ralink: improve tx_timeout function
[openwrt/svn-archive/archive.git] / target / linux / ramips / files / drivers / net / ethernet / ralink / ralink_soc_eth.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; version 2 of the License
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
14 *
15 * Copyright (C) 2009-2013 John Crispin <blogic@openwrt.org>
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/etherdevice.h>
25 #include <linux/ethtool.h>
26 #include <linux/platform_device.h>
27 #include <linux/of_device.h>
28 #include <linux/clk.h>
29 #include <linux/of_net.h>
30 #include <linux/of_mdio.h>
31 #include <linux/if_vlan.h>
32 #include <linux/reset.h>
33 #include <linux/tcp.h>
34 #include <linux/io.h>
35
36 #include <asm/mach-ralink/ralink_regs.h>
37
38 #include "ralink_soc_eth.h"
39 #include "esw_rt3052.h"
40 #include "mdio.h"
41 #include "ralink_ethtool.h"
42
43 #define MAX_RX_LENGTH 1536
44 #define FE_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
45 #define FE_RX_HLEN (FE_RX_OFFSET + VLAN_ETH_HLEN + VLAN_HLEN + \
46 ETH_FCS_LEN)
47 #define DMA_DUMMY_DESC 0xffffffff
48 #define FE_DEFAULT_MSG_ENABLE \
49 (NETIF_MSG_DRV | \
50 NETIF_MSG_PROBE | \
51 NETIF_MSG_LINK | \
52 NETIF_MSG_TIMER | \
53 NETIF_MSG_IFDOWN | \
54 NETIF_MSG_IFUP | \
55 NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR)
57
58 #define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
59 #define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
60 #define NEXT_TX_DESP_IDX(X) (((X) + 1) & (NUM_DMA_DESC - 1))
61 #define NEXT_RX_DESP_IDX(X) (((X) + 1) & (NUM_DMA_DESC - 1))
62
63 static int fe_msg_level = -1;
64 module_param_named(msg_level, fe_msg_level, int, 0);
65 MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
66
67 static const u32 fe_reg_table_default[FE_REG_COUNT] = {
68 [FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
69 [FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
70 [FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
71 [FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
72 [FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
73 [FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
74 [FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
75 [FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
76 [FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
77 [FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
78 [FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
79 [FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
80 [FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
81 [FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
82 [FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
83 [FE_REG_FE_RST_GL] = FE_FE_RST_GL,
84 };
85
86 static const u32 *fe_reg_table = fe_reg_table_default;
87
88 struct fe_work_t {
89 int bitnr;
90 void (*action)(struct fe_priv *);
91 };
92
93 static void __iomem *fe_base = 0;
94
95 void fe_w32(u32 val, unsigned reg)
96 {
97 __raw_writel(val, fe_base + reg);
98 }
99
100 u32 fe_r32(unsigned reg)
101 {
102 return __raw_readl(fe_base + reg);
103 }
104
105 void fe_reg_w32(u32 val, enum fe_reg reg)
106 {
107 fe_w32(val, fe_reg_table[reg]);
108 }
109
110 u32 fe_reg_r32(enum fe_reg reg)
111 {
112 return fe_r32(fe_reg_table[reg]);
113 }
114
115 static inline void fe_int_disable(u32 mask)
116 {
117 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
118 FE_REG_FE_INT_ENABLE);
119 /* flush write */
120 fe_reg_r32(FE_REG_FE_INT_ENABLE);
121 }
122
123 static inline void fe_int_enable(u32 mask)
124 {
125 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
126 FE_REG_FE_INT_ENABLE);
127 /* flush write */
128 fe_reg_r32(FE_REG_FE_INT_ENABLE);
129 }
130
131 static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
132 {
133 unsigned long flags;
134
135 spin_lock_irqsave(&priv->page_lock, flags);
136 fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
137 fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
138 FE_GDMA1_MAC_ADRL);
139 spin_unlock_irqrestore(&priv->page_lock, flags);
140 }
141
142 static int fe_set_mac_address(struct net_device *dev, void *p)
143 {
144 int ret = eth_mac_addr(dev, p);
145
146 if (!ret) {
147 struct fe_priv *priv = netdev_priv(dev);
148
149 if (priv->soc->set_mac)
150 priv->soc->set_mac(priv, dev->dev_addr);
151 else
152 fe_hw_set_macaddr(priv, p);
153 }
154
155 return ret;
156 }
157
158 static inline int fe_max_frag_size(int mtu)
159 {
160 return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
161 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
162 }
163
164 static inline int fe_max_buf_size(int frag_size)
165 {
166 return frag_size - FE_RX_HLEN -
167 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
168 }
169
170 static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
171 {
172 rxd->rxd1 = dma_rxd->rxd1;
173 rxd->rxd2 = dma_rxd->rxd2;
174 rxd->rxd3 = dma_rxd->rxd3;
175 rxd->rxd4 = dma_rxd->rxd4;
176 }
177
178 static inline void fe_get_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
179 {
180 txd->txd1 = dma_txd->txd1;
