {
775 ASSERT(type1_table[i].mipsclock ==
776 sb_clock_rate(pll_type, type1_table[i].n,
777 type1_table[i].sb));
778 if (type1_table[i].mipsclock > mipsclock)
779 break;
780 }
781 if (i == 0) {
782 ret = FALSE;
783 goto done;
784 } else {
785 ret = TRUE;
786 i--;
787 }
788 ASSERT(type1_table[i].mipsclock <= mipsclock);
789
790 /* No PLL change */
791 if ((orig_n == type1_table[i].n) &&
792 (orig_sb == type1_table[i].sb) &&
793 (orig_pci == type1_table[i].pci33))
794 goto done;
795
796 /* Set the PLL controls */
797 W_REG(osh, clockcontrol_n, type1_table[i].n);
798 W_REG(osh, clockcontrol_sb, type1_table[i].sb);
799 if (pciclock == 25000000)
800 W_REG(osh, clockcontrol_pci, type1_table[i].pci25);
801 else
802 W_REG(osh, clockcontrol_pci, type1_table[i].pci33);
803
804 /* Reset */
805 sb_watchdog(sbh, 1);
806 while (1) ;
807 } else if (pll_type == PLL_TYPE3) {
808 /* 5350 */
809 if (sb_chip(sbh) != BCM5365_CHIP_ID) {
810 /*
811 * Search for the closest MIPS clock less than or equal to
812 * a preferred value.
813 */
814 for (i = 0; i < ARRAYSIZE(type3_table); i++) {
815 if (type3_table[i].mipsclock > mipsclock)
816 break;
817 }
818 if (i == 0) {
819 ret = FALSE;
820 goto done;
821 } else {
822 ret = TRUE;
823 i--;
824 }
825 ASSERT(type3_table[i].mipsclock <= mipsclock);
826
827 /* No PLL change */
828 orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
829 if ((orig_n == type3_table[i].n)
830 && (orig_m2 == type3_table[i].m2)) {
831 goto done;
832 }
833
834 /* Set the PLL controls */
835 W_REG(osh, clockcontrol_n, type3_table[i].n);
836 W_REG(osh, clockcontrol_m2, type3_table[i].m2);
837
838 /* Reset */
839 sb_watchdog(sbh, 1);
840 while (1) ;
841 }
842 } else if ((pll_type == PLL_TYPE2) ||
843 (pll_type == PLL_TYPE4) ||
844 (pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7)) {
845 n4m_table_t *table = NULL, *te;
846 uint tabsz = 0;
847
848 ASSERT(cc);
849
850 orig_mips = R_REG(osh, &cc->clockcontrol_m3);
851
852 switch (pll_type) {
853 case PLL_TYPE6:
854 {
855 uint32 new_mips = 0;
856
857 ret = TRUE;
858 if (mipsclock <= SB2MIPS_T6(CC_T6_M1))
859 new_mips = CC_T6_MMASK;
860
861 if (orig_mips == new_mips)
862 goto done;
863
864 W_REG(osh, &cc->clockcontrol_m3, new_mips);
865 goto end_fill;
866 }
867 case PLL_TYPE2:
868 table = type2_table;
869 tabsz = ARRAYSIZE(type2_table);
870 break;
871 case PLL_TYPE4:
872 table = type4_table;
873 tabsz = ARRAYSIZE(type4_table);
874 break;
875 case PLL_TYPE7:
876 table = type7_table;
877 tabsz = ARRAYSIZE(type7_table);
878 break;
879 default:
880 ASSERT("No table for plltype" == NULL);
881 break;
882 }
883
884 /* Store the current clock register values */
885 orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
886 orig_ratio_parm = 0;
887 orig_ratio_cfg = 0;
888
889 /* Look up current ratio */
890 for (i = 0; i < tabsz; i++) {
891 if ((orig_n == table[i].n) &&
