ipq807x: rename target to qualcommax
[openwrt/staging/jow.git] / target / linux / ipq807x / patches-6.1 / 0901-regulator-add-Qualcomm-CPR-regulators.patch
diff --git a/target/linux/ipq807x/patches-6.1/0901-regulator-add-Qualcomm-CPR-regulators.patch b/target/linux/ipq807x/patches-6.1/0901-regulator-add-Qualcomm-CPR-regulators.patch
deleted file mode 100644 (file)
index 9b9f715..0000000
+++ /dev/null
@@ -1,12144 +0,0 @@
-From c9df32c057e43e38c8113199e64f7a64f8d341df Mon Sep 17 00:00:00 2001
-From: Robert Marko <robimarko@gmail.com>
-Date: Mon, 11 Apr 2022 14:35:36 +0200
-Subject: [PATCH] regulator: add Qualcomm CPR regulators
-
-Allow building Qualcomm CPR regulators.
-
-Signed-off-by: Robert Marko <robimarko@gmail.com>
----
- drivers/regulator/Kconfig               |   33 +
- drivers/regulator/Makefile              |    3 +
- drivers/regulator/cpr3-npu-regulator.c  |  695 +++
- drivers/regulator/cpr3-regulator.c      | 5111 +++++++++++++++++++++++
- drivers/regulator/cpr3-regulator.h      | 1211 ++++++
- drivers/regulator/cpr3-util.c           | 2750 ++++++++++++
- drivers/regulator/cpr4-apss-regulator.c | 1819 ++++++++
- include/soc/qcom/socinfo.h              |  463 ++
- 8 files changed, 12085 insertions(+)
- create mode 100644 drivers/regulator/cpr3-npu-regulator.c
- create mode 100644 drivers/regulator/cpr3-regulator.c
- create mode 100644 drivers/regulator/cpr3-regulator.h
- create mode 100644 drivers/regulator/cpr3-util.c
- create mode 100644 drivers/regulator/cpr4-apss-regulator.c
- create mode 100644 include/soc/qcom/socinfo.h
-
---- a/drivers/regulator/Kconfig
-+++ b/drivers/regulator/Kconfig
-@@ -1524,4 +1524,37 @@ config REGULATOR_QCOM_LABIBB
-         boost regulator and IBB can be used as a negative boost regulator
-         for LCD display panel.
-+config REGULATOR_CPR3
-+      bool "QCOM CPR3 regulator core support"
-+      help
-+        This driver supports Core Power Reduction (CPR) version 3 controllers
-+        which are used by some Qualcomm Technologies, Inc. SoCs to
-+        manage important voltage regulators.  CPR3 controllers are capable of
-+        monitoring several ring oscillator sensing loops simultaneously.  The
-+        CPR3 controller informs software when the silicon conditions require
-+        the supply voltage to be increased or decreased.  On certain supply
-+        rails, the CPR3 controller is able to propagate the voltage increase
-+        or decrease requests all the way to the PMIC without software
-+        involvement.
-+
-+config REGULATOR_CPR3_NPU
-+      bool "QCOM CPR3 regulator for NPU"
-+      depends on OF && REGULATOR_CPR3
-+      help
-+        This driver supports Qualcomm Technologies, Inc. NPU CPR3
-+        regulator Which will always operate in open loop.
-+
-+config REGULATOR_CPR4_APSS
-+      bool "QCOM CPR4 regulator for APSS"
-+      depends on OF && REGULATOR_CPR3
-+      help
-+        This driver supports Qualcomm Technologies, Inc. APSS application
-+        processor specific features including memory array power mux (APM)
-+        switching, one CPR4 thread which monitor the two APSS clusters that
-+        are both powered by a shared supply, hardware closed-loop auto
-+        voltage stepping, voltage adjustments based on online core count,
-+        voltage adjustments based on temperature readings, and voltage
-+        adjustments for performance boost mode. This driver reads both initial
-+        voltage and CPR target quotient values out of hardware fuses.
-+
- endif
---- a/drivers/regulator/Makefile
-+++ b/drivers/regulator/Makefile
-@@ -110,6 +110,9 @@ obj-$(CONFIG_REGULATOR_QCOM_RPMH) += qco
- obj-$(CONFIG_REGULATOR_QCOM_SMD_RPM) += qcom_smd-regulator.o
- obj-$(CONFIG_REGULATOR_QCOM_SPMI) += qcom_spmi-regulator.o
- obj-$(CONFIG_REGULATOR_QCOM_USB_VBUS) += qcom_usb_vbus-regulator.o
-+obj-$(CONFIG_REGULATOR_CPR3) += cpr3-regulator.o cpr3-util.o
-+obj-$(CONFIG_REGULATOR_CPR3_NPU) += cpr3-npu-regulator.o
-+obj-$(CONFIG_REGULATOR_CPR4_APSS) += cpr4-apss-regulator.o
- obj-$(CONFIG_REGULATOR_PALMAS) += palmas-regulator.o
- obj-$(CONFIG_REGULATOR_PCA9450) += pca9450-regulator.o
- obj-$(CONFIG_REGULATOR_PF8X00) += pf8x00-regulator.o
---- /dev/null
-+++ b/drivers/regulator/cpr3-npu-regulator.c
-@@ -0,0 +1,695 @@
-+/*
-+ * Copyright (c) 2017, The Linux Foundation. All rights reserved.
-+ *
-+ * Permission to use, copy, modify, and/or distribute this software for any
-+ * purpose with or without fee is hereby granted, provided that the above
-+ * copyright notice and this permission notice appear in all copies.
-+ *
-+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
-+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
-+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
-+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-+ */
-+
-+#include <linux/err.h>
-+#include <linux/platform_device.h>
-+#include <linux/module.h>
-+#include <linux/of.h>
-+#include <linux/of_device.h>
-+#include <linux/slab.h>
-+#include <linux/thermal.h>
-+
-+#include "cpr3-regulator.h"
-+
-+#define IPQ807x_NPU_FUSE_CORNERS              2
-+#define IPQ817x_NPU_FUSE_CORNERS              1
-+#define IPQ807x_NPU_FUSE_STEP_VOLT            8000
-+#define IPQ807x_NPU_VOLTAGE_FUSE_SIZE         6
-+#define IPQ807x_NPU_CPR_CLOCK_RATE            19200000
-+
-+#define IPQ807x_NPU_CPR_TCSR_START            6
-+#define IPQ807x_NPU_CPR_TCSR_END              7
-+
-+#define NPU_TSENS                             5
-+
-+u32 g_valid_npu_fuse_count = IPQ807x_NPU_FUSE_CORNERS;
-+/**
-+ * struct cpr3_ipq807x_npu_fuses - NPU specific fuse data for IPQ807x
-+ * @init_voltage:     Initial (i.e. open-loop) voltage fuse parameter value
-+ *                    for each fuse corner (raw, not converted to a voltage)
-+ * This struct holds the values for all of the fuses read from memory.
-+ */
-+struct cpr3_ipq807x_npu_fuses {
-+      u64     init_voltage[IPQ807x_NPU_FUSE_CORNERS];
-+};
-+
-+/*
-+ * Constants which define the name of each fuse corner.
-+ */
-+enum cpr3_ipq807x_npu_fuse_corner {
-+      CPR3_IPQ807x_NPU_FUSE_CORNER_NOM        = 0,
-+      CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO      = 1,
-+};
-+
-+static const char * const cpr3_ipq807x_npu_fuse_corner_name[] = {
-+      [CPR3_IPQ807x_NPU_FUSE_CORNER_NOM]      = "NOM",
-+      [CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO]    = "TURBO",
-+};
-+
-+/*
-+ * IPQ807x NPU fuse parameter locations:
-+ *
-+ * Structs are organized with the following dimensions:
-+ *    Outer: 0 to 1 for fuse corners from lowest to highest corner
-+ *    Inner: large enough to hold the longest set of parameter segments which
-+ *            fully defines a fuse parameter, +1 (for NULL termination).
-+ *            Each segment corresponds to a contiguous group of bits from a
-+ *            single fuse row.  These segments are concatentated together in
-+ *            order to form the full fuse parameter value.  The segments for
-+ *            a given parameter may correspond to different fuse rows.
-+ */
-+static struct cpr3_fuse_param
-+ipq807x_npu_init_voltage_param[IPQ807x_NPU_FUSE_CORNERS][2] = {
-+      {{73, 22, 27}, {} },
-+      {{73, 16, 21}, {} },
-+};
-+
-+/*
-+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
-+ */
-+static int
-+ipq807x_npu_fuse_ref_volt [IPQ807x_NPU_FUSE_CORNERS] = {
-+      912000,
-+      992000,
-+};
-+
-+/*
-+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ807x)
-+ */
-+#define IPQ9574_NPU_FUSE_CORNERS              2
-+#define IPQ9574_NPU_FUSE_STEP_VOLT            10000
-+#define IPQ9574_NPU_CPR_CLOCK_RATE            24000000
-+
-+/*
-+ * fues parameters for IPQ9574
-+ */
-+static struct cpr3_fuse_param
-+ipq9574_npu_init_voltage_param[IPQ9574_NPU_FUSE_CORNERS][2] = {
-+      {{105, 12, 17}, {} },
-+      {{105,  6, 11}, {} },
-+};
-+
-+/*
-+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
-+ */
-+static int
-+ipq9574_npu_fuse_ref_volt [IPQ9574_NPU_FUSE_CORNERS] = {
-+      862500,
-+      987500,
-+};
-+
-+struct cpr3_controller *g_ctrl;
-+
-+void cpr3_npu_temp_notify(int sensor, int temp, int low_notif)
-+{
-+      u32 prev_sensor_state;
-+
-+      if (sensor != NPU_TSENS)
-+              return;
-+
-+      prev_sensor_state = g_ctrl->cur_sensor_state;
-+      if (low_notif)
-+              g_ctrl->cur_sensor_state |= BIT(sensor);
-+      else
-+              g_ctrl->cur_sensor_state &= ~BIT(sensor);
-+
-+      if (!prev_sensor_state && g_ctrl->cur_sensor_state)
-+              cpr3_handle_temp_open_loop_adjustment(g_ctrl, true);
-+      else if (prev_sensor_state && !g_ctrl->cur_sensor_state)
-+              cpr3_handle_temp_open_loop_adjustment(g_ctrl, false);
-+}
-+
-+/**
-+ * cpr3_ipq807x_npu_read_fuse_data() - load NPU specific fuse parameter values
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function allocates a cpr3_ipq807x_npu_fuses struct, fills it with
-+ * values read out of hardware fuses, and finally copies common fuse values
-+ * into the CPR3 regulator struct.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_ipq807x_npu_read_fuse_data(struct cpr3_regulator *vreg)
-+{
-+      void __iomem *base = vreg->thread->ctrl->fuse_base;
-+      struct cpr3_ipq807x_npu_fuses *fuse;
-+      int i, rc;
-+
-+      fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
-+      if (!fuse)
-+              return -ENOMEM;
-+
-+      for (i = 0; i < g_valid_npu_fuse_count; i++) {
-+              rc = cpr3_read_fuse_param(base,
-+                                        vreg->cpr3_regulator_data->init_voltage_param[i],
-+                                        &fuse->init_voltage[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
-+                               i, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      vreg->fuse_corner_count = g_valid_npu_fuse_count;
-+      vreg->platform_fuses    = fuse;
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_npu_parse_corner_data() - parse NPU corner data from device tree
-+ *            properties of the CPR3 regulator's device node
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_npu_parse_corner_data(struct cpr3_regulator *vreg)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_common_corner_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_ipq807x_npu_calculate_open_loop_voltages() - calculate the open-loop
-+ *            voltage for each corner of a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @temp_correction:    Temperature based correction
-+ *
-+ * If open-loop voltage interpolation is allowed in device tree, then
-+ * this function calculates the open-loop voltage for a given corner using
-+ * linear interpolation.  This interpolation is performed using the processor
-+ * frequencies of the lower and higher Fmax corners along with their fused
-+ * open-loop voltages.
-+ *
-+ * If open-loop voltage interpolation is not allowed, then this function uses
-+ * the Fmax fused open-loop voltage for all of the corners associated with a
-+ * given fuse corner.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_ipq807x_npu_calculate_open_loop_voltages(
-+                      struct cpr3_regulator *vreg, bool temp_correction)
-+{
-+      struct cpr3_ipq807x_npu_fuses *fuse = vreg->platform_fuses;
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      int i, j, rc = 0;
-+      u64 freq_low, volt_low, freq_high, volt_high;
-+      int *fuse_volt;
-+      int *fmax_corner;
-+
-+      fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
-+                          GFP_KERNEL);
-+      fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
-+                            GFP_KERNEL);
-+      if (!fuse_volt || !fmax_corner) {
-+              rc = -ENOMEM;
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->fuse_corner_count; i++) {
-+              if (ctrl->cpr_global_setting == CPR_DISABLED)
-+                      fuse_volt[i] = vreg->cpr3_regulator_data->fuse_ref_volt[i];
-+              else
-+                      fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
-+                              vreg->cpr3_regulator_data->fuse_ref_volt[i],
-+                              vreg->cpr3_regulator_data->fuse_step_volt,
-+                              fuse->init_voltage[i],
-+                              IPQ807x_NPU_VOLTAGE_FUSE_SIZE);
-+
-+              /* Log fused open-loop voltage values for debugging purposes. */
-+              cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
-+                        cpr3_ipq807x_npu_fuse_corner_name[i],
-+                        fuse_volt[i]);
-+      }
-+
-+      rc = cpr3_determine_part_type(vreg,
-+                      fuse_volt[CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO]);
-+      if (rc) {
-+              cpr3_err(vreg,
-+                      "fused part type detection failed failed, rc=%d\n", rc);
-+              goto done;
-+      }
-+
-+      rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
-+      if (rc) {
-+              cpr3_err(vreg,
-+                      "fused open-loop voltage adjustment failed, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+      if (temp_correction) {
-+              rc = cpr3_determine_temp_base_open_loop_correction(vreg,
-+                                                              fuse_volt);
-+              if (rc) {
-+                      cpr3_err(vreg,
-+                              "temp open-loop voltage adj. failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              if (fuse_volt[i] < fuse_volt[i - 1]) {
-+                      cpr3_info(vreg,
-+                              "fuse corner %d voltage=%d uV < fuse corner %d \
-+                              voltage=%d uV; overriding: fuse corner %d \
-+                              voltage=%d\n",
-+                                i, fuse_volt[i], i - 1, fuse_volt[i - 1],
-+                                i, fuse_volt[i - 1]);
-+                      fuse_volt[i] = fuse_volt[i - 1];
-+              }
-+      }
-+
-+      /* Determine highest corner mapped to each fuse corner */
-+      j = vreg->fuse_corner_count - 1;
-+      for (i = vreg->corner_count - 1; i >= 0; i--) {
-+              if (vreg->corner[i].cpr_fuse_corner == j) {
-+                      fmax_corner[j] = i;
-+                      j--;
-+              }
-+      }
-+
-+      if (j >= 0) {
-+              cpr3_err(vreg, "invalid fuse corner mapping\n");
-+              rc = -EINVAL;
-+              goto done;
-+      }
-+
-+      /*
-+       * Interpolation is not possible for corners mapped to the lowest fuse
-+       * corner so use the fuse corner value directly.
-+       */
-+      for (i = 0; i <= fmax_corner[0]; i++)
-+              vreg->corner[i].open_loop_volt = fuse_volt[0];
-+
-+      /* Interpolate voltages for the higher fuse corners. */
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
-+              volt_low = fuse_volt[i - 1];
-+              freq_high = vreg->corner[fmax_corner[i]].proc_freq;
-+              volt_high = fuse_volt[i];
-+
-+              for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
-+                      vreg->corner[j].open_loop_volt = cpr3_interpolate(
-+                              freq_low, volt_low, freq_high, volt_high,
-+                              vreg->corner[j].proc_freq);
-+      }
-+
-+done:
-+      if (rc == 0) {
-+              cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
-+                                 vreg->corner[i].open_loop_volt);
-+
-+              rc = cpr3_adjust_open_loop_voltages(vreg);
-+              if (rc)
-+                      cpr3_err(vreg,
-+                              "open-loop voltage adjustment failed, rc=%d\n",
-+                               rc);
-+      }
-+
-+      kfree(fuse_volt);
-+      kfree(fmax_corner);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_npu_print_settings() - print out NPU CPR configuration settings into
-+ *            the kernel log for debugging purposes
-+ * @vreg:             Pointer to the CPR3 regulator
-+ */
-+static void cpr3_npu_print_settings(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_corner *corner;
-+      int i;
-+
-+      cpr3_debug(vreg,
-+              "Corner: Frequency (Hz), Fuse Corner, Floor (uV), \
-+              Open-Loop (uV), Ceiling (uV)\n");
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              corner = &vreg->corner[i];
-+              cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
-+                         i, corner->proc_freq, corner->cpr_fuse_corner,
-+                         corner->floor_volt, corner->open_loop_volt,
-+                         corner->ceiling_volt);
-+      }
-+
-+      if (vreg->thread->ctrl->apm)
-+              cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
-+                         vreg->thread->ctrl->apm_threshold_volt,
-+                         vreg->thread->ctrl->apm_adj_volt);
-+}
-+
-+/**
-+ * cpr3_ipq807x_npu_calc_temp_based_ol_voltages() - Calculate the open loop
-+ * voltages based on temperature based correction margins
-+ * @vreg:               Pointer to the CPR3 regulator
-+ */
-+
-+static int
-+cpr3_ipq807x_npu_calc_temp_based_ol_voltages(struct cpr3_regulator *vreg,
-+                                              bool temp_correction)
-+{
-+      int rc, i;
-+
-+      rc = cpr3_ipq807x_npu_calculate_open_loop_voltages(vreg,
-+                                                      temp_correction);
-+      if (rc) {
-+              cpr3_err(vreg,
-+                      "unable to calculate open-loop voltages, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_limit_open_loop_voltages(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      cpr3_open_loop_voltage_as_ceiling(vreg);
-+
-+      rc = cpr3_limit_floor_voltages(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              if (temp_correction)
-+                      vreg->corner[i].cold_temp_open_loop_volt =
-+                              vreg->corner[i].open_loop_volt;
-+              else
-+                      vreg->corner[i].normal_temp_open_loop_volt =
-+                              vreg->corner[i].open_loop_volt;
-+      }
-+
-+      cpr3_npu_print_settings(vreg);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_npu_init_thread() - perform steps necessary to initialize the
-+ *            configuration data for a CPR3 thread
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_npu_init_thread(struct cpr3_thread *thread)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_common_thread_data(thread);
-+      if (rc) {
-+              cpr3_err(thread->ctrl,
-+                      "thread %u CPR thread data from DT- failed, rc=%d\n",
-+                       thread->thread_id, rc);
-+              return rc;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_npu_init_regulator() - perform all steps necessary to initialize the
-+ *            configuration data for a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_npu_init_regulator(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_ipq807x_npu_fuses *fuse;
-+      int rc, cold_temp = 0;
-+      bool can_adj_cold_temp = cpr3_can_adjust_cold_temp(vreg);
-+
-+      rc = cpr3_ipq807x_npu_read_fuse_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      fuse = vreg->platform_fuses;
-+
-+      rc = cpr3_npu_parse_corner_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg,
-+                      "Cannot read CPR corner data from DT, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_mem_acc_init(vreg);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(vreg,
-+                      "Cannot initialize mem-acc regulator settings, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      if (can_adj_cold_temp) {
-+              rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, true);
-+              if (rc) {
-+                      cpr3_err(vreg,
-+                      "unable to calculate open-loop voltages, rc=%d\n", rc);
-+                      return rc;
-+              }
-+      }
-+
-+      rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, false);
-+      if (rc) {
-+              cpr3_err(vreg,
-+                      "unable to calculate open-loop voltages, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      if (can_adj_cold_temp) {
-+              cpr3_info(vreg,
-+              "Normal and Cold condition init done. Default to normal.\n");
-+
-+              rc = cpr3_get_cold_temp_threshold(vreg, &cold_temp);
-+              if (rc) {
-+                      cpr3_err(vreg,
-+                      "Get cold temperature threshold failed, rc=%d\n", rc);
-+                      return rc;
-+              }
-+              register_low_temp_notif(NPU_TSENS, cold_temp,
-+                                                      cpr3_npu_temp_notify);
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_npu_init_controller() - perform NPU CPR3 controller specific
-+ *            initializations
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_npu_init_controller(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_open_loop_common_ctrl_data(ctrl);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
-+                               rc);
-+              return rc;
-+      }
-+
-+      ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
-+      ctrl->supports_hw_closed_loop = false;
-+
-+      return 0;
-+}
-+
-+static const struct cpr3_reg_data ipq807x_cpr_npu = {
-+      .cpr_valid_fuse_count = IPQ807x_NPU_FUSE_CORNERS,
-+      .init_voltage_param = ipq807x_npu_init_voltage_param,
-+      .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
-+      .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
-+};
-+
-+static const struct cpr3_reg_data ipq817x_cpr_npu = {
-+      .cpr_valid_fuse_count = IPQ817x_NPU_FUSE_CORNERS,
-+      .init_voltage_param = ipq807x_npu_init_voltage_param,
-+      .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
-+      .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
-+};
-+
-+static const struct cpr3_reg_data ipq9574_cpr_npu = {
-+      .cpr_valid_fuse_count = IPQ9574_NPU_FUSE_CORNERS,
-+      .init_voltage_param = ipq9574_npu_init_voltage_param,
-+      .fuse_ref_volt = ipq9574_npu_fuse_ref_volt,
-+      .fuse_step_volt = IPQ9574_NPU_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ9574_NPU_CPR_CLOCK_RATE,
-+};
-+
-+static struct of_device_id cpr3_regulator_match_table[] = {
-+      {
-+              .compatible = "qcom,cpr3-ipq807x-npu-regulator",
-+              .data = &ipq807x_cpr_npu
-+      },
-+      {
-+              .compatible = "qcom,cpr3-ipq817x-npu-regulator",
-+              .data = &ipq817x_cpr_npu
-+      },
-+      {
-+              .compatible = "qcom,cpr3-ipq9574-npu-regulator",
-+              .data = &ipq9574_cpr_npu
-+      },
-+      {}
-+};
-+
-+static int cpr3_npu_regulator_probe(struct platform_device *pdev)
-+{
-+      struct device *dev = &pdev->dev;
-+      struct cpr3_controller *ctrl;
-+      int i, rc;
-+      const struct of_device_id *match;
-+      struct cpr3_reg_data *cpr_data;
-+
-+      if (!dev->of_node) {
-+              dev_err(dev, "Device tree node is missing\n");
-+              return -EINVAL;
-+      }
-+
-+      ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
-+      if (!ctrl)
-+              return -ENOMEM;
-+      g_ctrl = ctrl;
-+
-+      match = of_match_device(cpr3_regulator_match_table, &pdev->dev);
-+      if (!match)
-+              return -ENODEV;
-+
-+      cpr_data = (struct cpr3_reg_data *)match->data;
-+      g_valid_npu_fuse_count = cpr_data->cpr_valid_fuse_count;
-+      dev_info(dev, "NPU CPR valid fuse count: %d\n", g_valid_npu_fuse_count);
-+      ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
-+
-+      ctrl->dev = dev;
-+      /* Set to false later if anything precludes CPR operation. */
-+      ctrl->cpr_allowed_hw = true;
-+
-+      rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
-+                                   &ctrl->name);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_map_fuse_base(ctrl, pdev);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not map fuse base address\n");
-+              return rc;
-+      }
-+
-+      rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_NPU_CPR_TCSR_START,
-+                                  IPQ807x_NPU_CPR_TCSR_END);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not read CPR tcsr rsetting\n");
-+              return rc;
-+      }
-+
-+      rc = cpr3_allocate_threads(ctrl, 0, 0);
-+      if (rc) {
-+              cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      if (ctrl->thread_count != 1) {
-+              cpr3_err(ctrl, "expected 1 thread but found %d\n",
-+                       ctrl->thread_count);
-+              return -EINVAL;
-+      }
-+
-+      rc = cpr3_npu_init_controller(ctrl);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
-+                               rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_npu_init_thread(&ctrl->thread[0]);
-+      if (rc) {
-+              cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
-+              ctrl->thread[0].vreg[i].cpr3_regulator_data = cpr_data;
-+              rc = cpr3_npu_init_regulator(&ctrl->thread[0].vreg[i]);
-+              if (rc) {
-+                      cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
-+                               rc);
-+                      return rc;
-+              }
-+      }
-+
-+      platform_set_drvdata(pdev, ctrl);
-+
-+      return cpr3_open_loop_regulator_register(pdev, ctrl);
-+}
-+
-+static int cpr3_npu_regulator_remove(struct platform_device *pdev)
-+{
-+      struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
-+
-+      return cpr3_open_loop_regulator_unregister(ctrl);
-+}
-+
-+static struct platform_driver cpr3_npu_regulator_driver = {
-+      .driver         = {
-+              .name           = "qcom,cpr3-npu-regulator",
-+              .of_match_table = cpr3_regulator_match_table,
-+              .owner          = THIS_MODULE,
-+      },
-+      .probe          = cpr3_npu_regulator_probe,
-+      .remove         = cpr3_npu_regulator_remove,
-+};
-+
-+static int cpr3_regulator_init(void)
-+{
-+      return platform_driver_register(&cpr3_npu_regulator_driver);
-+}
-+arch_initcall(cpr3_regulator_init);
-+
-+static void cpr3_regulator_exit(void)
-+{
-+      platform_driver_unregister(&cpr3_npu_regulator_driver);
-+}
-+module_exit(cpr3_regulator_exit);
-+
-+MODULE_DESCRIPTION("QCOM CPR3 NPU regulator driver");
-+MODULE_LICENSE("Dual BSD/GPLv2");
-+MODULE_ALIAS("platform:npu-ipq807x");
---- /dev/null
-+++ b/drivers/regulator/cpr3-regulator.c
-@@ -0,0 +1,5111 @@
-+/*
-+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 and
-+ * only version 2 as published by the Free Software Foundation.
-+ *
-+ * This program is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-+ * GNU General Public License for more details.
-+ */
-+
-+#define pr_fmt(fmt) "%s: " fmt, __func__
-+
-+#include <linux/bitops.h>
-+#include <linux/debugfs.h>
-+#include <linux/delay.h>
-+#include <linux/err.h>
-+#include <linux/init.h>
-+#include <linux/interrupt.h>
-+#include <linux/io.h>
-+#include <linux/kernel.h>
-+#include <linux/ktime.h>
-+#include <linux/list.h>
-+#include <linux/module.h>
-+#include <linux/of.h>
-+#include <linux/of_device.h>
-+#include <linux/platform_device.h>
-+#include <linux/pm_opp.h>
-+#include <linux/slab.h>
-+#include <linux/sort.h>
-+#include <linux/string.h>
-+#include <linux/uaccess.h>
-+#include <linux/regulator/driver.h>
-+#include <linux/regulator/machine.h>
-+#include <linux/regulator/of_regulator.h>
-+#include <linux/panic_notifier.h>
-+
-+#include "cpr3-regulator.h"
-+
-+#define CPR3_REGULATOR_CORNER_INVALID (-1)
-+#define CPR3_RO_MASK                  GENMASK(CPR3_RO_COUNT - 1, 0)
-+
-+/* CPR3 registers */
-+#define CPR3_REG_CPR_CTL                      0x4
-+#define CPR3_CPR_CTL_LOOP_EN_MASK             BIT(0)
-+#define CPR3_CPR_CTL_LOOP_ENABLE              BIT(0)
-+#define CPR3_CPR_CTL_LOOP_DISABLE             0
-+#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK         GENMASK(5, 1)
-+#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT                1
-+#define CPR3_CPR_CTL_COUNT_MODE_MASK          GENMASK(7, 6)
-+#define CPR3_CPR_CTL_COUNT_MODE_SHIFT         6
-+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN       0
-+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX       1
-+#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED     2
-+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE       3
-+#define CPR3_CPR_CTL_COUNT_REPEAT_MASK                GENMASK(31, 9)
-+#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT               9
-+
-+#define CPR3_REG_CPR_STATUS                   0x8
-+#define CPR3_CPR_STATUS_BUSY_MASK             BIT(0)
-+#define CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK        BIT(1)
-+
-+/*
-+ * This register is not present on controllers that support HW closed-loop
-+ * except CPR4 APSS controller.
-+ */
-+#define CPR3_REG_CPR_TIMER_AUTO_CONT          0xC
-+
-+#define CPR3_REG_CPR_STEP_QUOT                        0x14
-+#define CPR3_CPR_STEP_QUOT_MIN_MASK           GENMASK(5, 0)
-+#define CPR3_CPR_STEP_QUOT_MIN_SHIFT          0
-+#define CPR3_CPR_STEP_QUOT_MAX_MASK           GENMASK(11, 6)
-+#define CPR3_CPR_STEP_QUOT_MAX_SHIFT          6
-+
-+#define CPR3_REG_GCNT(ro)                     (0xA0 + 0x4 * (ro))
-+
-+#define CPR3_REG_SENSOR_BYPASS_WRITE(sensor)  (0xE0 + 0x4 * ((sensor) / 32))
-+#define CPR3_REG_SENSOR_BYPASS_WRITE_BANK(bank)       (0xE0 + 0x4 * (bank))
-+
-+#define CPR3_REG_SENSOR_MASK_WRITE(sensor)    (0x120 + 0x4 * ((sensor) / 32))
-+#define CPR3_REG_SENSOR_MASK_WRITE_BANK(bank) (0x120 + 0x4 * (bank))
-+#define CPR3_REG_SENSOR_MASK_READ(sensor)     (0x140 + 0x4 * ((sensor) / 32))
-+
-+#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor))
-+
-+#define CPR3_REG_CONT_CMD             0x800
-+#define CPR3_CONT_CMD_ACK             0x1
-+#define CPR3_CONT_CMD_NACK            0x0
-+
-+#define CPR3_REG_THRESH(thread)               (0x808 + 0x440 * (thread))
-+#define CPR3_THRESH_CONS_DOWN_MASK    GENMASK(3, 0)
-+#define CPR3_THRESH_CONS_DOWN_SHIFT   0
-+#define CPR3_THRESH_CONS_UP_MASK      GENMASK(7, 4)
-+#define CPR3_THRESH_CONS_UP_SHIFT     4
-+#define CPR3_THRESH_DOWN_THRESH_MASK  GENMASK(12, 8)
-+#define CPR3_THRESH_DOWN_THRESH_SHIFT 8
-+#define CPR3_THRESH_UP_THRESH_MASK    GENMASK(17, 13)
-+#define CPR3_THRESH_UP_THRESH_SHIFT   13
-+
-+#define CPR3_REG_RO_MASK(thread)      (0x80C + 0x440 * (thread))
-+
-+#define CPR3_REG_RESULT0(thread)      (0x810 + 0x440 * (thread))
-+#define CPR3_RESULT0_BUSY_MASK                BIT(0)
-+#define CPR3_RESULT0_STEP_DN_MASK     BIT(1)
-+#define CPR3_RESULT0_STEP_UP_MASK     BIT(2)
-+#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3)
-+#define CPR3_RESULT0_ERROR_STEPS_SHIFT        3
-+#define CPR3_RESULT0_ERROR_MASK               GENMASK(19, 8)
-+#define CPR3_RESULT0_ERROR_SHIFT      8
-+#define CPR3_RESULT0_NEGATIVE_MASK    BIT(20)
-+
-+#define CPR3_REG_RESULT1(thread)      (0x814 + 0x440 * (thread))
-+#define CPR3_RESULT1_QUOT_MIN_MASK    GENMASK(11, 0)
-+#define CPR3_RESULT1_QUOT_MIN_SHIFT   0
-+#define CPR3_RESULT1_QUOT_MAX_MASK    GENMASK(23, 12)
-+#define CPR3_RESULT1_QUOT_MAX_SHIFT   12
-+#define CPR3_RESULT1_RO_MIN_MASK      GENMASK(27, 24)
-+#define CPR3_RESULT1_RO_MIN_SHIFT     24
-+#define CPR3_RESULT1_RO_MAX_MASK      GENMASK(31, 28)
-+#define CPR3_RESULT1_RO_MAX_SHIFT     28
-+
-+#define CPR3_REG_RESULT2(thread)              (0x818 + 0x440 * (thread))
-+#define CPR3_RESULT2_STEP_QUOT_MIN_MASK               GENMASK(5, 0)
-+#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT      0
-+#define CPR3_RESULT2_STEP_QUOT_MAX_MASK               GENMASK(11, 6)
-+#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT      6
-+#define CPR3_RESULT2_SENSOR_MIN_MASK          GENMASK(23, 16)
-+#define CPR3_RESULT2_SENSOR_MIN_SHIFT         16
-+#define CPR3_RESULT2_SENSOR_MAX_MASK          GENMASK(31, 24)
-+#define CPR3_RESULT2_SENSOR_MAX_SHIFT         24
-+
-+#define CPR3_REG_IRQ_EN                       0x81C
-+#define CPR3_REG_IRQ_CLEAR            0x820
-+#define CPR3_REG_IRQ_STATUS           0x824
-+#define CPR3_IRQ_UP                   BIT(3)
-+#define CPR3_IRQ_MID                  BIT(2)
-+#define CPR3_IRQ_DOWN                 BIT(1)
-+
-+#define CPR3_REG_TARGET_QUOT(thread, ro) \
-+                                      (0x840 + 0x440 * (thread) + 0x4 * (ro))
-+
-+/* Registers found only on controllers that support HW closed-loop. */
-+#define CPR3_REG_PD_THROTTLE          0xE8
-+#define CPR3_PD_THROTTLE_DISABLE      0x0
-+
-+#define CPR3_REG_HW_CLOSED_LOOP               0x3000
-+#define CPR3_HW_CLOSED_LOOP_ENABLE    0x0
-+#define CPR3_HW_CLOSED_LOOP_DISABLE   0x1
-+
-+#define CPR3_REG_CPR_TIMER_MID_CONT   0x3004
-+#define CPR3_REG_CPR_TIMER_UP_DN_CONT 0x3008
-+
-+#define CPR3_REG_LAST_MEASUREMENT             0x7F8
-+#define CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT 0
-+#define CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT 4
-+#define CPR3_LAST_MEASUREMENT_THREAD_DN(thread) \
-+              (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT)
-+#define CPR3_LAST_MEASUREMENT_THREAD_UP(thread) \
-+              (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT)
-+#define CPR3_LAST_MEASUREMENT_AGGR_DN         BIT(8)
-+#define CPR3_LAST_MEASUREMENT_AGGR_MID                BIT(9)
-+#define CPR3_LAST_MEASUREMENT_AGGR_UP         BIT(10)
-+#define CPR3_LAST_MEASUREMENT_VALID           BIT(11)
-+#define CPR3_LAST_MEASUREMENT_SAW_ERROR               BIT(12)
-+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK  GENMASK(23, 16)
-+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT 16
-+
-+/* CPR4 controller specific registers and bit definitions */
-+#define CPR4_REG_CPR_TIMER_CLAMP                      0x10
-+#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN    BIT(27)
-+
-+#define CPR4_REG_MISC                         0x700
-+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK        GENMASK(23, 20)
-+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT       20
-+#define CPR4_MISC_TEMP_SENSOR_ID_START_MASK   GENMASK(27, 24)
-+#define CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT  24
-+#define CPR4_MISC_TEMP_SENSOR_ID_END_MASK     GENMASK(31, 28)
-+#define CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT    28
-+
-+#define CPR4_REG_SAW_ERROR_STEP_LIMIT         0x7A4
-+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK     GENMASK(4, 0)
-+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT    0
-+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK     GENMASK(9, 5)
-+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT    5
-+
-+#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS                      0x7A8
-+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK        GENMASK(28, 18)
-+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT       18
-+
-+#define CPR4_REG_MARGIN_TEMP_CORE(core)               (0x7AC + 0x4 * (core))
-+#define CPR4_MARGIN_TEMP_CORE_ADJ_MASK                GENMASK(7, 0)
-+#define CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT               8
-+
-+#define CPR4_REG_MARGIN_TEMP_POINT0N1         0x7F0
-+#define CPR4_MARGIN_TEMP_POINT0_MASK          GENMASK(11, 0)
-+#define CPR4_MARGIN_TEMP_POINT0_SHIFT         0
-+#define CPR4_MARGIN_TEMP_POINT1_MASK          GENMASK(23, 12)
-+#define CPR4_MARGIN_TEMP_POINT1_SHIFT         12
-+#define CPR4_REG_MARGIN_TEMP_POINT2           0x7F4
-+#define CPR4_MARGIN_TEMP_POINT2_MASK          GENMASK(11, 0)
-+#define CPR4_MARGIN_TEMP_POINT2_SHIFT         0
-+
-+#define CPR4_REG_MARGIN_ADJ_CTL                                       0x7F8
-+#define CPR4_MARGIN_ADJ_CTL_BOOST_EN                          BIT(0)
-+#define CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN                               BIT(1)
-+#define CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN                               BIT(2)
-+#define CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN           BIT(3)
-+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK            BIT(4)
-+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE             BIT(4)
-+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE            0
-+#define CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN                       BIT(7)
-+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN                  BIT(8)
-+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK                       GENMASK(16, 12)
-+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT              12
-+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK            GENMASK(21, 19)
-+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT           19
-+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK                        GENMASK(25, 22)
-+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT                       22
-+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK      GENMASK(31, 26)
-+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT     26
-+
-+#define CPR4_REG_CPR_MASK_THREAD(thread)      (0x80C + 0x440 * (thread))
-+#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD           BIT(31)
-+#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK      GENMASK(15, 0)
-+
-+/*
-+ * The amount of time to wait for the CPR controller to become idle when
-+ * performing an aging measurement.