181 txd->txd2 = dma_txd->txd2;
182 txd->txd3 = dma_txd->txd3;
183 txd->txd4 = dma_txd->txd4;
184 }
185
186 static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
187 {
188 dma_txd->txd1 = txd->txd1;
189 dma_txd->txd3 = txd->txd3;
190 dma_txd->txd4 = txd->txd4;
191 /* clean dma done flag last */
192 dma_txd->txd2 = txd->txd2;
193 }
194
195 static void fe_clean_rx(struct fe_priv *priv)
196 {
197 int i;
198
199 if (priv->rx_data) {
200 for (i = 0; i < NUM_DMA_DESC; i++)
201 if (priv->rx_data[i]) {
202 if (priv->rx_dma && priv->rx_dma[i].rxd1)
203 dma_unmap_single(&priv->netdev->dev,
204 priv->rx_dma[i].rxd1,
205 priv->rx_buf_size,
206 DMA_FROM_DEVICE);
207 put_page(virt_to_head_page(priv->rx_data[i]));
208 }
209
210 kfree(priv->rx_data);
211 priv->rx_data = NULL;
212 }
213
214 if (priv->rx_dma) {
215 dma_free_coherent(&priv->netdev->dev,
216 NUM_DMA_DESC * sizeof(*priv->rx_dma),
217 priv->rx_dma,
218 priv->rx_phys);
219 priv->rx_dma = NULL;
220 }
221 }
222
223 static int fe_alloc_rx(struct fe_priv *priv)
224 {
225 struct net_device *netdev = priv->netdev;
226 int i;
227
228 priv->rx_data = kcalloc(NUM_DMA_DESC, sizeof(*priv->rx_data),
229 GFP_KERNEL);
230 if (!priv->rx_data)
231 goto no_rx_mem;
232
233 for (i = 0; i < NUM_DMA_DESC; i++) {
234 priv->rx_data[i] = netdev_alloc_frag(priv->frag_size);
235 if (!priv->rx_data[i])
236 goto no_rx_mem;
237 }
238
239 priv->rx_dma = dma_alloc_coherent(&netdev->dev,
240 NUM_DMA_DESC * sizeof(*priv->rx_dma),
241 &priv->rx_phys,
242 GFP_ATOMIC | __GFP_ZERO);
243 if (!priv->rx_dma)
244 goto no_rx_mem;
245
246 for (i = 0; i < NUM_DMA_DESC; i++) {
247 dma_addr_t dma_addr = dma_map_single(&netdev->dev,
248 priv->rx_data[i] + FE_RX_OFFSET,
249 priv->rx_buf_size,
250 DMA_FROM_DEVICE);
251 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
252 goto no_rx_mem;
253 priv->rx_dma[i].rxd1 = (unsigned int) dma_addr;
254
255 if (priv->soc->rx_dma)
256 priv->soc->rx_dma(&priv->rx_dma[i], priv->rx_buf_size);
257 else
258 priv->rx_dma[i].rxd2 = RX_DMA_LSO;
259 }
260 wmb();
261
262 fe_reg_w32(priv->rx_phys, FE_REG_RX_BASE_PTR0);
263 fe_reg_w32(NUM_DMA_DESC, FE_REG_RX_MAX_CNT0);
264 fe_reg_w32((NUM_DMA_DESC - 1), FE_REG_RX_CALC_IDX0);
265 fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
266
267 return 0;
268
269 no_rx_mem:
270 return -ENOMEM;
271 }
272
273 static void fe_clean_tx(struct fe_priv *priv)
274 {
275 int i;
276
277 if (priv->tx_skb) {
278 for (i = 0; i < NUM_DMA_DESC; i++) {
279 if (priv->tx_skb[i])
280 dev_kfree_skb_any(priv->tx_skb[i]);
281 }
282 kfree(priv->tx_skb);
283 priv->tx_skb = NULL;
284 }
285
286 if (priv->tx_dma) {
287 dma_free_coherent(&priv->netdev->dev,
288 NUM_DMA_DESC * sizeof(*priv->tx_dma),
289 priv->tx_dma,
290 priv->tx_phys);
291 priv->tx_dma = NULL;
292 }
293 }
294
295 static int fe_alloc_tx(struct fe_priv *priv)
296 {
297 int i;
298
299 priv->tx_free_idx = 0;
300
301 priv->tx_skb = kcalloc(NUM_DMA_DESC, sizeof(*priv->tx_skb),
302 GFP_KERNEL);
303 if (!priv->tx_skb)
304 goto no_tx_mem;
305
306 priv->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
307 NUM_DMA_DESC * sizeof(*priv->tx_dma),
308 &priv->tx_phys,
309 GFP_ATOMIC | __GFP_ZERO);
310 if (!priv->tx_dma)
311 goto no_tx_mem;
312
313 for (i = 0; i < NUM_DMA_DESC; i++) {
314 if (priv->soc->tx_dma) {
315 priv->soc->tx_dma(&priv->tx_dma[i]);
316 continue;
317 }
318 priv->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
319 }
320 wmb();
321
322 fe_reg_w32(priv->tx_phys, FE_REG_TX_BASE_PTR0);
323 fe_reg_w32(NUM_DMA_DESC, FE_REG_TX_MAX_CNT0);
324 fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
325 fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
326
327 return 0;
328
329 no_tx_mem:
330 return -ENOMEM;
331 }
332
333 static int fe_init_dma(struct fe_priv *priv)
334 {
335 int err;
336
337 err = fe_alloc_tx(priv);
338 if (err)
339 return err;
340
341 err = fe_alloc_rx(priv);
342 if (err)
343 return err;
344
345 return 0;
346 }
347
348 static void fe_free_dma(struct fe_priv *priv)
349 {
350 fe_clean_tx(priv);
351 fe_clean_rx(priv);
352
353 netdev_reset_queue(priv->netdev);
354 }
355
356 static inline void txd_unmap_single(struct device *dev, struct fe_tx_dma *txd)
357 {
358 if (txd->txd1 && TX_DMA_GET_PLEN0(txd->txd2))
359 dma_unmap_single(dev, txd->txd1,
360 TX_DMA_GET_PLEN0(txd->txd2),
361 DMA_TO_DEVICE);
362 }
363
364 static inline void txd_unmap_page0(struct device *dev, struct fe_tx_dma *txd)
365 {
366 if (txd->txd1 && TX_DMA_GET_PLEN0(txd->txd2))
367 dma_unmap_page(dev, txd->txd1,
368 TX_DMA_GET_PLEN0(txd->txd2),
369 DMA_TO_DEVICE);
370 }
371
372 static inline void txd_unmap_page1(struct device *dev, struct fe_tx_dma *txd)
373 {
374 if (txd->txd3 && TX_DMA_GET_PLEN1(txd->txd2))
375 dma_unmap_page(dev, txd->txd3,
376 TX_DMA_GET_PLEN1(txd->txd2),
377 DMA_TO_DEVICE);
378 }
379
380 void fe_stats_update(struct fe_priv *priv)
381 {
382 struct fe_hw_stats *hwstats = priv->hw_stats;
383 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
384
385 u64_stats_update_begin(&hwstats->syncp);
386
387 if (IS_ENABLED(CONFIG_SOC_MT7621)) {
388 hwstats->rx_bytes += fe_r32(base);
