Add basic 2.6.24 support for rb532, korina napi code has to be adapted to work
[openwrt/openwrt.git] / target / linux / rb532 / files-2.6.24 / drivers / net / korina.c
1 /**************************************************************************
2 *
3 * BRIEF MODULE DESCRIPTION
4 * Driver for the IDT RC32434 on-chip ethernet controller.
5 *
6 * Copyright 2004 IDT Inc. (rischelp@idt.com)
7 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 *
29 *
30 **************************************************************************
31 * May 2004 rkt, neb
32 *
33 * Based on the driver developed by B. Maruthanayakam, H. Kou and others.
34 *
35 * Aug 2004 Sadik
36 *
37 * Added NAPI
38 *
39 **************************************************************************
40 */
41
42 #include <linux/autoconf.h>
43 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/moduleparam.h>
46 #include <linux/sched.h>
47 #include <linux/ctype.h>
48 #include <linux/types.h>
49 #include <linux/fcntl.h>
50 #include <linux/interrupt.h>
51 #include <linux/ptrace.h>
52 #include <linux/init.h>
53 #include <linux/ioport.h>
54 #include <linux/proc_fs.h>
55 #include <linux/in.h>
56 #include <linux/slab.h>
57 #include <linux/string.h>
58 #include <linux/delay.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/skbuff.h>
62 #include <linux/errno.h>
63 #include <linux/platform_device.h>
64 #include <asm/bootinfo.h>
65 #include <asm/system.h>
66 #include <asm/bitops.h>
67 #include <asm/pgtable.h>
68 #include <asm/segment.h>
69 #include <asm/io.h>
70 #include <asm/dma.h>
71
72 #include <asm/rc32434/rb.h>
73 #include "rc32434_eth.h"
74
75 #define DRIVER_VERSION "(mar2904)"
76
77 #define DRIVER_NAME "rc32434 Ethernet driver. " DRIVER_VERSION
78
79 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
80 ((dev)->dev_addr[1]))
81 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
82 ((dev)->dev_addr[3] << 16) | \
83 ((dev)->dev_addr[4] << 8) | \
84 ((dev)->dev_addr[5]))
85
86 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
87 #define CONFIG_IDT_USE_NAPI 1
88
89
90 static inline void rc32434_abort_tx(struct net_device *dev)
91 {
92 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
93 rc32434_abort_dma(dev, lp->tx_dma_regs);
94
95 }
96
97 static inline void rc32434_abort_rx(struct net_device *dev)
98 {
99 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
100 rc32434_abort_dma(dev, lp->rx_dma_regs);
101
102 }
103
104 static inline void rc32434_start_tx(struct rc32434_local *lp, volatile DMAD_t td)
105 {
106 rc32434_start_dma(lp->tx_dma_regs, CPHYSADDR(td));
107 }
108
109 static inline void rc32434_start_rx(struct rc32434_local *lp, volatile DMAD_t rd)
110 {
111 rc32434_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
112 }
113
114 static inline void rc32434_chain_tx(struct rc32434_local *lp, volatile DMAD_t td)
115 {
116 rc32434_chain_dma(lp->tx_dma_regs, CPHYSADDR(td));
117 }
118
119 static inline void rc32434_chain_rx(struct rc32434_local *lp, volatile DMAD_t rd)
120 {
121 rc32434_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
122 }
123
124 #ifdef RC32434_PROC_DEBUG
125 static int rc32434_read_proc(char *buf, char **start, off_t fpos,
126 int length, int *eof, void *data)
127 {
128 struct net_device *dev = (struct net_device *)data;
129 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
130 int len = 0;
131
132 /* print out header */
133 len += sprintf(buf + len, "\n\tKorina Ethernet Debug\n\n");
134 len += sprintf (buf + len,
135 "DMA halt count = %10d, DMA run count = %10d\n",
136 lp->dma_halt_cnt, lp->dma_run_cnt);
137
138 if (fpos >= len) {
139 *start = buf;
140 *eof = 1;
141 return 0;
142 }
143 *start = buf + fpos;
144
145 if ((len -= fpos) > length)
146 return length;
147 *eof = 1;
148
149 return len;
150
151 }
152 #endif
153
154
155 /*
156 * Restart the RC32434 ethernet controller.