892 (orig_sb == table[i].sb) &&
893 (orig_pci == table[i].pci33) &&
894 (orig_m2 == table[i].m2)
895 && (orig_mips == table[i].m3)) {
896 orig_ratio_parm = table[i].ratio_parm;
897 orig_ratio_cfg = table[i].ratio_cfg;
898 break;
899 }
900 }
901
902 /* Search for the closest MIPS clock greater or equal to a preferred value */
903 for (i = 0; i < tabsz; i++) {
904 ASSERT(table[i].mipsclock ==
905 sb_clock_rate(pll_type, table[i].n,
906 table[i].m3));
907 if ((mipsclock <= table[i].mipsclock)
908 && ((sbclock == 0) || (sbclock <= table[i].sbclock))
909 && ((pciclock == 0)
910 || (pciclock <= table[i].pciclock)))
911 break;
912 }
913 if (i == tabsz) {
914 ret = FALSE;
915 goto done;
916 } else {
917 te = &table[i];
918 ret = TRUE;
919 }
920
921 /* No PLL change */
922 if ((orig_n == te->n) &&
923 (orig_sb == te->sb) &&
924 (orig_pci == te->pci33) &&
925 (orig_m2 == te->m2) && (orig_mips == te->m3))
926 goto done;
927
928 /* Set the PLL controls */
929 W_REG(osh, clockcontrol_n, te->n);
930 W_REG(osh, clockcontrol_sb, te->sb);
931 W_REG(osh, clockcontrol_pci, te->pci33);
932 W_REG(osh, &cc->clockcontrol_m2, te->m2);
933 W_REG(osh, &cc->clockcontrol_m3, te->m3);
934
935 /* Set the chipcontrol bit to change mipsref to the backplane divider if needed */
936 if ((pll_type == PLL_TYPE7) && (te->sb != te->m2) &&
937 (sb_clock_rate(pll_type, te->n, te->m2) == 120000000))
938 W_REG(osh, &cc->chipcontrol,
939 R_REG(osh, &cc->chipcontrol) | 0x100);
940
941 /* No ratio change */
942 if (sb_chip(sbh) != BCM4785_CHIP_ID) {
943 if (orig_ratio_parm == te->ratio_parm)
944 goto end_fill;
945 }
946
947 /* Preload the code into the cache */
948 icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);
949 if (sb_chip(sbh) == BCM4785_CHIP_ID) {
950 start = ((ulong) && start_fill_4785) & ~(ic_lsize - 1);
951 end = ((ulong)
952 && end_fill_4785 + (ic_lsize - 1)) & ~(ic_lsize -
953 1);
954 } else {
955 start = ((ulong) && start_fill) & ~(ic_lsize - 1);
956 end = ((ulong)
957 && end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
958 }
959 while (start < end) {
960 cache_op(start, Fill_I);
961 start += ic_lsize;
962 }
963
964 /* 4785 clock freq change procedures */
965 if (sb_chip(sbh) == BCM4785_CHIP_ID) {
966 start_fill_4785:
967 /* Switch to async */
968 MTC0(C0_BROADCOM, 4, (1 << 22));
969
970 /* Set clock ratio in MIPS */
971 *dll_r1 = (*dll_r1 & 0xfffffff0) | (te->d11_r1 - 1);
972 *dll_r2 = te->d11_r2;
973
974 /* Enable new settings in MIPS */
975 *dll_r1 = *dll_r1 | 0xc0000000;
976
977 /* Set active cfg */
978 MTC0(C0_BROADCOM, 2,
979 MFC0(C0_BROADCOM, 2) | (1 << 3) | 1);
980
981 /* Fake soft reset (clock cfg registers not reset) */
982 MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));
983
984 /* Clear active cfg */
985 MTC0(C0_BROADCOM, 2, MFC0(C0_BROADCOM, 2) & ~(1 << 3));
986
987 /* set watchdog timer */
988 W_REG(osh, &cc->watchdog, 20);