389 hwstats->rx_packets += fe_r32(base + 0x08);
390 hwstats->rx_overflow += fe_r32(base + 0x10);
391 hwstats->rx_fcs_errors += fe_r32(base + 0x14);
392 hwstats->rx_short_errors += fe_r32(base + 0x18);
393 hwstats->rx_long_errors += fe_r32(base + 0x1c);
394 hwstats->rx_checksum_errors += fe_r32(base + 0x20);
395 hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
396 hwstats->tx_skip += fe_r32(base + 0x28);
397 hwstats->tx_collisions += fe_r32(base + 0x2c);
398 hwstats->tx_bytes += fe_r32(base + 0x30);
399 hwstats->tx_packets += fe_r32(base + 0x38);
400 } else {
401 hwstats->tx_bytes += fe_r32(base);
402 hwstats->tx_packets += fe_r32(base + 0x04);
403 hwstats->tx_skip += fe_r32(base + 0x08);
404 hwstats->tx_collisions += fe_r32(base + 0x0c);
405 hwstats->rx_bytes += fe_r32(base + 0x20);
406 hwstats->rx_packets += fe_r32(base + 0x24);
407 hwstats->rx_overflow += fe_r32(base + 0x28);
408 hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
409 hwstats->rx_short_errors += fe_r32(base + 0x30);
410 hwstats->rx_long_errors += fe_r32(base + 0x34);
411 hwstats->rx_checksum_errors += fe_r32(base + 0x38);
412 hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
413 }
414
415 u64_stats_update_end(&hwstats->syncp);
416 }
417
418 static struct rtnl_link_stats64 *fe_get_stats64(struct net_device *dev,
419 struct rtnl_link_stats64 *storage)
420 {
421 struct fe_priv *priv = netdev_priv(dev);
422 struct fe_hw_stats *hwstats = priv->hw_stats;
423 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
424 unsigned int start;
425
426 if (!base) {
427 netdev_stats_to_stats64(storage, &dev->stats);
428 return storage;
429 }
430
431 if (netif_running(dev) && netif_device_present(dev)) {
432 if (spin_trylock(&hwstats->stats_lock)) {
433 fe_stats_update(priv);
434 spin_unlock(&hwstats->stats_lock);
435 }
436 }
437
438 do {
439 start = u64_stats_fetch_begin_bh(&hwstats->syncp);
440 storage->rx_packets = hwstats->rx_packets;
441 storage->tx_packets = hwstats->tx_packets;
442 storage->rx_bytes = hwstats->rx_bytes;
443 storage->tx_bytes = hwstats->tx_bytes;
444 storage->collisions = hwstats->tx_collisions;
445 storage->rx_length_errors = hwstats->rx_short_errors +
446 hwstats->rx_long_errors;
447 storage->rx_over_errors = hwstats->rx_overflow;
448 storage->rx_crc_errors = hwstats->rx_fcs_errors;
449 storage->rx_errors = hwstats->rx_checksum_errors;
450 storage->tx_aborted_errors = hwstats->tx_skip;
451 } while (u64_stats_fetch_retry_bh(&hwstats->syncp, start));
452
453 storage->tx_errors = priv->netdev->stats.tx_errors;
454 storage->rx_dropped = priv->netdev->stats.rx_dropped;
455 storage->tx_dropped = priv->netdev->stats.tx_dropped;
456
457 return storage;
458 }
459
460 static int fe_vlan_rx_add_vid(struct net_device *dev,
461 __be16 proto, u16 vid)
462 {
463 struct fe_priv *priv = netdev_priv(dev);
464 u32 idx = (vid & 0xf);
465 u32 vlan_cfg;
466
467 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
468 (dev->features | NETIF_F_HW_VLAN_CTAG_TX)))
469 return 0;
470
471 if (test_bit(idx, &priv->vlan_map)) {
472 netdev_warn(dev, "disable tx vlan offload\n");
473 dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
474 netdev_update_features(dev);
475 } else {
476 vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
477 ((idx >> 1) << 2));
478 if (idx & 0x1) {
479 vlan_cfg &= 0xffff;
480 vlan_cfg |= (vid << 16);
481 } else {
482 vlan_cfg &= 0xffff0000;
483 vlan_cfg |= vid;
484 }
485 fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
486 ((idx >> 1) << 2));
487 set_bit(idx, &priv->vlan_map);
488 }
489
490 return 0;
491 }
492
493 static int fe_vlan_rx_kill_vid(struct net_device *dev,
494 __be16 proto, u16 vid)
495 {
496 struct fe_priv *priv = netdev_priv(dev);
497 u32 idx = (vid & 0xf);
498
499 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
500 (dev->features | NETIF_F_HW_VLAN_CTAG_TX)))
501 return 0;
502
503 clear_bit(idx, &priv->vlan_map);
504
505 return 0;
506 }
507
508 static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
509 int idx)
510 {
511 struct fe_priv *priv = netdev_priv(dev);
512 struct skb_frag_struct *frag;
513 struct fe_tx_dma txd, *ptxd;
514 dma_addr_t mapped_addr;
515 unsigned int nr_frags;
516 u32 def_txd4;
517 int i, j, unmap_idx, tx_num;
518
519 memset(&txd, 0, sizeof(txd));
520 nr_frags = skb_shinfo(skb)->nr_frags;
521 tx_num = 1 + (nr_frags >> 1);
522
523 /* init tx descriptor */
524 if (priv->soc->tx_dma)
525 priv->soc->tx_dma(&txd);
526 else
527 txd.txd4 = TX_DMA_DESP4_DEF;
528 def_txd4 = txd.txd4;
529
530 /* use dma_unmap_single to free it */
531 txd.txd4 |= priv->soc->tx_udf_bit;
532
533 /* TX Checksum offload */
534 if (skb->ip_summed == CHECKSUM_PARTIAL)
535 txd.txd4 |= TX_DMA_CHKSUM;
536
537 /* VLAN header offload */
538 if (vlan_tx_tag_present(skb)) {
539 if (IS_ENABLED(CONFIG_SOC_MT7621))
540 txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | vlan_tx_tag_get(skb);
541 else
542 txd.txd4 |= TX_DMA_INS_VLAN |
543 ((vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT) << 4) |
544 (vlan_tx_tag_get(skb) & 0xF);
545 }