157 */
158 static int rc32434_restart(struct net_device *dev)
159 {
160 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
161
162 /*
163 * Disable interrupts
164 */
165 disable_irq(lp->rx_irq);
166 disable_irq(lp->tx_irq);
167 #ifdef RC32434_REVISION
168 disable_irq(lp->ovr_irq);
169 #endif
170 disable_irq(lp->und_irq);
171
172 /* Mask F E bit in Tx DMA */
173 __raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) | DMASM_f_m | DMASM_e_m, &lp->tx_dma_regs->dmasm);
174 /* Mask D H E bit in Rx DMA */
175 __raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) | DMASM_d_m | DMASM_h_m | DMASM_e_m, &lp->rx_dma_regs->dmasm);
176
177 rc32434_init(dev);
178 rc32434_multicast_list(dev);
179
180 enable_irq(lp->und_irq);
181 #ifdef RC32434_REVISION
182 enable_irq(lp->ovr_irq);
183 #endif
184 enable_irq(lp->tx_irq);
185 enable_irq(lp->rx_irq);
186
187 return 0;
188 }
189
190 static int rc32434_probe(struct platform_device *pdev)
191 {
192 struct korina_device *bif = (struct korina_device *) pdev->dev.platform_data;
193 struct rc32434_local *lp = NULL;
194 struct net_device *dev = NULL;
195 struct resource *r;
196 int i, retval,err;
197
198 dev = alloc_etherdev(sizeof(struct rc32434_local));
199 if(!dev) {
200 ERR("Korina_eth: alloc_etherdev failed\n");
201 return -1;
202 }
203
204 platform_set_drvdata(pdev, dev);
205 SET_NETDEV_DEV(dev, &pdev->dev);
206 bif->dev = dev;
207
208 memcpy(dev->dev_addr, bif->mac, 6);
209
210 /* Initialize the device structure. */
211 if (dev->priv == NULL) {
212 lp = (struct rc32434_local *)kmalloc(sizeof(*lp), GFP_KERNEL);
213 memset(lp, 0, sizeof(struct rc32434_local));
214 }
215 else {
216 lp = (struct rc32434_local *)dev->priv;
217 }
218
219 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
220 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
221 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
222 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
223
224 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
225 dev->base_addr = r->start;
226 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
227 if (!lp->eth_regs) {
228 ERR("Can't remap eth registers\n");
229 retval = -ENXIO;
230 goto probe_err_out;
231 }
232
233 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
234 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
235 if (!lp->rx_dma_regs) {
236 ERR("Can't remap Rx DMA registers\n");
237 retval = -ENXIO;
238 goto probe_err_out;
239 }
240
241 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
242 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
243 if (!lp->tx_dma_regs) {
244 ERR("Can't remap Tx DMA registers\n");
245 retval = -ENXIO;
246 goto probe_err_out;
247 }
248
249 #ifdef RC32434_PROC_DEBUG
250 lp->ps = create_proc_read_entry (bif->name, 0, proc_net,
251 rc32434_read_proc, dev);
252 #endif
253
254 lp->td_ring = (DMAD_t)kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
255 if (!lp->td_ring) {
256 ERR("Can't allocate descriptors\n");
257 retval = -ENOMEM;
258 goto probe_err_out;
259 }
260
261 dma_cache_inv((unsigned long)(lp->td_ring), TD_RING_SIZE + RD_RING_SIZE);
262
263 /* now convert TD_RING pointer to KSEG1 */
264 lp->td_ring = (DMAD_t )KSEG1ADDR(lp->td_ring);
265 lp->rd_ring = &lp->td_ring[RC32434_NUM_TDS];
266
267
268 spin_lock_init(&lp->lock);
269
270 /* just use the rx dma irq */
271 dev->irq = lp->rx_irq;
272
273 dev->priv = lp;
274 lp->dev = dev;
275
276 dev->open = rc32434_open;
277 dev->stop = rc32434_close;
278 dev->hard_start_xmit = rc32434_send_packet;
279 dev->get_stats = rc32434_get_stats;
280 dev->set_multicast_list = &rc32434_multicast_list;
281 dev->tx_timeout = rc32434_tx_timeout;
282 dev->watchdog_timeo = RC32434_TX_TIMEOUT;
283
284 netif_napi_add(dev, &lp->napi, rc32434_poll, 64);
285 lp->tx_tasklet = kmalloc(sizeof(struct tasklet_struct), GFP_KERNEL);