989 (void)R_REG(osh, &cc->chipid);
990
991 /* wait for timer interrupt */
992 __asm__ __volatile__(".set\tmips3\n\t"
993 "sync\n\t" "wait\n\t"
994 ".set\tmips0");
995 end_fill_4785:
996 while (1) ;
997 }
998 /* Generic clock freq change procedures */
999 else {
1000 /* Copy the handler */
1001 start = (ulong) & handler;
1002 end = (ulong) & afterhandler;
1003 dst = KSEG1ADDR(0x180);
1004 for (i = 0; i < (end - start); i += 4)
1005 *((ulong *) (dst + i)) =
1006 *((ulong *) (start + i));
1007
1008 /* Preload the handler into the cache one line at a time */
1009 for (i = 0; i < (end - start); i += ic_lsize)
1010 cache_op(dst + i, Fill_I);
1011
1012 /* Clear BEV bit */
1013 MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);
1014
1015 /* Enable interrupts */
1016 MTC0(C0_STATUS, 0,
1017 MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));
1018
1019 /* Enable MIPS timer interrupt */
1020 if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
1021 !(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
1022 ASSERT(mipsr);
1023 W_REG(osh, &mipsr->intmask, 1);
1024
1025 start_fill:
1026 /* step 1, set clock ratios */
1027 MTC0(C0_BROADCOM, 3, te->ratio_parm);
1028 MTC0(C0_BROADCOM, 1, te->ratio_cfg);
1029
1030 /* step 2: program timer intr */
1031 W_REG(osh, &mipsr->timer, 100);
1032 (void)R_REG(osh, &mipsr->timer);
1033
1034 /* step 3, switch to async */
1035 sync_mode = MFC0(C0_BROADCOM, 4);
1036 MTC0(C0_BROADCOM, 4, 1 << 22);
1037
1038 /* step 4, set cfg active */
1039 MTC0(C0_BROADCOM, 2, (1 << 3) | 1);
1040
1041 /* steps 5 & 6 */
1042 __asm__ __volatile__(".set\tmips3\n\t" "wait\n\t"
1043 ".set\tmips0");
1044
1045 /* step 7, clear cfg active */
1046 MTC0(C0_BROADCOM, 2, 0);
1047
1048 /* Additional Step: set back to orig sync mode */
1049 MTC0(C0_BROADCOM, 4, sync_mode);
1050
1051 /* step 8, fake soft reset */
1052 MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));
1053
1054 end_fill:
1055 /* set watchdog timer */
1056 W_REG(osh, &cc->watchdog, 20);
1057 (void)R_REG(osh, &cc->chipid);
1058
1059 /* wait for timer interrupt */
1060 __asm__ __volatile__(".set\tmips3\n\t"
1061 "sync\n\t" "wait\n\t"
1062 ".set\tmips0");
1063 while (1) ;
1064 }
1065 }
1066
1067 done:
1068 /* Enable 4785 DLL */
1069 if (sb_chip(sbh) == BCM4785_CHIP_ID) {
1070 uint32 tmp;
1071
1072 /* set mask to 1e, enable DLL (bit 0) */
1073 *dll_ctrl |= 0x0041e021;
1074
1075 /* enable aggressive hardware mode */
1076 *dll_ctrl |= 0x00000080;
1077
1078 /* wait for lock flag to clear */
1079 while ((*dll_ctrl & 0x2) == 0) ;
1080
1081 /* clear sticky flags (clear on write 1) */
1082 tmp = *dll_ctrl;
1083 *dll_ctrl = tmp;
1084
1085 /* set mask to 5b'10001 */
1086 *dll_ctrl = (*dll_ctrl & 0xfffc1fff) | 0x00022000;
1087
1088 /* enable sync mode */
1089 MTC0(C0_BROADCOM, 4, MFC0(C0_BROADCOM, 4) & 0xfe3fffff);
1090 (void)MFC0(C0_BROADCOM, 4);