546
547 /* TSO: fill MSS info in tcp checksum field */
548 if (skb_is_gso(skb)) {
549 if (skb_cow_head(skb, 0)) {
550 netif_warn(priv, tx_err, dev,
551 "GSO expand head fail.\n");
552 goto err_out;
553 }
554 if (skb_shinfo(skb)->gso_type &
555 (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
556 txd.txd4 |= TX_DMA_TSO;
557 tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
558 }
559 }
560
561 mapped_addr = dma_map_single(&dev->dev, skb->data,
562 skb_headlen(skb), DMA_TO_DEVICE);
563 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
564 goto err_out;
565 txd.txd1 = mapped_addr;
566 txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));
567
568 /* TX SG offload */
569 j = idx;
570 for (i = 0; i < nr_frags; i++) {
571
572 frag = &skb_shinfo(skb)->frags[i];
573 mapped_addr = skb_frag_dma_map(&dev->dev, frag, 0,
574 skb_frag_size(frag), DMA_TO_DEVICE);
575 if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
576 goto err_dma;
577
578 if (i & 0x1) {
579 j = NEXT_TX_DESP_IDX(j);
580 txd.txd1 = mapped_addr;
581 txd.txd2 = TX_DMA_PLEN0(frag->size);
582 txd.txd4 = def_txd4;
583 } else {
584 txd.txd3 = mapped_addr;
585 txd.txd2 |= TX_DMA_PLEN1(frag->size);
586 if (i != (nr_frags -1)) {
587 fe_set_txd(&txd, &priv->tx_dma[j]);
588 memset(&txd, 0, sizeof(txd));
589 }
590 priv->tx_skb[j] = (struct sk_buff *) DMA_DUMMY_DESC;
591 }
592 }
593
594 /* set last segment */
595 if (nr_frags & 0x1)
596 txd.txd2 |= TX_DMA_LS1;
597 else
598 txd.txd2 |= TX_DMA_LS0;
599 fe_set_txd(&txd, &priv->tx_dma[j]);
600
601 /* store skb to cleanup */
602 priv->tx_skb[j] = skb;
603
604 netdev_sent_queue(dev, skb->len);
605 skb_tx_timestamp(skb);
606
607 wmb();
608 j = NEXT_TX_DESP_IDX(j);
609 fe_reg_w32(j, FE_REG_TX_CTX_IDX0);
610
611 return 0;
612
613 err_dma:
614 /* unmap dma */
615 ptxd = &priv->tx_dma[idx];
616 txd_unmap_single(&dev->dev, ptxd);
617
618 j = idx;
619 unmap_idx = i;
620 for (i = 0; i < unmap_idx; i++) {
621 if (i & 0x1) {
622 j = NEXT_TX_DESP_IDX(j);
623 ptxd = &priv->tx_dma[j];
624 txd_unmap_page0(&dev->dev, ptxd);
625 } else {
626 txd_unmap_page1(&dev->dev, ptxd);
627 }
628 }
629
630 err_out:
631 /* reinit descriptors and skb */
632 j = idx;
633 for (i = 0; i < tx_num; i++) {
634 priv->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
635 priv->tx_skb[j] = NULL;
636 j = NEXT_TX_DESP_IDX(j);
637 }
638 wmb();
639
640 return -1;
641 }
642
643 static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv) {
644 unsigned int len;
645 int ret;
646
647 ret = 0;
648 if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
649 if ((priv->flags & FE_FLAG_PADDING_64B) &&
650 !(priv->flags & FE_FLAG_PADDING_BUG))
651 return ret;
652
653 if (vlan_tx_tag_present(skb))
654 len = ETH_ZLEN;
655 else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
656 len = VLAN_ETH_ZLEN;
657 else if(!(priv->flags & FE_FLAG_PADDING_64B))
658 len = ETH_ZLEN;
659 else
660 return ret;
661
662 if (skb->len < len) {
663 if ((ret = skb_pad(skb, len - skb->len)) < 0)
664 return ret;
665 skb->len = len;
666 skb_set_tail_pointer(skb, len);
667 }
668 }
669
670 return ret;
671 }
672
673 static inline u32 fe_empty_txd(struct fe_priv *priv, u32 tx_fill_idx)
674 {
675 return (u32)(NUM_DMA_DESC - ((tx_fill_idx - priv->tx_free_idx) &
676 (NUM_DMA_DESC - 1)));
677 }
678
679 static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
680 {
681 struct fe_priv *priv = netdev_priv(dev);
682 struct net_device_stats *stats = &dev->stats;
683 u32 tx;
684 int tx_num;
685 int len = skb->len;
686
687 if (fe_skb_padto(skb, priv)) {
688 netif_warn(priv, tx_err, dev, "tx padding failed!\n");
689 return NETDEV_TX_OK;
690 }
691
692 tx_num = 1 + (skb_shinfo(skb)->nr_frags >> 1);
693 tx = fe_reg_r32(FE_REG_TX_CTX_IDX0);
694 if (unlikely(fe_empty_txd(priv, tx) <= tx_num))
695 {
696 netif_stop_queue(dev);
697 netif_err(priv, tx_queued,dev,
698 "Tx Ring full when queue awake!\n");
699 return NETDEV_TX_BUSY;
700 }
701
702 if (fe_tx_map_dma(skb, dev, tx) < 0) {
703 kfree_skb(skb);
704
705 stats->tx_dropped++;
706 } else {
707 stats->tx_packets++;
708 stats->tx_bytes += len;
709 }
710
711 return NETDEV_TX_OK;
712 }
713
714 static inline void fe_rx_vlan(struct sk_buff *skb)
715 {
716 struct ethhdr *ehdr;
717 u16 vlanid;
718
719 if (!__vlan_get_tag(skb, &vlanid)) {
720 /* pop the vlan tag */
721 ehdr = (struct ethhdr *)skb->data;
722 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
723 skb_pull(skb, VLAN_HLEN);
724 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
725 }
726 }
727
728 static int fe_poll_rx(struct napi_struct *napi, int budget,
729 struct fe_priv *priv)
730 {
731 struct net_device *netdev = priv->netdev;
732 struct net_device_stats *stats = &netdev->stats;
733 struct fe_soc_data *soc = priv->soc;
734 u32 checksum_bit;
735 int idx = fe_reg_r32(FE_REG_RX_CALC_IDX0);
736 struct sk_buff *skb;
737 u8 *data, *new_data;
738 struct fe_rx_dma *rxd, trxd;
739 int done = 0;
740 bool rx_vlan = netdev->features & NETIF_F_HW_VLAN_CTAG_RX;
741
742 if (netdev->features & NETIF_F_RXCSUM)
743 checksum_bit = soc->checksum_bit;