286 tasklet_init(lp->tx_tasklet, rc32434_tx_tasklet, (unsigned long)dev);
287
288 if ((err = register_netdev(dev))) {
289 printk(KERN_ERR "rc32434 ethernet. Cannot register net device %d\n", err);
290 free_netdev(dev);
291 retval = -EINVAL;
292 goto probe_err_out;
293 }
294
295 INFO("Rx IRQ %d, Tx IRQ %d, ", lp->rx_irq, lp->tx_irq);
296 for (i = 0; i < 6; i++) {
297 printk("%2.2x", dev->dev_addr[i]);
298 if (i<5)
299 printk(":");
300 }
301 printk("\n");
302
303 return 0;
304
305 probe_err_out:
306 rc32434_cleanup_module();
307 ERR(" failed. Returns %d\n", retval);
308 return retval;
309
310 }
311
312 static int rc32434_remove(struct platform_device *pdev)
313 {
314 struct korina_device *bif = (struct korina_device *) pdev->dev.platform_data;
315
316 if (bif->dev != NULL) {
317 struct rc32434_local *lp = (struct rc32434_local *)bif->dev->priv;
318 if (lp != NULL) {
319 if (lp->eth_regs)
320 iounmap((void*)lp->eth_regs);
321 if (lp->rx_dma_regs)
322 iounmap((void*)lp->rx_dma_regs);
323 if (lp->tx_dma_regs)
324 iounmap((void*)lp->tx_dma_regs);
325 if (lp->td_ring)
326 kfree((void*)KSEG0ADDR(lp->td_ring));
327
328 #ifdef RC32434_PROC_DEBUG
329 if (lp->ps) {
330 remove_proc_entry(bif->name, proc_net);
331 }
332 #endif
333 kfree(lp);
334 }
335
336 platform_set_drvdata(pdev, NULL);
337 unregister_netdev(bif->dev);
338 free_netdev(bif->dev);
339 kfree(bif->dev);
340 }
341 return 0;
342 }
343
344
345 static int rc32434_open(struct net_device *dev)
346 {
347 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
348
349 /* Initialize */
350 if (rc32434_init(dev)) {
351 ERR("Error: cannot open the Ethernet device\n");
352 return -EAGAIN;
353 }
354
355 /* Install the interrupt handler that handles the Done Finished Ovr and Und Events */
356 if (request_irq(lp->rx_irq, &rc32434_rx_dma_interrupt,
357 IRQF_SHARED | IRQF_DISABLED,
358 "Korina ethernet Rx", dev)) {
359 ERR(": unable to get Rx DMA IRQ %d\n",
360 lp->rx_irq);
361 return -EAGAIN;
362 }
363 if (request_irq(lp->tx_irq, &rc32434_tx_dma_interrupt,
364 IRQF_SHARED | IRQF_DISABLED,
365 "Korina ethernet Tx", dev)) {
366 ERR(": unable to get Tx DMA IRQ %d\n",
367 lp->tx_irq);
368 free_irq(lp->rx_irq, dev);
369 return -EAGAIN;
370 }
371
372 #ifdef RC32434_REVISION
373 /* Install handler for overrun error. */
374 if (request_irq(lp->ovr_irq, &rc32434_ovr_interrupt,
375 IRQF_SHARED | IRQF_DISABLED,
376 "Ethernet Overflow", dev)) {
377 ERR(": unable to get OVR IRQ %d\n",
378 lp->ovr_irq);
379 free_irq(lp->rx_irq, dev);
380 free_irq(lp->tx_irq, dev);
381 return -EAGAIN;
382 }
383 #endif
384
385 /* Install handler for underflow error. */
386 if (request_irq(lp->und_irq, &rc32434_und_interrupt,
387 IRQF_SHARED | IRQF_DISABLED,
388 "Ethernet Underflow", dev)) {
389 ERR(": unable to get UND IRQ %d\n",
390 lp->und_irq);
391 free_irq(lp->rx_irq, dev);
392 free_irq(lp->tx_irq, dev);
393 #ifdef RC32434_REVISION
394 free_irq(lp->ovr_irq, dev);
395 #endif
396 return -EAGAIN;
397 }
398
399
400 return 0;
401 }
402
403
404
405
406 static int rc32434_close(struct net_device *dev)
407 {
408 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
409 u32 tmp;
410
411 /* Disable interrupts */
412 disable_irq(lp->rx_irq);
413 disable_irq(lp->tx_irq);
414 #ifdef RC32434_REVISION
415 disable_irq(lp->ovr_irq);
416 #endif
417 disable_irq(lp->und_irq);
418
419 tmp = __raw_readl(&lp->tx_dma_regs->dmasm);
420 tmp = tmp | DMASM_f_m | DMASM_e_m;
421 __raw_writel(tmp, &lp->tx_dma_regs->dmasm);
422
423 tmp = __raw_readl(&lp->rx_dma_regs->dmasm);
424 tmp = tmp | DMASM_d_m | DMASM_h_m | DMASM_e_m;
425 __raw_writel(tmp, &lp->rx_dma_regs->dmasm);
426
427 free_irq(lp->rx_irq, dev);
428 free_irq(lp->tx_irq, dev);
429 #ifdef RC32434_REVISION
430 free_irq(lp->ovr_irq, dev);
431 #endif
432 free_irq(lp->und_irq, dev);
433 return 0;
434 }
435
436
437 /* transmit packet */