1091 }
1092
1093 /* switch back to previous core */
1094 sb_setcoreidx(sbh, idx);
1095
1096 return ret;
1097 }
1098
1099 void BCMINITFN(enable_pfc) (uint32 mode) {
1100 ulong start, end;
1101 uint ic_size, ic_lsize;
1102
1103 /* If auto then choose the correct mode for this
1104 * platform, currently we only ever select one mode
1105 */
1106 if (mode == PFC_AUTO)
1107 mode = PFC_INST;
1108
1109 icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);
1110
1111 /* enable prefetch cache if available */
1112 if (MFC0(C0_BROADCOM, 0) & BRCM_PFC_AVAIL) {
1113 start = ((ulong) && setpfc_start) & ~(ic_lsize - 1);
1114 end = ((ulong)
1115 && setpfc_end + (ic_lsize - 1)) & ~(ic_lsize - 1);
1116
1117 /* Preload setpfc code into the cache one line at a time */
1118 while (start < end) {
1119 cache_op(start, Fill_I);
1120 start += ic_lsize;
1121 }
1122
1123 /* Now set the pfc */
1124 setpfc_start:
1125 /* write range */
1126 *(volatile uint32 *)PFC_CR1 = 0xffff0000;
1127
1128 /* enable */
1129 *(volatile uint32 *)PFC_CR0 = mode;
1130 setpfc_end:
1131 /* Compiler foder */
1132 ic_size = 0;
1133 }
1134 }
1135
1136 /* returns the ncdl value to be programmed into sdram_ncdl for calibration */
1137 uint32 BCMINITFN(sb_memc_get_ncdl) (sb_t * sbh) {
1138 osl_t *osh;
1139 sbmemcregs_t *memc;
1140 uint32 ret = 0;
1141 uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
1142 uint idx, rev;
1143
1144 osh = sb_osh(sbh);
1145
1146 idx = sb_coreidx(sbh);
1147
1148 memc = (sbmemcregs_t *) sb_setcore(sbh, SB_MEMC, 0);
1149 if (memc == 0)
1150 goto out;
1151
1152 rev = sb_corerev(sbh);
1153
1154 config = R_REG(osh, &memc->config);
1155 wr = R_REG(osh, &memc->wrncdlcor);
1156 rd = R_REG(osh, &memc->rdncdlcor);
1157 misc = R_REG(osh, &memc->miscdlyctl);
1158 dqsg = R_REG(osh, &memc->dqsgatencdl);
1159
1160 rd &= MEMC_RDNCDLCOR_RD_MASK;
1161 wr &= MEMC_WRNCDLCOR_WR_MASK;
1162 dqsg &= MEMC_DQSGATENCDL_G_MASK;
1163
1164 if (config & MEMC_CONFIG_DDR) {
1165 ret = (wr << 16) | (rd << 8) | dqsg;
1166 } else {
1167 if (rev > 0)
1168 cd = rd;
1169 else
1170 cd = (rd ==
1171 MEMC_CD_THRESHOLD) ? rd : (wr +
1172 MEMC_CD_THRESHOLD);
1173 sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
1174 sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
1175 ret = (sm << 16) | (sd << 8) | cd;
1176 }
1177
1178 out:
1179 /* switch back to previous core */
1180 sb_setcoreidx(sbh, idx);
1181
1182 return ret;
1183 }
1184
1185 void hnd_cpu_reset(sb_t * sbh)
1186 {
1187 if (sb_chip(sbh) == BCM4785_CHIP_ID)
1188 MTC0(C0_BROADCOM, 4, (1 << 22));
1189 sb_watchdog(sbh, 1);
1190 if (sb_chip(sbh) == BCM4785_CHIP_ID) {
1191 __asm__ __volatile__(".set\tmips3\n\t"
1192 "sync\n\t" "wait\n\t" ".set\tmips0");
1193 }
1194 while (1) ;
1195 }
1196
1197 #if defined(BCMPERFSTATS)
1198 /*
1199 * CP0 Register 25 supports 4 semi-independent 32bit performance counters.