-+ */
-+#define CPR3_AGING_MEASUREMENT_TIMEOUT_NS     5000000
-+
-+/*
-+ * The number of individual aging measurements to perform which are then
-+ * averaged together in order to determine the final aging adjustment value.
-+ */
-+#define CPR3_AGING_MEASUREMENT_ITERATIONS     16
-+
-+/*
-+ * Aging measurements for the aged and unaged ring oscillators take place a few
-+ * microseconds apart.  If the vdd-supply voltage fluctuates between the two
-+ * measurements, then the difference between them will be incorrect.  The
-+ * difference could end up too high or too low.  This constant defines the
-+ * number of lowest and highest measurements to ignore when averaging.
-+ */
-+#define CPR3_AGING_MEASUREMENT_FILTER         3
-+
-+/*
-+ * The number of times to attempt the full aging measurement sequence before
-+ * declaring a measurement failure.
-+ */
-+#define CPR3_AGING_RETRY_COUNT                        5
-+
-+/*
-+ * The maximum time to wait in microseconds for a CPR register write to
-+ * complete.
-+ */
-+#define CPR3_REGISTER_WRITE_DELAY_US          200
-+
-+static DEFINE_MUTEX(cpr3_controller_list_mutex);
-+static LIST_HEAD(cpr3_controller_list);
-+static struct dentry *cpr3_debugfs_base;
-+
-+/**
-+ * cpr3_read() - read four bytes from the memory address specified
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @offset:           Offset in bytes from the CPR3 controller's base address
-+ *
-+ * Return: memory address value
-+ */
-+static inline u32 cpr3_read(struct cpr3_controller *ctrl, u32 offset)
-+{
-+      if (!ctrl->cpr_enabled) {
-+              cpr3_err(ctrl, "CPR register reads are not possible when CPR clocks are disabled\n");
-+              return 0;
-+      }
-+
-+      return readl_relaxed(ctrl->cpr_ctrl_base + offset);
-+}
-+
-+/**
-+ * cpr3_write() - write four bytes to the memory address specified
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @offset:           Offset in bytes from the CPR3 controller's base address
-+ * @value:            Value to write to the memory address
-+ *
-+ * Return: none
-+ */
-+static inline void cpr3_write(struct cpr3_controller *ctrl, u32 offset,
-+                              u32 value)
-+{
-+      if (!ctrl->cpr_enabled) {
-+              cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
-+              return;
-+      }
-+
-+      writel_relaxed(value, ctrl->cpr_ctrl_base + offset);
-+}
-+
-+/**
-+ * cpr3_masked_write() - perform a read-modify-write sequence so that only
-+ *            masked bits are modified
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @offset:           Offset in bytes from the CPR3 controller's base address
-+ * @mask:             Mask identifying the bits that should be modified
-+ * @value:            Value to write to the memory address
-+ *
-+ * Return: none
-+ */
-+static inline void cpr3_masked_write(struct cpr3_controller *ctrl, u32 offset,
-+                              u32 mask, u32 value)
-+{
-+      u32 reg_val, orig_val;
-+
-+      if (!ctrl->cpr_enabled) {
-+              cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
-+              return;
-+      }
-+
-+      reg_val = orig_val = readl_relaxed(ctrl->cpr_ctrl_base + offset);
-+      reg_val &= ~mask;
-+      reg_val |= value & mask;
-+
-+      if (reg_val != orig_val)
-+              writel_relaxed(reg_val, ctrl->cpr_ctrl_base + offset);
-+}
-+
-+/**
-+ * cpr3_ctrl_loop_enable() - enable the CPR sensing loop for a given controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: none
-+ */
-+static inline void cpr3_ctrl_loop_enable(struct cpr3_controller *ctrl)
-+{
-+      if (ctrl->cpr_enabled && !(ctrl->aggr_corner.sdelta
-+              && ctrl->aggr_corner.sdelta->allow_boost))
-+              cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
-+                      CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_ENABLE);
-+}
-+
-+/**
-+ * cpr3_ctrl_loop_disable() - disable the CPR sensing loop for a given
-+ *            controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: none
-+ */
-+static inline void cpr3_ctrl_loop_disable(struct cpr3_controller *ctrl)
-+{
-+      if (ctrl->cpr_enabled)
-+              cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
-+                      CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_DISABLE);
-+}
-+
-+/**
-+ * cpr3_clock_enable() - prepare and enable all clocks used by this CPR3
-+ *            controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_clock_enable(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = clk_prepare_enable(ctrl->bus_clk);
-+      if (rc) {
-+              cpr3_err(ctrl, "failed to enable bus clock, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      rc = clk_prepare_enable(ctrl->iface_clk);
-+      if (rc) {
-+              cpr3_err(ctrl, "failed to enable interface clock, rc=%d\n", rc);
-+              clk_disable_unprepare(ctrl->bus_clk);
-+              return rc;
-+      }
-+
-+      rc = clk_prepare_enable(ctrl->core_clk);
-+      if (rc) {
-+              cpr3_err(ctrl, "failed to enable core clock, rc=%d\n", rc);
-+              clk_disable_unprepare(ctrl->iface_clk);
-+              clk_disable_unprepare(ctrl->bus_clk);
-+              return rc;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_clock_disable() - disable and unprepare all clocks used by this CPR3
-+ *            controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: none
-+ */
-+static void cpr3_clock_disable(struct cpr3_controller *ctrl)
-+{
-+      clk_disable_unprepare(ctrl->core_clk);
-+      clk_disable_unprepare(ctrl->iface_clk);
-+      clk_disable_unprepare(ctrl->bus_clk);
-+}
-+
-+/**
-+ * cpr3_ctrl_clear_cpr4_config() - clear the CPR4 register configuration
-+ *            programmed for current aggregated corner of a given controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static inline int cpr3_ctrl_clear_cpr4_config(struct cpr3_controller *ctrl)
-+{
-+      struct cpr4_sdelta *aggr_sdelta = ctrl->aggr_corner.sdelta;
-+      bool cpr_enabled = ctrl->cpr_enabled;
-+      int i, rc = 0;
-+
-+      if (!aggr_sdelta || !(aggr_sdelta->allow_core_count_adj
-+              || aggr_sdelta->allow_temp_adj || aggr_sdelta->allow_boost))
-+              /* cpr4 features are not enabled */
-+              return 0;
-+
-+      /* Ensure that CPR clocks are enabled before writing to registers. */
-+      if (!cpr_enabled) {
-+              rc = cpr3_clock_enable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
-+                      return rc;
-+              }
-+              ctrl->cpr_enabled = true;
-+      }
-+
-+      /*
-+       * Clear feature enable configuration made for current
-+       * aggregated corner.
-+       */
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+              CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
-+              | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_BOOST_EN
-+              | CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK, 0);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MISC,
-+                      CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
-+                      0 << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
-+
-+      for (i = 0; i <= aggr_sdelta->max_core_count; i++) {
-+              /* Clear voltage margin adjustments programmed in TEMP_COREi */
-+              cpr3_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE(i), 0);
-+      }
-+
-+      /* Turn off CPR clocks if they were off before this function call. */
-+      if (!cpr_enabled) {
-+              cpr3_clock_disable(ctrl);
-+              ctrl->cpr_enabled = false;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_closed_loop_enable() - enable logical CPR closed-loop operation
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_closed_loop_enable(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      if (!ctrl->cpr_allowed_hw || !ctrl->cpr_allowed_sw) {
-+              cpr3_err(ctrl, "cannot enable closed-loop CPR operation because it is disallowed\n");
-+              return -EPERM;
-+      } else if (ctrl->cpr_enabled) {
-+              /* Already enabled */
-+              return 0;
-+      } else if (ctrl->cpr_suspended) {
-+              /*
-+               * CPR must remain disabled as the system is entering suspend.
-+               */
-+              return 0;
-+      }
-+
-+      rc = cpr3_clock_enable(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to enable CPR clocks, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      ctrl->cpr_enabled = true;
-+      cpr3_debug(ctrl, "CPR closed-loop operation enabled\n");
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_closed_loop_disable() - disable logical CPR closed-loop operation
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static inline int cpr3_closed_loop_disable(struct cpr3_controller *ctrl)
-+{
-+      if (!ctrl->cpr_enabled) {
-+              /* Already disabled */
-+              return 0;
-+      }
-+
-+      cpr3_clock_disable(ctrl);
-+      ctrl->cpr_enabled = false;
-+      cpr3_debug(ctrl, "CPR closed-loop operation disabled\n");
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_get_gcnt() - returns the GCNT register value corresponding
-+ *            to the clock rate and sensor time of the CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: GCNT value
-+ */
-+static u32 cpr3_regulator_get_gcnt(struct cpr3_controller *ctrl)
-+{
-+      u64 temp;
-+      unsigned int remainder;
-+      u32 gcnt;
-+
-+      temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->sensor_time;
-+      remainder = do_div(temp, 1000000000);
-+      if (remainder)
-+              temp++;
-+      /*
-+       * GCNT == 0 corresponds to a single ref clock measurement interval so
-+       * offset GCNT values by 1.
-+       */
-+      gcnt = temp - 1;
-+
-+      return gcnt;
-+}
-+
-+/**
-+ * cpr3_regulator_init_thread() - performs hardware initialization of CPR
-+ *            thread registers
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * CPR interface/bus clocks must be enabled before calling this function.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_init_thread(struct cpr3_thread *thread)
-+{
-+      u32 reg;
-+
-+      reg = (thread->consecutive_up << CPR3_THRESH_CONS_UP_SHIFT)
-+              & CPR3_THRESH_CONS_UP_MASK;
-+      reg |= (thread->consecutive_down << CPR3_THRESH_CONS_DOWN_SHIFT)
-+              & CPR3_THRESH_CONS_DOWN_MASK;
-+      reg |= (thread->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT)
-+              & CPR3_THRESH_UP_THRESH_MASK;
-+      reg |= (thread->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT)
-+              & CPR3_THRESH_DOWN_THRESH_MASK;
-+
-+      cpr3_write(thread->ctrl, CPR3_REG_THRESH(thread->thread_id), reg);
-+
-+      /*
-+       * Mask all RO's initially so that unused thread doesn't contribute
-+       * to closed-loop voltage.
-+       */
-+      cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
-+              CPR3_RO_MASK);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr4_regulator_init_temp_points() - performs hardware initialization of CPR4
-+ *            registers to track tsen temperature data and also specify the
-+ *            temperature band range values to apply different voltage margins
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * CPR interface/bus clocks must be enabled before calling this function.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_regulator_init_temp_points(struct cpr3_controller *ctrl)
-+{
-+      if (!ctrl->allow_temp_adj)
-+              return 0;
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MISC,
-+                              CPR4_MISC_TEMP_SENSOR_ID_START_MASK,
-+                              ctrl->temp_sensor_id_start
-+                              << CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MISC,
-+                              CPR4_MISC_TEMP_SENSOR_ID_END_MASK,
-+                              ctrl->temp_sensor_id_end
-+                              << CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT2,
-+              CPR4_MARGIN_TEMP_POINT2_MASK,
-+              (ctrl->temp_band_count == 4 ? ctrl->temp_points[2] : 0x7FF)
-+              << CPR4_MARGIN_TEMP_POINT2_SHIFT);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
-+              CPR4_MARGIN_TEMP_POINT1_MASK,
-+              (ctrl->temp_band_count >= 3 ? ctrl->temp_points[1] : 0x7FF)
-+              << CPR4_MARGIN_TEMP_POINT1_SHIFT);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
-+              CPR4_MARGIN_TEMP_POINT0_MASK,
-+              (ctrl->temp_band_count >= 2 ? ctrl->temp_points[0] : 0x7FF)
-+              << CPR4_MARGIN_TEMP_POINT0_SHIFT);
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_init_cpr4() - performs hardware initialization at the
-+ *            controller and thread level required for CPR4 operation.
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * CPR interface/bus clocks must be enabled before calling this function.
-+ * This function allocates sdelta structures and sdelta tables for aggregated
-+ * corners of the controller and its threads.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_init_cpr4(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_thread *thread;
-+      struct cpr3_regulator *vreg;
-+      struct cpr4_sdelta *sdelta;
-+      int i, j, ctrl_max_core_count, thread_max_core_count, rc = 0;
-+      bool ctrl_valid_sdelta, thread_valid_sdelta;
-+      u32 pmic_step_size = 1;
-+      int thread_id = 0;
-+      u64 temp;
-+
-+      if (ctrl->supports_hw_closed_loop) {
-+              if (ctrl->saw_use_unit_mV)
-+                      pmic_step_size = ctrl->step_volt / 1000;
-+              cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                                CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
-+                                (pmic_step_size
-+                                << CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
-+
-+              cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
-+                                CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
-+                                (ctrl->down_error_step_limit
-+                                      << CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
-+
-+              cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
-+                                CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
-+                                (ctrl->up_error_step_limit
-+                                      << CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
-+
-+              /*
-+               * Enable thread aggregation regardless of which threads are
-+               * enabled or disabled.
-+               */
-+              cpr3_masked_write(ctrl, CPR4_REG_CPR_TIMER_CLAMP,
-+                                CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
-+                                CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
-+
-+              switch (ctrl->thread_count) {
-+              case 0:
-+                      /* Disable both threads */
-+                      cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(0),
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
-+
-+                      cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(1),
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
-+                      break;
-+              case 1:
-+                      /* Disable unused thread */
-+                      thread_id = ctrl->thread[0].thread_id ? 0 : 1;
-+                      cpr3_masked_write(ctrl,
-+                              CPR4_REG_CPR_MASK_THREAD(thread_id),
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
-+                              CPR4_CPR_MASK_THREAD_DISABLE_THREAD
-+                                  | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
-+                      break;
-+              }
-+      }
-+
-+      if (!ctrl->allow_core_count_adj && !ctrl->allow_temp_adj
-+              && !ctrl->allow_boost) {
-+              /*
-+               * Skip below configuration as none of the features
-+               * are enabled.
-+               */
-+              return rc;
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop)
-+              cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                                CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN,
-+                                CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                      CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
-+                      ctrl->step_quot_fixed
-+                      << CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                      CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
-+                      (ctrl->use_dynamic_step_quot
-+                      ? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                      CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK,
-+                      ctrl->initial_temp_band
-+                      << CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT);
-+
-+      rc = cpr4_regulator_init_temp_points(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "initialize temp points failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      if (ctrl->voltage_settling_time) {
-+              /*
-+               * Configure the settling timer used to account for
-+               * one VDD supply step.
-+               */
-+              temp = (u64)ctrl->cpr_clock_rate
-+                              * (u64)ctrl->voltage_settling_time;
-+              do_div(temp, 1000000000);
-+              cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
-+                      CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
-+                      temp
-+                  << CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
-+      }
-+
-+      /*
-+       * Allocate memory for cpr4_sdelta structure and sdelta table for
-+       * controller aggregated corner by finding the maximum core count
-+       * used by any cpr3 regulators.
-+       */
-+      ctrl_max_core_count = 1;
-+      ctrl_valid_sdelta = false;
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              thread = &ctrl->thread[i];
-+
-+              /*
-+               * Allocate memory for cpr4_sdelta structure and sdelta table
-+               * for thread aggregated corner by finding the maximum core
-+               * count used by any cpr3 regulators of the thread.
-+               */
-+              thread_max_core_count = 1;
-+              thread_valid_sdelta = false;
-+              for (j = 0; j < thread->vreg_count; j++) {
-+                      vreg = &thread->vreg[j];
-+                      thread_max_core_count = max(thread_max_core_count,
-+                                                      vreg->max_core_count);
-+                      thread_valid_sdelta |= (vreg->allow_core_count_adj
-+                                                      | vreg->allow_temp_adj
-+                                                      | vreg->allow_boost);
-+              }
-+              if (thread_valid_sdelta) {
-+                      sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta),
-+                                      GFP_KERNEL);
-+                      if (!sdelta)
-+                              return -ENOMEM;
-+
-+                      sdelta->table = devm_kcalloc(ctrl->dev,
-+                                              thread_max_core_count
-+                                              * ctrl->temp_band_count,
-+                                              sizeof(*sdelta->table),
-+                                              GFP_KERNEL);
-+                      if (!sdelta->table)
-+                              return -ENOMEM;
-+
-+                      sdelta->boost_table = devm_kcalloc(ctrl->dev,
-+                                              ctrl->temp_band_count,
-+                                              sizeof(*sdelta->boost_table),
-+                                              GFP_KERNEL);
-+                      if (!sdelta->boost_table)
-+                              return -ENOMEM;
-+
-+                      thread->aggr_corner.sdelta = sdelta;
-+              }
-+
-+              ctrl_valid_sdelta |= thread_valid_sdelta;
-+              ctrl_max_core_count = max(ctrl_max_core_count,
-+                                              thread_max_core_count);
-+      }
-+
-+      if (ctrl_valid_sdelta) {
-+              sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta), GFP_KERNEL);
-+              if (!sdelta)
-+                      return -ENOMEM;
-+
-+              sdelta->table = devm_kcalloc(ctrl->dev, ctrl_max_core_count
-+                                      * ctrl->temp_band_count,
-+                                      sizeof(*sdelta->table), GFP_KERNEL);
-+              if (!sdelta->table)
-+                      return -ENOMEM;
-+
-+              sdelta->boost_table = devm_kcalloc(ctrl->dev,
-+                                      ctrl->temp_band_count,
-+                                      sizeof(*sdelta->boost_table),
-+                                      GFP_KERNEL);
-+              if (!sdelta->boost_table)
-+                      return -ENOMEM;
-+
-+              ctrl->aggr_corner.sdelta = sdelta;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_write_temp_core_margin() - programs hardware SDELTA registers with
-+ *            the voltage margin adjustments that need to be applied for
-+ *            different online core-count and temperature bands.
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @addr:             SDELTA register address
-+ * @temp_core_adj:    Array of voltage margin values for different temperature
-+ *                    bands.
-+ *
-+ * CPR interface/bus clocks must be enabled before calling this function.
-+ *
-+ * Return: none
-+ */
-+static void cpr3_write_temp_core_margin(struct cpr3_controller *ctrl,
-+                               int addr, int *temp_core_adj)
-+{
-+      int i, margin_steps;
-+      u32 reg = 0;
-+
-+      for (i = 0; i < ctrl->temp_band_count; i++) {
-+              margin_steps = max(min(temp_core_adj[i], 127), -128);
-+              reg |= (margin_steps & CPR4_MARGIN_TEMP_CORE_ADJ_MASK) <<
-+                      (i * CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT);
-+      }
-+
-+      cpr3_write(ctrl, addr, reg);
-+      cpr3_debug(ctrl, "sdelta offset=0x%08x, val=0x%08x\n", addr, reg);
-+}
-+
-+/**
-+ * cpr3_controller_program_sdelta() - programs hardware SDELTA registers with
-+ *            the voltage margin adjustments that need to be applied at
-+ *            different online core-count and temperature bands. Also,
-+ *            programs hardware register configuration for per-online-core
-+ *            and per-temperature based adjustments.
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * CPR interface/bus clocks must be enabled before calling this function.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_controller_program_sdelta(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_corner *corner = &ctrl->aggr_corner;
-+      struct cpr4_sdelta *sdelta = corner->sdelta;
-+      int i, index, max_core_count, rc = 0;
-+      bool cpr_enabled = ctrl->cpr_enabled;
-+
-+      if (!sdelta)
-+              /* cpr4_sdelta not defined for current aggregated corner */
-+              return 0;
-+
-+      if (ctrl->supports_hw_closed_loop && ctrl->cpr_enabled) {
-+              cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                      CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
-+                      (ctrl->use_hw_closed_loop && !sdelta->allow_boost)
-+                      ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0);
-+      }
-+
-+      if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj
-+              && !sdelta->allow_boost) {
-+              /*
-+               * Per-online-core, per-temperature and voltage boost
-+               * adjustments are disabled for this aggregation corner.
-+               */
-+              return 0;
-+      }
-+
-+      /* Ensure that CPR clocks are enabled before writing to registers. */
-+      if (!cpr_enabled) {
-+              rc = cpr3_clock_enable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
-+                      return rc;
-+              }
-+              ctrl->cpr_enabled = true;
-+      }
-+
-+      max_core_count = sdelta->max_core_count;
-+
-+      if (sdelta->allow_core_count_adj || sdelta->allow_temp_adj) {
-+              if (sdelta->allow_core_count_adj) {
-+                      /* Program TEMP_CORE0 to same margins as TEMP_CORE1 */
-+                      cpr3_write_temp_core_margin(ctrl,
-+                              CPR4_REG_MARGIN_TEMP_CORE(0),
-+                              &sdelta->table[0]);
-+              }
-+
-+              for (i = 0; i < max_core_count; i++) {
-+                      index = i * sdelta->temp_band_count;
-+                      /*
-+                       * Program TEMP_COREi with voltage margin adjustments
-+                       * that need to be applied when the number of cores
-+                       * becomes i.
-+                       */
-+                      cpr3_write_temp_core_margin(ctrl,
-+                              CPR4_REG_MARGIN_TEMP_CORE(
-+                                              sdelta->allow_core_count_adj
-+                                              ? i + 1 : max_core_count),
-+                                              &sdelta->table[index]);
-+              }
-+      }
-+
-+      if (sdelta->allow_boost) {
-+              /* Program only boost_num_cores row of SDELTA */
-+              cpr3_write_temp_core_margin(ctrl,
-+                      CPR4_REG_MARGIN_TEMP_CORE(sdelta->boost_num_cores),
-+                                      &sdelta->boost_table[0]);
-+      }
-+
-+      if (!sdelta->allow_core_count_adj && !sdelta->allow_boost) {
-+              cpr3_masked_write(ctrl, CPR4_REG_MISC,
-+                      CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
-+                      max_core_count
-+                      << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
-+      }
-+
-+      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+              CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
-+              | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
-+              | CPR4_MARGIN_ADJ_CTL_BOOST_EN,
-+              max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
-+              | ((sdelta->allow_core_count_adj || sdelta->allow_boost)
-+                      ? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
-+              | ((sdelta->allow_temp_adj && ctrl->supports_hw_closed_loop)
-+                      ? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
-+              | (((ctrl->use_hw_closed_loop && !sdelta->allow_boost)
-+                  || !ctrl->supports_hw_closed_loop)
-+                      ? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
-+              | (sdelta->allow_boost
-+                      ?  CPR4_MARGIN_ADJ_CTL_BOOST_EN : 0));
-+
-+      /*
-+       * Ensure that all previous CPR register writes have completed before
-+       * continuing.
-+       */
-+      mb();
-+
-+      /* Turn off CPR clocks if they were off before this function call. */
-+      if (!cpr_enabled) {
-+              cpr3_clock_disable(ctrl);
-+              ctrl->cpr_enabled = false;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_init_ctrl() - performs hardware initialization of CPR
-+ *            controller registers
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_init_ctrl(struct cpr3_controller *ctrl)
-+{
-+      int i, j, k, m, rc;
-+      u32 ro_used = 0;
-+      u32 gcnt, cont_dly, up_down_dly, val;
-+      u64 temp;
-+      char *mode;
-+
-+      if (ctrl->core_clk) {
-+              rc = clk_set_rate(ctrl->core_clk, ctrl->cpr_clock_rate);
-+              if (rc) {
-+                      cpr3_err(ctrl, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
-+                              ctrl->cpr_clock_rate, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      rc = cpr3_clock_enable(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+      ctrl->cpr_enabled = true;
-+
-+      /* Find all RO's used by any corner of any regulator. */
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++)
-+                      for (k = 0; k < ctrl->thread[i].vreg[j].corner_count;
-+                           k++)
-+                              for (m = 0; m < CPR3_RO_COUNT; m++)
-+                                      if (ctrl->thread[i].vreg[j].corner[k].
-+                                          target_quot[m])
-+                                              ro_used |= BIT(m);
-+
-+      /* Configure the GCNT of the RO's that will be used */
-+      gcnt = cpr3_regulator_get_gcnt(ctrl);
-+      for (i = 0; i < CPR3_RO_COUNT; i++)
-+              if (ro_used & BIT(i))
-+                      cpr3_write(ctrl, CPR3_REG_GCNT(i), gcnt);
-+
-+      /* Configure the loop delay time */
-+      temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->loop_time;
-+      do_div(temp, 1000000000);
-+      cont_dly = temp;
-+      if (ctrl->supports_hw_closed_loop
-+              && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly);
-+      else
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, cont_dly);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              temp = (u64)ctrl->cpr_clock_rate *
-+                              (u64)ctrl->up_down_delay_time;
-+              do_div(temp, 1000000000);
-+              up_down_dly = temp;
-+              if (ctrl->supports_hw_closed_loop)
-+                      cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
-+                              up_down_dly);
-+              cpr3_debug(ctrl, "up_down_dly=%u, up_down_delay_time=%u ns\n",
-+                      up_down_dly, ctrl->up_down_delay_time);
-+      }
-+
-+      cpr3_debug(ctrl, "cpr_clock_rate=%u HZ, sensor_time=%u ns, loop_time=%u ns, gcnt=%u, cont_dly=%u\n",
-+              ctrl->cpr_clock_rate, ctrl->sensor_time, ctrl->loop_time,
-+              gcnt, cont_dly);
-+
-+      /* Configure CPR sensor operation */
-+      val = (ctrl->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT)
-+              & CPR3_CPR_CTL_IDLE_CLOCKS_MASK;
-+      val |= (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
-+              & CPR3_CPR_CTL_COUNT_MODE_MASK;
-+      val |= (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT)
-+              & CPR3_CPR_CTL_COUNT_REPEAT_MASK;
-+      cpr3_write(ctrl, CPR3_REG_CPR_CTL, val);
-+
-+      cpr3_debug(ctrl, "idle_clocks=%u, count_mode=%u, count_repeat=%u; CPR_CTL=0x%08X\n",
-+              ctrl->idle_clocks, ctrl->count_mode, ctrl->count_repeat, val);
-+
-+      /* Configure CPR default step quotients */
-+      val = (ctrl->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT)
-+              & CPR3_CPR_STEP_QUOT_MIN_MASK;
-+      val |= (ctrl->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT)
-+              & CPR3_CPR_STEP_QUOT_MAX_MASK;
-+      cpr3_write(ctrl, CPR3_REG_CPR_STEP_QUOT, val);
-+
-+      cpr3_debug(ctrl, "step_quot_min=%u, step_quot_max=%u; STEP_QUOT=0x%08X\n",
-+              ctrl->step_quot_init_min, ctrl->step_quot_init_max, val);
-+
-+      /* Configure the CPR sensor ownership */
-+      for (i = 0; i < ctrl->sensor_count; i++)
-+              cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(i),
-+                         ctrl->sensor_owner[i]);
-+
-+      /* Configure per-thread registers */
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              rc = cpr3_regulator_init_thread(&ctrl->thread[i]);
-+              if (rc) {
-+                      cpr3_err(ctrl, "CPR thread register initialization failed, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop) {
-+              if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+                      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                              CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
-+                              ctrl->use_hw_closed_loop
-+                              ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
-+                              : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
-+              } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+                      cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
-+                              ctrl->use_hw_closed_loop
-+                              ? CPR3_HW_CLOSED_LOOP_ENABLE
-+                              : CPR3_HW_CLOSED_LOOP_DISABLE);
-+
-+                      cpr3_debug(ctrl, "PD_THROTTLE=0x%08X\n",
-+                              ctrl->proc_clock_throttle);
-+              }
-+
-+              if ((ctrl->use_hw_closed_loop ||
-+                   ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) &&
-+                  ctrl->vdd_limit_regulator) {
-+                      rc = regulator_enable(ctrl->vdd_limit_regulator);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
-+                                      rc);
-+                              return rc;
-+                      }
-+              }
-+      }
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_regulator_init_cpr4(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "CPR4-specific controller initialization failed, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+      }
-+
-+      /* Ensure that all register writes complete before disabling clocks. */
-+      wmb();
-+
-+      cpr3_clock_disable(ctrl);
-+      ctrl->cpr_enabled = false;
-+
-+      if (!ctrl->cpr_allowed_sw || !ctrl->cpr_allowed_hw)
-+              mode = "open-loop";
-+      else if (ctrl->supports_hw_closed_loop)
-+              mode = ctrl->use_hw_closed_loop
-+                      ? "HW closed-loop" : "SW closed-loop";
-+      else
-+              mode = "closed-loop";
-+
-+      cpr3_info(ctrl, "Default CPR mode = %s", mode);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_set_target_quot() - configure the target quotient for each
-+ *            RO of the CPR3 thread and set the RO mask
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_set_target_quot(struct cpr3_thread *thread)
-+{
-+      u32 new_quot, last_quot;
-+      int i;
-+
-+      if (thread->aggr_corner.ro_mask == CPR3_RO_MASK
-+          && thread->last_closed_loop_aggr_corner.ro_mask == CPR3_RO_MASK) {
-+              /* Avoid writing target quotients since all RO's are masked. */
-+              return;
-+      } else if (thread->aggr_corner.ro_mask == CPR3_RO_MASK) {
-+              cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
-+                      CPR3_RO_MASK);
-+              thread->last_closed_loop_aggr_corner.ro_mask = CPR3_RO_MASK;
-+              /*
-+               * Only the RO_MASK register needs to be written since all
-+               * RO's are masked.