438 static int rc32434_send_packet(struct sk_buff *skb, struct net_device *dev)
439 {
440 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
441 unsigned long flags;
442 u32 length;
443 DMAD_t td;
444
445
446 spin_lock_irqsave(&lp->lock, flags);
447
448 td = &lp->td_ring[lp->tx_chain_tail];
449
450 /* stop queue when full, drop pkts if queue already full */
451 if(lp->tx_count >= (RC32434_NUM_TDS - 2)) {
452 lp->tx_full = 1;
453
454 if(lp->tx_count == (RC32434_NUM_TDS - 2)) {
455 netif_stop_queue(dev);
456 }
457 else {
458 lp->stats.tx_dropped++;
459 dev_kfree_skb_any(skb);
460 spin_unlock_irqrestore(&lp->lock, flags);
461 return 1;
462 }
463 }
464
465 lp->tx_count ++;
466
467 lp->tx_skb[lp->tx_chain_tail] = skb;
468
469 length = skb->len;
470 dma_cache_wback((u32)skb->data, skb->len);
471
472 /* Setup the transmit descriptor. */
473 dma_cache_inv((u32) td, sizeof(*td));
474 td->ca = CPHYSADDR(skb->data);
475
476 if(__raw_readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
477 if( lp->tx_chain_status == empty ) {
478 td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
479 lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
480 __raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); /* Write to NDPTR */
481 lp->tx_chain_head = lp->tx_chain_tail; /* Move head to tail */
482 }
483 else {
484 td->control = DMA_COUNT(length) |DMAD_cof_m|DMAD_iof_m; /* Update tail */
485 lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].control &= ~(DMAD_cof_m); /* Link to prev */
486 lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].link = CPHYSADDR(td); /* Link to prev */
487 lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
488 __raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); /* Write to NDPTR */
489 lp->tx_chain_head = lp->tx_chain_tail; /* Move head to tail */
490 lp->tx_chain_status = empty;
491 }
492 }
493 else {
494 if( lp->tx_chain_status == empty ) {
495 td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
496 lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
497 lp->tx_chain_status = filled;
498 }
499 else {
500 td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
501 lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].control &= ~(DMAD_cof_m); /* Link to prev */
502 lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].link = CPHYSADDR(td); /* Link to prev */
503 lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
504 }
505 }
506 dma_cache_wback((u32) td, sizeof(*td));
507
508 dev->trans_start = jiffies;
509
510 spin_unlock_irqrestore(&lp->lock, flags);
511
512 return 0;
513 }
514
515
516 /* Ethernet MII-PHY Handler */
517 static void rc32434_mii_handler(unsigned long data)
518 {
519 struct net_device *dev = (struct net_device *)data;
520 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
521 unsigned long flags;
522 unsigned long duplex_status;
523 int port_addr = (lp->rx_irq == 0x2c? 1:0) << 8;
524
525 spin_lock_irqsave(&lp->lock, flags);
526
527 /* Two ports are using the same MII, the difference is the PHY address */
528 __raw_writel(0, &rc32434_eth0_regs->miimcfg);
529 __raw_writel(0, &rc32434_eth0_regs->miimcmd);
530 __raw_writel(port_addr |0x05, &rc32434_eth0_regs->miimaddr);
531 __raw_writel(MIIMCMD_scn_m, &rc32434_eth0_regs->miimcmd);
532 while(__raw_readl(&rc32434_eth0_regs->miimind) & MIIMIND_nv_m);
533
534 ERR("irq:%x port_addr:%x RDD:%x\n",
535 lp->rx_irq, port_addr, __raw_readl(&rc32434_eth0_regs->miimrdd));
536 duplex_status = (__raw_readl(&rc32434_eth0_regs->miimrdd) & 0x140)? ETHMAC2_fd_m: 0;
537 if(duplex_status != lp->duplex_mode) {
538 ERR("The MII-PHY is Auto-negotiated to %s-Duplex mode for Eth-%x\n", duplex_status? "Full":"Half", lp->rx_irq == 0x2c? 1:0);
539 lp->duplex_mode = duplex_status;
540 rc32434_restart(dev);
541 }
542
543 lp->mii_phy_timer.expires = jiffies + 10 * HZ;
544 add_timer(&lp->mii_phy_timer);
545