744 else
745 checksum_bit = 0;
746
747 while (done < budget) {
748 unsigned int pktlen;
749 dma_addr_t dma_addr;
750 idx = NEXT_RX_DESP_IDX(idx);
751 rxd = &priv->rx_dma[idx];
752 data = priv->rx_data[idx];
753
754 fe_get_rxd(&trxd, rxd);
755 if (!(trxd.rxd2 & RX_DMA_DONE))
756 break;
757
758 /* alloc new buffer */
759 new_data = netdev_alloc_frag(priv->frag_size);
760 if (unlikely(!new_data)) {
761 stats->rx_dropped++;
762 goto release_desc;
763 }
764 dma_addr = dma_map_single(&netdev->dev,
765 new_data + FE_RX_OFFSET,
766 priv->rx_buf_size,
767 DMA_FROM_DEVICE);
768 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
769 put_page(virt_to_head_page(new_data));
770 goto release_desc;
771 }
772
773 /* receive data */
774 skb = build_skb(data, priv->frag_size);
775 if (unlikely(!skb)) {
776 put_page(virt_to_head_page(new_data));
777 goto release_desc;
778 }
779 skb_reserve(skb, FE_RX_OFFSET);
780
781 dma_unmap_single(&netdev->dev, trxd.rxd1,
782 priv->rx_buf_size, DMA_FROM_DEVICE);
783 pktlen = RX_DMA_PLEN0(trxd.rxd2);
784 skb->dev = netdev;
785 skb_put(skb, pktlen);
786 if (trxd.rxd4 & checksum_bit) {
787 skb->ip_summed = CHECKSUM_UNNECESSARY;
788 } else {
789 skb_checksum_none_assert(skb);
790 }
791 if (rx_vlan)
792 fe_rx_vlan(skb);
793 skb->protocol = eth_type_trans(skb, netdev);
794
795 stats->rx_packets++;
796 stats->rx_bytes += pktlen;
797
798 if (skb->ip_summed == CHECKSUM_NONE)
799 netif_receive_skb(skb);
800 else
801 napi_gro_receive(napi, skb);
802
803 priv->rx_data[idx] = new_data;
804 rxd->rxd1 = (unsigned int) dma_addr;
805
806 release_desc:
807 if (soc->rx_dma)
808 soc->rx_dma(rxd, priv->rx_buf_size);
809 else
810 rxd->rxd2 = RX_DMA_LSO;
811
812 wmb();
813 fe_reg_w32(idx, FE_REG_RX_CALC_IDX0);
814 done++;
815 }
816
817 return done;
818 }
819
820 static int fe_poll_tx(struct fe_priv *priv, int budget)
821 {
822 struct net_device *netdev = priv->netdev;
823 struct device *dev = &netdev->dev;
824 unsigned int bytes_compl = 0;
825 struct sk_buff *skb;
826 struct fe_tx_dma txd;
827 int done = 0, idx;
828 u32 udf_bit = priv->soc->tx_udf_bit;
829
830 idx = priv->tx_free_idx;
831 while (done < budget) {
832 fe_get_txd(&txd, &priv->tx_dma[idx]);
833 skb = priv->tx_skb[idx];
834
835 if (!(txd.txd2 & TX_DMA_DONE) || !skb)
836 break;
837
838 txd_unmap_page1(dev, &txd);
839
840 if (txd.txd4 & udf_bit)
841 txd_unmap_single(dev, &txd);
842 else
843 txd_unmap_page0(dev, &txd);
844
845 if (skb != (struct sk_buff *) DMA_DUMMY_DESC) {
846 bytes_compl += skb->len;
847 dev_kfree_skb_any(skb);
848 done++;
849 }
850 priv->tx_skb[idx] = NULL;
851 idx = NEXT_TX_DESP_IDX(idx);
852 }
853 priv->tx_free_idx = idx;
854
855 if (!done)
856 return 0;
857
858 netdev_completed_queue(netdev, done, bytes_compl);
859 if (unlikely(netif_queue_stopped(netdev) &&
860 netif_carrier_ok(netdev))) {
861 netif_wake_queue(netdev);
862 }
863
864 return done;
865 }
866
867 static int fe_poll(struct napi_struct *napi, int budget)
868 {
869 struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
870 struct fe_hw_stats *hwstat = priv->hw_stats;
871 int tx_done, rx_done;
872 u32 status, mask;
873 u32 tx_intr, rx_intr;
874
875 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
876 tx_intr = priv->soc->tx_int;
877 rx_intr = priv->soc->rx_int;
878 tx_done = rx_done = 0;
879
880 poll_again:
881 if (status & tx_intr) {
882 tx_done += fe_poll_tx(priv, budget - tx_done);
883 if (tx_done < budget) {
884 fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
885 }
886 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
887 }
888
889 if (status & rx_intr) {
890 rx_done += fe_poll_rx(napi, budget - rx_done, priv);
891 if (rx_done < budget) {
892 fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
893 }
894 }
895
896 if (unlikely(hwstat && (status & FE_CNT_GDM_AF))) {
897 if (spin_trylock(&hwstat->stats_lock)) {
898 fe_stats_update(priv);
899 spin_unlock(&hwstat->stats_lock);
900 }
901 fe_reg_w32(FE_CNT_GDM_AF, FE_REG_FE_INT_STATUS);
902 }
903
904 if (unlikely(netif_msg_intr(priv))) {
905 mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
906 netdev_info(priv->netdev,
907 "done tx %d, rx %d, intr 0x%08x/0x%x\n",
908 tx_done, rx_done, status, mask);
909 }
910
911 if ((tx_done < budget) && (rx_done < budget)) {
912 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
913 if (status & (tx_intr | rx_intr )) {
914 goto poll_again;
915 }
916 napi_complete(napi);
917 fe_int_enable(tx_intr | rx_intr);
918 }
919
920 return rx_done;
921 }
922
923 static void fe_tx_timeout(struct net_device *dev)
924 {
925 struct fe_priv *priv = netdev_priv(dev);
926
927 priv->netdev->stats.tx_errors++;
928 netif_err(priv, tx_err, dev,
929 "transmit timed out\n");
930 netif_info(priv, drv, dev, "dma_cfg:%08x\n",
931 fe_reg_r32(FE_REG_PDMA_GLO_CFG));
932 netif_info(priv, drv, dev, "tx_ring=%d, " \
933 "base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%d\n", 0,
934 fe_reg_r32(FE_REG_TX_BASE_PTR0),
935 fe_reg_r32(FE_REG_TX_MAX_CNT0),
936 fe_reg_r32(FE_REG_TX_CTX_IDX0),
937 fe_reg_r32(FE_REG_TX_DTX_IDX0),
938 priv->tx_free_idx