-+               */
-+              return;
-+      } else if (thread->aggr_corner.ro_mask
-+                      != thread->last_closed_loop_aggr_corner.ro_mask) {
-+              cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
-+                      thread->aggr_corner.ro_mask);
-+      }
-+
-+      for (i = 0; i < CPR3_RO_COUNT; i++) {
-+              new_quot = thread->aggr_corner.target_quot[i];
-+              last_quot = thread->last_closed_loop_aggr_corner.target_quot[i];
-+              if (new_quot != last_quot)
-+                      cpr3_write(thread->ctrl,
-+                              CPR3_REG_TARGET_QUOT(thread->thread_id, i),
-+                              new_quot);
-+      }
-+
-+      thread->last_closed_loop_aggr_corner = thread->aggr_corner;
-+
-+      return;
-+}
-+
-+/**
-+ * cpr3_update_vreg_closed_loop_volt() - update the last known settled
-+ *            closed loop voltage for a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @vdd_volt:         Last known settled voltage in microvolts for the
-+ *                    VDD supply
-+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
-+ *
-+ * Return: none
-+ */
-+static void cpr3_update_vreg_closed_loop_volt(struct cpr3_regulator *vreg,
-+                              int vdd_volt, u32 reg_last_measurement)
-+{
-+      bool step_dn, step_up, aggr_step_up, aggr_step_dn, aggr_step_mid;
-+      bool valid, pd_valid, saw_error;
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct cpr3_corner *corner;
-+      u32 id;
-+
-+      if (vreg->last_closed_loop_corner == CPR3_REGULATOR_CORNER_INVALID)
-+              return;
-+      else
-+              corner = &vreg->corner[vreg->last_closed_loop_corner];
-+
-+      if (vreg->thread->last_closed_loop_aggr_corner.ro_mask
-+          == CPR3_RO_MASK  || !vreg->aggregated) {
-+              return;
-+      } else if (!ctrl->cpr_enabled || !ctrl->last_corner_was_closed_loop) {
-+              return;
-+      } else if (ctrl->thread_count == 1
-+               && vdd_volt >= corner->floor_volt
-+               && vdd_volt <= corner->ceiling_volt) {
-+              corner->last_volt = vdd_volt;
-+              cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
-+                         vreg->last_closed_loop_corner, corner->last_volt,
-+                         vreg->last_closed_loop_corner,
-+                         corner->ceiling_volt,
-+                         vreg->last_closed_loop_corner,
-+                         corner->floor_volt);
-+              return;
-+      } else if (!ctrl->supports_hw_closed_loop) {
-+              return;
-+      } else if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPR3) {
-+              corner->last_volt = vdd_volt;
-+              cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
-+                         vreg->last_closed_loop_corner, corner->last_volt,
-+                         vreg->last_closed_loop_corner,
-+                         corner->ceiling_volt,
-+                         vreg->last_closed_loop_corner,
-+                         corner->floor_volt);
-+              return;
-+      }
-+
-+      /* CPR clocks are on and HW closed loop is supported */
-+      valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
-+      if (!valid) {
-+              cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X valid bit not set\n",
-+                         reg_last_measurement);
-+              return;
-+      }
-+
-+      id = vreg->thread->thread_id;
-+
-+      step_dn
-+             = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_DN(id));
-+      step_up
-+             = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_UP(id));
-+      aggr_step_dn = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_DN);
-+      aggr_step_mid
-+              = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_MID);
-+      aggr_step_up = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_UP);
-+      saw_error = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_SAW_ERROR);
-+      pd_valid
-+           = !((((reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
-+                     >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT)
-+                    & vreg->pd_bypass_mask) == vreg->pd_bypass_mask);
-+
-+      if (!pd_valid) {
-+              cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X, all power domains bypassed\n",
-+                         reg_last_measurement);
-+              return;
-+      } else if (step_dn && step_up) {
-+              cpr3_err(vreg, "both up and down status bits set, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
-+                       reg_last_measurement);
-+              return;
-+      } else if (aggr_step_dn && step_dn && vdd_volt < corner->last_volt
-+                 && vdd_volt >= corner->floor_volt) {
-+              corner->last_volt = vdd_volt;
-+      } else if (aggr_step_up && step_up && vdd_volt > corner->last_volt
-+                 && vdd_volt <= corner->ceiling_volt) {
-+              corner->last_volt = vdd_volt;
-+      } else if (aggr_step_mid
-+                 && vdd_volt >= corner->floor_volt
-+                 && vdd_volt <= corner->ceiling_volt) {
-+              corner->last_volt = vdd_volt;
-+      } else if (saw_error && (vdd_volt == corner->ceiling_volt
-+                               || vdd_volt == corner->floor_volt)) {
-+              corner->last_volt = vdd_volt;
-+      } else {
-+              cpr3_debug(vreg, "last_volt not updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, vdd_volt=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
-+                         vreg->last_closed_loop_corner, corner->last_volt,
-+                         vreg->last_closed_loop_corner,
-+                         corner->ceiling_volt,
-+                         vreg->last_closed_loop_corner, corner->floor_volt,
-+                         vdd_volt, reg_last_measurement);
-+              return;
-+      }
-+
-+      cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
-+                 vreg->last_closed_loop_corner, corner->last_volt,
-+                 vreg->last_closed_loop_corner, corner->ceiling_volt,
-+                 vreg->last_closed_loop_corner, corner->floor_volt,
-+                 reg_last_measurement);
-+}
-+
-+/**
-+ * cpr3_regulator_mem_acc_bhs_used() - determines if mem-acc regulators powered
-+ *            through a BHS are associated with the CPR3 controller or any of
-+ *            the CPR3 regulators it controls.
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * This function determines if the CPR3 controller or any of its CPR3 regulators
-+ * need to manage mem-acc regulators that are currently powered through a BHS
-+ * and whose corner selection is based upon a particular voltage threshold.
-+ *
-+ * Return: true or false
-+ */
-+static bool cpr3_regulator_mem_acc_bhs_used(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_regulator *vreg;
-+      int i, j;
-+
-+      if (!ctrl->mem_acc_threshold_volt)
-+              return false;
-+
-+      if (ctrl->mem_acc_regulator)
-+              return true;
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+
-+                      if (vreg->mem_acc_regulator)
-+                              return true;
-+              }
-+      }
-+
-+      return false;
-+}
-+
-+/**
-+ * cpr3_regulator_config_bhs_mem_acc() - configure the mem-acc regulator
-+ *            settings for hardware blocks currently powered through the BHS.
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @new_volt:         New voltage in microvolts that VDD supply needs to
-+ *                    end up at
-+ * @last_volt:                Pointer to the last known voltage in microvolts for the
-+ *                    VDD supply
-+ * @aggr_corner:      Pointer to the CPR3 corner which corresponds to the max
-+ *                    corner aggregated from all CPR3 threads managed by the
-+ *                    CPR3 controller
-+ *
-+ * This function programs the mem-acc regulator corners for CPR3 regulators
-+ * whose LDO regulators are in bypassed state. The function also handles
-+ * CPR3 controllers which utilize mem-acc regulators that operate independently
-+ * from the LDO hardware and that must be programmed when the VDD supply
-+ * crosses a particular voltage threshold.
-+ *
-+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
-+ * modified, last_volt is updated to reflect the new voltage setpoint.
-+ */
-+static int cpr3_regulator_config_bhs_mem_acc(struct cpr3_controller *ctrl,
-+                                   int new_volt, int *last_volt,
-+                                   struct cpr3_corner *aggr_corner)
-+{
-+      struct cpr3_regulator *vreg;
-+      int i, j, rc, mem_acc_corn, safe_volt;
-+      int mem_acc_volt = ctrl->mem_acc_threshold_volt;
-+      int ref_volt;
-+
-+      if (!cpr3_regulator_mem_acc_bhs_used(ctrl))
-+              return 0;
-+
-+      ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
-+              new_volt;
-+
-+      if (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
-+           (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))) {
-+              if (ref_volt < *last_volt)
-+                      safe_volt = max(mem_acc_volt, aggr_corner->last_volt);
-+              else
-+                      safe_volt = max(mem_acc_volt, *last_volt);
-+
-+              rc = regulator_set_voltage(ctrl->vdd_regulator, safe_volt,
-+                                         new_volt < *last_volt ?
-+                                         ctrl->aggr_corner.ceiling_volt :
-+                                         new_volt);
-+              if (rc) {
-+                      cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
-+                               safe_volt, rc);
-+                      return rc;
-+              }
-+
-+              *last_volt = safe_volt;
-+
-+              mem_acc_corn = ref_volt < mem_acc_volt ?
-+                      ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
-+                      ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
-+
-+              if (ctrl->mem_acc_regulator) {
-+                      rc = regulator_set_voltage(ctrl->mem_acc_regulator,
-+                                                 mem_acc_corn, mem_acc_corn);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
-+                                       mem_acc_corn, rc);
-+                              return rc;
-+                      }
-+              }
-+
-+              for (i = 0; i < ctrl->thread_count; i++) {
-+                      for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                              vreg = &ctrl->thread[i].vreg[j];
-+
-+                              if (!vreg->mem_acc_regulator)
-+                                      continue;
-+
-+                              rc = regulator_set_voltage(
-+                                      vreg->mem_acc_regulator, mem_acc_corn,
-+                                      mem_acc_corn);
-+                              if (rc) {
-+                                      cpr3_err(vreg, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
-+                                               mem_acc_corn, rc);
-+                                      return rc;
-+                              }
-+                      }
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_switch_apm_mode() - switch the mode of the APM controller
-+ *            associated with a given CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @new_volt:         New voltage in microvolts that VDD supply needs to
-+ *                    end up at
-+ * @last_volt:                Pointer to the last known voltage in microvolts for the
-+ *                    VDD supply
-+ * @aggr_corner:      Pointer to the CPR3 corner which corresponds to the max
-+ *                    corner aggregated from all CPR3 threads managed by the
-+ *                    CPR3 controller
-+ *
-+ * This function requests a switch of the APM mode while guaranteeing
-+ * any LDO regulator hardware requirements are satisfied. The function must
-+ * be called once it is known a new VDD supply setpoint crosses the APM
-+ * voltage threshold.
-+ *
-+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
-+ * modified, last_volt is updated to reflect the new voltage setpoint.
-+ */
-+static int cpr3_regulator_switch_apm_mode(struct cpr3_controller *ctrl,
-+                                        int new_volt, int *last_volt,
-+                                        struct cpr3_corner *aggr_corner)
-+{
-+      struct regulator *vdd = ctrl->vdd_regulator;
-+      int apm_volt = ctrl->apm_threshold_volt;
-+      int orig_last_volt = *last_volt;
-+      int rc;
-+
-+      rc = regulator_set_voltage(vdd, apm_volt, apm_volt);
-+      if (rc) {
-+              cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
-+                       apm_volt, rc);
-+              return rc;
-+      }
-+
-+      *last_volt = apm_volt;
-+
-+      rc = msm_apm_set_supply(ctrl->apm, new_volt >= apm_volt
-+                              ? ctrl->apm_high_supply : ctrl->apm_low_supply);
-+      if (rc) {
-+              cpr3_err(ctrl, "APM switch failed, rc=%d\n", rc);
-+              /* Roll back the voltage. */
-+              regulator_set_voltage(vdd, orig_last_volt, INT_MAX);
-+              *last_volt = orig_last_volt;
-+              return rc;
-+      }
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_config_voltage_crossings() - configure APM and mem-acc
-+ *            settings depending upon a new VDD supply setpoint
-+ *
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @new_volt:         New voltage in microvolts that VDD supply needs to
-+ *                    end up at
-+ * @last_volt:                Pointer to the last known voltage in microvolts for the
-+ *                    VDD supply
-+ * @aggr_corner:      Pointer to the CPR3 corner which corresponds to the max
-+ *                    corner aggregated from all CPR3 threads managed by the
-+ *                    CPR3 controller
-+ *
-+ * This function handles the APM and mem-acc regulator reconfiguration if
-+ * the new VDD supply voltage will result in crossing their respective voltage
-+ * thresholds.
-+ *
-+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
-+ * modified, last_volt is updated to reflect the new voltage setpoint.
-+ */
-+static int cpr3_regulator_config_voltage_crossings(struct cpr3_controller *ctrl,
-+                                 int new_volt, int *last_volt,
-+                                 struct cpr3_corner *aggr_corner)
-+{
-+      bool apm_crossing = false, mem_acc_crossing = false;
-+      bool mem_acc_bhs_used;
-+      int apm_volt = ctrl->apm_threshold_volt;
-+      int mem_acc_volt = ctrl->mem_acc_threshold_volt;
-+      int ref_volt, rc;
-+
-+      if (ctrl->apm && apm_volt > 0
-+          && ((*last_volt < apm_volt && apm_volt <= new_volt)
-+              || (*last_volt >= apm_volt && apm_volt > new_volt)))
-+              apm_crossing = true;
-+
-+      mem_acc_bhs_used = cpr3_regulator_mem_acc_bhs_used(ctrl);
-+
-+      ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
-+              new_volt;
-+
-+      if (mem_acc_bhs_used &&
-+          (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
-+            (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))))
-+              mem_acc_crossing = true;
-+
-+      if (apm_crossing && mem_acc_crossing) {
-+              if ((new_volt < *last_volt && apm_volt >= mem_acc_volt) ||
-+                  (new_volt >= *last_volt && apm_volt < mem_acc_volt)) {
-+                      rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
-+                                                          last_volt,
-+                                                          aggr_corner);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "unable to switch APM mode\n");
-+                              return rc;
-+                      }
-+
-+                      rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
-+                                                     last_volt, aggr_corner);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
-+                              return rc;
-+                      }
-+              } else {
-+                      rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
-+                                                     last_volt, aggr_corner);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
-+                              return rc;
-+                      }
-+
-+                      rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
-+                                                          last_volt,
-+                                                          aggr_corner);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "unable to switch APM mode\n");
-+                              return rc;
-+                      }
-+              }
-+      } else if (apm_crossing) {
-+              rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt, last_volt,
-+                                                  aggr_corner);
-+              if (rc) {
-+                      cpr3_err(ctrl, "unable to switch APM mode\n");
-+                      return rc;
-+              }
-+      } else if (mem_acc_crossing) {
-+              rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
-+                                                     last_volt, aggr_corner);
-+              if (rc) {
-+                      cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_config_mem_acc() - configure the corner of the mem-acc
-+ *                    regulator associated with the CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @aggr_corner:      Pointer to the CPR3 corner which corresponds to the max
-+ *                    corner aggregated from all CPR3 threads managed by the
-+ *                    CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_config_mem_acc(struct cpr3_controller *ctrl,
-+                                       struct cpr3_corner *aggr_corner)
-+{
-+      int rc;
-+
-+      if (ctrl->mem_acc_regulator && aggr_corner->mem_acc_volt) {
-+              rc = regulator_set_voltage(ctrl->mem_acc_regulator,
-+                                         aggr_corner->mem_acc_volt,
-+                                         aggr_corner->mem_acc_volt);
-+              if (rc) {
-+                      cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
-+                               aggr_corner->mem_acc_volt, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_scale_vdd_voltage() - scale the CPR controlled VDD supply
-+ *            voltage to the new level while satisfying any other hardware
-+ *            requirements
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @new_volt:         New voltage in microvolts that VDD supply needs to end
-+ *                    up at
-+ * @last_volt:                Last known voltage in microvolts for the VDD supply
-+ * @aggr_corner:      Pointer to the CPR3 corner which corresponds to the max
-+ *                    corner aggregated from all CPR3 threads managed by the
-+ *                    CPR3 controller
-+ *
-+ * This function scales the CPR controlled VDD supply voltage from its
-+ * current level to the new voltage that is specified.  If the supply is
-+ * configured to use the APM and the APM threshold is crossed as a result of
-+ * the voltage scaling, then this function also stops at the APM threshold,
-+ * switches the APM source, and finally sets the final new voltage.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_scale_vdd_voltage(struct cpr3_controller *ctrl,
-+                              int new_volt, int last_volt,
-+                              struct cpr3_corner *aggr_corner)
-+{
-+      struct regulator *vdd = ctrl->vdd_regulator;
-+      int rc;
-+
-+      if (new_volt < last_volt) {
-+                      rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
-+                      if (rc)
-+                              return rc;
-+      } else {
-+              /* Increasing VDD voltage */
-+              if (ctrl->system_regulator) {
-+                      rc = regulator_set_voltage(ctrl->system_regulator,
-+                              aggr_corner->system_volt, INT_MAX);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
-+                                      aggr_corner->system_volt, rc);
-+                              return rc;
-+                      }
-+              }
-+      }
-+
-+      rc = cpr3_regulator_config_voltage_crossings(ctrl, new_volt, &last_volt,
-+                                                   aggr_corner);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to handle voltage threshold crossing configurations, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      /*
-+       * Subtract a small amount from the min_uV parameter so that the
-+       * set voltage request is not dropped by the framework due to being
-+       * duplicate.  This is needed in order to switch from hardware
-+       * closed-loop to open-loop successfully.
-+       */
-+      rc = regulator_set_voltage(vdd, new_volt - (ctrl->cpr_enabled ? 0 : 1),
-+                                 aggr_corner->ceiling_volt);
-+      if (rc) {
-+              cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
-+                      new_volt, rc);
-+              return rc;
-+      }
-+
-+      if (new_volt == last_volt && ctrl->supports_hw_closed_loop
-+          && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              /*
-+               * CPR4 features enforce voltage reprogramming when the last
-+               * set voltage and new set voltage are same. This way, we can
-+               * ensure that SAW PMIC STATUS register is updated with newly
-+               * programmed voltage.
-+               */
-+              rc = regulator_sync_voltage(vdd);
-+              if (rc) {
-+                      cpr3_err(ctrl, "regulator_sync_voltage(vdd) == %d failed, rc=%d\n",
-+                              new_volt, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      if (new_volt >= last_volt) {
-+              rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
-+              if (rc)
-+                      return rc;
-+      } else {
-+              /* Decreasing VDD voltage */
-+              if (ctrl->system_regulator) {
-+                      rc = regulator_set_voltage(ctrl->system_regulator,
-+                              aggr_corner->system_volt, INT_MAX);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
-+                                      aggr_corner->system_volt, rc);
-+                              return rc;
-+                      }
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_get_dynamic_floor_volt() - returns the current dynamic floor
-+ *            voltage based upon static configurations and the state of all
-+ *            power domains during the last CPR measurement
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
-+ *
-+ * When using HW closed-loop, the dynamic floor voltage is always returned
-+ * regardless of the current state of the power domains.
-+ *
-+ * Return: dynamic floor voltage in microvolts or 0 if dynamic floor is not
-+ *         currently required
-+ */
-+static int cpr3_regulator_get_dynamic_floor_volt(struct cpr3_controller *ctrl,
-+              u32 reg_last_measurement)
-+{
-+      int dynamic_floor_volt = 0;
-+      struct cpr3_regulator *vreg;
-+      bool valid, pd_valid;
-+      u32 bypass_bits;
-+      int i, j;
-+
-+      if (!ctrl->supports_hw_closed_loop)
-+              return 0;
-+
-+      if (likely(!ctrl->use_hw_closed_loop)) {
-+              valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
-+              bypass_bits
-+               = (reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
-+                      >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT;
-+      } else {
-+              /*
-+               * Ensure that the dynamic floor voltage is always used for
-+               * HW closed-loop since the conditions below cannot be evaluated
-+               * after each CPR measurement.
-+               */
-+              valid = false;
-+              bypass_bits = 0;
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+
-+                      if (!vreg->uses_dynamic_floor)
-+                              continue;
-+
-+                      pd_valid = !((bypass_bits & vreg->pd_bypass_mask)
-+                                      == vreg->pd_bypass_mask);
-+
-+                      if (!valid || !pd_valid)
-+                              dynamic_floor_volt = max(dynamic_floor_volt,
-+                                      vreg->corner[
-+                                       vreg->dynamic_floor_corner].last_volt);
-+              }
-+      }
-+
-+      return dynamic_floor_volt;
-+}
-+
-+/**
-+ * cpr3_regulator_max_sdelta_diff() - returns the maximum voltage difference in
-+ *            microvolts that can result from different operating conditions
-+ *            for the specified sdelta struct
-+ * @sdelta:           Pointer to the sdelta structure
-+ * @step_volt:                Step size in microvolts between available set
-+ *                    points of the VDD supply.
-+ *
-+ * Return: voltage difference between the highest and lowest adjustments if
-+ *    sdelta and sdelta->table are valid, else 0.
-+ */
-+static int cpr3_regulator_max_sdelta_diff(const struct cpr4_sdelta *sdelta,
-+                              int step_volt)
-+{
-+      int i, j, index, sdelta_min = INT_MAX, sdelta_max = INT_MIN;
-+
-+      if (!sdelta || !sdelta->table)
-+              return 0;
-+
-+      for (i = 0; i < sdelta->max_core_count; i++) {
-+              for (j = 0; j < sdelta->temp_band_count; j++) {
-+                      index = i * sdelta->temp_band_count + j;
-+                      sdelta_min = min(sdelta_min, sdelta->table[index]);
-+                      sdelta_max = max(sdelta_max, sdelta->table[index]);
-+              }
-+      }
-+
-+      return (sdelta_max - sdelta_min) * step_volt;
-+}
-+
-+/**
-+ * cpr3_regulator_aggregate_sdelta() - check open-loop voltages of current
-+ *            aggregated corner and current corner of a given regulator
-+ *            and adjust the sdelta strucuture data of aggregate corner.
-+ * @aggr_corner:      Pointer to accumulated aggregated corner which
-+ *                    is both an input and an output
-+ * @corner:           Pointer to the corner to be aggregated with
-+ *                    aggr_corner
-+ * @step_volt:                Step size in microvolts between available set
-+ *                    points of the VDD supply.
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_aggregate_sdelta(
-+                              struct cpr3_corner *aggr_corner,
-+                              const struct cpr3_corner *corner, int step_volt)
-+{
-+      struct cpr4_sdelta *aggr_sdelta, *sdelta;
-+      int aggr_core_count, core_count, temp_band_count;
-+      u32 aggr_index, index;
-+      int i, j, sdelta_size, cap_steps, adjust_sdelta;
-+
-+      aggr_sdelta = aggr_corner->sdelta;
-+      sdelta = corner->sdelta;
-+
-+      if (aggr_corner->open_loop_volt < corner->open_loop_volt) {
-+              /*
-+               * Found the new dominant regulator as its open-loop requirement
-+               * is higher than previous dominant regulator. Calculate cap
-+               * voltage to limit the SDELTA values to make sure the runtime
-+               * (Core-count/temp) adjustments do not violate other
-+               * regulators' voltage requirements. Use cpr4_sdelta values of
-+               * new dominant regulator.
-+               */
-+              aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
-+                                              (corner->open_loop_volt -
-+                                              aggr_corner->open_loop_volt));
-+
-+              /* Clear old data in the sdelta table */
-+              sdelta_size = aggr_sdelta->max_core_count
-+                                      * aggr_sdelta->temp_band_count;
-+
-+              if (aggr_sdelta->allow_core_count_adj
-+                      || aggr_sdelta->allow_temp_adj)
-+                      memset(aggr_sdelta->table, 0, sdelta_size
-+                                      * sizeof(*aggr_sdelta->table));
-+
-+              if (sdelta->allow_temp_adj || sdelta->allow_core_count_adj) {
-+                      /* Copy new data in sdelta table */
-+                      sdelta_size = sdelta->max_core_count
-+                                              * sdelta->temp_band_count;
-+                      if (sdelta->table)
-+                              memcpy(aggr_sdelta->table, sdelta->table,
-+                                      sdelta_size * sizeof(*sdelta->table));
-+              }
-+
-+              if (sdelta->allow_boost) {
-+                      memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
-+                              sdelta->temp_band_count
-+                              * sizeof(*sdelta->boost_table));
-+                      aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
-+              } else if (aggr_sdelta->allow_boost) {
-+                      for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
-+                              adjust_sdelta = (corner->open_loop_volt
-+                                              - aggr_corner->open_loop_volt)
-+                                              / step_volt;
-+                              aggr_sdelta->boost_table[i] += adjust_sdelta;
-+                              aggr_sdelta->boost_table[i]
-+                                      = min(aggr_sdelta->boost_table[i], 0);
-+                      }
-+              }
-+
-+              aggr_corner->open_loop_volt = corner->open_loop_volt;
-+              aggr_sdelta->allow_temp_adj = sdelta->allow_temp_adj;
-+              aggr_sdelta->allow_core_count_adj
-+                                      = sdelta->allow_core_count_adj;
-+              aggr_sdelta->max_core_count = sdelta->max_core_count;
-+              aggr_sdelta->temp_band_count = sdelta->temp_band_count;
-+      } else if (aggr_corner->open_loop_volt > corner->open_loop_volt) {
-+              /*
-+               * Adjust the cap voltage if the open-loop requirement of new
-+               * regulator is the next highest.
-+               */
-+              aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
-+                                              (aggr_corner->open_loop_volt
-+                                              - corner->open_loop_volt));
-+
-+              if (sdelta->allow_boost) {
-+                      for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
-+                              adjust_sdelta = (aggr_corner->open_loop_volt
-+                                              - corner->open_loop_volt)
-+                                              / step_volt;
-+                              aggr_sdelta->boost_table[i] =
-+                                      sdelta->boost_table[i] + adjust_sdelta;
-+                              aggr_sdelta->boost_table[i]
-+                                      = min(aggr_sdelta->boost_table[i], 0);
-+                      }
-+                      aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
-+              }
-+      } else {
-+              /*
-+               * Found another dominant regulator with same open-loop
-+               * requirement. Make cap voltage to '0'. Disable core-count
-+               * adjustments as we couldn't support for both regulators.
-+               * Keep enable temp based adjustments if enabled for both
-+               * regulators and choose mininum margin adjustment values
-+               * between them.
-+               */
-+              aggr_sdelta->cap_volt = 0;
-+              aggr_sdelta->allow_core_count_adj = false;
-+
-+              if (aggr_sdelta->allow_temp_adj
-+                                      && sdelta->allow_temp_adj) {
-+                      aggr_core_count = aggr_sdelta->max_core_count - 1;
-+                      core_count = sdelta->max_core_count - 1;
-+                      temp_band_count = sdelta->temp_band_count;
-+                      for (j = 0; j < temp_band_count; j++) {
-+                              aggr_index = aggr_core_count * temp_band_count
-+                                              + j;
-+                              index = core_count * temp_band_count + j;
-+                              aggr_sdelta->table[aggr_index] =
-+                                      min(aggr_sdelta->table[aggr_index],
-+                                              sdelta->table[index]);
-+                      }
-+              } else {
-+                      aggr_sdelta->allow_temp_adj = false;
-+              }
-+
-+              if (sdelta->allow_boost) {
-+                      memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
-+                              sdelta->temp_band_count
-+                              * sizeof(*sdelta->boost_table));
-+                      aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
-+              }
-+      }
-+
-+      /* Keep non-dominant clients boost enable state */
-+      aggr_sdelta->allow_boost |= sdelta->allow_boost;
-+      if (aggr_sdelta->allow_boost)
-+              aggr_sdelta->allow_core_count_adj = false;
-+
-+      if (aggr_sdelta->cap_volt && !(aggr_sdelta->cap_volt == INT_MAX)) {
-+              core_count = aggr_sdelta->max_core_count;
-+              temp_band_count = aggr_sdelta->temp_band_count;
-+              /*
-+               * Convert cap voltage from uV to PMIC steps and use to limit
-+               * sdelta margin adjustments.
-+               */
-+              cap_steps = aggr_sdelta->cap_volt / step_volt;
-+              for (i = 0; i < core_count; i++)
-+                      for (j = 0; j < temp_band_count; j++) {
-+                              index = i * temp_band_count + j;
-+                              aggr_sdelta->table[index] =
-+                                              min(aggr_sdelta->table[index],
-+                                                      cap_steps);
-+              }
-+      }
-+}
-+
-+/**
-+ * cpr3_regulator_aggregate_corners() - aggregate two corners together
-+ * @aggr_corner:              Pointer to accumulated aggregated corner which
-+ *                            is both an input and an output
-+ * @corner:                   Pointer to the corner to be aggregated with
-+ *                            aggr_corner
-+ * @aggr_quot:                        Flag indicating that target quotients should be
-+ *                            aggregated as well.
-+ * @step_volt:                        Step size in microvolts between available set
-+ *                            points of the VDD supply.
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_aggregate_corners(struct cpr3_corner *aggr_corner,
-+                      const struct cpr3_corner *corner, bool aggr_quot,
-+                      int step_volt)
-+{
-+      int i;
-+
-+      aggr_corner->ceiling_volt
-+              = max(aggr_corner->ceiling_volt, corner->ceiling_volt);
-+      aggr_corner->floor_volt
-+              = max(aggr_corner->floor_volt, corner->floor_volt);
-+      aggr_corner->last_volt
-+              = max(aggr_corner->last_volt, corner->last_volt);
-+      aggr_corner->system_volt
-+              = max(aggr_corner->system_volt, corner->system_volt);
-+      aggr_corner->mem_acc_volt
-+              = max(aggr_corner->mem_acc_volt, corner->mem_acc_volt);
-+      aggr_corner->irq_en |= corner->irq_en;
-+      aggr_corner->use_open_loop |= corner->use_open_loop;
-+
-+      if (aggr_quot) {
-+              aggr_corner->ro_mask &= corner->ro_mask;
-+
-+              for (i = 0; i < CPR3_RO_COUNT; i++)
-+                      aggr_corner->target_quot[i]
-+                              = max(aggr_corner->target_quot[i],
-+                                    corner->target_quot[i]);
-+      }
-+
-+      if (aggr_corner->sdelta && corner->sdelta
-+              && (aggr_corner->sdelta->table
-+              || aggr_corner->sdelta->boost_table)) {
-+              cpr3_regulator_aggregate_sdelta(aggr_corner, corner, step_volt);
-+      } else {
-+              aggr_corner->open_loop_volt
-+                      = max(aggr_corner->open_loop_volt,
-+                              corner->open_loop_volt);
-+      }
-+}
-+
-+/**
-+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
-+ *            to reflect the corners used by all CPR3 regulators as well as
-+ *            the CPR operating mode
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * This function aggregates the CPR parameters for all CPR3 regulators
-+ * associated with the VDD supply.  Upon success, it sets the aggregated last
-+ * known good voltage.
-+ *
-+ * The VDD supply voltage will not be physically configured unless this
-+ * condition is met by at least one of the regulators of the controller:
-+ * regulator->vreg_enabled == true &&
-+ * regulator->current_corner != CPR3_REGULATOR_CORNER_INVALID
-+ *
-+ * CPR registers for the controller and each thread are updated as long as
-+ * ctrl->cpr_enabled == true.
-+ *
-+ * Note, CPR3 controller lock must be held by the caller.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int _cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_corner aggr_corner = {};
-+      struct cpr3_thread *thread;
-+      struct cpr3_regulator *vreg;
-+      struct cpr4_sdelta *sdelta;
-+      bool valid = false;
-+      bool thread_valid;
-+      int i, j, rc, new_volt, vdd_volt, dynamic_floor_volt, last_corner_volt;
-+      u32 reg_last_measurement = 0, sdelta_size;
-+      int *sdelta_table, *boost_table;
-+
-+      last_corner_volt = 0;
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
-+      if (vdd_volt < 0) {
-+              cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
-+                       vdd_volt);
-+              return vdd_volt;
-+      }
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              /*
-+               * Save aggregated corner open-loop voltage which was programmed
-+               * during last corner switch which is used when programming new
-+               * aggregated corner open-loop voltage.
-+               */
-+              last_corner_volt = ctrl->aggr_corner.open_loop_volt;
-+      }
-+
-+      if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop &&
-+              ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
-+              reg_last_measurement
-+                      = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
-+
-+      aggr_corner.sdelta = ctrl->aggr_corner.sdelta;
-+      if (aggr_corner.sdelta) {
-+              sdelta = aggr_corner.sdelta;
-+              sdelta_table = sdelta->table;
-+              if (sdelta_table) {
-+                      sdelta_size = sdelta->max_core_count *
-+                                      sdelta->temp_band_count;
-+                      memset(sdelta_table, 0, sdelta_size
-+                                      * sizeof(*sdelta_table));
-+              }
-+
-+              boost_table = sdelta->boost_table;
-+              if (boost_table)
-+                      memset(boost_table, 0, sdelta->temp_band_count
-+                                      * sizeof(*boost_table));
-+
-+              memset(sdelta, 0, sizeof(*sdelta));
-+              sdelta->table = sdelta_table;
-+              sdelta->cap_volt = INT_MAX;
-+              sdelta->boost_table = boost_table;
-+      }
-+
-+      /* Aggregate the requests of all threads */
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              thread = &ctrl->thread[i];
-+              thread_valid = false;
-+
-+              sdelta = thread->aggr_corner.sdelta;
-+              if (sdelta) {
-+                      sdelta_table = sdelta->table;
-+                      if (sdelta_table) {
-+                              sdelta_size = sdelta->max_core_count *
-+                                              sdelta->temp_band_count;
-+                              memset(sdelta_table, 0, sdelta_size
-+                                              * sizeof(*sdelta_table));
-+                      }
-+
-+                      boost_table = sdelta->boost_table;
-+                      if (boost_table)
-+                              memset(boost_table, 0, sdelta->temp_band_count
-+                                              * sizeof(*boost_table));
-+
-+                      memset(sdelta, 0, sizeof(*sdelta));
-+                      sdelta->table = sdelta_table;
-+                      sdelta->cap_volt = INT_MAX;
-+                      sdelta->boost_table = boost_table;
-+              }
-+
-+              memset(&thread->aggr_corner, 0, sizeof(thread->aggr_corner));
-+              thread->aggr_corner.sdelta = sdelta;
-+              thread->aggr_corner.ro_mask = CPR3_RO_MASK;
-+
-+              for (j = 0; j < thread->vreg_count; j++) {
-+                      vreg = &thread->vreg[j];
-+
-+                      if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop)
-+                              cpr3_update_vreg_closed_loop_volt(vreg,
-+                                              vdd_volt, reg_last_measurement);
-+
-+                      if (!vreg->vreg_enabled
-+                          || vreg->current_corner
-+                                          == CPR3_REGULATOR_CORNER_INVALID) {
-+                              /* Cannot participate in aggregation. */
-+                              vreg->aggregated = false;
-+                              continue;
-+                      } else {
-+                              vreg->aggregated = true;
-+                              thread_valid = true;
-+                      }
-+
-+                      cpr3_regulator_aggregate_corners(&thread->aggr_corner,
-+                                      &vreg->corner[vreg->current_corner],
-+                                      true, ctrl->step_volt);
-+              }
-+
-+              valid |= thread_valid;
-+
-+              if (thread_valid)
-+                      cpr3_regulator_aggregate_corners(&aggr_corner,
-+                                      &thread->aggr_corner,
-+                                      false, ctrl->step_volt);
-+      }
-+
-+      if (valid && ctrl->cpr_allowed_hw && ctrl->cpr_allowed_sw) {
-+              rc = cpr3_closed_loop_enable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
-+                      return rc;
-+              }
-+      } else {
-+              rc = cpr3_closed_loop_disable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
-+                      return rc;
-+              }
-+      }
-+
-+      /* No threads are enabled with a valid corner so exit. */
-+      if (!valid)
-+              return 0;
-+
-+      /*
-+       * When using CPR hardware closed-loop, the voltage may vary anywhere
-+       * between the floor and ceiling voltage without software notification.
-+       * Therefore, it is required that the floor to ceiling range for the
-+       * aggregated corner not intersect the APM threshold voltage.  Adjust
-+       * the floor to ceiling range if this requirement is violated.
-+       *
-+       * The following algorithm is applied in the case that
-+       * floor < threshold <= ceiling:
-+       *      if open_loop >= threshold - adj, then floor = threshold
-+       *      else ceiling = threshold - step
-+       * where adj = an adjustment factor to ensure sufficient voltage margin
-+       * and step = VDD output step size
-+       *
-+       * The open-loop and last known voltages are also bounded by the new
-+       * floor or ceiling value as needed.