546 spin_unlock_irqrestore(&lp->lock, flags);
547
548 }
549
550 #ifdef RC32434_REVISION
551 /* Ethernet Rx Overflow interrupt */
552 static irqreturn_t
553 rc32434_ovr_interrupt(int irq, void *dev_id)
554 {
555 struct net_device *dev = (struct net_device *)dev_id;
556 struct rc32434_local *lp;
557 unsigned int ovr;
558 irqreturn_t retval = IRQ_NONE;
559
560 ASSERT(dev != NULL);
561
562 lp = (struct rc32434_local *)dev->priv;
563 spin_lock(&lp->lock);
564 ovr = __raw_readl(&lp->eth_regs->ethintfc);
565
566 if(ovr & ETHINTFC_ovr_m) {
567 netif_stop_queue(dev);
568
569 /* clear OVR bit */
570 __raw_writel((ovr & ~ETHINTFC_ovr_m), &lp->eth_regs->ethintfc);
571
572 /* Restart interface */
573 rc32434_restart(dev);
574 retval = IRQ_HANDLED;
575 }
576 spin_unlock(&lp->lock);
577
578 return retval;
579 }
580
581 #endif
582
583
584 /* Ethernet Tx Underflow interrupt */
585 static irqreturn_t
586 rc32434_und_interrupt(int irq, void *dev_id)
587 {
588 struct net_device *dev = (struct net_device *)dev_id;
589 struct rc32434_local *lp;
590 unsigned int und;
591 irqreturn_t retval = IRQ_NONE;
592
593 ASSERT(dev != NULL);
594
595 lp = (struct rc32434_local *)dev->priv;
596
597 spin_lock(&lp->lock);
598
599 und = __raw_readl(&lp->eth_regs->ethintfc);
600
601 if(und & ETHINTFC_und_m) {
602 netif_stop_queue(dev);
603
604 __raw_writel((und & ~ETHINTFC_und_m), &lp->eth_regs->ethintfc);
605
606 /* Restart interface */
607 rc32434_restart(dev);
608 retval = IRQ_HANDLED;
609 }
610
611 spin_unlock(&lp->lock);
612
613 return retval;
614 }
615
616
617 /* Ethernet Rx DMA interrupt */
618 static irqreturn_t
619 rc32434_rx_dma_interrupt(int irq, void *dev_id)
620 {
621 struct net_device *dev = (struct net_device *)dev_id;
622 struct rc32434_local* lp;
623 volatile u32 dmas,dmasm;
624 irqreturn_t retval;
625
626 ASSERT(dev != NULL);
627
628 lp = (struct rc32434_local *)dev->priv;
629
630 spin_lock(&lp->lock);
631 dmas = __raw_readl(&lp->rx_dma_regs->dmas);
632 if(dmas & (DMAS_d_m|DMAS_h_m|DMAS_e_m)) {
633 /* Mask D H E bit in Rx DMA */
634 dmasm = __raw_readl(&lp->rx_dma_regs->dmasm);
635 __raw_writel(dmasm | (DMASM_d_m | DMASM_h_m | DMASM_e_m), &lp->rx_dma_regs->dmasm);
636
637 netif_rx_schedule_prep(dev, &lp->napi);
638
639 if (dmas & DMAS_e_m)
640 ERR(": DMA error\n");
641
642 retval = IRQ_HANDLED;
643 }
644 else
645 retval = IRQ_NONE;
646
647 spin_unlock(&lp->lock);
648 return retval;
649 }
650
651 static int rc32434_poll(struct napi_struct *napi, int budget)
652 {
653 struct rc32434_local* lp = container_of(napi, struct rc32434_local, napi);
654 struct net_device *dev = lp->dev;
655 volatile DMAD_t rd = &lp->rd_ring[lp->rx_next_done];
656 struct sk_buff *skb, *skb_new;
657 u8* pkt_buf;
658 u32 devcs, count, pkt_len, pktuncrc_len;
659 volatile u32 dmas;
660 u32 received = 0;
661 int rx_work_limit = min(budget, 64);
662
663 dma_cache_inv((u32)rd, sizeof(*rd));
664 while ( (count = RC32434_RBSIZE - (u32)DMA_COUNT(rd->control)) != 0) {
665 if(--rx_work_limit <0)
666 {
667 break;
668 }
669 /* init the var. used for the later operations within the while loop */
670 skb_new = NULL;
671 devcs = rd->devcs;
672 pkt_len = RCVPKT_LENGTH(devcs);
673 skb = lp->rx_skb[lp->rx_next_done];
674
675 if (count < 64) {
676 lp->stats.rx_errors++;
677 lp->stats.rx_dropped++;
678 }
679 else if ((devcs & ( ETHRX_ld_m)) != ETHRX_ld_m) {
680 /* check that this is a whole packet */
681 /* WARNING: DMA_FD bit incorrectly set in Rc32434 (errata ref #077) */
682 lp->stats.rx_errors++;
683 lp->stats.rx_dropped++;
684 }
685 else if ( (devcs & ETHRX_rok_m) ) {
686
687 {
688 /* must be the (first and) last descriptor then */
689 pkt_buf = (u8*)lp->rx_skb[lp->rx_next_done]->data;
690
691 pktuncrc_len = pkt_len - 4;
692 /* invalidate the cache */
693 dma_cache_inv((unsigned long)pkt_buf, pktuncrc_len);
694
695 /* Malloc up new buffer. */