939 );
940 netif_info(priv, drv, dev, "rx_ring=%d, " \
941 "base=%08x, max=%u, calc=%u, drx=%u\n", 0,
942 fe_reg_r32(FE_REG_RX_BASE_PTR0),
943 fe_reg_r32(FE_REG_RX_MAX_CNT0),
944 fe_reg_r32(FE_REG_RX_CALC_IDX0),
945 fe_reg_r32(FE_REG_RX_DRX_IDX0)
946 );
947
948 if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
949 schedule_work(&priv->pending_work);
950 }
951
952 static irqreturn_t fe_handle_irq(int irq, void *dev)
953 {
954 struct fe_priv *priv = netdev_priv(dev);
955 u32 status, int_mask;
956
957 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
958
959 if (unlikely(!status))
960 return IRQ_NONE;
961
962 int_mask = (priv->soc->rx_int | priv->soc->tx_int);
963 if (likely(status & int_mask)) {
964 fe_int_disable(int_mask);
965 napi_schedule(&priv->rx_napi);
966 } else {
967 fe_reg_w32(status, FE_REG_FE_INT_STATUS);
968 }
969
970 return IRQ_HANDLED;
971 }
972
973 #ifdef CONFIG_NET_POLL_CONTROLLER
974 static void fe_poll_controller(struct net_device *dev)
975 {
976 struct fe_priv *priv = netdev_priv(dev);
977 u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
978
979 fe_int_disable(int_mask);
980 fe_handle_irq(dev->irq, dev);
981 fe_int_enable(int_mask);
982 }
983 #endif
984
985 int fe_set_clock_cycle(struct fe_priv *priv)
986 {
987 unsigned long sysclk = priv->sysclk;
988
989 if (!sysclk) {
990 return -EINVAL;
991 }
992
993 sysclk /= FE_US_CYC_CNT_DIVISOR;
994 sysclk <<= FE_US_CYC_CNT_SHIFT;
995
996 fe_w32((fe_r32(FE_FE_GLO_CFG) &
997 ~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
998 sysclk,
999 FE_FE_GLO_CFG);
1000 return 0;
1001 }
1002
1003 void fe_fwd_config(struct fe_priv *priv)
1004 {
1005 u32 fwd_cfg;
1006
1007 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1008
1009 /* disable jumbo frame */
1010 if (priv->flags & FE_FLAG_JUMBO_FRAME)
1011 fwd_cfg &= ~FE_GDM1_JMB_EN;
1012
1013 /* set unicast/multicast/broadcast frame to cpu */
1014 fwd_cfg &= ~0xffff;
1015
1016 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1017 }
1018
1019 static void fe_rxcsum_config(bool enable)
1020 {
1021 if (enable)
1022 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
1023 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1024 FE_GDMA1_FWD_CFG);
1025 else
1026 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
1027 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1028 FE_GDMA1_FWD_CFG);
1029 }
1030
1031 static void fe_txcsum_config(bool enable)
1032 {
1033 if (enable)
1034 fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
1035 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1036 FE_CDMA_CSG_CFG);
1037 else
1038 fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
1039 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1040 FE_CDMA_CSG_CFG);
1041 }
1042
1043 void fe_csum_config(struct fe_priv *priv)
1044 {
1045 struct net_device *dev = priv_netdev(priv);
1046
1047 fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
1048 fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
1049 }
1050
1051 static int fe_hw_init(struct net_device *dev)
1052 {
1053 struct fe_priv *priv = netdev_priv(dev);
1054 int i, err;
1055
1056 err = devm_request_irq(priv->device, dev->irq, fe_handle_irq, 0,
1057 dev_name(priv->device), dev);
1058 if (err)
1059 return err;
1060
1061 if (priv->soc->set_mac)
1062 priv->soc->set_mac(priv, dev->dev_addr);
1063 else
1064 fe_hw_set_macaddr(priv, dev->dev_addr);
1065
1066 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1067
1068 /* frame engine will push VLAN tag regarding to VIDX feild in Tx desc. */
1069 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1070 for (i = 0; i < 16; i += 2)
1071 fe_w32(((i + 1) << 16) + i,
1072 fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
1073 (i * 2));
1074
1075 BUG_ON(!priv->soc->fwd_config);
1076 if (priv->soc->fwd_config(priv))
1077 netdev_err(dev, "unable to get clock\n");
1078
1079 if (fe_reg_table[FE_REG_FE_RST_GL]) {
1080 fe_reg_w32(1, FE_REG_FE_RST_GL);
1081 fe_reg_w32(0, FE_REG_FE_RST_GL);
1082 }
1083
1084 return 0;
1085 }
1086
1087 static int fe_open(struct net_device *dev)
1088 {
1089 struct fe_priv *priv = netdev_priv(dev);
1090 unsigned long flags;
1091 u32 val;
1092 int err;
1093
1094 err = fe_init_dma(priv);
1095 if (err)
1096 goto err_out;
1097
1098 spin_lock_irqsave(&priv->page_lock, flags);
1099 napi_enable(&priv->rx_napi);
1100
1101 val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
1102 val |= priv->soc->pdma_glo_cfg;
1103 fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
1104
1105 spin_unlock_irqrestore(&priv->page_lock, flags);
1106
1107 if (priv->phy)
1108 priv->phy->start(priv);
1109
1110 if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
1111 netif_carrier_on(dev);
1112
1113 netif_start_queue(dev);
1114 fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
1115
1116 return 0;
1117
1118 err_out:
1119 fe_free_dma(priv);
1120 return err;
1121 }
1122
1123 static int fe_stop(struct net_device *dev)
1124 {
1125 struct fe_priv *priv = netdev_priv(dev);
1126 unsigned long flags;
1127 int i;
1128