-+       */
-+      if (ctrl->use_hw_closed_loop
-+          && aggr_corner.ceiling_volt >= ctrl->apm_threshold_volt
-+          && aggr_corner.floor_volt < ctrl->apm_threshold_volt) {
-+
-+              if (aggr_corner.open_loop_volt
-+                  >= ctrl->apm_threshold_volt - ctrl->apm_adj_volt)
-+                      aggr_corner.floor_volt = ctrl->apm_threshold_volt;
-+              else
-+                      aggr_corner.ceiling_volt
-+                              = ctrl->apm_threshold_volt - ctrl->step_volt;
-+
-+              aggr_corner.last_volt
-+                  = max(aggr_corner.last_volt, aggr_corner.floor_volt);
-+              aggr_corner.last_volt
-+                  = min(aggr_corner.last_volt, aggr_corner.ceiling_volt);
-+              aggr_corner.open_loop_volt
-+                  = max(aggr_corner.open_loop_volt, aggr_corner.floor_volt);
-+              aggr_corner.open_loop_volt
-+                  = min(aggr_corner.open_loop_volt, aggr_corner.ceiling_volt);
-+      }
-+
-+      if (ctrl->use_hw_closed_loop
-+          && aggr_corner.ceiling_volt >= ctrl->mem_acc_threshold_volt
-+          && aggr_corner.floor_volt < ctrl->mem_acc_threshold_volt) {
-+              aggr_corner.floor_volt = ctrl->mem_acc_threshold_volt;
-+              aggr_corner.last_volt = max(aggr_corner.last_volt,
-+                                           aggr_corner.floor_volt);
-+              aggr_corner.open_loop_volt = max(aggr_corner.open_loop_volt,
-+                                                aggr_corner.floor_volt);
-+      }
-+
-+      if (ctrl->use_hw_closed_loop) {
-+              dynamic_floor_volt
-+                      = cpr3_regulator_get_dynamic_floor_volt(ctrl,
-+                                                      reg_last_measurement);
-+              if (aggr_corner.floor_volt < dynamic_floor_volt) {
-+                      aggr_corner.floor_volt = dynamic_floor_volt;
-+                      aggr_corner.last_volt = max(aggr_corner.last_volt,
-+                                                      aggr_corner.floor_volt);
-+                      aggr_corner.open_loop_volt
-+                              = max(aggr_corner.open_loop_volt,
-+                                      aggr_corner.floor_volt);
-+                      aggr_corner.ceiling_volt = max(aggr_corner.ceiling_volt,
-+                                                      aggr_corner.floor_volt);
-+              }
-+      }
-+
-+      if (ctrl->cpr_enabled && ctrl->last_corner_was_closed_loop) {
-+              /*
-+               * Always program open-loop voltage for CPR4 controllers which
-+               * support hardware closed-loop.  Storing the last closed loop
-+               * voltage in corner structure can still help with debugging.
-+               */
-+              if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
-+                      new_volt = aggr_corner.last_volt;
-+              else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
-+                       && ctrl->supports_hw_closed_loop)
-+                      new_volt = aggr_corner.open_loop_volt;
-+              else
-+                      new_volt = min(aggr_corner.last_volt +
-+                            cpr3_regulator_max_sdelta_diff(aggr_corner.sdelta,
-+                                                           ctrl->step_volt),
-+                                     aggr_corner.ceiling_volt);
-+
-+              aggr_corner.last_volt = new_volt;
-+      } else {
-+              new_volt = aggr_corner.open_loop_volt;
-+              aggr_corner.last_volt = aggr_corner.open_loop_volt;
-+      }
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
-+          && ctrl->supports_hw_closed_loop) {
-+              /*
-+               * Store last aggregated corner open-loop voltage in vdd_volt
-+               * which is used when programming current aggregated corner
-+               * required voltage.
-+               */
-+              vdd_volt = last_corner_volt;
-+      }
-+
-+      cpr3_debug(ctrl, "setting new voltage=%d uV\n", new_volt);
-+      rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
-+                                            vdd_volt, &aggr_corner);
-+      if (rc) {
-+              cpr3_err(ctrl, "vdd voltage scaling failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      /* Only update registers if CPR is enabled. */
-+      if (ctrl->cpr_enabled) {
-+              if (ctrl->use_hw_closed_loop) {
-+                      /* Hardware closed-loop */
-+
-+                      /* Set ceiling and floor limits in hardware */
-+                      rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
-+                              aggr_corner.floor_volt,
-+                              aggr_corner.ceiling_volt);
-+                      if (rc) {
-+                              cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
-+                                      rc);
-+                              return rc;
-+                      }
-+              } else {
-+                      /* Software closed-loop */
-+
-+                      /*
-+                       * Disable UP or DOWN interrupts when at ceiling or
-+                       * floor respectively.
-+                       */
-+                      if (new_volt == aggr_corner.floor_volt)
-+                              aggr_corner.irq_en &= ~CPR3_IRQ_DOWN;
-+                      if (new_volt == aggr_corner.ceiling_volt)
-+                              aggr_corner.irq_en &= ~CPR3_IRQ_UP;
-+
-+                      cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
-+                              CPR3_IRQ_UP | CPR3_IRQ_DOWN);
-+                      cpr3_write(ctrl, CPR3_REG_IRQ_EN, aggr_corner.irq_en);
-+              }
-+
-+              for (i = 0; i < ctrl->thread_count; i++) {
-+                      cpr3_regulator_set_target_quot(&ctrl->thread[i]);
-+
-+                      for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                              vreg = &ctrl->thread[i].vreg[j];
-+
-+                              if (vreg->vreg_enabled)
-+                                      vreg->last_closed_loop_corner
-+                                              = vreg->current_corner;
-+                      }
-+              }
-+
-+              if (ctrl->proc_clock_throttle) {
-+                      if (aggr_corner.ceiling_volt > aggr_corner.floor_volt
-+                          && (ctrl->use_hw_closed_loop
-+                                      || new_volt < aggr_corner.ceiling_volt))
-+                              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                                              ctrl->proc_clock_throttle);
-+                      else
-+                              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                                              CPR3_PD_THROTTLE_DISABLE);
-+              }
-+
-+              /*
-+               * Ensure that all CPR register writes complete before
-+               * re-enabling CPR loop operation.
-+               */
-+              wmb();
-+      } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
-+                 && ctrl->vdd_limit_regulator) {
-+              /* Set ceiling and floor limits in hardware */
-+              rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
-+                      aggr_corner.floor_volt,
-+                      aggr_corner.ceiling_volt);
-+              if (rc) {
-+                      cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+      }
-+
-+      ctrl->aggr_corner = aggr_corner;
-+
-+      if (ctrl->allow_core_count_adj || ctrl->allow_temp_adj
-+              || ctrl->allow_boost) {
-+              rc = cpr3_controller_program_sdelta(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to program sdelta, rc=%d\n", rc);
-+                      return rc;
-+              }
-+      }
-+
-+      /*
-+       * Only enable the CPR controller if it is possible to set more than
-+       * one vdd-supply voltage.
-+       */
-+      if (aggr_corner.ceiling_volt > aggr_corner.floor_volt &&
-+                      !aggr_corner.use_open_loop)
-+              cpr3_ctrl_loop_enable(ctrl);
-+
-+      ctrl->last_corner_was_closed_loop = ctrl->cpr_enabled;
-+      cpr3_debug(ctrl, "CPR configuration updated\n");
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_wait_for_idle() - wait for the CPR controller to no longer be
-+ *            busy
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @max_wait_ns:      Max wait time in nanoseconds
-+ *
-+ * Return: 0 on success or -ETIMEDOUT if the controller was still busy after
-+ *       the maximum delay time
-+ */
-+static int cpr3_regulator_wait_for_idle(struct cpr3_controller *ctrl,
-+                                      s64 max_wait_ns)
-+{
-+      ktime_t start, end;
-+      s64 time_ns;
-+      u32 reg;
-+
-+      /*
-+       * Ensure that all previous CPR register writes have completed before
-+       * checking the status register.
-+       */
-+      mb();
-+
-+      start = ktime_get();
-+      do {
-+              end = ktime_get();
-+              time_ns = ktime_to_ns(ktime_sub(end, start));
-+              if (time_ns > max_wait_ns) {
-+                      cpr3_err(ctrl, "CPR controller still busy after %lld us\n",
-+                              div_s64(time_ns, 1000));
-+                      return -ETIMEDOUT;
-+              }
-+              usleep_range(50, 100);
-+              reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
-+      } while (reg & CPR3_CPR_STATUS_BUSY_MASK);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cmp_int() - int comparison function to be passed into the sort() function
-+ *            which leads to ascending sorting
-+ * @a:                        First int value
-+ * @b:                        Second int value
-+ *
-+ * Return: >0 if a > b, 0 if a == b, <0 if a < b
-+ */
-+static int cmp_int(const void *a, const void *b)
-+{
-+      return *(int *)a - *(int *)b;
-+}
-+
-+/**
-+ * cpr3_regulator_measure_aging() - measure the quotient difference for the
-+ *            specified CPR aging sensor
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @aging_sensor:     Aging sensor to measure
-+ *
-+ * Note that vdd-supply must be configured to the aging reference voltage before
-+ * calling this function.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_measure_aging(struct cpr3_controller *ctrl,
-+                              struct cpr3_aging_sensor_info *aging_sensor)
-+{
-+      u32 mask, reg, result, quot_min, quot_max, sel_min, sel_max;
-+      u32 quot_min_scaled, quot_max_scaled;
-+      u32 gcnt, gcnt_ref, gcnt0_restore, gcnt1_restore, irq_restore;
-+      u32 ro_mask_restore, cont_dly_restore, up_down_dly_restore = 0;
-+      int quot_delta, quot_delta_scaled, quot_delta_scaled_sum;
-+      int *quot_delta_results;
-+      int rc, rc2, i, aging_measurement_count, filtered_count;
-+      bool is_aging_measurement;
-+
-+      quot_delta_results = kcalloc(CPR3_AGING_MEASUREMENT_ITERATIONS,
-+                      sizeof(*quot_delta_results), GFP_KERNEL);
-+      if (!quot_delta_results)
-+              return -ENOMEM;
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+                      kfree(quot_delta_results);
-+                      return rc;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      /* Enable up, down, and mid CPR interrupts */
-+      irq_restore = cpr3_read(ctrl, CPR3_REG_IRQ_EN);
-+      cpr3_write(ctrl, CPR3_REG_IRQ_EN,
-+                      CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
-+
-+      /* Ensure that the aging sensor is assigned to CPR thread 0 */
-+      cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id), 0);
-+
-+      /* Switch from HW to SW closed-loop if necessary */
-+      if (ctrl->supports_hw_closed_loop) {
-+              if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+                      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                              CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
-+                              CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
-+              } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+                      cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
-+                              CPR3_HW_CLOSED_LOOP_DISABLE);
-+              }
-+      }
-+
-+      /* Configure the GCNT for RO0 and RO1 that are used for aging */
-+      gcnt0_restore = cpr3_read(ctrl, CPR3_REG_GCNT(0));
-+      gcnt1_restore = cpr3_read(ctrl, CPR3_REG_GCNT(1));
-+      gcnt_ref = cpr3_regulator_get_gcnt(ctrl);
-+      gcnt = gcnt_ref * 3 / 2;
-+      cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt);
-+      cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt);
-+
-+      /* Unmask all RO's */
-+      ro_mask_restore = cpr3_read(ctrl, CPR3_REG_RO_MASK(0));
-+      cpr3_write(ctrl, CPR3_REG_RO_MASK(0), 0);
-+
-+      /*
-+       * Mask all sensors except for the one to measure and bypass all
-+       * sensors in collapsible domains.
-+       */
-+      for (i = 0; i <= ctrl->sensor_count / 32; i++) {
-+              mask = GENMASK(min(31, ctrl->sensor_count - i * 32), 0);
-+              if (aging_sensor->sensor_id / 32 >= i
-+                  && aging_sensor->sensor_id / 32 < (i + 1))
-+                      mask &= ~BIT(aging_sensor->sensor_id % 32);
-+              cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), mask);
-+              cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i),
-+                              aging_sensor->bypass_mask[i]);
-+      }
-+
-+      /* Set CPR loop delays to 0 us */
-+      if (ctrl->supports_hw_closed_loop
-+              && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              cont_dly_restore = cpr3_read(ctrl, CPR3_REG_CPR_TIMER_MID_CONT);
-+              up_down_dly_restore = cpr3_read(ctrl,
-+                                              CPR3_REG_CPR_TIMER_UP_DN_CONT);
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, 0);
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT, 0);
-+      } else {
-+              cont_dly_restore = cpr3_read(ctrl,
-+                                              CPR3_REG_CPR_TIMER_AUTO_CONT);
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, 0);
-+      }
-+
-+      /* Set count mode to all-at-once min with no repeat */
-+      cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
-+              CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
-+              CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN
-+                      << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
-+
-+      cpr3_ctrl_loop_enable(ctrl);
-+
-+      rc = cpr3_regulator_wait_for_idle(ctrl,
-+                                      CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
-+      if (rc)
-+              goto cleanup;
-+
-+      /* Set count mode to all-at-once aging */
-+      cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL, CPR3_CPR_CTL_COUNT_MODE_MASK,
-+                      CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE
-+                              << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
-+
-+      aging_measurement_count = 0;
-+      for (i = 0; i < CPR3_AGING_MEASUREMENT_ITERATIONS; i++) {
-+              /* Send CONT_NACK */
-+              cpr3_write(ctrl, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
-+
-+              rc = cpr3_regulator_wait_for_idle(ctrl,
-+                                      CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
-+              if (rc)
-+                      goto cleanup;
-+
-+              /* Check for PAGE_IS_AGE flag in status register */
-+              reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
-+              is_aging_measurement
-+                      = reg & CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK;
-+
-+              /* Read CPR measurement results */
-+              result = cpr3_read(ctrl, CPR3_REG_RESULT1(0));
-+              quot_min = (result & CPR3_RESULT1_QUOT_MIN_MASK)
-+                              >> CPR3_RESULT1_QUOT_MIN_SHIFT;
-+              quot_max = (result & CPR3_RESULT1_QUOT_MAX_MASK)
-+                              >> CPR3_RESULT1_QUOT_MAX_SHIFT;
-+              sel_min = (result & CPR3_RESULT1_RO_MIN_MASK)
-+                              >> CPR3_RESULT1_RO_MIN_SHIFT;
-+              sel_max = (result & CPR3_RESULT1_RO_MAX_MASK)
-+                              >> CPR3_RESULT1_RO_MAX_SHIFT;
-+
-+              /*
-+               * Scale the quotients so that they are equivalent to the fused
-+               * values.  This accounts for the difference in measurement
-+               * interval times.
-+               */
-+              quot_min_scaled = quot_min * (gcnt_ref + 1) / (gcnt + 1);
-+              quot_max_scaled = quot_max * (gcnt_ref + 1) / (gcnt + 1);
-+
-+              if (sel_max == 1) {
-+                      quot_delta = quot_max - quot_min;
-+                      quot_delta_scaled = quot_max_scaled - quot_min_scaled;
-+              } else {
-+                      quot_delta = quot_min - quot_max;
-+                      quot_delta_scaled = quot_min_scaled - quot_max_scaled;
-+              }
-+
-+              if (is_aging_measurement)
-+                      quot_delta_results[aging_measurement_count++]
-+                              = quot_delta_scaled;
-+
-+              cpr3_debug(ctrl, "aging results: page_is_age=%u, sel_min=%u, sel_max=%u, quot_min=%u, quot_max=%u, quot_delta=%d, quot_min_scaled=%u, quot_max_scaled=%u, quot_delta_scaled=%d\n",
-+                      is_aging_measurement, sel_min, sel_max, quot_min,
-+                      quot_max, quot_delta, quot_min_scaled, quot_max_scaled,
-+                      quot_delta_scaled);
-+      }
-+
-+      filtered_count
-+              = aging_measurement_count - CPR3_AGING_MEASUREMENT_FILTER * 2;
-+      if (filtered_count > 0) {
-+              sort(quot_delta_results, aging_measurement_count,
-+                      sizeof(*quot_delta_results), cmp_int, NULL);
-+
-+              quot_delta_scaled_sum = 0;
-+              for (i = 0; i < filtered_count; i++)
-+                      quot_delta_scaled_sum
-+                              += quot_delta_results[i
-+                                      + CPR3_AGING_MEASUREMENT_FILTER];
-+
-+              aging_sensor->measured_quot_diff
-+                      = quot_delta_scaled_sum / filtered_count;
-+              cpr3_info(ctrl, "average quotient delta=%d (count=%d)\n",
-+                      aging_sensor->measured_quot_diff,
-+                      filtered_count);
-+      } else {
-+              cpr3_err(ctrl, "%d aging measurements completed after %d iterations\n",
-+                      aging_measurement_count,
-+                      CPR3_AGING_MEASUREMENT_ITERATIONS);
-+              rc = -EBUSY;
-+      }
-+
-+cleanup:
-+      kfree(quot_delta_results);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc2 = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc2) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc2);
-+                      rc = rc2;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_restore);
-+
-+      cpr3_write(ctrl, CPR3_REG_RO_MASK(0), ro_mask_restore);
-+
-+      cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt0_restore);
-+      cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt1_restore);
-+
-+      if (ctrl->supports_hw_closed_loop
-+              && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly_restore);
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
-+                              up_down_dly_restore);
-+      } else {
-+              cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT,
-+                              cont_dly_restore);
-+      }
-+
-+      for (i = 0; i <= ctrl->sensor_count / 32; i++) {
-+              cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), 0);
-+              cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i), 0);
-+      }
-+
-+      cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
-+              CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
-+              (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
-+              | (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT));
-+
-+      cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id),
-+                      ctrl->sensor_owner[aging_sensor->sensor_id]);
-+
-+      cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
-+                      CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
-+
-+      if (ctrl->supports_hw_closed_loop) {
-+              if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+                      cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                              CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
-+                              ctrl->use_hw_closed_loop
-+                              ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
-+                              : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
-+              } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+                      cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
-+                              ctrl->use_hw_closed_loop
-+                              ? CPR3_HW_CLOSED_LOOP_ENABLE
-+                              : CPR3_HW_CLOSED_LOOP_DISABLE);
-+              }
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_regulator_readjust_volt_and_quot() - readjust the target quotients as
-+ *            well as the floor, ceiling, and open-loop voltages for the
-+ *            regulator by removing the old adjustment and adding the new one
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @old_adjust_volt:  Old aging adjustment voltage in microvolts
-+ * @new_adjust_volt:  New aging adjustment voltage in microvolts
-+ *
-+ * Also reset the cached closed loop voltage (last_volt) to equal the open-loop
-+ * voltage for each corner.
-+ *
-+ * Return: None
-+ */
-+static void cpr3_regulator_readjust_volt_and_quot(struct cpr3_regulator *vreg,
-+              int old_adjust_volt, int new_adjust_volt)
-+{
-+      unsigned long long temp;
-+      int i, j, old_volt, new_volt, rounded_volt;
-+
-+      if (!vreg->aging_allowed)
-+              return;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              temp = (unsigned long long)old_adjust_volt
-+                      * (unsigned long long)vreg->corner[i].aging_derate;
-+              do_div(temp, 1000);
-+              old_volt = temp;
-+
-+              temp = (unsigned long long)new_adjust_volt
-+                      * (unsigned long long)vreg->corner[i].aging_derate;
-+              do_div(temp, 1000);
-+              new_volt = temp;
-+
-+              old_volt = min(vreg->aging_max_adjust_volt, old_volt);
-+              new_volt = min(vreg->aging_max_adjust_volt, new_volt);
-+
-+              for (j = 0; j < CPR3_RO_COUNT; j++) {
-+                      if (vreg->corner[i].target_quot[j] != 0) {
-+                              vreg->corner[i].target_quot[j]
-+                                      += cpr3_quot_adjustment(
-+                                              vreg->corner[i].ro_scale[j],
-+                                              new_volt)
-+                                         - cpr3_quot_adjustment(
-+                                              vreg->corner[i].ro_scale[j],
-+                                              old_volt);
-+                      }
-+              }
-+
-+              rounded_volt = CPR3_ROUND(new_volt,
-+                                      vreg->thread->ctrl->step_volt);
-+
-+              if (!vreg->aging_allow_open_loop_adj)
-+                      rounded_volt = 0;
-+
-+              vreg->corner[i].ceiling_volt
-+                      = vreg->corner[i].unaged_ceiling_volt + rounded_volt;
-+              vreg->corner[i].ceiling_volt = min(vreg->corner[i].ceiling_volt,
-+                                            vreg->corner[i].abs_ceiling_volt);
-+              vreg->corner[i].floor_volt
-+                      = vreg->corner[i].unaged_floor_volt + rounded_volt;
-+              vreg->corner[i].floor_volt = min(vreg->corner[i].floor_volt,
-+                                              vreg->corner[i].ceiling_volt);
-+              vreg->corner[i].open_loop_volt
-+                      = vreg->corner[i].unaged_open_loop_volt + rounded_volt;
-+              vreg->corner[i].open_loop_volt
-+                      = min(vreg->corner[i].open_loop_volt,
-+                              vreg->corner[i].ceiling_volt);
-+
-+              vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
-+
-+              cpr3_debug(vreg, "corner %d: applying %d uV closed-loop and %d uV open-loop voltage margin adjustment\n",
-+                      i, new_volt, rounded_volt);
-+      }
-+}
-+
-+/**
-+ * cpr3_regulator_set_aging_ref_adjustment() - adjust target quotients for the
-+ *            regulators managed by this CPR controller to account for aging
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @ref_adjust_volt:  New aging reference adjustment voltage in microvolts to
-+ *                    apply to all regulators managed by this CPR controller
-+ *
-+ * The existing aging adjustment as defined by ctrl->aging_ref_adjust_volt is
-+ * first removed and then the adjustment is applied.  Lastly, the value of
-+ * ctrl->aging_ref_adjust_volt is updated to ref_adjust_volt.
-+ */
-+static void cpr3_regulator_set_aging_ref_adjustment(
-+              struct cpr3_controller *ctrl, int ref_adjust_volt)
-+{
-+      struct cpr3_regulator *vreg;
-+      int i, j;
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      cpr3_regulator_readjust_volt_and_quot(vreg,
-+                              ctrl->aging_ref_adjust_volt, ref_adjust_volt);
-+              }
-+      }
-+
-+      ctrl->aging_ref_adjust_volt = ref_adjust_volt;
-+}
-+
-+/**
-+ * cpr3_regulator_aging_adjust() - adjust the target quotients for regulators
-+ *            based on the output of CPR aging sensors
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_aging_adjust(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_regulator *vreg;
-+      struct cpr3_corner restore_aging_corner;
-+      struct cpr3_corner *corner;
-+      int *restore_current_corner;
-+      bool *restore_vreg_enabled;
-+      int i, j, id, rc, rc2, vreg_count, aging_volt, max_aging_volt = 0;
-+      u32 reg;
-+
-+      if (!ctrl->aging_required || !ctrl->cpr_enabled
-+          || ctrl->aggr_corner.ceiling_volt == 0
-+          || ctrl->aggr_corner.ceiling_volt > ctrl->aging_ref_volt)
-+              return 0;
-+
-+      for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      vreg_count++;
-+
-+                      if (vreg->aging_allowed && vreg->vreg_enabled
-+                          && vreg->current_corner > vreg->aging_corner)
-+                              return 0;
-+              }
-+      }
-+
-+      /* Verify that none of the aging sensors are currently masked. */
-+      for (i = 0; i < ctrl->aging_sensor_count; i++) {
-+              id = ctrl->aging_sensor[i].sensor_id;
-+              reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
-+              if (reg & BIT(id % 32))
-+                      return 0;
-+      }
-+
-+      /*
-+       * Verify that the aging possible register (if specified) has an
-+       * acceptable value.
-+       */
-+      if (ctrl->aging_possible_reg) {
-+              reg = readl_relaxed(ctrl->aging_possible_reg);
-+              reg &= ctrl->aging_possible_mask;
-+              if (reg != ctrl->aging_possible_val)
-+                      return 0;
-+      }
-+
-+      restore_current_corner = kcalloc(vreg_count,
-+                              sizeof(*restore_current_corner), GFP_KERNEL);
-+      restore_vreg_enabled = kcalloc(vreg_count,
-+                              sizeof(*restore_vreg_enabled), GFP_KERNEL);
-+      if (!restore_current_corner || !restore_vreg_enabled) {
-+              kfree(restore_current_corner);
-+              kfree(restore_vreg_enabled);
-+              return -ENOMEM;
-+      }
-+
-+      /* Force all regulators to the aging corner */
-+      for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+
-+                      restore_current_corner[vreg_count]
-+                              = vreg->current_corner;
-+                      restore_vreg_enabled[vreg_count]
-+                              = vreg->vreg_enabled;
-+
-+                      vreg->current_corner = vreg->aging_corner;
-+                      vreg->vreg_enabled = true;
-+              }
-+      }
-+
-+      /* Force one of the regulators to require the aging reference voltage */
-+      vreg = &ctrl->thread[0].vreg[0];
-+      corner = &vreg->corner[vreg->current_corner];
-+      restore_aging_corner = *corner;
-+      corner->ceiling_volt = ctrl->aging_ref_volt;
-+      corner->floor_volt = ctrl->aging_ref_volt;
-+      corner->open_loop_volt = ctrl->aging_ref_volt;
-+      corner->last_volt = ctrl->aging_ref_volt;
-+
-+      /* Skip last_volt caching */
-+      ctrl->last_corner_was_closed_loop = false;
-+
-+      /* Set the vdd supply voltage to the aging reference voltage */
-+      rc = _cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to force vdd-supply to the aging reference voltage=%d uV, rc=%d\n",
-+                      ctrl->aging_ref_volt, rc);
-+              goto cleanup;
-+      }
-+
-+      if (ctrl->aging_vdd_mode) {
-+              rc = regulator_set_mode(ctrl->vdd_regulator,
-+                                      ctrl->aging_vdd_mode);
-+              if (rc) {
-+                      cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
-+                              ctrl->aging_vdd_mode, rc);
-+                      goto cleanup;
-+              }
-+      }
-+
-+      /* Perform aging measurement on all aging sensors */
-+      for (i = 0; i < ctrl->aging_sensor_count; i++) {
-+              for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
-+                      rc = cpr3_regulator_measure_aging(ctrl,
-+                                      &ctrl->aging_sensor[i]);
-+                      if (!rc)
-+                              break;
-+              }
-+
-+              if (!rc) {
-+                      aging_volt =
-+                              cpr3_voltage_adjustment(
-+                                      ctrl->aging_sensor[i].ro_scale,
-+                                      ctrl->aging_sensor[i].measured_quot_diff
-+                                      - ctrl->aging_sensor[i].init_quot_diff);
-+                      max_aging_volt = max(max_aging_volt, aging_volt);
-+              } else {
-+                      cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
-+                              j, rc);
-+                      ctrl->aging_failed = true;
-+                      ctrl->aging_required = false;
-+                      goto cleanup;
-+              }
-+      }
-+
-+cleanup:
-+      vreg = &ctrl->thread[0].vreg[0];
-+      vreg->corner[vreg->current_corner] = restore_aging_corner;
-+
-+      for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      vreg->current_corner
-+                              = restore_current_corner[vreg_count];
-+                      vreg->vreg_enabled = restore_vreg_enabled[vreg_count];
-+              }
-+      }
-+
-+      kfree(restore_current_corner);
-+      kfree(restore_vreg_enabled);
-+
-+      /* Adjust the CPR target quotients according to the aging measurement */
-+      if (!rc) {
-+              cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
-+
-+              cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
-+                      ctrl->aging_ref_adjust_volt);
-+              ctrl->aging_succeeded = true;
-+              ctrl->aging_required = false;
-+      }
-+
-+      if (ctrl->aging_complete_vdd_mode) {
-+              rc = regulator_set_mode(ctrl->vdd_regulator,
-+                                      ctrl->aging_complete_vdd_mode);
-+              if (rc)
-+                      cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
-+                              ctrl->aging_complete_vdd_mode, rc);
-+      }
-+
-+      /* Skip last_volt caching */
-+      ctrl->last_corner_was_closed_loop = false;
-+
-+      /*
-+       * Restore vdd-supply to the voltage before the aging measurement and
-+       * restore the CPR3 controller hardware state.
-+       */
-+      rc2 = _cpr3_regulator_update_ctrl_state(ctrl);
-+
-+      /* Stop last_volt caching on for the next request */
-+      ctrl->last_corner_was_closed_loop = false;
-+
-+      return rc ? rc : rc2;
-+}
-+
-+/**
-+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
-+ *            to reflect the corners used by all CPR3 regulators as well as
-+ *            the CPR operating mode and perform aging adjustments if needed
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Note, CPR3 controller lock must be held by the caller.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = _cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc)
-+              return rc;
-+
-+      return cpr3_regulator_aging_adjust(ctrl);
-+}
-+
-+/**
-+ * cpr3_regulator_set_voltage() - set the voltage corner for the CPR3 regulator
-+ *                    associated with the regulator device
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ * @corner:           New voltage corner to set (offset by CPR3_CORNER_OFFSET)
-+ * @corner_max:               Maximum voltage corner allowed (offset by
-+ *                    CPR3_CORNER_OFFSET)
-+ * @selector:         Pointer which is filled with the selector value for the
-+ *                    corner
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.  The VDD voltage will not be
-+ * physically configured until both this function and cpr3_regulator_enable()
-+ * are called.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_set_voltage(struct regulator_dev *rdev,
-+              int corner, int corner_max, unsigned *selector)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      int rc = 0;
-+      int last_corner;
-+
-+      corner -= CPR3_CORNER_OFFSET;
-+      corner_max -= CPR3_CORNER_OFFSET;
-+      *selector = corner;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (!vreg->vreg_enabled) {
-+              vreg->current_corner = corner;
-+              cpr3_debug(vreg, "stored corner=%d\n", corner);
-+              goto done;
-+      } else if (vreg->current_corner == corner) {
-+              goto done;
-+      }
-+
-+      last_corner = vreg->current_corner;
-+      vreg->current_corner = corner;
-+
-+      if (vreg->cpr4_regulator_data != NULL)
-+              if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
-+                      vreg->cpr4_regulator_data->mem_acc_funcs->set_mem_acc(rdev);
-+
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
-+              vreg->current_corner = last_corner;
-+      }
-+
-+      if (vreg->cpr4_regulator_data != NULL)
-+              if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
-+                      vreg->cpr4_regulator_data->mem_acc_funcs->clear_mem_acc(rdev);
-+
-+      cpr3_debug(vreg, "set corner=%d\n", corner);
-+done:
-+      mutex_unlock(&ctrl->lock);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_handle_temp_open_loop_adjustment() - voltage based cold temperature
-+ *
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ * @is_cold:          Flag to denote enter/exit cold condition
-+ *
-+ * This function is adjusts voltage margin based on cold condition
-+ *
-+ * Return: 0 = success
-+ */
-+
-+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
-+                                                              bool is_cold)
-+{
-+      int i ,j, k, rc;
-+      struct cpr3_regulator *vreg;
-+
-+      mutex_lock(&ctrl->lock);
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      for (k = 0; k < vreg->corner_count; k++) {
-+                              vreg->corner[k].open_loop_volt = is_cold ?
-+                                  vreg->corner[k].cold_temp_open_loop_volt :
-+                                  vreg->corner[k].normal_temp_open_loop_volt;
-+                      }
-+              }
-+      }
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      mutex_unlock(&ctrl->lock);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
-+ *                    associated with the regulator device
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.
-+ *
-+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
-+ */
-+static int cpr3_regulator_get_voltage(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+
-+      if (vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
-+              return CPR3_CORNER_OFFSET;
-+      else
-+              return vreg->current_corner + CPR3_CORNER_OFFSET;
-+}
-+
-+/**
-+ * cpr3_regulator_list_voltage() - return the voltage corner mapped to the
-+ *                    specified selector
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ * @selector:         Regulator selector
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.
-+ *
-+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
-+ */
-+static int cpr3_regulator_list_voltage(struct regulator_dev *rdev,
-+              unsigned selector)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+
-+      if (selector < vreg->corner_count)
-+              return selector + CPR3_CORNER_OFFSET;
-+      else
-+              return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_is_enabled() - return the enable state of the CPR3 regulator
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.