696 skb_new = dev_alloc_skb(RC32434_RBSIZE + 2);
697
698 if (skb_new != NULL){
699 /* Make room */
700 skb_put(skb, pktuncrc_len);
701
702 skb->protocol = eth_type_trans(skb, dev);
703
704 /* pass the packet to upper layers */
705 netif_receive_skb(skb);
706
707 dev->last_rx = jiffies;
708 lp->stats.rx_packets++;
709 lp->stats.rx_bytes += pktuncrc_len;
710
711 if (IS_RCV_MP(devcs))
712 lp->stats.multicast++;
713
714 /* 16 bit align */
715 skb_reserve(skb_new, 2);
716
717 skb_new->dev = dev;
718 lp->rx_skb[lp->rx_next_done] = skb_new;
719 }
720 else {
721 ERR("no memory, dropping rx packet.\n");
722 lp->stats.rx_errors++;
723 lp->stats.rx_dropped++;
724 }
725 }
726
727 }
728 else {
729 /* This should only happen if we enable accepting broken packets */
730 lp->stats.rx_errors++;
731 lp->stats.rx_dropped++;
732
733 /* add statistics counters */
734 if (IS_RCV_CRC_ERR(devcs)) {
735 DBG(2, "RX CRC error\n");
736 lp->stats.rx_crc_errors++;
737 }
738 else if (IS_RCV_LOR_ERR(devcs)) {
739 DBG(2, "RX LOR error\n");
740 lp->stats.rx_length_errors++;
741 }
742 else if (IS_RCV_LE_ERR(devcs)) {
743 DBG(2, "RX LE error\n");
744 lp->stats.rx_length_errors++;
745 }
746 else if (IS_RCV_OVR_ERR(devcs)) {
747 lp->stats.rx_over_errors++;
748 }
749 else if (IS_RCV_CV_ERR(devcs)) {
750 /* code violation */
751 DBG(2, "RX CV error\n");
752 lp->stats.rx_frame_errors++;
753 }
754 else if (IS_RCV_CES_ERR(devcs)) {
755 DBG(2, "RX Preamble error\n");
756 }
757 }
758
759 rd->devcs = 0;
760
761 /* restore descriptor's curr_addr */
762 if(skb_new)
763 rd->ca = CPHYSADDR(skb_new->data);
764 else
765 rd->ca = CPHYSADDR(skb->data);
766
767 rd->control = DMA_COUNT(RC32434_RBSIZE) |DMAD_cod_m |DMAD_iod_m;
768 lp->rd_ring[(lp->rx_next_done-1)& RC32434_RDS_MASK].control &= ~(DMAD_cod_m);
769
770 lp->rx_next_done = (lp->rx_next_done + 1) & RC32434_RDS_MASK;
771 dma_cache_wback((u32)rd, sizeof(*rd));
772 rd = &lp->rd_ring[lp->rx_next_done];
773 __raw_writel( ~DMAS_d_m, &lp->rx_dma_regs->dmas);
774 }
775 budget =- received;
776 if(rx_work_limit < 0)
777 goto not_done;
778
779 dmas = __raw_readl(&lp->rx_dma_regs->dmas);
780
781 if(dmas & DMAS_h_m) {
782 __raw_writel( ~(DMAS_h_m | DMAS_e_m), &lp->rx_dma_regs->dmas);
783 #ifdef RC32434_PROC_DEBUG
784 lp->dma_halt_cnt++;
785 #endif
786 rd->devcs = 0;
787 skb = lp->rx_skb[lp->rx_next_done];
788 rd->ca = CPHYSADDR(skb->data);
789 dma_cache_wback((u32)rd, sizeof(*rd));
790 rc32434_chain_rx(lp,rd);
791 }
792
793 netif_rx_complete(dev, &lp->napi);
794 /* Enable D H E bit in Rx DMA */
795 __raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) & ~(DMASM_d_m | DMASM_h_m |DMASM_e_m), &lp->rx_dma_regs->dmasm);
796 return 0;
797 not_done:
798 return 1;
799 }
800
801
802
803 /* Ethernet Tx DMA interrupt */
804 static irqreturn_t
805 rc32434_tx_dma_interrupt(int irq, void *dev_id)
806 {
807 struct net_device *dev = (struct net_device *)dev_id;
808 struct rc32434_local *lp;
809 volatile u32 dmas,dmasm;
810 irqreturn_t retval;
811
812 ASSERT(dev != NULL);
813
814 lp = (struct rc32434_local *)dev->priv;
815
816 spin_lock(&lp->lock);
817
818 dmas = __raw_readl(&lp->tx_dma_regs->dmas);
819
820 if (dmas & (DMAS_f_m | DMAS_e_m)) {
821 dmasm = __raw_readl(&lp->tx_dma_regs->dmasm);
822 /* Mask F E bit in Tx DMA */
823 __raw_writel(dmasm | (DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
824
825 tasklet_hi_schedule(lp->tx_tasklet);
826
827 if(lp->tx_chain_status == filled && (__raw_readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
828 __raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr));
829 lp->tx_chain_status = empty;
830 lp->tx_chain_head = lp->tx_chain_tail;
831 dev->trans_start = jiffies;
832 }
833
834 if (dmas & DMAS_e_m)
835 ERR(": DMA error\n");
836
837 retval = IRQ_HANDLED;
838 }
839 else
840 retval = IRQ_NONE;
841
842 spin_unlock(&lp->lock);
843