1129 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1130
1131 netif_tx_disable(dev);
1132
1133 if (priv->phy)
1134 priv->phy->stop(priv);
1135
1136 spin_lock_irqsave(&priv->page_lock, flags);
1137 napi_disable(&priv->rx_napi);
1138
1139 fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1140 ~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
1141 FE_REG_PDMA_GLO_CFG);
1142 spin_unlock_irqrestore(&priv->page_lock, flags);
1143
1144 /* wait dma stop */
1145 for (i = 0; i < 10; i++) {
1146 if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1147 (FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
1148 msleep(10);
1149 continue;
1150 }
1151 break;
1152 }
1153
1154 fe_free_dma(priv);
1155
1156 return 0;
1157 }
1158
1159 static int __init fe_init(struct net_device *dev)
1160 {
1161 struct fe_priv *priv = netdev_priv(dev);
1162 struct device_node *port;
1163 int err;
1164
1165 BUG_ON(!priv->soc->reset_fe);
1166 priv->soc->reset_fe();
1167
1168 if (priv->soc->switch_init)
1169 priv->soc->switch_init(priv);
1170
1171 memcpy(dev->dev_addr, priv->soc->mac, ETH_ALEN);
1172 of_get_mac_address_mtd(priv->device->of_node, dev->dev_addr);
1173
1174 err = fe_mdio_init(priv);
1175 if (err)
1176 return err;
1177
1178 if (priv->soc->port_init)
1179 for_each_child_of_node(priv->device->of_node, port)
1180 if (of_device_is_compatible(port, "ralink,eth-port") && of_device_is_available(port))
1181 priv->soc->port_init(priv, port);
1182
1183 if (priv->phy) {
1184 err = priv->phy->connect(priv);
1185 if (err)
1186 goto err_phy_disconnect;
1187 }
1188
1189 err = fe_hw_init(dev);
1190 if (err)
1191 goto err_phy_disconnect;
1192
1193 if (priv->soc->switch_config)
1194 priv->soc->switch_config(priv);
1195
1196 return 0;
1197
1198 err_phy_disconnect:
1199 if (priv->phy)
1200 priv->phy->disconnect(priv);
1201 fe_mdio_cleanup(priv);
1202
1203 return err;
1204 }
1205
1206 static void fe_uninit(struct net_device *dev)
1207 {
1208 struct fe_priv *priv = netdev_priv(dev);
1209
1210 if (priv->phy)
1211 priv->phy->disconnect(priv);
1212 fe_mdio_cleanup(priv);
1213
1214 fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
1215 free_irq(dev->irq, dev);
1216 }
1217
1218 static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1219 {
1220 struct fe_priv *priv = netdev_priv(dev);
1221
1222 if (!priv->phy_dev)
1223 return -ENODEV;
1224
1225 switch (cmd) {
1226 case SIOCETHTOOL:
1227 return phy_ethtool_ioctl(priv->phy_dev,
1228 (void *) ifr->ifr_data);
1229 case SIOCGMIIPHY:
1230 case SIOCGMIIREG:
1231 case SIOCSMIIREG:
1232 return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
1233 default:
1234 break;
1235 }
1236
1237 return -EOPNOTSUPP;
1238 }
1239
1240 static int fe_change_mtu(struct net_device *dev, int new_mtu)
1241 {
1242 struct fe_priv *priv = netdev_priv(dev);
1243 int frag_size, old_mtu;
1244 u32 fwd_cfg;
1245
1246 if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
1247 return eth_change_mtu(dev, new_mtu);
1248
1249 frag_size = fe_max_frag_size(new_mtu);
1250 if (new_mtu < 68 || frag_size > PAGE_SIZE)
1251 return -EINVAL;
1252
1253 old_mtu = dev->mtu;
1254 dev->mtu = new_mtu;
1255
1256 /* return early if the buffer sizes will not change */
1257 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1258 return 0;
1259 if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
1260 return 0;
1261
1262 if (new_mtu <= ETH_DATA_LEN) {
1263 priv->frag_size = fe_max_frag_size(ETH_DATA_LEN);
1264 priv->rx_buf_size = fe_max_buf_size(ETH_DATA_LEN);
1265 } else {
1266 priv->frag_size = PAGE_SIZE;
1267 priv->rx_buf_size = fe_max_buf_size(PAGE_SIZE);
1268 }
1269
1270 if (!netif_running(dev))
1271 return 0;
1272
1273 fe_stop(dev);
1274 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1275 if (new_mtu <= ETH_DATA_LEN)
1276 fwd_cfg &= ~FE_GDM1_JMB_EN;
1277 else {
1278 fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
1279 fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
1280 FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
1281 }
1282 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1283
1284 return fe_open(dev);
1285 }
1286
1287 static const struct net_device_ops fe_netdev_ops = {
1288 .ndo_init = fe_init,
1289 .ndo_uninit = fe_uninit,
1290 .ndo_open = fe_open,
1291 .ndo_stop = fe_stop,
1292 .ndo_start_xmit = fe_start_xmit,
1293 .ndo_set_mac_address = fe_set_mac_address,
1294 .ndo_validate_addr = eth_validate_addr,
1295 .ndo_do_ioctl = fe_do_ioctl,
1296 .ndo_change_mtu = fe_change_mtu,
1297 .ndo_tx_timeout = fe_tx_timeout,
1298 .ndo_get_stats64 = fe_get_stats64,
1299 .ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
1300 .ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
1301 #ifdef CONFIG_NET_POLL_CONTROLLER
1302 .ndo_poll_controller = fe_poll_controller,
1303 #endif
1304 };
1305
1306 static void fe_reset_pending(struct fe_priv *priv)
1307 {
1308 struct net_device *dev = priv->netdev;
1309 int err;
1310
1311 rtnl_lock();
1312 fe_stop(dev);
1313
1314 err = fe_open(dev);
1315 if (err)
1316 goto error;
1317 rtnl_unlock();
1318
1319 return;
1320 error:
1321 netif_alert(priv, ifup, dev,