1200 * $25 select 0, 1, 2, and 3 are the counters. The counters *decrement* (who thought this one up?)
1201 * $25 select 4 and 5 each contain 2-16bit control fields, one for each of the 4 counters
1202 * $25 select 6 is the global perf control register.
1203 */
1204 /* enable and start instruction counting */
1205
1206 void hndmips_perf_cyclecount_enable(void)
1207 {
1208 MTC0(C0_PERFORMANCE, 6, 0x80000200); /* global enable perf counters */
1209 MTC0(C0_PERFORMANCE, 4, 0x8048 | MFC0(C0_PERFORMANCE, 4)); /* enable cycles counting for counter 0 */
1210 MTC0(C0_PERFORMANCE, 0, 0); /* zero counter zero */
1211 }
1212
1213 void hndmips_perf_instrcount_enable(void)
1214 {
1215 MTC0(C0_PERFORMANCE, 6, 0x80000200); /* global enable perf counters */
1216 MTC0(C0_PERFORMANCE, 4, 0x8044 | MFC0(C0_PERFORMANCE, 4)); /* enable instructions counting for counter 0 */
1217 MTC0(C0_PERFORMANCE, 0, 0); /* zero counter zero */
1218 }
1219
1220 /* enable and start I$ hit and I$ miss counting */
1221 void hndmips_perf_icachecount_enable(void)
1222 {
1223 MTC0(C0_PERFORMANCE, 6, 0x80000218); /* enable I$ counting */
1224 MTC0(C0_PERFORMANCE, 4, 0x80148018); /* count I$ hits in cntr 0 and misses in cntr 1 */
1225 MTC0(C0_PERFORMANCE, 0, 0); /* zero counter 0 - # I$ hits */
1226 MTC0(C0_PERFORMANCE, 1, 0); /* zero counter 1 - # I$ misses */
1227 }
1228
1229 /* enable and start D$ hit and I$ miss counting */
1230 void hndmips_perf_dcachecount_enable(void)
1231 {
1232 MTC0(C0_PERFORMANCE, 6, 0x80000211); /* enable D$ counting */
1233 MTC0(C0_PERFORMANCE, 4, 0x80248028); /* count D$ hits in cntr 0 and misses in cntr 1 */
1234 MTC0(C0_PERFORMANCE, 0, 0); /* zero counter 0 - # D$ hits */
1235 MTC0(C0_PERFORMANCE, 1, 0); /* zero counter 1 - # D$ misses */
1236 }
1237
1238 void hndmips_perf_icache_miss_enable()
1239 {
1240 MTC0(C0_PERFORMANCE, 4, 0x80140000 | MFC0(C0_PERFORMANCE, 4)); /* enable cache misses counting for counter 1 */
1241 MTC0(C0_PERFORMANCE, 1, 0); /* zero counter one */
1242 }
1243
1244 void hndmips_perf_icache_hit_enable()
1245 {
1246 MTC0(C0_PERFORMANCE, 5, 0x8018 | MFC0(C0_PERFORMANCE, 5));
1247 /* enable cache hits counting for counter 2 */
1248 MTC0(C0_PERFORMANCE, 2, 0); /* zero counter 2 */
1249 }
1250
1251 uint32 hndmips_perf_read_instrcount()
1252 {
1253 return -(long)(MFC0(C0_PERFORMANCE, 0));
1254 }
1255
1256 uint32 hndmips_perf_read_cache_miss()
1257 {
1258 return -(long)(MFC0(C0_PERFORMANCE, 1));
1259 }
1260
1261 uint32 hndmips_perf_read_cache_hit()
1262 {
1263 return -(long)(MFC0(C0_PERFORMANCE, 2));
1264 }
1265
1266 #endif