844 return retval;
845 }
846
847
848 static void rc32434_tx_tasklet(unsigned long tx_data_dev)
849 {
850 struct net_device *dev = (struct net_device *)tx_data_dev;
851 struct rc32434_local* lp = (struct rc32434_local *)dev->priv;
852 volatile DMAD_t td = &lp->td_ring[lp->tx_next_done];
853 u32 devcs;
854 unsigned long flags;
855 volatile u32 dmas;
856
857 spin_lock_irqsave(&lp->lock, flags);
858
859 /* process all desc that are done */
860 while(IS_DMA_FINISHED(td->control)) {
861 if(lp->tx_full == 1) {
862 netif_wake_queue(dev);
863 lp->tx_full = 0;
864 }
865
866 devcs = lp->td_ring[lp->tx_next_done].devcs;
867 if ((devcs & (ETHTX_fd_m | ETHTX_ld_m)) != (ETHTX_fd_m | ETHTX_ld_m)) {
868 lp->stats.tx_errors++;
869 lp->stats.tx_dropped++;
870
871 /* should never happen */
872 DBG(1, __FUNCTION__ ": split tx ignored\n");
873 }
874 else if (IS_TX_TOK(devcs)) {
875 lp->stats.tx_packets++;
876 lp->stats.tx_bytes+=lp->tx_skb[lp->tx_next_done]->len;
877 }
878 else {
879 lp->stats.tx_errors++;
880 lp->stats.tx_dropped++;
881
882 /* underflow */
883 if (IS_TX_UND_ERR(devcs))
884 lp->stats.tx_fifo_errors++;
885
886 /* oversized frame */
887 if (IS_TX_OF_ERR(devcs))
888 lp->stats.tx_aborted_errors++;
889
890 /* excessive deferrals */
891 if (IS_TX_ED_ERR(devcs))
892 lp->stats.tx_carrier_errors++;
893
894 /* collisions: medium busy */
895 if (IS_TX_EC_ERR(devcs))
896 lp->stats.collisions++;
897
898 /* late collision */
899 if (IS_TX_LC_ERR(devcs))
900 lp->stats.tx_window_errors++;
901
902 }
903
904 /* We must always free the original skb */
905 if (lp->tx_skb[lp->tx_next_done] != NULL) {
906 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
907 lp->tx_skb[lp->tx_next_done] = NULL;
908 }
909
910 lp->td_ring[lp->tx_next_done].control = DMAD_iof_m;
911 lp->td_ring[lp->tx_next_done].devcs = ETHTX_fd_m | ETHTX_ld_m;
912 lp->td_ring[lp->tx_next_done].link = 0;
913 lp->td_ring[lp->tx_next_done].ca = 0;
914 lp->tx_count --;
915
916 /* go on to next transmission */
917 lp->tx_next_done = (lp->tx_next_done + 1) & RC32434_TDS_MASK;
918 td = &lp->td_ring[lp->tx_next_done];
919
920 }
921
922 dmas = __raw_readl(&lp->tx_dma_regs->dmas);
923 __raw_writel( ~dmas, &lp->tx_dma_regs->dmas);
924
925 /* Enable F E bit in Tx DMA */
926 __raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) & ~(DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
927 spin_unlock_irqrestore(&lp->lock, flags);
928
929 }
930
931
932 static struct net_device_stats * rc32434_get_stats(struct net_device *dev)
933 {
934 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
935 return &lp->stats;
936 }
937
938
939 /*
940 * Set or clear the multicast filter for this adaptor.
941 */
942 static void rc32434_multicast_list(struct net_device *dev)
943 {
944 /* listen to broadcasts always and to treat */
945 /* IFF bits independantly */
946 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
947 unsigned long flags;
948 u32 recognise = ETHARC_ab_m; /* always accept broadcasts */
949
950 if (dev->flags & IFF_PROMISC) /* set promiscuous mode */
951 recognise |= ETHARC_pro_m;
952
953 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15))
954 recognise |= ETHARC_am_m; /* all multicast & bcast */
955 else if (dev->mc_count > 0) {
956 DBG(2, __FUNCTION__ ": mc_count %d\n", dev->mc_count);
957 recognise |= ETHARC_am_m; /* for the time being */
958 }
959
960 spin_lock_irqsave(&lp->lock, flags);
961 __raw_writel(recognise, &lp->eth_regs->etharc);
962 spin_unlock_irqrestore(&lp->lock, flags);
963 }
964
965
966 static void rc32434_tx_timeout(struct net_device *dev)
967 {
968 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
969 unsigned long flags;
970
971 spin_lock_irqsave(&lp->lock, flags);
972 rc32434_restart(dev);
973 spin_unlock_irqrestore(&lp->lock, flags);
974
975 }
976
977
978 /*
979 * Initialize the RC32434 ethernet controller.