1322 "Driver up/down cycle failed, closing device.\n");
1323 dev_close(dev);
1324 rtnl_unlock();
1325 }
1326
1327 static const struct fe_work_t fe_work[] = {
1328 {FE_FLAG_RESET_PENDING, fe_reset_pending},
1329 };
1330
1331 static void fe_pending_work(struct work_struct *work)
1332 {
1333 struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
1334 int i;
1335 bool pending;
1336
1337 for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
1338 pending = test_and_clear_bit(fe_work[i].bitnr,
1339 priv->pending_flags);
1340 if (pending)
1341 fe_work[i].action(priv);
1342 }
1343 }
1344
1345 static int fe_probe(struct platform_device *pdev)
1346 {
1347 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348 const struct of_device_id *match;
1349 struct fe_soc_data *soc;
1350 struct net_device *netdev;
1351 struct fe_priv *priv;
1352 struct clk *sysclk;
1353 int err;
1354
1355 device_reset(&pdev->dev);
1356
1357 match = of_match_device(of_fe_match, &pdev->dev);
1358 soc = (struct fe_soc_data *) match->data;
1359
1360 if (soc->reg_table)
1361 fe_reg_table = soc->reg_table;
1362 else
1363 soc->reg_table = fe_reg_table;
1364
1365 fe_base = devm_request_and_ioremap(&pdev->dev, res);
1366 if (!fe_base) {
1367 err = -EADDRNOTAVAIL;
1368 goto err_out;
1369 }
1370
1371 netdev = alloc_etherdev(sizeof(*priv));
1372 if (!netdev) {
1373 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1374 err = -ENOMEM;
1375 goto err_iounmap;
1376 }
1377
1378 SET_NETDEV_DEV(netdev, &pdev->dev);
1379 netdev->netdev_ops = &fe_netdev_ops;
1380 netdev->base_addr = (unsigned long) fe_base;
1381
1382 netdev->irq = platform_get_irq(pdev, 0);
1383 if (netdev->irq < 0) {
1384 dev_err(&pdev->dev, "no IRQ resource found\n");
1385 err = -ENXIO;
1386 goto err_free_dev;
1387 }
1388
1389 if (soc->init_data)
1390 soc->init_data(soc, netdev);
1391 /* fake NETIF_F_HW_VLAN_CTAG_RX for good GRO performance */
1392 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
1393 netdev->vlan_features = netdev->hw_features &
1394 ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1395 netdev->features |= netdev->hw_features;
1396
1397 /* fake rx vlan filter func. to support tx vlan offload func */
1398 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1399 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1400
1401 priv = netdev_priv(netdev);
1402 spin_lock_init(&priv->page_lock);
1403 if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
1404 priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
1405 if (!priv->hw_stats) {
1406 err = -ENOMEM;
1407 goto err_free_dev;
1408 }
1409 spin_lock_init(&priv->hw_stats->stats_lock);
1410 }
1411
1412 sysclk = devm_clk_get(&pdev->dev, NULL);
1413 if (!IS_ERR(sysclk))
1414 priv->sysclk = clk_get_rate(sysclk);
1415
1416 priv->netdev = netdev;
1417 priv->device = &pdev->dev;
1418 priv->soc = soc;
1419 priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
1420 priv->frag_size = fe_max_frag_size(ETH_DATA_LEN);
1421 priv->rx_buf_size = fe_max_buf_size(ETH_DATA_LEN);
1422 if (priv->frag_size > PAGE_SIZE) {
1423 dev_err(&pdev->dev, "error frag size.\n");
1424 err = -EINVAL;
1425 goto err_free_dev;
1426 }
1427 INIT_WORK(&priv->pending_work, fe_pending_work);
1428
1429 netif_napi_add(netdev, &priv->rx_napi, fe_poll, 32);
1430 fe_set_ethtool_ops(netdev);
1431
1432 err = register_netdev(netdev);
1433 if (err) {
1434 dev_err(&pdev->dev, "error bringing up device\n");
1435 goto err_free_dev;
1436 }
1437
1438 platform_set_drvdata(pdev, netdev);
1439
1440 netif_info(priv, probe, netdev, "ralink at 0x%08lx, irq %d\n",
1441 netdev->base_addr, netdev->irq);
1442
1443 return 0;
1444
1445 err_free_dev:
1446 free_netdev(netdev);
1447 err_iounmap:
1448 devm_iounmap(&pdev->dev, fe_base);
1449 err_out:
1450 return err;
1451 }
1452
1453 static int fe_remove(struct platform_device *pdev)
1454 {
1455 struct net_device *dev = platform_get_drvdata(pdev);
1456 struct fe_priv *priv = netdev_priv(dev);
1457
1458 netif_napi_del(&priv->rx_napi);
1459 if (priv->hw_stats)
1460 kfree(priv->hw_stats);
1461
1462 cancel_work_sync(&priv->pending_work);
1463
1464 unregister_netdev(dev);
1465 free_netdev(dev);
1466 platform_set_drvdata(pdev, NULL);
1467
1468 return 0;
1469 }
1470
1471 static struct platform_driver fe_driver = {
1472 .probe = fe_probe,
1473 .remove = fe_remove,
1474 .driver = {
1475 .name = "ralink_soc_eth",
1476 .owner = THIS_MODULE,
1477 .of_match_table = of_fe_match,
1478 },
1479 };
1480
1481 static int __init init_rtfe(void)
1482 {
1483 int ret;
1484
1485 ret = rtesw_init();
1486 if (ret)
1487 return ret;
1488
1489 ret = platform_driver_register(&fe_driver);
1490 if (ret)
1491 rtesw_exit();
1492
1493 return ret;
1494 }
1495
1496 static void __exit exit_rtfe(void)
1497 {
1498 platform_driver_unregister(&fe_driver);
1499 rtesw_exit();
1500 }
1501
1502 module_init(init_rtfe);
1503 module_exit(exit_rtfe);
1504
1505 MODULE_LICENSE("GPL");
1506 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
1507 MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
1508 MODULE_VERSION(FE_DRV_VERSION);