-+ *
-+ * Return: true if regulator is enabled, false if regulator is disabled
-+ */
-+static int cpr3_regulator_is_enabled(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+
-+      return vreg->vreg_enabled;
-+}
-+
-+/**
-+ * cpr3_regulator_enable() - enable the CPR3 regulator
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_enable(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      int rc = 0;
-+
-+      if (vreg->vreg_enabled == true)
-+              return 0;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (ctrl->system_regulator) {
-+              rc = regulator_enable(ctrl->system_regulator);
-+              if (rc) {
-+                      cpr3_err(ctrl, "regulator_enable(system) failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      rc = regulator_enable(ctrl->vdd_regulator);
-+      if (rc) {
-+              cpr3_err(vreg, "regulator_enable(vdd) failed, rc=%d\n", rc);
-+              goto done;
-+      }
-+
-+      vreg->vreg_enabled = true;
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
-+              regulator_disable(ctrl->vdd_regulator);
-+              vreg->vreg_enabled = false;
-+              goto done;
-+      }
-+
-+      cpr3_debug(vreg, "Enabled\n");
-+done:
-+      mutex_unlock(&ctrl->lock);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_regulator_disable() - disable the CPR3 regulator
-+ * @rdev:             Regulator device pointer for the cpr3-regulator
-+ *
-+ * This function is passed as a callback function into the regulator ops that
-+ * are registered for each cpr3-regulator device.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_disable(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      int rc, rc2;
-+
-+      if (vreg->vreg_enabled == false)
-+              return 0;
-+
-+      mutex_lock(&ctrl->lock);
-+      rc = regulator_disable(ctrl->vdd_regulator);
-+      if (rc) {
-+              cpr3_err(vreg, "regulator_disable(vdd) failed, rc=%d\n", rc);
-+              goto done;
-+      }
-+
-+      vreg->vreg_enabled = false;
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
-+              rc2 = regulator_enable(ctrl->vdd_regulator);
-+              vreg->vreg_enabled = true;
-+              goto done;
-+      }
-+
-+      if (ctrl->system_regulator) {
-+              rc = regulator_disable(ctrl->system_regulator);
-+              if (rc) {
-+                      cpr3_err(ctrl, "regulator_disable(system) failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      cpr3_debug(vreg, "Disabled\n");
-+done:
-+      mutex_unlock(&ctrl->lock);
-+
-+      return rc;
-+}
-+
-+static struct regulator_ops cpr3_regulator_ops = {
-+      .enable                 = cpr3_regulator_enable,
-+      .disable                = cpr3_regulator_disable,
-+      .is_enabled             = cpr3_regulator_is_enabled,
-+      .set_voltage            = cpr3_regulator_set_voltage,
-+      .get_voltage            = cpr3_regulator_get_voltage,
-+      .list_voltage           = cpr3_regulator_list_voltage,
-+};
-+
-+/**
-+ * cpr3_print_result() - print CPR measurement results to the kernel log for
-+ *            debugging purposes
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: None
-+ */
-+static void cpr3_print_result(struct cpr3_thread *thread)
-+{
-+      struct cpr3_controller *ctrl = thread->ctrl;
-+      u32 result[3], busy, step_dn, step_up, error_steps, error, negative;
-+      u32 quot_min, quot_max, ro_min, ro_max, step_quot_min, step_quot_max;
-+      u32 sensor_min, sensor_max;
-+      char *sign;
-+
-+      result[0] = cpr3_read(ctrl, CPR3_REG_RESULT0(thread->thread_id));
-+      result[1] = cpr3_read(ctrl, CPR3_REG_RESULT1(thread->thread_id));
-+      result[2] = cpr3_read(ctrl, CPR3_REG_RESULT2(thread->thread_id));
-+
-+      busy = !!(result[0] & CPR3_RESULT0_BUSY_MASK);
-+      step_dn = !!(result[0] & CPR3_RESULT0_STEP_DN_MASK);
-+      step_up = !!(result[0] & CPR3_RESULT0_STEP_UP_MASK);
-+      error_steps = (result[0] & CPR3_RESULT0_ERROR_STEPS_MASK)
-+                      >> CPR3_RESULT0_ERROR_STEPS_SHIFT;
-+      error = (result[0] & CPR3_RESULT0_ERROR_MASK)
-+                      >> CPR3_RESULT0_ERROR_SHIFT;
-+      negative = !!(result[0] & CPR3_RESULT0_NEGATIVE_MASK);
-+
-+      quot_min = (result[1] & CPR3_RESULT1_QUOT_MIN_MASK)
-+                      >> CPR3_RESULT1_QUOT_MIN_SHIFT;
-+      quot_max = (result[1] & CPR3_RESULT1_QUOT_MAX_MASK)
-+                      >> CPR3_RESULT1_QUOT_MAX_SHIFT;
-+      ro_min = (result[1] & CPR3_RESULT1_RO_MIN_MASK)
-+                      >> CPR3_RESULT1_RO_MIN_SHIFT;
-+      ro_max = (result[1] & CPR3_RESULT1_RO_MAX_MASK)
-+                      >> CPR3_RESULT1_RO_MAX_SHIFT;
-+
-+      step_quot_min = (result[2] & CPR3_RESULT2_STEP_QUOT_MIN_MASK)
-+                      >> CPR3_RESULT2_STEP_QUOT_MIN_SHIFT;
-+      step_quot_max = (result[2] & CPR3_RESULT2_STEP_QUOT_MAX_MASK)
-+                      >> CPR3_RESULT2_STEP_QUOT_MAX_SHIFT;
-+      sensor_min = (result[2] & CPR3_RESULT2_SENSOR_MIN_MASK)
-+                      >> CPR3_RESULT2_SENSOR_MIN_SHIFT;
-+      sensor_max = (result[2] & CPR3_RESULT2_SENSOR_MAX_MASK)
-+                      >> CPR3_RESULT2_SENSOR_MAX_SHIFT;
-+
-+      sign = negative ? "-" : "";
-+      cpr3_debug(ctrl, "thread %u: busy=%u, step_dn=%u, step_up=%u, error_steps=%s%u, error=%s%u\n",
-+              thread->thread_id, busy, step_dn, step_up, sign, error_steps,
-+              sign, error);
-+      cpr3_debug(ctrl, "thread %u: quot_min=%u, quot_max=%u, ro_min=%u, ro_max=%u\n",
-+              thread->thread_id, quot_min, quot_max, ro_min, ro_max);
-+      cpr3_debug(ctrl, "thread %u: step_quot_min=%u, step_quot_max=%u, sensor_min=%u, sensor_max=%u\n",
-+              thread->thread_id, step_quot_min, step_quot_max, sensor_min,
-+              sensor_max);
-+}
-+
-+/**
-+ * cpr3_thread_busy() - returns if the specified CPR3 thread is busy taking
-+ *            a measurement
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: CPR3 busy status
-+ */
-+static bool cpr3_thread_busy(struct cpr3_thread *thread)
-+{
-+      u32 result;
-+
-+      result = cpr3_read(thread->ctrl, CPR3_REG_RESULT0(thread->thread_id));
-+
-+      return !!(result & CPR3_RESULT0_BUSY_MASK);
-+}
-+
-+/**
-+ * cpr3_irq_handler() - CPR interrupt handler callback function used for
-+ *            software closed-loop operation
-+ * @irq:              CPR interrupt number
-+ * @data:             Private data corresponding to the CPR3 controller
-+ *                    pointer
-+ *
-+ * This function increases or decreases the vdd supply voltage based upon the
-+ * CPR controller recommendation.
-+ *
-+ * Return: IRQ_HANDLED
-+ */
-+static irqreturn_t cpr3_irq_handler(int irq, void *data)
-+{
-+      struct cpr3_controller *ctrl = data;
-+      struct cpr3_corner *aggr = &ctrl->aggr_corner;
-+      u32 cont = CPR3_CONT_CMD_NACK;
-+      u32 reg_last_measurement = 0;
-+      struct cpr3_regulator *vreg;
-+      struct cpr3_corner *corner;
-+      unsigned long flags;
-+      int i, j, new_volt, last_volt, dynamic_floor_volt, rc;
-+      u32 irq_en, status, cpr_status, ctl;
-+      bool up, down;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (!ctrl->cpr_enabled) {
-+              cpr3_debug(ctrl, "CPR interrupt received but CPR is disabled\n");
-+              mutex_unlock(&ctrl->lock);
-+              return IRQ_HANDLED;
-+      } else if (ctrl->use_hw_closed_loop) {
-+              cpr3_debug(ctrl, "CPR interrupt received but CPR is using HW closed-loop\n");
-+              goto done;
-+      }
-+
-+      /*
-+       * CPR IRQ status checking and CPR controller disabling must happen
-+       * atomically and without invening delay in order to avoid an interrupt
-+       * storm caused by the handler racing with the CPR controller.
-+       */
-+      local_irq_save(flags);
-+      preempt_disable();
-+
-+      status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
-+      up = status & CPR3_IRQ_UP;
-+      down = status & CPR3_IRQ_DOWN;
-+
-+      if (!up && !down) {
-+              /*
-+               * Toggle the CPR controller off and then back on since the
-+               * hardware and software states are out of sync.  This condition
-+               * occurs after an aging measurement completes as the CPR IRQ
-+               * physically triggers during the aging measurement but the
-+               * handler is stuck waiting on the mutex lock.
-+               */
-+              cpr3_ctrl_loop_disable(ctrl);
-+
-+              local_irq_restore(flags);
-+              preempt_enable();
-+
-+              /* Wait for the loop disable write to complete */
-+              mb();
-+
-+              /* Wait for BUSY=1 and LOOP_EN=0 in CPR controller registers. */
-+              for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
-+                      cpr_status = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
-+                      ctl = cpr3_read(ctrl, CPR3_REG_CPR_CTL);
-+                      if (cpr_status & CPR3_CPR_STATUS_BUSY_MASK
-+                          && (ctl & CPR3_CPR_CTL_LOOP_EN_MASK)
-+                                      == CPR3_CPR_CTL_LOOP_DISABLE)
-+                              break;
-+                      udelay(10);
-+              }
-+              if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
-+                      cpr3_debug(ctrl, "CPR controller not disabled after %d us\n",
-+                              CPR3_REGISTER_WRITE_DELAY_US);
-+
-+              /* Clear interrupt status */
-+              cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
-+                      CPR3_IRQ_UP | CPR3_IRQ_DOWN);
-+
-+              /* Wait for the interrupt clearing write to complete */
-+              mb();
-+
-+              /* Wait for IRQ_STATUS register to be cleared. */
-+              for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
-+                      status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
-+                      if (!(status & (CPR3_IRQ_UP | CPR3_IRQ_DOWN)))
-+                              break;
-+                      udelay(10);
-+              }
-+              if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
-+                      cpr3_debug(ctrl, "CPR interrupts not cleared after %d us\n",
-+                              CPR3_REGISTER_WRITE_DELAY_US);
-+
-+              cpr3_ctrl_loop_enable(ctrl);
-+
-+              cpr3_debug(ctrl, "CPR interrupt received but no up or down status bit is set\n");
-+
-+              mutex_unlock(&ctrl->lock);
-+              return IRQ_HANDLED;
-+      } else if (up && down) {
-+              cpr3_debug(ctrl, "both up and down status bits set\n");
-+              /* The up flag takes precedence over the down flag. */
-+              down = false;
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop)
-+              reg_last_measurement
-+                      = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
-+      dynamic_floor_volt = cpr3_regulator_get_dynamic_floor_volt(ctrl,
-+                                                      reg_last_measurement);
-+
-+      local_irq_restore(flags);
-+      preempt_enable();
-+
-+      irq_en = aggr->irq_en;
-+      last_volt = aggr->last_volt;
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              if (cpr3_thread_busy(&ctrl->thread[i])) {
-+                      cpr3_debug(ctrl, "CPR thread %u busy when it should be waiting for SW cont\n",
-+                              ctrl->thread[i].thread_id);
-+                      goto done;
-+              }
-+      }
-+
-+      new_volt = up ? last_volt + ctrl->step_volt
-+                    : last_volt - ctrl->step_volt;
-+
-+      /* Re-enable UP/DOWN interrupt when its opposite is received. */
-+      irq_en |= up ? CPR3_IRQ_DOWN : CPR3_IRQ_UP;
-+
-+      if (new_volt > aggr->ceiling_volt) {
-+              new_volt = aggr->ceiling_volt;
-+              irq_en &= ~CPR3_IRQ_UP;
-+              cpr3_debug(ctrl, "limiting to ceiling=%d uV\n",
-+                      aggr->ceiling_volt);
-+      } else if (new_volt < aggr->floor_volt) {
-+              new_volt = aggr->floor_volt;
-+              irq_en &= ~CPR3_IRQ_DOWN;
-+              cpr3_debug(ctrl, "limiting to floor=%d uV\n", aggr->floor_volt);
-+      }
-+
-+      if (down && new_volt < dynamic_floor_volt) {
-+              /*
-+               * The vdd-supply voltage should not be decreased below the
-+               * dynamic floor voltage.  However, it is not necessary (and
-+               * counter productive) to force the voltage up to this level
-+               * if it happened to be below it since the closed-loop voltage
-+               * must have gotten there in a safe manner while the power
-+               * domains for the CPR3 regulator imposing the dynamic floor
-+               * were not bypassed.
-+               */
-+              new_volt = last_volt;
-+              irq_en &= ~CPR3_IRQ_DOWN;
-+              cpr3_debug(ctrl, "limiting to dynamic floor=%d uV\n",
-+                      dynamic_floor_volt);
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              cpr3_print_result(&ctrl->thread[i]);
-+
-+      cpr3_debug(ctrl, "%s: new_volt=%d uV, last_volt=%d uV\n",
-+              up ? "UP" : "DN", new_volt, last_volt);
-+
-+      if (ctrl->proc_clock_throttle && last_volt == aggr->ceiling_volt
-+          && new_volt < last_volt)
-+              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                              ctrl->proc_clock_throttle);
-+
-+      if (new_volt != last_volt) {
-+              rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
-+                                                    last_volt,
-+                                                    aggr);
-+              if (rc) {
-+                      cpr3_err(ctrl, "scale_vdd() failed to set vdd=%d uV, rc=%d\n",
-+                               new_volt, rc);
-+                      goto done;
-+              }
-+              cont = CPR3_CONT_CMD_ACK;
-+
-+              /*
-+               * Update the closed-loop voltage for all regulators managed
-+               * by this CPR controller.
-+               */
-+              for (i = 0; i < ctrl->thread_count; i++) {
-+                      for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                              vreg = &ctrl->thread[i].vreg[j];
-+                              cpr3_update_vreg_closed_loop_volt(vreg,
-+                                      new_volt, reg_last_measurement);
-+                      }
-+              }
-+      }
-+
-+      if (ctrl->proc_clock_throttle && new_volt == aggr->ceiling_volt)
-+              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                              CPR3_PD_THROTTLE_DISABLE);
-+
-+      corner = &ctrl->thread[0].vreg[0].corner[
-+                      ctrl->thread[0].vreg[0].current_corner];
-+
-+      if (irq_en != aggr->irq_en) {
-+              aggr->irq_en = irq_en;
-+              cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_en);
-+      }
-+
-+      aggr->last_volt = new_volt;
-+
-+done:
-+      /* Clear interrupt status */
-+      cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_UP | CPR3_IRQ_DOWN);
-+
-+      /* ACK or NACK the CPR controller */
-+      cpr3_write(ctrl, CPR3_REG_CONT_CMD, cont);
-+
-+      mutex_unlock(&ctrl->lock);
-+      return IRQ_HANDLED;
-+}
-+
-+/**
-+ * cpr3_ceiling_irq_handler() - CPR ceiling reached interrupt handler callback
-+ *            function used for hardware closed-loop operation
-+ * @irq:              CPR ceiling interrupt number
-+ * @data:             Private data corresponding to the CPR3 controller
-+ *                    pointer
-+ *
-+ * This function disables processor clock throttling and closed-loop operation
-+ * when the ceiling voltage is reached.
-+ *
-+ * Return: IRQ_HANDLED
-+ */
-+static irqreturn_t cpr3_ceiling_irq_handler(int irq, void *data)
-+{
-+      struct cpr3_controller *ctrl = data;
-+      int volt;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (!ctrl->cpr_enabled) {
-+              cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is disabled\n");
-+              goto done;
-+      } else if (!ctrl->use_hw_closed_loop) {
-+              cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is using SW closed-loop\n");
-+              goto done;
-+      }
-+
-+      volt = regulator_get_voltage(ctrl->vdd_regulator);
-+      if (volt < 0) {
-+              cpr3_err(ctrl, "could not get vdd voltage, rc=%d\n", volt);
-+              goto done;
-+      } else if (volt != ctrl->aggr_corner.ceiling_volt) {
-+              cpr3_debug(ctrl, "CPR ceiling interrupt received but vdd voltage: %d uV != ceiling voltage: %d uV\n",
-+                      volt, ctrl->aggr_corner.ceiling_volt);
-+              goto done;
-+      }
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              /*
-+               * Since the ceiling voltage has been reached, disable processor
-+               * clock throttling as well as CPR closed-loop operation.
-+               */
-+              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                              CPR3_PD_THROTTLE_DISABLE);
-+              cpr3_ctrl_loop_disable(ctrl);
-+              cpr3_debug(ctrl, "CPR closed-loop and throttling disabled\n");
-+      }
-+
-+done:
-+      mutex_unlock(&ctrl->lock);
-+      return IRQ_HANDLED;
-+}
-+
-+/**
-+ * cpr3_regulator_vreg_register() - register a regulator device for a CPR3
-+ *            regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function initializes all regulator framework related structures and then
-+ * calls regulator_register() for the CPR3 regulator.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_vreg_register(struct cpr3_regulator *vreg)
-+{
-+      struct regulator_config config = {};
-+      struct regulator_desc *rdesc;
-+      struct regulator_init_data *init_data;
-+      int rc;
-+
-+      init_data = of_get_regulator_init_data(vreg->thread->ctrl->dev,
-+                                              vreg->of_node, &vreg->rdesc);
-+      if (!init_data) {
-+              cpr3_err(vreg, "regulator init data is missing\n");
-+              return -EINVAL;
-+      }
-+
-+      init_data->constraints.input_uV = init_data->constraints.max_uV;
-+      rdesc                   = &vreg->rdesc;
-+      init_data->constraints.valid_ops_mask |=
-+              REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
-+      rdesc->ops = &cpr3_regulator_ops;
-+
-+      rdesc->n_voltages       = vreg->corner_count;
-+      rdesc->name             = init_data->constraints.name;
-+      rdesc->owner            = THIS_MODULE;
-+      rdesc->type             = REGULATOR_VOLTAGE;
-+
-+      config.dev              = vreg->thread->ctrl->dev;
-+      config.driver_data      = vreg;
-+      config.init_data        = init_data;
-+      config.of_node          = vreg->of_node;
-+
-+      vreg->rdev = regulator_register(vreg->thread->ctrl->dev, rdesc, &config);
-+      if (IS_ERR(vreg->rdev)) {
-+              rc = PTR_ERR(vreg->rdev);
-+              cpr3_err(vreg, "regulator_register failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      return 0;
-+}
-+
-+static int debugfs_int_set(void *data, u64 val)
-+{
-+      *(int *)data = val;
-+      return 0;
-+}
-+
-+static int debugfs_int_get(void *data, u64 *val)
-+{
-+      *val = *(int *)data;
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(fops_int, debugfs_int_get, debugfs_int_set, "%lld\n");
-+DEFINE_SIMPLE_ATTRIBUTE(fops_int_ro, debugfs_int_get, NULL, "%lld\n");
-+DEFINE_SIMPLE_ATTRIBUTE(fops_int_wo, NULL, debugfs_int_set, "%lld\n");
-+
-+/**
-+ * debugfs_create_int - create a debugfs file that is used to read and write a
-+ *            signed int value
-+ * @name:             Pointer to a string containing the name of the file to
-+ *                    create
-+ * @mode:             The permissions that the file should have
-+ * @parent:           Pointer to the parent dentry for this file.  This should
-+ *                    be a directory dentry if set.  If this parameter is
-+ *                    %NULL, then the file will be created in the root of the
-+ *                    debugfs filesystem.
-+ * @value:            Pointer to the variable that the file should read to and
-+ *                    write from
-+ *
-+ * This function creates a file in debugfs with the given name that
-+ * contains the value of the variable @value.  If the @mode variable is so
-+ * set, it can be read from, and written to.
-+ *
-+ * This function will return a pointer to a dentry if it succeeds.  This
-+ * pointer must be passed to the debugfs_remove() function when the file is
-+ * to be removed.  If an error occurs, %NULL will be returned.
-+ */
-+static struct dentry *debugfs_create_int(const char *name, umode_t mode,
-+                              struct dentry *parent, int *value)
-+{
-+      /* if there are no write bits set, make read only */
-+      if (!(mode & S_IWUGO))
-+              return debugfs_create_file(name, mode, parent, value,
-+                                         &fops_int_ro);
-+      /* if there are no read bits set, make write only */
-+      if (!(mode & S_IRUGO))
-+              return debugfs_create_file(name, mode, parent, value,
-+                                         &fops_int_wo);
-+
-+      return debugfs_create_file(name, mode, parent, value, &fops_int);
-+}
-+
-+static int debugfs_bool_get(void *data, u64 *val)
-+{
-+      *val = *(bool *)data;
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(fops_bool_ro, debugfs_bool_get, NULL, "%lld\n");
-+
-+/**
-+ * struct cpr3_debug_corner_info - data structure used by the
-+ *            cpr3_debugfs_create_corner_int function
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @index:            Pointer to the corner array index
-+ * @member_offset:    Offset in bytes from the beginning of struct cpr3_corner
-+ *                    to the beginning of the value to be read from
-+ * @corner:           Pointer to the CPR3 corner array
-+ */
-+struct cpr3_debug_corner_info {
-+      struct cpr3_regulator   *vreg;
-+      int                     *index;
-+      size_t                  member_offset;
-+      struct cpr3_corner      *corner;
-+};
-+
-+static int cpr3_debug_corner_int_get(void *data, u64 *val)
-+{
-+      struct cpr3_debug_corner_info *info = data;
-+      struct cpr3_controller *ctrl = info->vreg->thread->ctrl;
-+      int i;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      i = *info->index;
-+      if (i < 0)
-+              i = 0;
-+
-+      *val = *(int *)((char *)&info->vreg->corner[i] + info->member_offset);
-+
-+      mutex_unlock(&ctrl->lock);
-+
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_int_fops, cpr3_debug_corner_int_get,
-+                      NULL, "%lld\n");
-+
-+/**
-+ * cpr3_debugfs_create_corner_int - create a debugfs file that is used to read
-+ *            a signed int value out of a CPR3 regulator's corner array
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @name:             Pointer to a string containing the name of the file to
-+ *                    create
-+ * @mode:             The permissions that the file should have
-+ * @parent:           Pointer to the parent dentry for this file.  This should
-+ *                    be a directory dentry if set.  If this parameter is
-+ *                    %NULL, then the file will be created in the root of the
-+ *                    debugfs filesystem.
-+ * @index:            Pointer to the corner array index
-+ * @member_offset:    Offset in bytes from the beginning of struct cpr3_corner
-+ *                    to the beginning of the value to be read from
-+ *
-+ * This function creates a file in debugfs with the given name that
-+ * contains the value of the int type variable vreg->corner[index].member
-+ * where member_offset == offsetof(struct cpr3_corner, member).
-+ */
-+static struct dentry *cpr3_debugfs_create_corner_int(
-+              struct cpr3_regulator *vreg, const char *name, umode_t mode,
-+              struct dentry *parent, int *index, size_t member_offset)
-+{
-+      struct cpr3_debug_corner_info *info;
-+
-+      info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
-+      if (!info)
-+              return NULL;
-+
-+      info->vreg = vreg;
-+      info->index = index;
-+      info->member_offset = member_offset;
-+
-+      return debugfs_create_file(name, mode, parent, info,
-+                                 &cpr3_debug_corner_int_fops);
-+}
-+
-+static int cpr3_debug_quot_open(struct inode *inode, struct file *file)
-+{
-+      struct cpr3_debug_corner_info *info = inode->i_private;
-+      struct cpr3_thread *thread = info->vreg->thread;
-+      int size, i, pos;
-+      u32 *quot;
-+      char *buf;
-+
-+      /*
-+       * Max size:
-+       *  - 10 digits + ' ' or '\n' = 11 bytes per number
-+       *  - terminating '\0'
-+       */
-+      size = CPR3_RO_COUNT * 11;
-+      buf = kzalloc(size + 1, GFP_KERNEL);
-+      if (!buf)
-+              return -ENOMEM;
-+
-+      file->private_data = buf;
-+
-+      mutex_lock(&thread->ctrl->lock);
-+
-+      quot = info->corner[*info->index].target_quot;
-+
-+      for (i = 0, pos = 0; i < CPR3_RO_COUNT; i++)
-+              pos += scnprintf(buf + pos, size - pos, "%u%c",
-+                      quot[i], i < CPR3_RO_COUNT - 1 ? ' ' : '\n');
-+
-+      mutex_unlock(&thread->ctrl->lock);
-+
-+      return nonseekable_open(inode, file);
-+}
-+
-+static ssize_t cpr3_debug_quot_read(struct file *file, char __user *buf,
-+              size_t len, loff_t *ppos)
-+{
-+      return simple_read_from_buffer(buf, len, ppos, file->private_data,
-+                                      strlen(file->private_data));
-+}
-+
-+static int cpr3_debug_quot_release(struct inode *inode, struct file *file)
-+{
-+      kfree(file->private_data);
-+
-+      return 0;
-+}
-+
-+static const struct file_operations cpr3_debug_quot_fops = {
-+      .owner   = THIS_MODULE,
-+      .open    = cpr3_debug_quot_open,
-+      .release = cpr3_debug_quot_release,
-+      .read    = cpr3_debug_quot_read,
-+};
-+
-+/**
-+ * cpr3_regulator_debugfs_corner_add() - add debugfs files to expose
-+ *            configuration data for the CPR corner
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @corner_dir:               Pointer to the parent corner dentry for the new files
-+ * @index:            Pointer to the corner array index
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_debugfs_corner_add(struct cpr3_regulator *vreg,
-+              struct dentry *corner_dir, int *index)
-+{
-+      struct cpr3_debug_corner_info *info;
-+      struct dentry *temp;
-+
-+      temp = cpr3_debugfs_create_corner_int(vreg, "floor_volt", S_IRUGO,
-+              corner_dir, index, offsetof(struct cpr3_corner, floor_volt));
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "floor_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = cpr3_debugfs_create_corner_int(vreg, "ceiling_volt", S_IRUGO,
-+              corner_dir, index, offsetof(struct cpr3_corner, ceiling_volt));
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "ceiling_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = cpr3_debugfs_create_corner_int(vreg, "open_loop_volt", S_IRUGO,
-+              corner_dir, index,
-+              offsetof(struct cpr3_corner, open_loop_volt));
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "open_loop_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = cpr3_debugfs_create_corner_int(vreg, "last_volt", S_IRUGO,
-+              corner_dir, index, offsetof(struct cpr3_corner, last_volt));
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "last_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
-+      if (!info)
-+              return;
-+
-+      info->vreg = vreg;
-+      info->index = index;
-+      info->corner = vreg->corner;
-+
-+      temp = debugfs_create_file("target_quots", S_IRUGO, corner_dir,
-+                              info, &cpr3_debug_quot_fops);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "target_quots debugfs file creation failed\n");
-+              return;
-+      }
-+}
-+
-+/**
-+ * cpr3_debug_corner_index_set() - debugfs callback used to change the
-+ *            value of the CPR3 regulator debug_corner index
-+ * @data:             Pointer to private data which is equal to the CPR3
-+ *                    regulator pointer
-+ * @val:              New value for debug_corner
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_corner_index_set(void *data, u64 val)
-+{
-+      struct cpr3_regulator *vreg = data;
-+
-+      if (val < CPR3_CORNER_OFFSET || val > vreg->corner_count) {
-+              cpr3_err(vreg, "invalid corner index %llu; allowed values: %d-%d\n",
-+                      val, CPR3_CORNER_OFFSET, vreg->corner_count);
-+              return -EINVAL;
-+      }
-+
-+      mutex_lock(&vreg->thread->ctrl->lock);
-+      vreg->debug_corner = val - CPR3_CORNER_OFFSET;
-+      mutex_unlock(&vreg->thread->ctrl->lock);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_debug_corner_index_get() - debugfs callback used to retrieve
-+ *            the value of the CPR3 regulator debug_corner index
-+ * @data:             Pointer to private data which is equal to the CPR3
-+ *                    regulator pointer
-+ * @val:              Output parameter written with the value of
-+ *                    debug_corner
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_corner_index_get(void *data, u64 *val)
-+{
-+      struct cpr3_regulator *vreg = data;
-+
-+      *val = vreg->debug_corner + CPR3_CORNER_OFFSET;
-+
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_index_fops,
-+                      cpr3_debug_corner_index_get,
-+                      cpr3_debug_corner_index_set,
-+                      "%llu\n");
-+
-+/**
-+ * cpr3_debug_current_corner_index_get() - debugfs callback used to retrieve
-+ *            the value of the CPR3 regulator current_corner index
-+ * @data:             Pointer to private data which is equal to the CPR3
-+ *                    regulator pointer
-+ * @val:              Output parameter written with the value of
-+ *                    current_corner
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_current_corner_index_get(void *data, u64 *val)
-+{
-+      struct cpr3_regulator *vreg = data;
-+
-+      *val = vreg->current_corner + CPR3_CORNER_OFFSET;
-+
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_current_corner_index_fops,
-+                      cpr3_debug_current_corner_index_get,
-+                      NULL, "%llu\n");
-+
-+/**
-+ * cpr3_regulator_debugfs_vreg_add() - add debugfs files to expose configuration
-+ *            data for the CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @thread_dir                CPR3 thread debugfs directory handle
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_debugfs_vreg_add(struct cpr3_regulator *vreg,
-+                              struct dentry *thread_dir)
-+{
-+      struct dentry *temp, *corner_dir, *vreg_dir;
-+
-+      vreg_dir = debugfs_create_dir(vreg->name, thread_dir);
-+      if (IS_ERR_OR_NULL(vreg_dir)) {
-+              cpr3_err(vreg, "%s debugfs directory creation failed\n",
-+                      vreg->name);
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("speed_bin_fuse", S_IRUGO, vreg_dir,
-+                                &vreg->speed_bin_fuse);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "speed_bin_fuse debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("cpr_rev_fuse", S_IRUGO, vreg_dir,
-+                                &vreg->cpr_rev_fuse);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "cpr_rev_fuse debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("fuse_combo", S_IRUGO, vreg_dir,
-+                                &vreg->fuse_combo);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "fuse_combo debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("corner_count", S_IRUGO, vreg_dir,
-+                                &vreg->corner_count);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "corner_count debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      corner_dir = debugfs_create_dir("corner", vreg_dir);
-+      if (IS_ERR_OR_NULL(corner_dir)) {
-+              cpr3_err(vreg, "corner debugfs directory creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_file("index", S_IRUGO | S_IWUSR, corner_dir,
-+                              vreg, &cpr3_debug_corner_index_fops);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "index debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
-+                                      &vreg->debug_corner);
-+
-+      corner_dir = debugfs_create_dir("current_corner", vreg_dir);
-+      if (IS_ERR_OR_NULL(corner_dir)) {
-+              cpr3_err(vreg, "current_corner debugfs directory creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_file("index", S_IRUGO, corner_dir,
-+                              vreg, &cpr3_debug_current_corner_index_fops);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(vreg, "index debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
-+                                        &vreg->current_corner);
-+}
-+
-+/**
-+ * cpr3_regulator_debugfs_thread_add() - add debugfs files to expose
-+ *            configuration data for the CPR thread
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_debugfs_thread_add(struct cpr3_thread *thread)
-+{
-+      struct cpr3_controller *ctrl = thread->ctrl;
-+      struct dentry *aggr_dir, *temp, *thread_dir;
-+      struct cpr3_debug_corner_info *info;
-+      char buf[20];
-+      int *index;
-+      int i;
-+
-+      scnprintf(buf, sizeof(buf), "thread%u", thread->thread_id);
-+      thread_dir = debugfs_create_dir(buf, thread->ctrl->debugfs);
-+      if (IS_ERR_OR_NULL(thread_dir)) {
-+              cpr3_err(ctrl, "thread %u %s debugfs directory creation failed\n",
-+                      thread->thread_id, buf);
-+              return;
-+      }
-+
-+      aggr_dir = debugfs_create_dir("max_aggregated_params", thread_dir);
-+      if (IS_ERR_OR_NULL(aggr_dir)) {
-+              cpr3_err(ctrl, "thread %u max_aggregated_params debugfs directory creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
-+                                &thread->aggr_corner.floor_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread %u aggr floor_volt debugfs file creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
-+                                &thread->aggr_corner.ceiling_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread %u aggr ceiling_volt debugfs file creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
-+                                &thread->aggr_corner.open_loop_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread %u aggr open_loop_volt debugfs file creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
-+                                &thread->aggr_corner.last_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread %u aggr last_volt debugfs file creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      info = devm_kzalloc(thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
-+      index = devm_kzalloc(thread->ctrl->dev, sizeof(*index), GFP_KERNEL);
-+      if (!info || !index)
-+              return;
-+      *index = 0;
-+      info->vreg = &thread->vreg[0];
-+      info->index = index;
-+      info->corner = &thread->aggr_corner;
-+
-+      temp = debugfs_create_file("target_quots", S_IRUGO, aggr_dir,
-+                              info, &cpr3_debug_quot_fops);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread %u target_quots debugfs file creation failed\n",
-+                      thread->thread_id);
-+              return;
-+      }
-+
-+      for (i = 0; i < thread->vreg_count; i++)
-+              cpr3_regulator_debugfs_vreg_add(&thread->vreg[i], thread_dir);
-+}
-+
-+/**
-+ * cpr3_debug_closed_loop_enable_set() - debugfs callback used to change the
-+ *            value of the CPR controller cpr_allowed_sw flag which enables or
-+ *            disables closed-loop operation
-+ * @data:             Pointer to private data which is equal to the CPR
-+ *                    controller pointer
-+ * @val:              New value for cpr_allowed_sw
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_closed_loop_enable_set(void *data, u64 val)
-+{
-+      struct cpr3_controller *ctrl = data;
-+      bool enable = !!val;
-+      int rc;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (ctrl->cpr_allowed_sw == enable)
-+              goto done;
-+
-+      if (enable && !ctrl->cpr_allowed_hw) {
-+              cpr3_err(ctrl, "CPR closed-loop operation is not allowed\n");
-+              goto done;
-+      }
-+
-+      ctrl->cpr_allowed_sw = enable;
-+
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not change CPR enable state=%u, rc=%d\n",
-+                       enable, rc);
-+              goto done;
-+      }
-+
-+      if (ctrl->proc_clock_throttle && !ctrl->cpr_enabled) {
-+              rc = cpr3_clock_enable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "clock enable failed, rc=%d\n",
-+                               rc);
-+                      goto done;
-+              }
-+              ctrl->cpr_enabled = true;
-+
-+              cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
-+                         CPR3_PD_THROTTLE_DISABLE);
-+
-+              cpr3_clock_disable(ctrl);
-+              ctrl->cpr_enabled = false;
-+      }
-+
-+      cpr3_debug(ctrl, "closed-loop=%s\n", enable ? "enabled" : "disabled");
-+done:
-+      mutex_unlock(&ctrl->lock);
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_debug_closed_loop_enable_get() - debugfs callback used to retrieve
-+ *            the value of the CPR controller cpr_allowed_sw flag which
-+ *            indicates if closed-loop operation is enabled
-+ * @data:             Pointer to private data which is equal to the CPR
-+ *                    controller pointer
-+ * @val:              Output parameter written with the value of
-+ *                    cpr_allowed_sw
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_closed_loop_enable_get(void *data, u64 *val)
-+{
-+      struct cpr3_controller *ctrl = data;
-+
-+      *val = ctrl->cpr_allowed_sw;
-+
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_closed_loop_enable_fops,
-+                      cpr3_debug_closed_loop_enable_get,
-+                      cpr3_debug_closed_loop_enable_set,
-+                      "%llu\n");
-+
-+/**
-+ * cpr3_debug_hw_closed_loop_enable_set() - debugfs callback used to change the
-+ *            value of the CPR controller use_hw_closed_loop flag which
-+ *            switches between software closed-loop and hardware closed-loop
-+ *            operation for CPR3 and CPR4 controllers and between open-loop
-+ *            and full hardware closed-loop operation for CPRh controllers.