980 */
981 static int rc32434_init(struct net_device *dev)
982 {
983 struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
984 int i, j;
985
986 /* Disable DMA */
987 rc32434_abort_tx(dev);
988 rc32434_abort_rx(dev);
989
990 /* reset ethernet logic */
991 __raw_writel(0, &lp->eth_regs->ethintfc);
992 while((__raw_readl(&lp->eth_regs->ethintfc) & ETHINTFC_rip_m))
993 dev->trans_start = jiffies;
994
995 /* Enable Ethernet Interface */
996 __raw_writel(ETHINTFC_en_m, &lp->eth_regs->ethintfc);
997
998 #ifndef CONFIG_IDT_USE_NAPI
999 tasklet_disable(lp->rx_tasklet);
1000 #endif
1001 tasklet_disable(lp->tx_tasklet);
1002
1003 /* Initialize the transmit Descriptors */
1004 for (i = 0; i < RC32434_NUM_TDS; i++) {
1005 lp->td_ring[i].control = DMAD_iof_m;
1006 lp->td_ring[i].devcs = ETHTX_fd_m | ETHTX_ld_m;
1007 lp->td_ring[i].ca = 0;
1008 lp->td_ring[i].link = 0;
1009 if (lp->tx_skb[i] != NULL) {
1010 dev_kfree_skb_any(lp->tx_skb[i]);
1011 lp->tx_skb[i] = NULL;
1012 }
1013 }
1014 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = lp->tx_full = lp->tx_count = 0;
1015 lp-> tx_chain_status = empty;
1016
1017 /*
1018 * Initialize the receive descriptors so that they
1019 * become a circular linked list, ie. let the last
1020 * descriptor point to the first again.
1021 */
1022 for (i=0; i<RC32434_NUM_RDS; i++) {
1023 struct sk_buff *skb = lp->rx_skb[i];
1024
1025 if (lp->rx_skb[i] == NULL) {
1026 skb = dev_alloc_skb(RC32434_RBSIZE + 2);
1027 if (skb == NULL) {
1028 ERR("No memory in the system\n");
1029 for (j = 0; j < RC32434_NUM_RDS; j ++)
1030 if (lp->rx_skb[j] != NULL)
1031 dev_kfree_skb_any(lp->rx_skb[j]);
1032
1033 return 1;
1034 }
1035 else {
1036 skb->dev = dev;
1037 skb_reserve(skb, 2);
1038 lp->rx_skb[i] = skb;
1039 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
1040
1041 }
1042 }
1043 lp->rd_ring[i].control = DMAD_iod_m | DMA_COUNT(RC32434_RBSIZE);
1044 lp->rd_ring[i].devcs = 0;
1045 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
1046 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
1047
1048 }
1049 /* loop back */
1050 lp->rd_ring[RC32434_NUM_RDS-1].link = CPHYSADDR(&lp->rd_ring[0]);
1051 lp->rx_next_done = 0;
1052
1053 lp->rd_ring[RC32434_NUM_RDS-1].control |= DMAD_cod_m;
1054 lp->rx_chain_head = 0;
1055 lp->rx_chain_tail = 0;
1056 lp->rx_chain_status = empty;
1057
1058 __raw_writel(0, &lp->rx_dma_regs->dmas);
1059 /* Start Rx DMA */
1060 rc32434_start_rx(lp, &lp->rd_ring[0]);
1061
1062 /* Enable F E bit in Tx DMA */
1063 __raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) & ~(DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
1064 /* Enable D H E bit in Rx DMA */
1065 __raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) & ~(DMASM_d_m | DMASM_h_m | DMASM_e_m), &lp->rx_dma_regs->dmasm);
1066
1067 /* Accept only packets destined for this Ethernet device address */
1068 __raw_writel(ETHARC_ab_m, &lp->eth_regs->etharc);
1069
1070 /* Set all Ether station address registers to their initial values */
1071 __raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1072 __raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1073
1074 __raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1075 __raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1076
1077 __raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1078 __raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1079
1080 __raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1081 __raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1082
1083
1084 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1085 __raw_writel(ETHMAC2_pe_m | ETHMAC2_cen_m | ETHMAC2_fd_m, &lp->eth_regs->ethmac2);
1086 //ETHMAC2_flc_m ETHMAC2_fd_m lp->duplex_mode
1087
1088 /* Back to back inter-packet-gap */
1089 __raw_writel(0x15, &lp->eth_regs->ethipgt);
1090 /* Non - Back to back inter-packet-gap */
1091 __raw_writel(0x12, &lp->eth_regs->ethipgr);
1092
1093 /* Management Clock Prescaler Divisor */
1094 /* Clock independent setting */
1095 __raw_writel(((idt_cpu_freq)/MII_CLOCK+1) & ~1,
1096 &lp->eth_regs->ethmcp);
1097
1098 /* don't transmit until fifo contains 48b */
1099 __raw_writel(48, &lp->eth_regs->ethfifott);
1100
1101 __raw_writel(ETHMAC1_re_m, &lp->eth_regs->ethmac1);
1102
1103 napi_enable(&lp->napi);
1104 tasklet_enable(lp->tx_tasklet);
1105
1106 netif_start_queue(dev);
1107
1108 return 0;
1109 }
1110
1111 static struct platform_driver korina_driver = {
1112 .driver.name = "korina",
1113 .probe = rc32434_probe,
1114 .remove = rc32434_remove,
1115 };
1116
1117 static int __init rc32434_init_module(void)
1118 {
1119 return platform_driver_register(&korina_driver);
1120 }
1121
1122 static void rc32434_cleanup_module(void)
1123 {
1124 return platform_driver_unregister(&korina_driver);
1125 }
1126
1127 module_init(rc32434_init_module);
1128 module_exit(rc32434_cleanup_module);