-+ * @data:             Pointer to private data which is equal to the CPR
-+ *                    controller pointer
-+ * @val:              New value for use_hw_closed_loop
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_hw_closed_loop_enable_set(void *data, u64 val)
-+{
-+      struct cpr3_controller *ctrl = data;
-+      bool use_hw_closed_loop = !!val;
-+      struct cpr3_regulator *vreg;
-+      bool cpr_enabled;
-+      int i, j, k, rc;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (ctrl->use_hw_closed_loop == use_hw_closed_loop)
-+              goto done;
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      ctrl->use_hw_closed_loop = use_hw_closed_loop;
-+
-+      cpr_enabled = ctrl->cpr_enabled;
-+
-+      /* Ensure that CPR clocks are enabled before writing to registers. */
-+      if (!cpr_enabled) {
-+              rc = cpr3_clock_enable(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
-+                      goto done;
-+              }
-+              ctrl->cpr_enabled = true;
-+      }
-+
-+      if (ctrl->use_hw_closed_loop)
-+              cpr3_write(ctrl, CPR3_REG_IRQ_EN, 0);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
-+                      CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
-+                      ctrl->use_hw_closed_loop
-+                      ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
-+                      : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
-+      } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
-+                      ctrl->use_hw_closed_loop
-+                      ? CPR3_HW_CLOSED_LOOP_ENABLE
-+                      : CPR3_HW_CLOSED_LOOP_DISABLE);
-+      }
-+
-+      /* Turn off CPR clocks if they were off before this function call. */
-+      if (!cpr_enabled) {
-+              cpr3_clock_disable(ctrl);
-+              ctrl->cpr_enabled = false;
-+      }
-+
-+      if (ctrl->use_hw_closed_loop && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              rc = regulator_enable(ctrl->vdd_limit_regulator);
-+              if (rc) {
-+                      cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      } else if (!ctrl->use_hw_closed_loop
-+                      && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              rc = regulator_disable(ctrl->vdd_limit_regulator);
-+              if (rc) {
-+                      cpr3_err(ctrl, "CPR limit regulator disable failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      /*
-+       * Due to APM and mem-acc floor restriction constraints,
-+       * the closed-loop voltage may be different when using
-+       * software closed-loop vs hardware closed-loop.  Therefore,
-+       * reset the cached closed-loop voltage for all corners to the
-+       * corresponding open-loop voltage when switching between
-+       * SW and HW closed-loop mode.
-+       */
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      for (k = 0; k < vreg->corner_count; k++)
-+                              vreg->corner[k].last_volt
-+                              = vreg->corner[k].open_loop_volt;
-+              }
-+      }
-+
-+      /* Skip last_volt caching */
-+      ctrl->last_corner_was_closed_loop = false;
-+
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not change CPR HW closed-loop enable state=%u, rc=%d\n",
-+                       use_hw_closed_loop, rc);
-+              goto done;
-+      }
-+
-+      cpr3_debug(ctrl, "CPR mode=%s\n",
-+                 use_hw_closed_loop ?
-+                 "HW closed-loop" : "SW closed-loop");
-+done:
-+      mutex_unlock(&ctrl->lock);
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_debug_hw_closed_loop_enable_get() - debugfs callback used to retrieve
-+ *            the value of the CPR controller use_hw_closed_loop flag which
-+ *            indicates if hardware closed-loop operation is being used in
-+ *            place of software closed-loop operation
-+ * @data:             Pointer to private data which is equal to the CPR
-+ *                    controller pointer
-+ * @val:              Output parameter written with the value of
-+ *                    use_hw_closed_loop
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_hw_closed_loop_enable_get(void *data, u64 *val)
-+{
-+      struct cpr3_controller *ctrl = data;
-+
-+      *val = ctrl->use_hw_closed_loop;
-+
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_hw_closed_loop_enable_fops,
-+                      cpr3_debug_hw_closed_loop_enable_get,
-+                      cpr3_debug_hw_closed_loop_enable_set,
-+                      "%llu\n");
-+
-+/**
-+ * cpr3_debug_trigger_aging_measurement_set() - debugfs callback used to trigger
-+ *            another CPR measurement
-+ * @data:             Pointer to private data which is equal to the CPR
-+ *                    controller pointer
-+ * @val:              Unused
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_debug_trigger_aging_measurement_set(void *data, u64 val)
-+{
-+      struct cpr3_controller *ctrl = data;
-+      int rc;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
-+      ctrl->aging_required = true;
-+      ctrl->aging_succeeded = false;
-+      ctrl->aging_failed = false;
-+
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not update the CPR controller state, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+done:
-+      mutex_unlock(&ctrl->lock);
-+      return 0;
-+}
-+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_trigger_aging_measurement_fops,
-+                      NULL,
-+                      cpr3_debug_trigger_aging_measurement_set,
-+                      "%llu\n");
-+
-+/**
-+ * cpr3_regulator_debugfs_ctrl_add() - add debugfs files to expose configuration
-+ *            data for the CPR controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_debugfs_ctrl_add(struct cpr3_controller *ctrl)
-+{
-+      struct dentry *temp, *aggr_dir;
-+      int i;
-+
-+      /* Add cpr3-regulator base directory if it isn't present already. */
-+      if (cpr3_debugfs_base == NULL) {
-+              cpr3_debugfs_base = debugfs_create_dir("cpr3-regulator", NULL);
-+              if (IS_ERR_OR_NULL(cpr3_debugfs_base)) {
-+                      cpr3_err(ctrl, "cpr3-regulator debugfs base directory creation failed\n");
-+                      cpr3_debugfs_base = NULL;
-+                      return;
-+              }
-+      }
-+
-+      ctrl->debugfs = debugfs_create_dir(ctrl->name, cpr3_debugfs_base);
-+      if (IS_ERR_OR_NULL(ctrl->debugfs)) {
-+              cpr3_err(ctrl, "cpr3-regulator controller debugfs directory creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_file("cpr_closed_loop_enable", S_IRUGO | S_IWUSR,
-+                                      ctrl->debugfs, ctrl,
-+                                      &cpr3_debug_closed_loop_enable_fops);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "cpr_closed_loop_enable debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop) {
-+              temp = debugfs_create_file("use_hw_closed_loop",
-+                                      S_IRUGO | S_IWUSR, ctrl->debugfs, ctrl,
-+                                      &cpr3_debug_hw_closed_loop_enable_fops);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "use_hw_closed_loop debugfs file creation failed\n");
-+                      return;
-+              }
-+      }
-+
-+      temp = debugfs_create_int("thread_count", S_IRUGO, ctrl->debugfs,
-+                                &ctrl->thread_count);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "thread_count debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      if (ctrl->apm) {
-+              temp = debugfs_create_int("apm_threshold_volt", S_IRUGO,
-+                              ctrl->debugfs, &ctrl->apm_threshold_volt);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "apm_threshold_volt debugfs file creation failed\n");
-+                      return;
-+              }
-+      }
-+
-+      if (ctrl->aging_required || ctrl->aging_succeeded
-+          || ctrl->aging_failed) {
-+              temp = debugfs_create_int("aging_adj_volt", S_IRUGO,
-+                              ctrl->debugfs, &ctrl->aging_ref_adjust_volt);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "aging_adj_volt debugfs file creation failed\n");
-+                      return;
-+              }
-+
-+              temp = debugfs_create_file("aging_succeeded", S_IRUGO,
-+                      ctrl->debugfs, &ctrl->aging_succeeded, &fops_bool_ro);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "aging_succeeded debugfs file creation failed\n");
-+                      return;
-+              }
-+
-+              temp = debugfs_create_file("aging_failed", S_IRUGO,
-+                      ctrl->debugfs, &ctrl->aging_failed, &fops_bool_ro);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "aging_failed debugfs file creation failed\n");
-+                      return;
-+              }
-+
-+              temp = debugfs_create_file("aging_trigger", S_IWUSR,
-+                      ctrl->debugfs, ctrl,
-+                      &cpr3_debug_trigger_aging_measurement_fops);
-+              if (IS_ERR_OR_NULL(temp)) {
-+                      cpr3_err(ctrl, "aging_trigger debugfs file creation failed\n");
-+                      return;
-+              }
-+      }
-+
-+      aggr_dir = debugfs_create_dir("max_aggregated_voltages", ctrl->debugfs);
-+      if (IS_ERR_OR_NULL(aggr_dir)) {
-+              cpr3_err(ctrl, "max_aggregated_voltages debugfs directory creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
-+                                &ctrl->aggr_corner.floor_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "aggr floor_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
-+                                &ctrl->aggr_corner.ceiling_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "aggr ceiling_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
-+                                &ctrl->aggr_corner.open_loop_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "aggr open_loop_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
-+                                &ctrl->aggr_corner.last_volt);
-+      if (IS_ERR_OR_NULL(temp)) {
-+              cpr3_err(ctrl, "aggr last_volt debugfs file creation failed\n");
-+              return;
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              cpr3_regulator_debugfs_thread_add(&ctrl->thread[i]);
-+}
-+
-+/**
-+ * cpr3_regulator_debugfs_ctrl_remove() - remove debugfs files for the CPR
-+ *            controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Note, this function must be called after the controller has been removed from
-+ * cpr3_controller_list and while the cpr3_controller_list_mutex lock is held.
-+ *
-+ * Return: none
-+ */
-+static void cpr3_regulator_debugfs_ctrl_remove(struct cpr3_controller *ctrl)
-+{
-+      if (list_empty(&cpr3_controller_list)) {
-+              debugfs_remove_recursive(cpr3_debugfs_base);
-+              cpr3_debugfs_base = NULL;
-+      } else {
-+              debugfs_remove_recursive(ctrl->debugfs);
-+      }
-+}
-+
-+/**
-+ * cpr3_regulator_init_ctrl_data() - performs initialization of CPR controller
-+ *                                    elements
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_init_ctrl_data(struct cpr3_controller *ctrl)
-+{
-+      /* Read the initial vdd voltage from hardware. */
-+      ctrl->aggr_corner.last_volt
-+              = regulator_get_voltage(ctrl->vdd_regulator);
-+      if (ctrl->aggr_corner.last_volt < 0) {
-+              cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
-+                              ctrl->aggr_corner.last_volt);
-+              return ctrl->aggr_corner.last_volt;
-+      }
-+      ctrl->aggr_corner.open_loop_volt = ctrl->aggr_corner.last_volt;
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_init_vreg_data() - performs initialization of common CPR3
-+ *            regulator elements and validate aging configurations
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_init_vreg_data(struct cpr3_regulator *vreg)
-+{
-+      int i, j;
-+      bool init_aging;
-+
-+      vreg->current_corner = CPR3_REGULATOR_CORNER_INVALID;
-+      vreg->last_closed_loop_corner = CPR3_REGULATOR_CORNER_INVALID;
-+
-+      init_aging = vreg->aging_allowed && vreg->thread->ctrl->aging_required;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
-+              vreg->corner[i].irq_en = CPR3_IRQ_UP | CPR3_IRQ_DOWN;
-+
-+              vreg->corner[i].ro_mask = 0;
-+              for (j = 0; j < CPR3_RO_COUNT; j++) {
-+                      if (vreg->corner[i].target_quot[j] == 0)
-+                              vreg->corner[i].ro_mask |= BIT(j);
-+              }
-+
-+              if (init_aging) {
-+                      vreg->corner[i].unaged_floor_volt
-+                              = vreg->corner[i].floor_volt;
-+                      vreg->corner[i].unaged_ceiling_volt
-+                              = vreg->corner[i].ceiling_volt;
-+                      vreg->corner[i].unaged_open_loop_volt
-+                              = vreg->corner[i].open_loop_volt;
-+              }
-+
-+              if (vreg->aging_allowed) {
-+                      if (vreg->corner[i].unaged_floor_volt <= 0) {
-+                              cpr3_err(vreg, "invalid unaged_floor_volt[%d] = %d\n",
-+                                      i, vreg->corner[i].unaged_floor_volt);
-+                              return -EINVAL;
-+                      }
-+                      if (vreg->corner[i].unaged_ceiling_volt <= 0) {
-+                              cpr3_err(vreg, "invalid unaged_ceiling_volt[%d] = %d\n",
-+                                      i, vreg->corner[i].unaged_ceiling_volt);
-+                              return -EINVAL;
-+                      }
-+                      if (vreg->corner[i].unaged_open_loop_volt <= 0) {
-+                              cpr3_err(vreg, "invalid unaged_open_loop_volt[%d] = %d\n",
-+                                    i, vreg->corner[i].unaged_open_loop_volt);
-+                              return -EINVAL;
-+                      }
-+              }
-+      }
-+
-+      if (vreg->aging_allowed && vreg->corner[vreg->aging_corner].ceiling_volt
-+          > vreg->thread->ctrl->aging_ref_volt) {
-+              cpr3_err(vreg, "aging corner %d ceiling voltage = %d > aging ref voltage = %d uV\n",
-+                      vreg->aging_corner,
-+                      vreg->corner[vreg->aging_corner].ceiling_volt,
-+                      vreg->thread->ctrl->aging_ref_volt);
-+              return -EINVAL;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_suspend() - perform common required CPR3 power down steps
-+ *            before the system enters suspend
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+                      mutex_unlock(&ctrl->lock);
-+                      return rc;
-+              }
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      rc = cpr3_closed_loop_disable(ctrl);
-+      if (rc)
-+              cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
-+
-+      ctrl->cpr_suspended = true;
-+
-+      mutex_unlock(&ctrl->lock);
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_resume() - perform common required CPR3 power up steps after
-+ *            the system resumes from suspend
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_regulator_resume(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      mutex_lock(&ctrl->lock);
-+
-+      ctrl->cpr_suspended = false;
-+      rc = cpr3_regulator_update_ctrl_state(ctrl);
-+      if (rc)
-+              cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
-+
-+      mutex_unlock(&ctrl->lock);
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_regulator_validate_controller() - verify the data passed in via the
-+ *            cpr3_controller data structure
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_regulator_validate_controller(struct cpr3_controller *ctrl)
-+{
-+      struct cpr3_thread *thread;
-+      struct cpr3_regulator *vreg;
-+      int i, j, allow_boost_vreg_count = 0;
-+
-+      if (!ctrl->vdd_regulator) {
-+              cpr3_err(ctrl, "vdd regulator missing\n");
-+              return -EINVAL;
-+      } else if (ctrl->sensor_count <= 0
-+                 || ctrl->sensor_count > CPR3_MAX_SENSOR_COUNT) {
-+              cpr3_err(ctrl, "invalid CPR sensor count=%d\n",
-+                      ctrl->sensor_count);
-+              return -EINVAL;
-+      } else if (!ctrl->sensor_owner) {
-+              cpr3_err(ctrl, "CPR sensor ownership table missing\n");
-+              return -EINVAL;
-+      }
-+
-+      if (ctrl->aging_required) {
-+              for (i = 0; i < ctrl->aging_sensor_count; i++) {
-+                      if (ctrl->aging_sensor[i].sensor_id
-+                          >= ctrl->sensor_count) {
-+                              cpr3_err(ctrl, "aging_sensor[%d] id=%u is not in the value range 0-%d",
-+                                      i, ctrl->aging_sensor[i].sensor_id,
-+                                      ctrl->sensor_count - 1);
-+                              return -EINVAL;
-+                      }
-+              }
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              thread = &ctrl->thread[i];
-+              for (j = 0; j < thread->vreg_count; j++) {
-+                      vreg = &thread->vreg[j];
-+                      if (vreg->allow_boost)
-+                              allow_boost_vreg_count++;
-+              }
-+      }
-+
-+      if (allow_boost_vreg_count > 1) {
-+              /*
-+               * Boost feature is not allowed to be used for more
-+               * than one CPR3 regulator of a CPR3 controller.
-+               */
-+              cpr3_err(ctrl, "Boost feature is enabled for more than one regulator\n");
-+              return -EINVAL;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_panic_callback() - panic notification callback function. This function
-+ *            is invoked when a kernel panic occurs.
-+ * @nfb:      Notifier block pointer of CPR3 controller
-+ * @event:    Value passed unmodified to notifier function
-+ * @data:     Pointer passed unmodified to notifier function
-+ *
-+ * Return: NOTIFY_OK
-+ */
-+static int cpr3_panic_callback(struct notifier_block *nfb,
-+                      unsigned long event, void *data)
-+{
-+      struct cpr3_controller *ctrl = container_of(nfb,
-+                              struct cpr3_controller, panic_notifier);
-+      struct cpr3_panic_regs_info *regs_info = ctrl->panic_regs_info;
-+      struct cpr3_reg_info *reg;
-+      int i = 0;
-+
-+      for (i = 0; i < regs_info->reg_count; i++) {
-+              reg = &(regs_info->regs[i]);
-+              reg->value = readl_relaxed(reg->virt_addr);
-+              pr_err("%s[0x%08x] = 0x%08x\n", reg->name, reg->addr,
-+                      reg->value);
-+      }
-+      /*
-+       * Barrier to ensure that the information has been updated in the
-+       * structure.
-+       */
-+      mb();
-+
-+      return NOTIFY_OK;
-+}
-+
-+/**
-+ * cpr3_regulator_register() - register the regulators for a CPR3 controller and
-+ *            perform CPR hardware initialization
-+ * @pdev:             Platform device pointer for the CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_regulator_register(struct platform_device *pdev,
-+                      struct cpr3_controller *ctrl)
-+{
-+      struct device *dev = &pdev->dev;
-+      struct resource *res;
-+      int i, j, rc;
-+
-+      if (!dev->of_node) {
-+              dev_err(dev, "%s: Device tree node is missing\n", __func__);
-+              return -EINVAL;
-+      }
-+
-+      if (!ctrl || !ctrl->name) {
-+              dev_err(dev, "%s: CPR controller data is missing\n", __func__);
-+              return -EINVAL;
-+      }
-+
-+      rc = cpr3_regulator_validate_controller(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "controller validation failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      mutex_init(&ctrl->lock);
-+
-+      res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpr_ctrl");
-+      if (!res || !res->start) {
-+              cpr3_err(ctrl, "CPR controller address is missing\n");
-+              return -ENXIO;
-+      }
-+      ctrl->cpr_ctrl_base = devm_ioremap(dev, res->start, resource_size(res));
-+
-+      if (ctrl->aging_possible_mask) {
-+              /*
-+               * Aging possible register address is required if an aging
-+               * possible mask has been specified.
-+               */
-+              res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
-+                                              "aging_allowed");
-+              if (!res || !res->start) {
-+                      cpr3_err(ctrl, "CPR aging allowed address is missing\n");
-+                      return -ENXIO;
-+              }
-+              ctrl->aging_possible_reg = devm_ioremap(dev, res->start,
-+                                                      resource_size(res));
-+      }
-+
-+      ctrl->irq = platform_get_irq_byname(pdev, "cpr");
-+      if (ctrl->irq < 0) {
-+              cpr3_err(ctrl, "missing CPR interrupt\n");
-+              return ctrl->irq;
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop) {
-+              if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+                      ctrl->ceiling_irq = platform_get_irq_byname(pdev,
-+                                              "ceiling");
-+                      if (ctrl->ceiling_irq < 0) {
-+                              cpr3_err(ctrl, "missing ceiling interrupt\n");
-+                              return ctrl->ceiling_irq;
-+                      }
-+              }
-+      }
-+
-+      rc = cpr3_regulator_init_ctrl_data(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      rc = cpr3_regulator_init_vreg_data(
-+                                              &ctrl->thread[i].vreg[j]);
-+                      if (rc)
-+                              return rc;
-+                      cpr3_print_quots(&ctrl->thread[i].vreg[j]);
-+              }
-+      }
-+
-+      /*
-+       * Add the maximum possible aging voltage margin until it is possible
-+       * to perform an aging measurement.
-+       */
-+      if (ctrl->aging_required)
-+              cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
-+
-+      rc = cpr3_regulator_init_ctrl(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "CPR controller initialization failed, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      /* Register regulator devices for all threads. */
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      rc = cpr3_regulator_vreg_register(
-+                                      &ctrl->thread[i].vreg[j]);
-+                      if (rc) {
-+                              cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
-+                                      rc);
-+                              goto free_regulators;
-+                      }
-+              }
-+      }
-+
-+      rc = devm_request_threaded_irq(dev, ctrl->irq, NULL,
-+                                     cpr3_irq_handler,
-+                                     IRQF_ONESHOT |
-+                                     IRQF_TRIGGER_RISING,
-+                                     "cpr3", ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not request IRQ %d, rc=%d\n",
-+                       ctrl->irq, rc);
-+              goto free_regulators;
-+      }
-+
-+      if (ctrl->supports_hw_closed_loop &&
-+          ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
-+              rc = devm_request_threaded_irq(dev, ctrl->ceiling_irq, NULL,
-+                      cpr3_ceiling_irq_handler,
-+                      IRQF_ONESHOT | IRQF_TRIGGER_RISING,
-+                      "cpr3_ceiling", ctrl);
-+              if (rc) {
-+                      cpr3_err(ctrl, "could not request ceiling IRQ %d, rc=%d\n",
-+                              ctrl->ceiling_irq, rc);
-+                      goto free_regulators;
-+              }
-+      }
-+
-+      mutex_lock(&cpr3_controller_list_mutex);
-+      cpr3_regulator_debugfs_ctrl_add(ctrl);
-+      list_add(&ctrl->list, &cpr3_controller_list);
-+      mutex_unlock(&cpr3_controller_list_mutex);
-+
-+      if (ctrl->panic_regs_info) {
-+              /* Register panic notification call back */
-+              ctrl->panic_notifier.notifier_call = cpr3_panic_callback;
-+              atomic_notifier_chain_register(&panic_notifier_list,
-+                      &ctrl->panic_notifier);
-+      }
-+
-+      return 0;
-+
-+free_regulators:
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++)
-+                      if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
-+                              regulator_unregister(
-+                                      ctrl->thread[i].vreg[j].rdev);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_open_loop_regulator_register() - register the regulators for a CPR3
-+ *                    controller which will always work in Open loop and
-+ *                    won't support close loop.
-+ * @pdev:             Platform device pointer for the CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
-+                                    struct cpr3_controller *ctrl)
-+{
-+      struct device *dev = &pdev->dev;
-+      struct cpr3_regulator *vreg;
-+      int i, j, rc;
-+
-+      if (!dev->of_node) {
-+              dev_err(dev, "%s: Device tree node is missing\n", __func__);
-+              return -EINVAL;
-+      }
-+
-+      if (!ctrl || !ctrl->name) {
-+              dev_err(dev, "%s: CPR controller data is missing\n", __func__);
-+              return -EINVAL;
-+      }
-+
-+      if (!ctrl->vdd_regulator) {
-+              cpr3_err(ctrl, "vdd regulator missing\n");
-+              return -EINVAL;
-+      }
-+
-+      mutex_init(&ctrl->lock);
-+
-+      rc = cpr3_regulator_init_ctrl_data(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      vreg = &ctrl->thread[i].vreg[j];
-+                      vreg->corner[i].last_volt =
-+                              vreg->corner[i].open_loop_volt;
-+              }
-+      }
-+
-+      /* Register regulator devices for all threads. */
-+      for (i = 0; i < ctrl->thread_count; i++) {
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
-+                      rc = cpr3_regulator_vreg_register(
-+                                      &ctrl->thread[i].vreg[j]);
-+                      if (rc) {
-+                              cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
-+                                       rc);
-+                              goto free_regulators;
-+                      }
-+              }
-+      }
-+
-+      mutex_lock(&cpr3_controller_list_mutex);
-+      list_add(&ctrl->list, &cpr3_controller_list);
-+      mutex_unlock(&cpr3_controller_list_mutex);
-+
-+      return 0;
-+
-+free_regulators:
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++)
-+                      if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
-+                              regulator_unregister(
-+                                      ctrl->thread[i].vreg[j].rdev);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_regulator_unregister() - unregister the regulators for a CPR3 controller
-+ *            and perform CPR hardware shutdown
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
-+{
-+      int i, j, rc = 0;
-+
-+      mutex_lock(&cpr3_controller_list_mutex);
-+      list_del(&ctrl->list);
-+      cpr3_regulator_debugfs_ctrl_remove(ctrl);
-+      mutex_unlock(&cpr3_controller_list_mutex);
-+
-+      if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
-+              rc = cpr3_ctrl_clear_cpr4_config(ctrl);
-+              if (rc)
-+                      cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
-+                              rc);
-+      }
-+
-+      cpr3_ctrl_loop_disable(ctrl);
-+
-+      cpr3_closed_loop_disable(ctrl);
-+
-+      if (ctrl->vdd_limit_regulator) {
-+              regulator_disable(ctrl->vdd_limit_regulator);
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++)
-+                      regulator_unregister(ctrl->thread[i].vreg[j].rdev);
-+
-+      if (ctrl->panic_notifier.notifier_call)
-+              atomic_notifier_chain_unregister(&panic_notifier_list,
-+                      &ctrl->panic_notifier);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_open_loop_regulator_unregister() - unregister the regulators for a CPR3
-+ *                    open loop controller and perform CPR hardware shutdown
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
-+{
-+      int i, j;
-+
-+      mutex_lock(&cpr3_controller_list_mutex);
-+      list_del(&ctrl->list);
-+      mutex_unlock(&cpr3_controller_list_mutex);
-+
-+      if (ctrl->vdd_limit_regulator) {
-+              regulator_disable(ctrl->vdd_limit_regulator);
-+      }
-+
-+      for (i = 0; i < ctrl->thread_count; i++)
-+              for (j = 0; j < ctrl->thread[i].vreg_count; j++)
-+                      regulator_unregister(ctrl->thread[i].vreg[j].rdev);
-+
-+      if (ctrl->panic_notifier.notifier_call)
-+              atomic_notifier_chain_unregister(&panic_notifier_list,
-+                      &ctrl->panic_notifier);
-+
-+      return 0;
-+}
---- /dev/null
-+++ b/drivers/regulator/cpr3-regulator.h
-@@ -0,0 +1,1211 @@
-+/*
-+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 and
-+ * only version 2 as published by the Free Software Foundation.
-+ *
-+ * This program is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-+ * GNU General Public License for more details.
-+ */
-+
-+#ifndef __REGULATOR_CPR3_REGULATOR_H__
-+#define __REGULATOR_CPR3_REGULATOR_H__
-+
-+#include <linux/clk.h>
-+#include <linux/mutex.h>
-+#include <linux/of.h>
-+#include <linux/platform_device.h>
-+#include <linux/types.h>
-+#include <linux/power/qcom/apm.h>
-+#include <linux/regulator/driver.h>
-+
-+struct cpr3_controller;
-+struct cpr3_thread;
-+
-+/**
-+ * struct cpr3_fuse_param - defines one contiguous segment of a fuse parameter
-+ *                        that is contained within a given row.
-+ * @row:      Fuse row number
-+ * @bit_start:        The first bit within the row of the fuse parameter segment
-+ * @bit_end:  The last bit within the row of the fuse parameter segment
-+ *
-+ * Each fuse row is 64 bits in length.  bit_start and bit_end may take values
-+ * from 0 to 63.  bit_start must be less than or equal to bit_end.
-+ */
-+struct cpr3_fuse_param {
-+      unsigned                row;
-+      unsigned                bit_start;
-+      unsigned                bit_end;
-+};
-+
-+/* Each CPR3 sensor has 16 ring oscillators */
-+#define CPR3_RO_COUNT         16
-+
-+/* The maximum number of sensors that can be present on a single CPR loop. */
-+#define CPR3_MAX_SENSOR_COUNT 256
-+
-+/* This constant is used when allocating array printing buffers. */
-+#define MAX_CHARS_PER_INT     10
-+
-+/**
-+ * struct cpr4_sdelta - CPR4 controller specific data structure for the sdelta
-+ *                    adjustment table which is used to adjust the VDD supply
-+ *                    voltage automatically based upon the temperature and/or
-+ *                    the number of online CPU cores.
-+ * @allow_core_count_adj: Core count adjustments are allowed.
-+ * @allow_temp_adj:   Temperature based adjustments are allowed.
-+ * @max_core_count:   Maximum number of cores considered for core count
-+ *                    adjustment logic.
-+ * @temp_band_count:  Number of temperature bands considered for temperature
-+ *                    based adjustment logic.
-+ * @cap_volt:         CAP in uV to apply to SDELTA margins with multiple
-+ *                    cpr3-regulators defined for single controller.
-+ * @table:            SDELTA table with per-online-core and temperature based
-+ *                    adjustments of size (max_core_count * temp_band_count)
-+ *                    Outer: core count
-+ *                    Inner: temperature band
-+ *                    Each element has units of VDD supply steps. Positive
-+ *                    values correspond to a reduction in voltage and negative
-+ *                    value correspond to an increase (this follows the SDELTA
-+ *                    register semantics).
-+ * @allow_boost:      Voltage boost allowed.
-+ * @boost_num_cores:  The number of online cores at which the boost voltage
-+ *                    adjustments will be applied
-+ * @boost_table:      SDELTA table with boost voltage adjustments of size
-+ *                    temp_band_count. Each element has units of VDD supply
-+ *                    steps. Positive values correspond to a reduction in
-+ *                    voltage and negative value correspond to an increase
-+ *                    (this follows the SDELTA register semantics).
-+ */
-+struct cpr4_sdelta {
-+      bool    allow_core_count_adj;
-+      bool    allow_temp_adj;
-+      int     max_core_count;
-+      int     temp_band_count;
-+      int     cap_volt;
-+      int     *table;
-+      bool    allow_boost;
-+      int     boost_num_cores;
-+      int     *boost_table;
-+};
-+
-+/**
-+ * struct cpr3_corner - CPR3 virtual voltage corner data structure
-+ * @floor_volt:               CPR closed-loop floor voltage in microvolts
-+ * @ceiling_volt:     CPR closed-loop ceiling voltage in microvolts
-+ * @open_loop_volt:   CPR open-loop voltage (i.e. initial voltage) in
-+ *                    microvolts
-+ * @last_volt:                Last known settled CPR closed-loop voltage which is used
-+ *                    when switching to a new corner
-+ * @abs_ceiling_volt: The absolute CPR closed-loop ceiling voltage in
-+ *                    microvolts.  This is used to limit the ceiling_volt
-+ *                    value when it is increased as a result of aging
-+ *                    adjustment.
-+ * @unaged_floor_volt:        The CPR closed-loop floor voltage in microvolts before
-+ *                    any aging adjustment is performed
-+ * @unaged_ceiling_volt: The CPR closed-loop ceiling voltage in microvolts
-+ *                    before any aging adjustment is performed
-+ * @unaged_open_loop_volt: The CPR open-loop voltage (i.e. initial voltage) in
-+ *                    microvolts before any aging adjusment is performed
-+ * @system_volt:      The system-supply voltage in microvolts or corners or
-+ *                    levels
-+ * @mem_acc_volt:     The mem-acc-supply voltage in corners
-+ * @proc_freq:                Processor frequency in Hertz. For CPR rev. 3 and 4
-+ *                    conrollers, this field is only used by platform specific
-+ *                    CPR3 driver for interpolation. For CPRh-compliant
-+ *                    controllers, this frequency is also utilized by the
-+ *                    clock driver to determine the corner to CPU clock
-+ *                    frequency mappings.
-+ * @cpr_fuse_corner:  Fused corner index associated with this virtual corner
-+ *                    (only used by platform specific CPR3 driver for
-+ *                    mapping purposes)
-+ * @target_quot:      Array of target quotient values to use for each ring
-+ *                    oscillator (RO) for this corner.  A value of 0 should be
-+ *                    specified as the target quotient for each RO that is
-+ *                    unused by this corner.
-+ * @ro_scale:         Array of CPR ring oscillator (RO) scaling factors.  The
-+ *                    scaling factor for each RO is defined from RO0 to RO15
-+ *                    with units of QUOT/V.  A value of 0 may be specified for
-+ *                    an RO that is unused.
-+ * @ro_mask:          Bitmap where each of the 16 LSBs indicate if the
-+ *                    corresponding ROs should be masked for this corner
-+ * @irq_en:           Bitmap of the CPR interrupts to enable for this corner
-+ * @aging_derate:     The amount to derate the aging voltage adjustment
-+ *                    determined for the reference corner in units of uV/mV.
-+ *                    E.g. a value of 900 would imply that the adjustment for
-+ *                    this corner should be 90% (900/1000) of that for the
-+ *                    reference corner.
-+ * @use_open_loop:    Boolean indicating that open-loop (i.e CPR disabled) as
-+ *                    opposed to closed-loop operation must be used for this
-+ *                    corner on CPRh controllers.
-+ * @sdelta:           The CPR4 controller specific data for this corner. This
-+ *                    field is applicable for CPR4 controllers.
-+ *
-+ * The value of last_volt is initialized inside of the cpr3_regulator_register()
-+ * call with the open_loop_volt value.  It can later be updated to the settled
-+ * VDD supply voltage.  The values for unaged_floor_volt, unaged_ceiling_volt,
-+ * and unaged_open_loop_volt are initialized inside of cpr3_regulator_register()
-+ * if ctrl->aging_required == true.  These three values must be pre-initialized
-+ * if cpr3_regulator_register() is called with ctrl->aging_required == false and
-+ * ctrl->aging_succeeded == true.
-+ *
-+ * The values of ro_mask and irq_en are initialized inside of the
-+ * cpr3_regulator_register() call.
-+ */
-+struct cpr3_corner {
-+      int                     floor_volt;
-+      int                     ceiling_volt;
-+      int                     cold_temp_open_loop_volt;
-+      int                     normal_temp_open_loop_volt;
-+      int                     open_loop_volt;
-+      int                     last_volt;
-+      int                     abs_ceiling_volt;
-+      int                     unaged_floor_volt;
-+      int                     unaged_ceiling_volt;
-+      int                     unaged_open_loop_volt;
-+      int                     system_volt;
-+      int                     mem_acc_volt;
-+      u32                     proc_freq;
-+      int                     cpr_fuse_corner;
-+      u32                     target_quot[CPR3_RO_COUNT];
-+      u32                     ro_scale[CPR3_RO_COUNT];
-+      u32                     ro_mask;
-+      u32                     irq_en;
-+      int                     aging_derate;
-+      bool                    use_open_loop;
-+      struct cpr4_sdelta      *sdelta;
-+};
-+
-+/**
-+ * struct cprh_corner_band - CPRh controller specific data structure which
-+ *                    encapsulates the range of corners and the SDELTA
-+ *                    adjustment table to be applied to the corners within
-+ *                    the min and max bounds of the corner band.
-+ * @corner:           Corner number which defines the corner band boundary
-+ * @sdelta:           The SDELTA adjustment table which contains core-count
-+ *                    and temp based margin adjustments that are applicable
-+ *                    to the corner band.
-+ */
-+struct cprh_corner_band {
-+      int                     corner;
-+      struct cpr4_sdelta      *sdelta;
-+};
-+
-+/**
-+ * struct cpr3_fuse_parameters - CPR4 fuse specific data structure which has
-+ *                    the required fuse parameters need for Close Loop CPR
-+ * @(*apss_ro_sel_param)[2]:       Pointer to RO select fuse details
-+ * @(*apss_init_voltage_param)[2]: Pointer to Target voltage fuse details
-+ * @(*apss_target_quot_param)[2]:  Pointer to Target quot fuse details
-+ * @(*apss_quot_offset_param)[2]:  Pointer to quot offset fuse details
-+ * @cpr_fusing_rev_param:          Pointer to CPR revision fuse details
-+ * @apss_speed_bin_param:          Pointer to Speed bin fuse details
-+ * @cpr_boost_fuse_cfg_param:      Pointer to Boost fuse cfg details
-+ * @apss_boost_fuse_volt_param:    Pointer to Boost fuse volt details
-+ * @misc_fuse_volt_adj_param:      Pointer to Misc fuse volt fuse details
-+ */
-+struct cpr3_fuse_parameters {
-+      struct cpr3_fuse_param (*apss_ro_sel_param)[2];
-+      struct cpr3_fuse_param (*apss_init_voltage_param)[2];
-+      struct cpr3_fuse_param (*apss_target_quot_param)[2];
-+      struct cpr3_fuse_param (*apss_quot_offset_param)[2];
-+      struct cpr3_fuse_param *cpr_fusing_rev_param;
-+      struct cpr3_fuse_param *apss_speed_bin_param;
-+      struct cpr3_fuse_param *cpr_boost_fuse_cfg_param;
-+      struct cpr3_fuse_param *apss_boost_fuse_volt_param;
-+      struct cpr3_fuse_param *misc_fuse_volt_adj_param;
-+};
-+
-+struct cpr4_mem_acc_func {
-+      void (*set_mem_acc)(struct regulator_dev *);
-+      void (*clear_mem_acc)(struct regulator_dev *);
-+};
-+
-+/**
-+ * struct cpr4_reg_data - CPR4 regulator specific data structure which is
-+ * target specific
-+ * @cpr_valid_fuse_count: Number of valid fuse corners
-+ * @fuse_ref_volt:      Pointer to fuse reference voltage
-+ * @fuse_step_volt:     CPR step voltage available in fuse
-+ * @cpr_clk_rate:       CPR clock rate
-+ * @boost_fuse_ref_volt:  Boost fuse reference voltage
-+ * @boost_ceiling_volt:   Boost ceiling voltage
-+ * @boost_floor_volt:           Boost floor voltage
-+ * @cpr3_fuse_params:     Pointer to CPR fuse parameters
-+ * @mem_acc_funcs:        Pointer to MEM ACC set/clear functions
-+ **/
-+struct cpr4_reg_data {
-+      u32 cpr_valid_fuse_count;
-+      int *fuse_ref_volt;
-+      u32 fuse_step_volt;
-+      u32 cpr_clk_rate;
-+      int boost_fuse_ref_volt;
-+      int boost_ceiling_volt;
-+      int boost_floor_volt;
-+      struct cpr3_fuse_parameters *cpr3_fuse_params;
-+      struct cpr4_mem_acc_func *mem_acc_funcs;
-+};
-+/**
-+ * struct cpr3_reg_data - CPR3 regulator specific data structure which is
-+ * target specific
-+ * @cpr_valid_fuse_count: Number of valid fuse corners
-+ * @(*init_voltage_param)[2]: Pointer to Target voltage fuse details
-+ * @fuse_ref_volt:      Pointer to fuse reference voltage
-+ * @fuse_step_volt:     CPR step voltage available in fuse
-+ * @cpr_clk_rate:       CPR clock rate
-+ * @cpr3_fuse_params:     Pointer to CPR fuse parameters
-+ **/
-+struct cpr3_reg_data {
-+      u32 cpr_valid_fuse_count;
-+      struct cpr3_fuse_param (*init_voltage_param)[2];
-+      int *fuse_ref_volt;
-+      u32 fuse_step_volt;
-+      u32 cpr_clk_rate;
-+};
-+
-+/**
-+ * struct cpr3_regulator - CPR3 logical regulator instance associated with a
-+ *                    given CPR3 hardware thread
-+ * @of_node:          Device node associated with the device tree child node
-+ *                    of this CPR3 regulator
-+ * @thread:           Pointer to the CPR3 thread which manages this CPR3
-+ *                    regulator
-+ * @name:             Unique name for this CPR3 regulator which is filled
-+ *                    using the device tree regulator-name property
-+ * @rdesc:            Regulator description for this CPR3 regulator
-+ * @rdev:             Regulator device pointer for the regulator registered
-+ *                    for this CPR3 regulator
-+ * @mem_acc_regulator:        Pointer to the optional mem-acc supply regulator used
-+ *                    to manage memory circuitry settings based upon CPR3
-+ *                    regulator output voltage.
-+ * @corner:           Array of all corners supported by this CPR3 regulator
-+ * @corner_count:     The number of elements in the corner array
-+ * @corner_band:      Array of all corner bands supported by CPRh compatible
-+ *                    controllers
-+ * @cpr4_regulator_data Target specific cpr4 regulator data
-+ * @cpr3_regulator_data Target specific cpr3 regulator data
-+ * @corner_band_count:        The number of elements in the corner band array
-+ * @platform_fuses:   Pointer to platform specific CPR fuse data (only used by
-+ *                    platform specific CPR3 driver)
-+ * @speed_bin_fuse:   Value read from the speed bin fuse parameter
-+ * @speed_bins_supported: The number of speed bins supported by the device tree
-+ *                    configuration for this CPR3 regulator
-+ * @cpr_rev_fuse:     Value read from the CPR fusing revision fuse parameter
-+ * @fuse_combo:               Platform specific enum value identifying the specific
-+ *                    combination of fuse values found on a given chip
-+ * @fuse_combos_supported: The number of fuse combinations supported by the
-+ *                    device tree configuration for this CPR3 regulator
-+ * @fuse_corner_count:        Number of corners defined by fuse parameters
-+ * @fuse_corner_map:  Array of length fuse_corner_count which specifies the
-+ *                    highest corner associated with each fuse corner.  Note
-+ *                    that each element must correspond to a valid corner
-+ *                    and that element values must be strictly increasing.
-+ *                    Also, it is acceptable for the lowest fuse corner to map
-+ *                    to a corner other than the lowest.  Likewise, it is
-+ *                    acceptable for the highest fuse corner to map to a
-+ *                    corner other than the highest.
-+ * @fuse_combo_corner_sum: The sum of the corner counts across all fuse combos
-+ * @fuse_combo_offset:        The device tree property array offset for the selected
-+ *                    fuse combo
-+ * @speed_bin_corner_sum: The sum of the corner counts across all speed bins
-+ *                    This may be specified as 0 if per speed bin parsing
-+ *                    support is not required.
-+ * @speed_bin_offset: The device tree property array offset for the selected
-+ *                    speed bin
-+ * @fuse_combo_corner_band_sum: The sum of the corner band counts across all
-+ *                    fuse combos
-+ * @fuse_combo_corner_band_offset: The device tree property array offset for
-+ *                    the corner band count corresponding to the selected
-+ *                    fuse combo
-+ * @speed_bin_corner_band_sum: The sum of the corner band counts across all
-+ *                    speed bins. This may be specified as 0 if per speed bin
-+ *                    parsing support is not required
-+ * @speed_bin_corner_band_offset: The device tree property array offset for the
-+ *                    corner band count corresponding to the selected speed
-+ *                    bin
-+ * @pd_bypass_mask:   Bit mask of power domains associated with this CPR3
-+ *                    regulator
-+ * @dynamic_floor_corner: Index identifying the voltage corner for the CPR3
-+ *                    regulator whose last_volt value should be used as the
-+ *                    global CPR floor voltage if all of the power domains
-+ *                    associated with this CPR3 regulator are bypassed
-+ * @uses_dynamic_floor: Boolean flag indicating that dynamic_floor_corner should
-+ *                    be utilized for the CPR3 regulator
-+ * @current_corner:   Index identifying the currently selected voltage corner
-+ *                    for the CPR3 regulator or less than 0 if no corner has
-+ *                    been requested
-+ * @last_closed_loop_corner: Index identifying the last voltage corner for the
-+ *                    CPR3 regulator which was configured when operating in
-+ *                    CPR closed-loop mode or less than 0 if no corner has
-+ *                    been requested.  CPR registers are only written to when
-+ *                    using closed-loop mode.
-+ * @aggregated:               Boolean flag indicating that this CPR3 regulator
-+ *                    participated in the last aggregation event
-+ * @debug_corner:     Index identifying voltage corner used for displaying
-+ *                    corner configuration values in debugfs
-+ * @vreg_enabled:     Boolean defining the enable state of the CPR3
-+ *                    regulator's regulator within the regulator framework.
-+ * @aging_allowed:    Boolean defining if CPR aging adjustments are allowed
-+ *                    for this CPR3 regulator given the fuse combo of the
-+ *                    device
-+ * @aging_allow_open_loop_adj: Boolean defining if the open-loop voltage of each
-+ *                    corner of this regulator should be adjusted as a result
-+ *                    of an aging measurement.  This flag can be set to false
-+ *                    when the open-loop voltage adjustments have been
-+ *                    specified such that they include the maximum possible
-+ *                    aging adjustment.  This flag is only used if
-+ *                    aging_allowed == true.
-+ * @aging_corner:     The corner that should be configured for this regulator
-+ *                    when an aging measurement is performed.
-+ * @aging_max_adjust_volt: The maximum aging voltage margin in microvolts that
-+ *                    may be added to the target quotients of this regulator.
-+ *                    A value of 0 may be specified if this regulator does not
-+ *                    require any aging adjustment.
-+ * @allow_core_count_adj: Core count adjustments are allowed for this regulator.
-+ * @allow_temp_adj:   Temperature based adjustments are allowed for this
-+ *                    regulator.
-+ * @max_core_count:   Maximum number of cores considered for core count
-+ *                    adjustment logic.
-+ * @allow_boost:      Voltage boost allowed for this regulator.
-+ *
-+ * This structure contains both configuration and runtime state data.  The
-+ * elements current_corner, last_closed_loop_corner, aggregated, debug_corner,
-+ * and vreg_enabled are state variables.
-+ */
-+struct cpr3_regulator {
-+      struct device_node      *of_node;
-+      struct cpr3_thread      *thread;
-+      const char              *name;
-+      struct regulator_desc   rdesc;
-+      struct regulator_dev    *rdev;
-+      struct regulator        *mem_acc_regulator;
-+      struct cpr3_corner      *corner;
-+      int                     corner_count;
-+      struct cprh_corner_band *corner_band;
-+      struct cpr4_reg_data    *cpr4_regulator_data;
-+      struct cpr3_reg_data    *cpr3_regulator_data;
-+      u32                     corner_band_count;
-+
-+      void                    *platform_fuses;
-+      int                     speed_bin_fuse;
-+      int                     speed_bins_supported;
-+      int                     cpr_rev_fuse;
-+      int                     part_type;
-+      int                     part_type_supported;
-+      int                     fuse_combo;
-+      int                     fuse_combos_supported;
-+      int                     fuse_corner_count;
-+      int                     *fuse_corner_map;
-+      int                     fuse_combo_corner_sum;
-+      int                     fuse_combo_offset;
-+      int                     speed_bin_corner_sum;
-+      int                     speed_bin_offset;
-+      int                     fuse_combo_corner_band_sum;
-+      int                     fuse_combo_corner_band_offset;
-+      int                     speed_bin_corner_band_sum;
-+      int                     speed_bin_corner_band_offset;
-+      u32                     pd_bypass_mask;
-+      int                     dynamic_floor_corner;
-+      bool                    uses_dynamic_floor;
-+
-+      int                     current_corner;
-+      int                     last_closed_loop_corner;
-+      bool                    aggregated;
-+      int                     debug_corner;
-+      bool                    vreg_enabled;
-+
-+      bool                    aging_allowed;
-+      bool                    aging_allow_open_loop_adj;
-+      int                     aging_corner;
-+      int                     aging_max_adjust_volt;
-+
-+      bool                    allow_core_count_adj;
-+      bool                    allow_temp_adj;
-+      int                     max_core_count;
-+      bool                    allow_boost;
-+};
-+
-+/**
-+ * struct cpr3_thread - CPR3 hardware thread data structure
-+ * @thread_id:                Hardware thread ID
-+ * @of_node:          Device node associated with the device tree child node
-+ *                    of this CPR3 thread
-+ * @ctrl:             Pointer to the CPR3 controller which manages this thread
-+ * @vreg:             Array of CPR3 regulators handled by the CPR3 thread
-+ * @vreg_count:               Number of elements in the vreg array
-+ * @aggr_corner:      CPR corner containing the in process aggregated voltage
-+ *                    and target quotient configurations which will be applied
-+ * @last_closed_loop_aggr_corner: CPR corner containing the most recent
-+ *                    configurations which were written into hardware
-+ *                    registers when operating in closed loop mode (i.e. with
-+ *                    CPR enabled)
-+ * @consecutive_up:   The number of consecutive CPR step up events needed to
-+ *                    to trigger an up interrupt
-+ * @consecutive_down: The number of consecutive CPR step down events needed to
-+ *                    to trigger a down interrupt
-+ * @up_threshold:     The number CPR error steps required to generate an up
-+ *                    event
-+ * @down_threshold:   The number CPR error steps required to generate a down
-+ *                    event
-+ *
-+ * This structure contains both configuration and runtime state data.  The
-+ * elements aggr_corner and last_closed_loop_aggr_corner are state variables.
-+ */
-+struct cpr3_thread {
-+      u32                     thread_id;
-+      struct device_node      *of_node;
-+      struct cpr3_controller  *ctrl;
-+      struct cpr3_regulator   *vreg;
-+      int                     vreg_count;
-+      struct cpr3_corner      aggr_corner;
-+      struct cpr3_corner      last_closed_loop_aggr_corner;
-+
-+      u32                     consecutive_up;
-+      u32                     consecutive_down;
-+      u32                     up_threshold;
-+      u32                     down_threshold;
-+};
-+
-+/* Per CPR controller data */
-+/**
-+ * enum cpr3_mem_acc_corners - Constants which define the number of mem-acc
-+ *            regulator corners available in the mem-acc corner map array.
-+ * %CPR3_MEM_ACC_LOW_CORNER:  Index in mem-acc corner map array mapping to the
-+ *                            mem-acc regulator corner
-+ *                            to be used for low voltage vdd supply
-+ * %CPR3_MEM_ACC_HIGH_CORNER: Index in mem-acc corner map array mapping to the
-+ *                            mem-acc regulator corner to be used for high
-+ *                            voltage vdd supply
-+ * %CPR3_MEM_ACC_CORNERS:     Number of elements in the mem-acc corner map
-+ *                            array
-+ */
-+enum cpr3_mem_acc_corners {
-+      CPR3_MEM_ACC_LOW_CORNER         = 0,
-+      CPR3_MEM_ACC_HIGH_CORNER        = 1,
-+      CPR3_MEM_ACC_CORNERS            = 2,
-+};
-+
-+/**
-+ * enum cpr3_count_mode - CPR3 controller count mode which defines the
-+ *            method that CPR sensor data is acquired
-+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MIN:  Capture all CPR sensor readings
-+ *                                    simultaneously and report the minimum
-+ *                                    value seen in successive measurements
-+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MAX:  Capture all CPR sensor readings
-+ *                                    simultaneously and report the maximum
-+ *                                    value seen in successive measurements
-+ * %CPR3_COUNT_MODE_STAGGERED:                Read one sensor at a time in a
-+ *                                    sequential fashion
-+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_AGE:  Capture all CPR aging sensor readings
-+ *                                    simultaneously.
-+ */
-+enum cpr3_count_mode {
-+      CPR3_COUNT_MODE_ALL_AT_ONCE_MIN = 0,
-+      CPR3_COUNT_MODE_ALL_AT_ONCE_MAX = 1,
-+      CPR3_COUNT_MODE_STAGGERED       = 2,
-+      CPR3_COUNT_MODE_ALL_AT_ONCE_AGE = 3,
-+};
-+
-+/**
-+ * enum cpr_controller_type - supported CPR controller hardware types
-+ * %CPR_CTRL_TYPE_CPR3:       HW has CPR3 controller
-+ * %CPR_CTRL_TYPE_CPR4:       HW has CPR4 controller
-+ */
-+enum cpr_controller_type {
-+      CPR_CTRL_TYPE_CPR3,
-+      CPR_CTRL_TYPE_CPR4,
-+};
-+
-+/**
-+ * cpr_setting - supported CPR global settings
-+ * %CPR_DEFAULT: default mode from dts will be used
-+ * %CPR_DISABLED: ceiling voltage will be used for all the corners
-+ * %CPR_OPEN_LOOP_EN: CPR will work in OL
-+ * %CPR_CLOSED_LOOP_EN: CPR will work in CL, if supported
-+ */
-+enum cpr_setting {
-+      CPR_DEFAULT             = 0,
-+      CPR_DISABLED            = 1,
-+      CPR_OPEN_LOOP_EN        = 2,
-+      CPR_CLOSED_LOOP_EN      = 3,
-+};
-+
-+/**
-+ * struct cpr3_aging_sensor_info - CPR3 aging sensor information
-+ * @sensor_id         The index of the CPR3 sensor to be used in the aging
-+ *                    measurement.
-+ * @ro_scale          The CPR ring oscillator (RO) scaling factor for the
-+ *                    aging sensor with units of QUOT/V.
-+ * @init_quot_diff:   The fused quotient difference between aged and un-aged
-+ *                    paths that was measured at manufacturing time.
-+ * @measured_quot_diff: The quotient difference measured at runtime.
-+ * @bypass_mask:      Bit mask of the CPR sensors that must be bypassed during
-+ *                    the aging measurement for this sensor
-+ *
-+ * This structure contains both configuration and runtime state data.  The
-+ * element measured_quot_diff is a state variable.
-+ */
-+struct cpr3_aging_sensor_info {
-+      u32                     sensor_id;
-+      u32                     ro_scale;
-+      int                     init_quot_diff;
-+      int                     measured_quot_diff;
-+      u32                     bypass_mask[CPR3_MAX_SENSOR_COUNT / 32];
-+};
-+
-+/**
-+ * struct cpr3_reg_info - Register information data structure
-+ * @name:     Register name
-+ * @addr:     Register physical address
-+ * @value:    Register content
-+ * @virt_addr:        Register virtual address
-+ *
-+ * This data structure is used to dump some critical register contents
-+ * when the device crashes due to a kernel panic.
-+ */
-+struct cpr3_reg_info {
-+      const char      *name;
-+      u32             addr;
-+      u32             value;
-+      void __iomem    *virt_addr;
-+};
-+
-+/**
-+ * struct cpr3_panic_regs_info - Data structure to dump critical register
-+ *            contents.
-+ * @reg_count:                Number of elements in the regs array
-+ * @regs:             Array of critical registers information
-+ *
-+ * This data structure is used to dump critical register contents when
-+ * the device crashes due to a kernel panic.
-+ */
-+struct cpr3_panic_regs_info {
-+      int                     reg_count;
-+      struct cpr3_reg_info    *regs;
-+};
-+
-+/**
-+ * struct cpr3_controller - CPR3 controller data structure
-+ * @dev:              Device pointer for the CPR3 controller device
-+ * @name:             Unique name for the CPR3 controller
-+ * @ctrl_id:          Controller ID corresponding to the VDD supply number
-+ *                    that this CPR3 controller manages.
-+ * @cpr_ctrl_base:    Virtual address of the CPR3 controller base register
-+ * @fuse_base:                Virtual address of fuse row 0
-+ * @aging_possible_reg:       Virtual address of an optional platform-specific
-+ *                    register that must be ready to determine if it is
-+ *                    possible to perform an aging measurement.
-+ * @list:             list head used in a global cpr3-regulator list so that
-+ *                    cpr3-regulator structs can be found easily in RAM dumps
-+ * @thread:           Array of CPR3 threads managed by the CPR3 controller
-+ * @thread_count:     Number of elements in the thread array
-+ * @sensor_owner:     Array of thread IDs indicating which thread owns a given
-+ *                    CPR sensor
-+ * @sensor_count:     The number of CPR sensors found on the CPR loop managed
-+ *                    by this CPR controller.  Must be equal to the number of
-+ *                    elements in the sensor_owner array
-+ * @soc_revision:     Revision number of the SoC.  This may be unused by
-+ *                    platforms that do not have different behavior for
-+ *                    different SoC revisions.
-+ * @lock:             Mutex lock used to ensure mutual exclusion between
-+ *                    all of the threads associated with the controller
-+ * @vdd_regulator:    Pointer to the VDD supply regulator which this CPR3
-+ *                    controller manages
-+ * @system_regulator: Pointer to the optional system-supply regulator upon
-+ *                    which the VDD supply regulator depends.
-+ * @mem_acc_regulator:        Pointer to the optional mem-acc supply regulator used
-+ *                    to manage memory circuitry settings based upon the
-+ *                    VDD supply output voltage.
-+ * @vdd_limit_regulator: Pointer to the VDD supply limit regulator which is used
-+ *                    for hardware closed-loop in order specify ceiling and
-+ *                    floor voltage limits (platform specific)
-+ * @system_supply_max_volt: Voltage in microvolts which corresponds to the
-+ *                    absolute ceiling voltage of the system-supply
-+ * @mem_acc_threshold_volt: mem-acc threshold voltage in microvolts
-+ * @mem_acc_corner_map: mem-acc regulator corners mapping to low and high
-+ *                    voltage mem-acc settings for the memories powered by
-+ *                    this CPR3 controller and its associated CPR3 regulators
-+ * @mem_acc_crossover_volt: Voltage in microvolts corresponding to the voltage
-+ *                    that the VDD supply must be set to while a MEM ACC
-+ *                    switch is in progress. This element must be initialized
-+ *                    for CPRh controllers when a MEM ACC threshold voltage is
-+ *                    defined.
-+ * @core_clk:         Pointer to the CPR3 controller core clock
-+ * @iface_clk:                Pointer to the CPR3 interface clock (platform specific)
-+ * @bus_clk:          Pointer to the CPR3 bus clock (platform specific)
-+ * @irq:              CPR interrupt number
-+ * @irq_affinity_mask:        The cpumask for the CPUs which the CPR interrupt should
-+ *                    have affinity for
-+ * @cpu_hotplug_notifier: CPU hotplug notifier used to reset IRQ affinity when a
-+ *                    CPU is brought back online
-+ * @ceiling_irq:      Interrupt number for the interrupt that is triggered
-+ *                    when hardware closed-loop attempts to exceed the ceiling
-+ *                    voltage
-+ * @apm:              Handle to the array power mux (APM)
-+ * @apm_threshold_volt:       Voltage in microvolts which defines the threshold
-+ *                    voltage to determine the APM supply selection for
-+ *                    each corner
-+ * @apm_crossover_volt:       Voltage in microvolts corresponding to the voltage that
-+ *                    the VDD supply must be set to while an APM switch is in
-+ *                    progress. This element must be initialized for CPRh
-+ *                    controllers when an APM threshold voltage is defined
-+ * @apm_adj_volt:     Minimum difference between APM threshold voltage and
-+ *                    open-loop voltage which allows the APM threshold voltage
-+ *                    to be used as a ceiling
-+ * @apm_high_supply:  APM supply to configure if VDD voltage is greater than
-+ *                    or equal to the APM threshold voltage
-+ * @apm_low_supply:   APM supply to configure if the VDD voltage is less than
-+ *                    the APM threshold voltage
-+ * @base_volt:                Minimum voltage in microvolts supported by the VDD
-+ *                    supply managed by this CPR controller
-+ * @corner_switch_delay_time: The delay time in nanoseconds used by the CPR
-+ *                    controller to wait for voltage settling before
-+ *                    acknowledging the OSM block after corner changes
-+ * @cpr_clock_rate:   CPR reference clock frequency in Hz.
-+ * @sensor_time:      The time in nanoseconds that each sensor takes to
-+ *                    perform a measurement.
-+ * @loop_time:                The time in nanoseconds between consecutive CPR
-+ *                    measurements.
-+ * @up_down_delay_time: The time to delay in nanoseconds between consecutive CPR
-+ *                    measurements when the last measurement recommended
-+ *                    increasing or decreasing the vdd-supply voltage.
-+ *                    (platform specific)
-+ * @idle_clocks:      Number of CPR reference clock ticks that the CPR
-+ *                    controller waits in transitional states.
-+ * @step_quot_init_min:       The default minimum CPR step quotient value.  The step
-+ *                    quotient is the number of additional ring oscillator
-+ *                    ticks observed when increasing one step in vdd-supply
-+ *                    output voltage.
-+ * @step_quot_init_max:       The default maximum CPR step quotient value.
-+ * @step_volt:                Step size in microvolts between available set points
-+ *                    of the VDD supply
-+ * @down_error_step_limit: CPR4 hardware closed-loop down error step limit which
-+ *                    defines the maximum number of VDD supply regulator steps
-+ *                    that the voltage may be reduced as the result of a
-+ *                    single CPR measurement.
-+ * @up_error_step_limit: CPR4 hardware closed-loop up error step limit which
-+ *                    defines the maximum number of VDD supply regulator steps
-+ *                    that the voltage may be increased as the result of a
-+ *                    single CPR measurement.
-+ * @count_mode:               CPR controller count mode
-+ * @count_repeat:     Number of times to perform consecutive sensor
-+ *                    measurements when using all-at-once count modes.
-+ * @proc_clock_throttle: Defines the processor clock frequency throttling
-+ *                    register value to use.  This can be used to reduce the
-+ *                    clock frequency when a power domain exits a low power
-+ *                    mode until CPR settles at a new voltage.
-+ *                    (platform specific)
-+ * @cpr_allowed_hw:   Boolean which indicates if closed-loop CPR operation is
-+ *                    permitted for a given chip based upon hardware fuse
-+ *                    values
-+ * @cpr_allowed_sw:   Boolean which indicates if closed-loop CPR operation is
-+ *                    permitted based upon software policies
-+ * @supports_hw_closed_loop: Boolean which indicates if this CPR3/4 controller
-+ *                    physically supports hardware closed-loop CPR operation
-+ * @use_hw_closed_loop:       Boolean which indicates that this controller will be
-+ *                    using hardware closed-loop operation in place of
-+ *                    software closed-loop operation.
-+ * @ctrl_type:                CPR controller type
-+ * @saw_use_unit_mV:  Boolean which indicates the unit used in SAW PVC
-+ *                    interface is mV.
-+ * @aggr_corner:      CPR corner containing the most recently aggregated
-+ *                    voltage configurations which are being used currently
-+ * @cpr_enabled:      Boolean which indicates that the CPR controller is
-+ *                    enabled and operating in closed-loop mode.  CPR clocks
-+ *                    have been prepared and enabled whenever this flag is
-+ *                    true.
-+ * @last_corner_was_closed_loop: Boolean indicating if the last known corners
-+ *                    were updated during closed loop operation.
-+ * @cpr_suspended:    Boolean which indicates that CPR has been temporarily
-+ *                    disabled while enterring system suspend.
-+ * @debugfs:          Pointer to the debugfs directory of this CPR3 controller
-+ * @aging_ref_volt:   Reference voltage in microvolts to configure when
-+ *                    performing CPR aging measurements.
-+ * @aging_vdd_mode:   vdd-supply regulator mode to configure before performing
-+ *                    a CPR aging measurement.  It should be one of
-+ *                    REGULATOR_MODE_*.
-+ * @aging_complete_vdd_mode: vdd-supply regulator mode to configure after
-+ *                    performing a CPR aging measurement.  It should be one of
-+ *                    REGULATOR_MODE_*.
-+ * @aging_ref_adjust_volt: The reference aging voltage margin in microvolts that
-+ *                    should be added to the target quotients of the
-+ *                    regulators managed by this controller after derating.
-+ * @aging_required:   Flag which indicates that a CPR aging measurement still
-+ *                    needs to be performed for this CPR3 controller.
-+ * @aging_succeeded:  Flag which indicates that a CPR aging measurement has
-+ *                    completed successfully.
-+ * @aging_failed:     Flag which indicates that a CPR aging measurement has
-+ *                    failed to complete successfully.
-+ * @aging_sensor:     Array of CPR3 aging sensors which are used to perform
-+ *                    aging measurements at a runtime.
-+ * @aging_sensor_count:       Number of elements in the aging_sensor array
-+ * @aging_possible_mask: Optional bitmask used to mask off the
-+ *                    aging_possible_reg register.
-+ * @aging_possible_val:       Optional value that the masked aging_possible_reg
-+ *                    register must have in order for a CPR aging measurement
-+ *                    to be possible.
-+ * @step_quot_fixed:  Fixed step quotient value used for target quotient
-+ *                    adjustment if use_dynamic_step_quot is not set.
-+ *                    This parameter is only relevant for CPR4 controllers
-+ *                    when using the per-online-core or per-temperature
-+ *                    adjustments.
-+ * @initial_temp_band:        Temperature band used for calculation of base-line
-+ *                    target quotients (fused).
-+ * @use_dynamic_step_quot: Boolean value which indicates that margin adjustment
-+ *                    of target quotient will be based on the step quotient
-+ *                    calculated dynamically in hardware for each RO.
-+ * @allow_core_count_adj: Core count adjustments are allowed for this controller
-+ * @allow_temp_adj:   Temperature based adjustments are allowed for
-+ *                    this controller
-+ * @allow_boost:      Voltage boost allowed for this controller.
-+ * @temp_band_count:  Number of temperature bands used for temperature based
-+ *                    adjustment logic
-+ * @temp_points:      Array of temperature points in decidegrees Celsius used
-+ *                    to specify the ranges for selected temperature bands.
-+ *                    The array must have (temp_band_count - 1) elements
-+ *                    allocated.
-+ * @temp_sensor_id_start: Start ID of temperature sensors used for temperature
-+ *                    based adjustments.
-+ * @temp_sensor_id_end:       End ID of temperature sensors used for temperature
-+ *                    based adjustments.
-+ * @voltage_settling_time: The time in nanoseconds that it takes for the
-+ *                    VDD supply voltage to settle after being increased or
-+ *                    decreased by step_volt microvolts which is used when
-+ *                    SDELTA voltage margin adjustments are applied.
-+ * @cpr_global_setting:       Global setting for this CPR controller
-+ * @panic_regs_info:  Array of panic registers information which provides the
-+ *                    list of registers to dump when the device crashes.
-+ * @panic_notifier:   Notifier block registered to global panic notifier list.
-+ *
-+ * This structure contains both configuration and runtime state data.  The
-+ * elements cpr_allowed_sw, use_hw_closed_loop, aggr_corner, cpr_enabled,
-+ * last_corner_was_closed_loop, cpr_suspended, aging_ref_adjust_volt,
-+ * aging_required, aging_succeeded, and aging_failed are state variables.
-+ *
-+ * The apm* elements do not need to be initialized if the VDD supply managed by
-+ * the CPR3 controller does not utilize an APM.
-+ *
-+ * The elements step_quot_fixed, initial_temp_band, allow_core_count_adj,
-+ * allow_temp_adj and temp* need to be initialized for CPR4 controllers which
-+ * are using per-online-core or per-temperature adjustments.
-+ */
-+struct cpr3_controller {
-+      struct device           *dev;
-+      const char              *name;
-+      int                     ctrl_id;
-+      void __iomem            *cpr_ctrl_base;
-+      void __iomem            *fuse_base;
-+      void __iomem            *aging_possible_reg;
-+      struct list_head        list;
-+      struct cpr3_thread      *thread;
-+      int                     thread_count;
-+      u8                      *sensor_owner;
-+      int                     sensor_count;
-+      int                     soc_revision;
-+      struct mutex            lock;
-+      struct regulator        *vdd_regulator;
-+      struct regulator        *system_regulator;
-+      struct regulator        *mem_acc_regulator;
-+      struct regulator        *vdd_limit_regulator;
-+      int                     system_supply_max_volt;
-+      int                     mem_acc_threshold_volt;
-+      int                     mem_acc_corner_map[CPR3_MEM_ACC_CORNERS];
-+      int                     mem_acc_crossover_volt;
-+      struct clk              *core_clk;
-+      struct clk              *iface_clk;
-+      struct clk              *bus_clk;
-+      int                     irq;
-+      struct cpumask          irq_affinity_mask;
-+      struct notifier_block   cpu_hotplug_notifier;
-+      int                     ceiling_irq;
-+      struct msm_apm_ctrl_dev *apm;
-+      int                     apm_threshold_volt;
-+      int                     apm_crossover_volt;
-+      int                     apm_adj_volt;
-+      enum msm_apm_supply     apm_high_supply;
-+      enum msm_apm_supply     apm_low_supply;
-+      int                     base_volt;
-+      u32                     corner_switch_delay_time;
-+      u32                     cpr_clock_rate;
-+      u32                     sensor_time;
-+      u32                     loop_time;
-+      u32                     up_down_delay_time;
-+      u32                     idle_clocks;
-+      u32                     step_quot_init_min;
-+      u32                     step_quot_init_max;
-+      int                     step_volt;
-+      u32                     down_error_step_limit;
-+      u32                     up_error_step_limit;
-+      enum cpr3_count_mode    count_mode;
-+      u32                     count_repeat;
-+      u32                     proc_clock_throttle;
-+      bool                    cpr_allowed_hw;
-+      bool                    cpr_allowed_sw;
-+      bool                    supports_hw_closed_loop;
-+      bool                    use_hw_closed_loop;
-+      enum cpr_controller_type ctrl_type;
-+      bool                    saw_use_unit_mV;
-+      struct cpr3_corner      aggr_corner;
-+      bool                    cpr_enabled;
-+      bool                    last_corner_was_closed_loop;
-+      bool                    cpr_suspended;
-+      struct dentry           *debugfs;
-+
-+      int                     aging_ref_volt;
-+      unsigned int            aging_vdd_mode;
-+      unsigned int            aging_complete_vdd_mode;
-+      int                     aging_ref_adjust_volt;
-+      bool                    aging_required;
-+      bool                    aging_succeeded;
-+      bool                    aging_failed;
-+      struct cpr3_aging_sensor_info *aging_sensor;
-+      int                     aging_sensor_count;
-+      u32                     cur_sensor_state;
-+      u32                     aging_possible_mask;
-+      u32                     aging_possible_val;
-+
-+      u32                     step_quot_fixed;
-+      u32                     initial_temp_band;
-+      bool                    use_dynamic_step_quot;
-+      bool                    allow_core_count_adj;
-+      bool                    allow_temp_adj;
-+      bool                    allow_boost;
-+      int                     temp_band_count;
-+      int                     *temp_points;
-+      u32                     temp_sensor_id_start;
-+      u32                     temp_sensor_id_end;
-+      u32                     voltage_settling_time;
-+      enum cpr_setting        cpr_global_setting;
-+      struct cpr3_panic_regs_info *panic_regs_info;
-+      struct notifier_block   panic_notifier;
-+};
-+
-+/* Used for rounding voltages to the closest physically available set point. */
-+#define CPR3_ROUND(n, d) (DIV_ROUND_UP(n, d) * (d))
-+
-+#define cpr3_err(cpr3_thread, message, ...) \
-+      pr_err("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
-+#define cpr3_info(cpr3_thread, message, ...) \
-+      pr_info("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
-+#define cpr3_debug(cpr3_thread, message, ...) \
-+      pr_debug("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
-+
-+/*
-+ * Offset subtracted from voltage corner values passed in from the regulator
-+ * framework in order to get internal voltage corner values.  This is needed
-+ * since the regulator framework treats 0 as an error value at regulator
-+ * registration time.
-+ */
-+#define CPR3_CORNER_OFFSET    1
-+
-+#ifdef CONFIG_REGULATOR_CPR3
-+
-+int cpr3_regulator_register(struct platform_device *pdev,
-+                      struct cpr3_controller *ctrl);
-+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
-+                                    struct cpr3_controller *ctrl);
-+int cpr3_regulator_unregister(struct cpr3_controller *ctrl);
-+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl);
-+int cpr3_regulator_suspend(struct cpr3_controller *ctrl);
-+int cpr3_regulator_resume(struct cpr3_controller *ctrl);
-+
-+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
-+                      u32 max_thread_id);
-+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
-+                      struct platform_device *pdev);
-+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
-+                         struct platform_device *pdev, u8 start, u8 end);
-+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
-+                      const struct cpr3_fuse_param *param, u64 *param_value);
-+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
-+                      int fuse_len);
-+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x);
-+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
-+                      const char *prop_name, int tuple_size, u32 *out);
-+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
-+                      const char *prop_name, int tuple_size, u32 *out);
-+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
-+                      const char *prop_name, int tuple_size, u32 *out);
-+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg);
-+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
-+                      u32 *out_value, u32 value_min, u32 value_max);
-+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
-+                      u32 *out_value, u32 value_min, u32 value_max);
-+int cpr3_parse_common_thread_data(struct cpr3_thread *thread);
-+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl);
-+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl);
-+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg);
-+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg);
-+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg);
-+void cpr3_print_quots(struct cpr3_regulator *vreg);
-+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt);
-+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
-+                      int *fuse_volt);
-+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
-+                      int *fuse_volt);
-+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg);
-+int cpr3_quot_adjustment(int ro_scale, int volt_adjust);
-+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust);
-+int cpr3_parse_closed_loop_voltage_adjustments(struct cpr3_regulator *vreg,
-+                      u64 *ro_sel, int *volt_adjust,
-+                      int *volt_adjust_fuse, int *ro_scale);
-+int cpr4_parse_core_count_temp_voltage_adj(struct cpr3_regulator *vreg,
-+                      bool use_corner_band);
-+int cpr3_apm_init(struct cpr3_controller *ctrl);
-+int cpr3_mem_acc_init(struct cpr3_regulator *vreg);
-+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg);
-+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg);
-+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
-+                      int *fuse_volt_adjust);
-+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
-+                      bool is_cold);
-+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp);
-+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg);
-+
-+#else
-+
-+static inline int cpr3_regulator_register(struct platform_device *pdev,
-+                      struct cpr3_controller *ctrl)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int
-+cpr3_open_loop_regulator_register(struct platform_device *pdev,
-+                                struct cpr3_controller *ctrl);
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int
-+cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int cpr3_regulator_resume(struct cpr3_controller *ctrl)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int cpr3_get_thread_name(struct cpr3_thread *thread,
-+                      struct device_node *thread_node)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_allocate_threads(struct cpr3_controller *ctrl,
-+                      u32 min_thread_id, u32 max_thread_id)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
-+                      struct platform_device *pdev)
-+{
-+      return -ENXIO;
-+}
-+
-+static inline int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
-+                         struct platform_device *pdev, u8 start, u8 end)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
-+                      const struct cpr3_fuse_param *param, u64 *param_value)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_convert_open_loop_voltage_fuse(int ref_volt,
-+                      int step_volt, u32 fuse, int fuse_len)
-+{
-+      return -EPERM;
-+}
-+
-+static inline u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_parse_array_property(struct cpr3_regulator *vreg,
-+                      const char *prop_name, int tuple_size, u32 *out)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
-+                      const char *prop_name, int tuple_size, u32 *out)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_corner_band_array_property(
-+                      struct cpr3_regulator *vreg, const char *prop_name,
-+                      int tuple_size, u32 *out)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_thread_u32(struct cpr3_thread *thread,
-+                      const char *propname, u32 *out_value, u32 value_min,
-+                      u32 value_max)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl,
-+                      const char *propname, u32 *out_value, u32 value_min,
-+                      u32 value_max)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int
-+cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
-+{
-+      return -EPERM;
-+}
-+
-+static inline void cpr3_open_loop_voltage_as_ceiling(
-+                      struct cpr3_regulator *vreg)
-+{
-+      return;
-+}
-+
-+static inline int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
-+{
-+      return -EPERM;
-+}
-+
-+static inline void cpr3_print_quots(struct cpr3_regulator *vreg)
-+{
-+      return;
-+}
-+
-+static inline int
-+cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int
-+cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
-+                      int *fuse_volt)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_adjust_fused_open_loop_voltages(
-+                      struct cpr3_regulator *vreg, int *fuse_volt)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
-+{
-+      return -EPERM;
-+}
-+
-+static inline int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_parse_closed_loop_voltage_adjustments(
-+                      struct cpr3_regulator *vreg, u64 *ro_sel,
-+                      int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr4_parse_core_count_temp_voltage_adj(
-+                      struct cpr3_regulator *vreg, bool use_corner_band)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_apm_init(struct cpr3_controller *ctrl)
-+{
-+      return 0;
-+}
-+
-+static inline int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
-+{
-+      return 0;
-+}
-+
-+static inline void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
-+{
-+}
-+
-+static inline void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
-+{
-+}
-+
-+static inline int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
-+                      int *fuse_volt_adjust)
-+{
-+      return 0;
-+}
-+
-+static inline int
-+cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
-+                      bool is_cold)
-+{
-+      return 0;
-+}
-+
-+static inline bool
-+cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
-+{
-+      return false;
-+}
-+
-+static inline int
-+cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
-+{
-+      return 0;
-+}
-+#endif /* CONFIG_REGULATOR_CPR3 */
-+
-+#endif /* __REGULATOR_CPR_REGULATOR_H__ */
---- /dev/null
-+++ b/drivers/regulator/cpr3-util.c
-@@ -0,0 +1,2750 @@
-+/*
-+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 and
-+ * only version 2 as published by the Free Software Foundation.
-+ *
-+ * This program is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-+ * GNU General Public License for more details.
-+ */
-+
-+/*
-+ * This file contains utility functions to be used by platform specific CPR3
-+ * regulator drivers.
-+ */
-+
-+#define pr_fmt(fmt) "%s: " fmt, __func__
-+
-+#include <linux/cpumask.h>
-+#include <linux/device.h>
-+#include <linux/io.h>
-+#include <linux/kernel.h>
-+#include <linux/of.h>
-+#include <linux/platform_device.h>
-+#include <linux/slab.h>
-+#include <linux/types.h>
-+
-+#include <soc/qcom/socinfo.h>
-+
-+#include "cpr3-regulator.h"
-+
-+#define BYTES_PER_FUSE_ROW            8
-+#define MAX_FUSE_ROW_BIT              63
-+
-+#define CPR3_CONSECUTIVE_UP_DOWN_MIN  0
-+#define CPR3_CONSECUTIVE_UP_DOWN_MAX  15
-+#define CPR3_UP_DOWN_THRESHOLD_MIN    0
-+#define CPR3_UP_DOWN_THRESHOLD_MAX    31
-+#define CPR3_STEP_QUOT_MIN            0
-+#define CPR3_STEP_QUOT_MAX            63
-+#define CPR3_IDLE_CLOCKS_MIN          0
-+#define CPR3_IDLE_CLOCKS_MAX          31
-+
-+/* This constant has units of uV/mV so 1000 corresponds to 100%. */
-+#define CPR3_AGING_DERATE_UNITY               1000
-+
-+/**
-+ * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a
-+ *            given thread based upon device tree data
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * This function allocates the thread->vreg array based upon the number of
-+ * device tree regulator subnodes.  It also initializes generic elements of each
-+ * regulator struct such as name, of_node, and thread.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_allocate_regulators(struct cpr3_thread *thread)
-+{
-+      struct device_node *node;
-+      int i, rc;
-+
-+      thread->vreg_count = 0;
-+
-+      for_each_available_child_of_node(thread->of_node, node) {
-+              thread->vreg_count++;
-+      }
-+
-+      thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count,
-+                      sizeof(*thread->vreg), GFP_KERNEL);
-+      if (!thread->vreg)
-+              return -ENOMEM;
-+
-+      i = 0;
-+      for_each_available_child_of_node(thread->of_node, node) {
-+              thread->vreg[i].of_node = node;
-+              thread->vreg[i].thread = thread;
-+
-+              rc = of_property_read_string(node, "regulator-name",
-+                                              &thread->vreg[i].name);
-+              if (rc) {
-+                      dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+
-+              i++;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given
-+ *                         controller based upon device tree data
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @min_thread_id:    Minimum allowed hardware thread ID for this controller
-+ * @max_thread_id:    Maximum allowed hardware thread ID for this controller
-+ *
-+ * This function allocates the ctrl->thread array based upon the number of
-+ * device tree thread subnodes.  It also initializes generic elements of each
-+ * thread struct such as thread_id, of_node, ctrl, and vreg array.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
-+                      u32 max_thread_id)
-+{
-+      struct device *dev = ctrl->dev;
-+      struct device_node *thread_node;
-+      int i, j, rc;
-+
-+      ctrl->thread_count = 0;
-+
-+      for_each_available_child_of_node(dev->of_node, thread_node) {
-+              ctrl->thread_count++;
-+      }
-+
-+      ctrl->thread = devm_kcalloc(dev, ctrl->thread_count,
-+                      sizeof(*ctrl->thread), GFP_KERNEL);
-+      if (!ctrl->thread)
-+              return -ENOMEM;
-+
-+      i = 0;
-+      for_each_available_child_of_node(dev->of_node, thread_node) {
-+              ctrl->thread[i].of_node = thread_node;
-+              ctrl->thread[i].ctrl = ctrl;
-+
-+              rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id",
-+                                        &ctrl->thread[i].thread_id);
-+              if (rc) {
-+                      dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+
-+              if (ctrl->thread[i].thread_id < min_thread_id ||
-+                              ctrl->thread[i].thread_id > max_thread_id) {
-+                      dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n",
-+                              ctrl->thread[i].thread_id, min_thread_id,
-+                              max_thread_id);
-+                      return -EINVAL;
-+              }
-+
-+              /* Verify that the thread ID is unique for all child nodes. */
-+              for (j = 0; j < i; j++) {
-+                      if (ctrl->thread[j].thread_id
-+                                      == ctrl->thread[i].thread_id) {
-+                              dev_err(dev, "duplicate thread id = %u found\n",
-+                                      ctrl->thread[i].thread_id);
-+                              return -EINVAL;
-+                      }
-+              }
-+
-+              rc = cpr3_allocate_regulators(&ctrl->thread[i]);
-+              if (rc)
-+                      return rc;
-+
-+              i++;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_map_fuse_base() - ioremap the base address of the fuse region
-+ * @ctrl:     Pointer to the CPR3 controller
-+ * @pdev:     Platform device pointer for the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
-+                      struct platform_device *pdev)
-+{
-+      struct resource *res;
-+
-+      res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base");
-+      if (!res || !res->start) {
-+              dev_err(&pdev->dev, "fuse base address is missing\n");
-+              return -ENXIO;
-+      }
-+
-+      ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start,
-+                                              resource_size(res));
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_read_tcsr_setting - reads the CPR setting bits from TCSR register
-+ * @ctrl:     Pointer to the CPR3 controller
-+ * @pdev:     Platform device pointer for the CPR3 controller
-+ * @start:    start bit in TCSR register
-+ * @end:      end bit in TCSR register
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
-+                         struct platform_device *pdev, u8 start, u8 end)
-+{
-+      struct resource *res;
-+      void __iomem *tcsr_reg;
-+      u32 val;
-+
-+      res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
-+                                         "cpr_tcsr_reg");
-+      if (!res || !res->start)
-+              return 0;
-+
-+      tcsr_reg = ioremap(res->start, resource_size(res));
-+      if (!tcsr_reg) {
-+              dev_err(&pdev->dev, "tcsr ioremap failed\n");
-+              return 0;
-+      }
-+
-+      val = readl_relaxed(tcsr_reg);
-+      val &= GENMASK(end, start);
-+      val >>= start;
-+
-+      switch (val) {
-+      case 1:
-+              ctrl->cpr_global_setting = CPR_DISABLED;
-+              break;
-+      case 2:
-+              ctrl->cpr_global_setting = CPR_OPEN_LOOP_EN;
-+              break;
-+      case 3:
-+              ctrl->cpr_global_setting = CPR_CLOSED_LOOP_EN;
-+              break;
-+      default:
-+              ctrl->cpr_global_setting = CPR_DEFAULT;
-+      }
-+
-+      iounmap(tcsr_reg);
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses
-+ * @fuse_base_addr:   Virtual memory address of the eFuse base address
-+ * @param:            Null terminated array of fuse param segments to read
-+ *                    from
-+ * @param_value:      Output with value read from the eFuses
-+ *
-+ * This function reads from each of the parameter segments listed in the param
-+ * array and concatenates their values together.  Reading stops when an element
-+ * is reached which has all 0 struct values.  The total number of bits specified
-+ * for the fuse parameter across all segments must be less than or equal to 64.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
-+              const struct cpr3_fuse_param *param, u64 *param_value)
-+{
-+      u64 fuse_val, val;
-+      int bits;
-+      int bits_total = 0;
-+
-+      *param_value = 0;
-+
-+      while (param->row || param->bit_start || param->bit_end) {
-+              if (param->bit_start > param->bit_end
-+                  || param->bit_end > MAX_FUSE_ROW_BIT) {
-+                      pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n",
-+                              param->row, param->bit_start, param->bit_end);
-+                      return -EINVAL;
-+              }
-+
-+              bits = param->bit_end - param->bit_start + 1;
-+              if (bits_total + bits > 64) {
-+                      pr_err("Invalid fuse parameter segments; total bits = %d\n",
-+                              bits_total + bits);
-+                      return -EINVAL;
-+              }
-+
-+              fuse_val = readq_relaxed(fuse_base_addr
-+                                       + param->row * BYTES_PER_FUSE_ROW);
-+              val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1);
-+              *param_value |= val << bits_total;
-+              bits_total += bits;
-+
-+              param++;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse
-+ *            value into an absolute voltage with units of microvolts
-+ * @ref_volt:         Reference voltage in microvolts
-+ * @step_volt:                The step size in microvolts of the fuse LSB
-+ * @fuse:             Open loop voltage fuse value
-+ * @fuse_len:         The bit length of the fuse value
-+ *
-+ * The MSB of the fuse parameter corresponds to a sign bit.  If it is set, then
-+ * the lower bits correspond to the number of steps to go down from the
-+ * reference voltage.  If it is not set, then the lower bits correspond to the
-+ * number of steps to go up from the reference voltage.
-+ */
-+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
-+                                      int fuse_len)
-+{
-+      int sign, steps;
-+
-+      sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1;
-+      steps = fuse & ((1 << (fuse_len - 1)) - 1);
-+
-+      return ref_volt + sign * steps * step_volt;
-+}
-+
-+/**
-+ * cpr3_interpolate() - performs linear interpolation
-+ * @x1                Lower known x value
-+ * @y1                Lower known y value
-+ * @x2                Upper known x value
-+ * @y2                Upper known y value
-+ * @x         Intermediate x value
-+ *
-+ * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2).
-+ * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2.  If these
-+ * conditions are not met, then y2 will be returned.
-+ */
-+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
-+{
-+      u64 temp;
-+
-+      if (x1 >= x2 || y1 > y2 || x1 > x || x > x2)
-+              return y2;
-+
-+      temp = (x2 - x) * (y2 - y1);
-+      do_div(temp, (u32)(x2 - x1));
-+
-+      return y2 - temp;
-+}
-+
-+/**
-+ * cpr3_parse_array_property() - fill an array from a portion of the values
-+ *            specified for a device tree property
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @prop_name:                The name of the device tree property to read from
-+ * @tuple_size:               The number of elements in each tuple
-+ * @out:              Output data array which must be of size tuple_size
-+ *
-+ * cpr3_parse_common_corner_data() must be called for vreg before this function
-+ * is called so that fuse combo and speed bin size elements are initialized.
-+ *
-+ * Three formats are supported for the device tree property:
-+ * 1. Length == tuple_size
-+ *    (reading begins at index 0)
-+ * 2. Length == tuple_size * vreg->fuse_combos_supported
-+ *    (reading begins at index tuple_size * vreg->fuse_combo)
-+ * 3. Length == tuple_size * vreg->speed_bins_supported
-+ *    (reading begins at index tuple_size * vreg->speed_bin_fuse)
-+ *
-+ * All other property lengths are treated as errors.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
-+              const char *prop_name, int tuple_size, u32 *out)
-+{
-+      struct device_node *node = vreg->of_node;
-+      int len = 0;
-+      int i, offset, rc;
-+
-+      if (!of_find_property(node, prop_name, &len)) {
-+              cpr3_err(vreg, "property %s is missing\n", prop_name);
-+              return -EINVAL;
-+      }
-+
-+      if (len == tuple_size * sizeof(u32)) {
-+              offset = 0;
-+      } else if (len == tuple_size * vreg->fuse_combos_supported
-+                                   * sizeof(u32)) {
-+              offset = tuple_size * vreg->fuse_combo;
-+      } else if (vreg->speed_bins_supported > 0 &&
-+               len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) {
-+              offset = tuple_size * vreg->speed_bin_fuse;
-+      } else {
-+              if (vreg->speed_bins_supported > 0)
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * sizeof(u32),
-+                              tuple_size * vreg->speed_bins_supported
-+                                         * sizeof(u32),
-+                              tuple_size * vreg->fuse_combos_supported
-+                                         * sizeof(u32));
-+              else
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * sizeof(u32),
-+                              tuple_size * vreg->fuse_combos_supported
-+                                         * sizeof(u32));
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < tuple_size; i++) {
-+              rc = of_property_read_u32_index(node, prop_name, offset + i,
-+                                              &out[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                              prop_name, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_parse_corner_array_property() - fill a per-corner array from a portion
-+ *            of the values specified for a device tree property
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @prop_name:                The name of the device tree property to read from
-+ * @tuple_size:               The number of elements in each per-corner tuple
-+ * @out:              Output data array which must be of size:
-+ *                    tuple_size * vreg->corner_count
-+ *
-+ * cpr3_parse_common_corner_data() must be called for vreg before this function
-+ * is called so that fuse combo and speed bin size elements are initialized.
-+ *
-+ * Three formats are supported for the device tree property:
-+ * 1. Length == tuple_size * vreg->corner_count
-+ *    (reading begins at index 0)
-+ * 2. Length == tuple_size * vreg->fuse_combo_corner_sum
-+ *    (reading begins at index tuple_size * vreg->fuse_combo_offset)
-+ * 3. Length == tuple_size * vreg->speed_bin_corner_sum
-+ *    (reading begins at index tuple_size * vreg->speed_bin_offset)
-+ *
-+ * All other property lengths are treated as errors.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
-+              const char *prop_name, int tuple_size, u32 *out)
-+{
-+      struct device_node *node = vreg->of_node;
-+      int len = 0;
-+      int i, offset, rc;
-+
-+      if (!of_find_property(node, prop_name, &len)) {
-+              cpr3_err(vreg, "property %s is missing\n", prop_name);
-+              return -EINVAL;
-+      }
-+
-+      if (len == tuple_size * vreg->corner_count * sizeof(u32)) {
-+              offset = 0;
-+      } else if (len == tuple_size * vreg->fuse_combo_corner_sum
-+                                   * sizeof(u32)) {
-+              offset = tuple_size * vreg->fuse_combo_offset;
-+      } else if (vreg->speed_bin_corner_sum > 0 &&
-+               len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) {
-+              offset = tuple_size * vreg->speed_bin_offset;
-+      } else {
-+              if (vreg->speed_bin_corner_sum > 0)
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * vreg->corner_count * sizeof(u32),
-+                              tuple_size * vreg->speed_bin_corner_sum
-+                                         * sizeof(u32),
-+                              tuple_size * vreg->fuse_combo_corner_sum
-+                                         * sizeof(u32));
-+              else
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * vreg->corner_count * sizeof(u32),
-+                              tuple_size * vreg->fuse_combo_corner_sum
-+                                         * sizeof(u32));
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < tuple_size * vreg->corner_count; i++) {
-+              rc = of_property_read_u32_index(node, prop_name, offset + i,
-+                                              &out[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                              prop_name, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_parse_corner_band_array_property() - fill a per-corner band array
-+ *            from a portion of the values specified for a device tree
-+ *            property
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @prop_name:                The name of the device tree property to read from
-+ * @tuple_size:               The number of elements in each per-corner band tuple
-+ * @out:              Output data array which must be of size:
-+ *                    tuple_size * vreg->corner_band_count
-+ *
-+ * cpr3_parse_common_corner_data() must be called for vreg before this function
-+ * is called so that fuse combo and speed bin size elements are initialized.
-+ * In addition, corner band fuse combo and speed bin sum and offset elements
-+ * must be initialized prior to executing this function.
-+ *
-+ * Three formats are supported for the device tree property:
-+ * 1. Length == tuple_size * vreg->corner_band_count
-+ *    (reading begins at index 0)
-+ * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum
-+ *    (reading begins at index tuple_size *
-+ *            vreg->fuse_combo_corner_band_offset)
-+ * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum
-+ *    (reading begins at index tuple_size *
-+ *            vreg->speed_bin_corner_band_offset)
-+ *
-+ * All other property lengths are treated as errors.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
-+              const char *prop_name, int tuple_size, u32 *out)
-+{
-+      struct device_node *node = vreg->of_node;
-+      int len = 0;
-+      int i, offset, rc;
-+
-+      if (!of_find_property(node, prop_name, &len)) {
-+              cpr3_err(vreg, "property %s is missing\n", prop_name);
-+              return -EINVAL;
-+      }
-+
-+      if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) {
-+              offset = 0;
-+      } else if (len == tuple_size * vreg->fuse_combo_corner_band_sum
-+                                   * sizeof(u32)) {
-+              offset = tuple_size * vreg->fuse_combo_corner_band_offset;
-+      } else if (vreg->speed_bin_corner_band_sum > 0 &&
-+               len == tuple_size * vreg->speed_bin_corner_band_sum *
-+                 sizeof(u32)) {
-+              offset = tuple_size * vreg->speed_bin_corner_band_offset;
-+      } else {
-+              if (vreg->speed_bin_corner_band_sum > 0)
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * vreg->corner_band_count *
-+                               sizeof(u32),
-+                              tuple_size * vreg->speed_bin_corner_band_sum
-+                                         * sizeof(u32),
-+                              tuple_size * vreg->fuse_combo_corner_band_sum
-+                                         * sizeof(u32));
-+              else
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
-+                              prop_name, len,
-+                              tuple_size * vreg->corner_band_count *
-+                               sizeof(u32),
-+                              tuple_size * vreg->fuse_combo_corner_band_sum
-+                                         * sizeof(u32));
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < tuple_size * vreg->corner_band_count; i++) {
-+              rc = of_property_read_u32_index(node, prop_name, offset + i,
-+                                              &out[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                              prop_name, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to
-+ *            the corners supported by a CPR3 regulator from device tree
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function reads, validates, and utilizes the following device tree
-+ * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins,
-+ * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling,
-+ * qcom,cpr-voltage-floor, qcom,corner-frequencies,
-+ * and qcom,cpr-corner-fmax-map.
-+ *
-+ * It initializes these CPR3 regulator elements: corner, corner_count,
-+ * fuse_combos_supported, fuse_corner_map, and speed_bins_supported.  It
-+ * initializes these elements for each corner: ceiling_volt, floor_volt,
-+ * proc_freq, and cpr_fuse_corner.
-+ *
-+ * It requires that the following CPR3 regulator elements be initialized before
-+ * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
-+{
-+      struct device_node *node = vreg->of_node;
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      u32 max_fuse_combos, fuse_corners, aging_allowed = 0;
-+      u32 max_speed_bins = 0;
-+      u32 *combo_corners;
-+      u32 *speed_bin_corners;
-+      u32 *temp;
-+      int i, j, rc;
-+
-+      rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners);
-+      if (rc) {
-+              cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      if (vreg->fuse_corner_count != fuse_corners) {
-+              cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n",
-+                      fuse_corners, vreg->fuse_corner_count);
-+              return -EINVAL;
-+      }
-+
-+      rc = of_property_read_u32(node, "qcom,cpr-fuse-combos",
-+                              &max_fuse_combos);
-+      if (rc) {
-+              cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      /*
-+       * Sanity check against arbitrarily large value to avoid excessive
-+       * memory allocation.
-+       */
-+      if (max_fuse_combos > 100 || max_fuse_combos == 0) {
-+              cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n",
-+                      max_fuse_combos);
-+              return -EINVAL;
-+      }
-+
-+      if (vreg->fuse_combo >= max_fuse_combos) {
-+              cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n",
-+                      max_fuse_combos - 1, vreg->fuse_combo);
-+              BUG_ON(1);
-+              return -EINVAL;
-+      }
-+
-+      vreg->fuse_combos_supported = max_fuse_combos;
-+
-+      of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins);
-+
-+      /*
-+       * Sanity check against arbitrarily large value to avoid excessive
-+       * memory allocation.
-+       */
-+      if (max_speed_bins > 100) {
-+              cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n",
-+                      max_speed_bins);
-+              return -EINVAL;
-+      }
-+
-+      if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) {
-+              cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n",
-+                      max_speed_bins - 1, vreg->speed_bin_fuse);
-+              BUG();
-+              return -EINVAL;
-+      }
-+
-+      vreg->speed_bins_supported = max_speed_bins;
-+
-+      combo_corners = kcalloc(vreg->fuse_combos_supported,
-+                              sizeof(*combo_corners), GFP_KERNEL);
-+      if (!combo_corners)
-+              return -ENOMEM;
-+
-+      rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners,
-+                                      vreg->fuse_combos_supported);
-+      if (rc == -EOVERFLOW) {
-+              /* Single value case */
-+              rc = of_property_read_u32(node, "qcom,cpr-corners",
-+                                      combo_corners);
-+              for (i = 1; i < vreg->fuse_combos_supported; i++)
-+                      combo_corners[i] = combo_corners[0];
-+      }
-+      if (rc) {
-+              cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n",
-+                      rc);
-+              kfree(combo_corners);
-+              return rc;
-+      }
-+
-+      vreg->fuse_combo_offset = 0;
-+      vreg->fuse_combo_corner_sum = 0;
-+      for (i = 0; i < vreg->fuse_combos_supported; i++) {
-+              vreg->fuse_combo_corner_sum += combo_corners[i];
-+              if (i < vreg->fuse_combo)
-+                      vreg->fuse_combo_offset += combo_corners[i];
-+      }
-+
-+      vreg->corner_count = combo_corners[vreg->fuse_combo];
-+
-+      kfree(combo_corners);
-+
-+      vreg->speed_bin_offset = 0;
-+      vreg->speed_bin_corner_sum = 0;
-+      if (vreg->speed_bins_supported > 0) {
-+              speed_bin_corners = kcalloc(vreg->speed_bins_supported,
-+                                      sizeof(*speed_bin_corners), GFP_KERNEL);
-+              if (!speed_bin_corners)
-+                      return -ENOMEM;
-+
-+              rc = of_property_read_u32_array(node,
-+                              "qcom,cpr-speed-bin-corners", speed_bin_corners,
-+                              vreg->speed_bins_supported);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n",
-+                              rc);
-+                      kfree(speed_bin_corners);
-+                      return rc;
-+              }
-+
-+              for (i = 0; i < vreg->speed_bins_supported; i++) {
-+                      vreg->speed_bin_corner_sum += speed_bin_corners[i];
-+                      if (i < vreg->speed_bin_fuse)
-+                              vreg->speed_bin_offset += speed_bin_corners[i];
-+              }
-+
-+              if (speed_bin_corners[vreg->speed_bin_fuse]
-+                  != vreg->corner_count) {
-+                      cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n",
-+                              vreg->corner_count,
-+                              speed_bin_corners[vreg->speed_bin_fuse]);
-+                      kfree(speed_bin_corners);
-+                      return -EINVAL;
-+              }
-+
-+              kfree(speed_bin_corners);
-+      }
-+
-+      vreg->corner = devm_kcalloc(ctrl->dev, vreg->corner_count,
-+                                  sizeof(*vreg->corner), GFP_KERNEL);
-+      temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
-+      if (!vreg->corner || !temp)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling",
-+                      1, temp);
-+      if (rc)
-+              goto free_temp;
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              vreg->corner[i].ceiling_volt
-+                      = CPR3_ROUND(temp[i], ctrl->step_volt);
-+              vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt;
-+      }
-+
-+      rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor",
-+                      1, temp);
-+      if (rc)
-+              goto free_temp;
-+      for (i = 0; i < vreg->corner_count; i++)
-+              vreg->corner[i].floor_volt
-+                      = CPR3_ROUND(temp[i], ctrl->step_volt);
-+
-+      /* Validate ceiling and floor values */
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              if (vreg->corner[i].floor_volt
-+                  > vreg->corner[i].ceiling_volt) {
-+                      cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n",
-+                              i, vreg->corner[i].floor_volt,
-+                              i, vreg->corner[i].ceiling_volt);
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              }
-+      }
-+
-+      /* Load optional system-supply voltages */
-+      if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) {
-+              rc = cpr3_parse_corner_array_property(vreg,
-+                      "qcom,system-voltage", 1, temp);
-+              if (rc)
-+                      goto free_temp;
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      vreg->corner[i].system_volt = temp[i];
-+      }
-+
-+      rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies",
-+                      1, temp);
-+      if (rc)
-+              goto free_temp;
-+      for (i = 0; i < vreg->corner_count; i++)
-+              vreg->corner[i].proc_freq = temp[i];
-+
-+      /* Validate frequencies */
-+      for (i = 1; i < vreg->corner_count; i++) {
-+              if (vreg->corner[i].proc_freq
-+                  < vreg->corner[i - 1].proc_freq) {
-+                      cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n",
-+                              i, vreg->corner[i].proc_freq, i - 1,
-+                              vreg->corner[i - 1].proc_freq);
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              }
-+      }
-+
-+      vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count,
-+                                  sizeof(*vreg->fuse_corner_map), GFP_KERNEL);
-+      if (!vreg->fuse_corner_map) {
-+              rc = -ENOMEM;
-+              goto free_temp;
-+      }
-+
-+      rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map",
-+              vreg->fuse_corner_count, temp);
-+      if (rc)
-+              goto free_temp;
-+      for (i = 0; i < vreg->fuse_corner_count; i++) {
-+              vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET;
-+              if (temp[i] < CPR3_CORNER_OFFSET
-+                  || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) {
-+                      cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n",
-+                              temp[i]);
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              } else if (i > 0 && temp[i - 1] >= temp[i]) {
-+                      cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n",
-+                              temp[i], temp[i - 1]);
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              }
-+      }
-+      if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count)
-+              cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n",
-+                      temp[vreg->fuse_corner_count - 1],
-+                      vreg->corner_count);
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              for (j = 0; j < vreg->fuse_corner_count; j++) {
-+                      if (i + CPR3_CORNER_OFFSET <= temp[j]) {
-+                              vreg->corner[i].cpr_fuse_corner = j;
-+                              break;
-+                      }
-+              }
-+              if (j == vreg->fuse_corner_count) {
-+                      /*
-+                       * Handle the case where the highest fuse corner maps
-+                       * to a corner below the highest corner.
-+                       */
-+                      vreg->corner[i].cpr_fuse_corner
-+                              = vreg->fuse_corner_count - 1;
-+              }
-+      }
-+
-+      if (of_find_property(vreg->of_node,
-+                              "qcom,allow-aging-voltage-adjustment", NULL)) {
-+              rc = cpr3_parse_array_property(vreg,
-+                      "qcom,allow-aging-voltage-adjustment",
-+                      1, &aging_allowed);
-+              if (rc)
-+                      goto free_temp;
-+
-+              vreg->aging_allowed = aging_allowed;
-+      }
-+
-+      if (of_find_property(vreg->of_node,
-+                     "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) {
-+              rc = cpr3_parse_array_property(vreg,
-+                      "qcom,allow-aging-open-loop-voltage-adjustment",
-+                      1, &aging_allowed);
-+              if (rc)
-+                      goto free_temp;
-+
-+              vreg->aging_allow_open_loop_adj = aging_allowed;
-+      }
-+
-+      if (vreg->aging_allowed) {
-+              if (ctrl->aging_ref_volt <= 0) {
-+                      cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n");
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              }
-+
-+              rc = cpr3_parse_array_property(vreg,
-+                      "qcom,cpr-aging-max-voltage-adjustment",
-+                      1, &vreg->aging_max_adjust_volt);
-+              if (rc)
-+                      goto free_temp;
-+
-+              rc = cpr3_parse_array_property(vreg,
-+                      "qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner);
-+              if (rc) {
-+                      goto free_temp;
-+              } else if (vreg->aging_corner < CPR3_CORNER_OFFSET
-+                         || vreg->aging_corner > vreg->corner_count - 1
-+                                                      + CPR3_CORNER_OFFSET) {
-+                      cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n",
-+                              vreg->aging_corner, CPR3_CORNER_OFFSET,
-+                              vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
-+                      rc = -EINVAL;
-+                      goto free_temp;
-+              }
-+              vreg->aging_corner -= CPR3_CORNER_OFFSET;
-+
-+              if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate",
-+                                      NULL)) {
-+                      rc = cpr3_parse_corner_array_property(vreg,
-+                              "qcom,cpr-aging-derate", 1, temp);
-+                      if (rc)
-+                              goto free_temp;
-+
-+                      for (i = 0; i < vreg->corner_count; i++)
-+                              vreg->corner[i].aging_derate = temp[i];
-+              } else {
-+                      for (i = 0; i < vreg->corner_count; i++)
-+                              vreg->corner[i].aging_derate
-+                                      = CPR3_AGING_DERATE_UNITY;
-+              }
-+      }
-+
-+free_temp:
-+      kfree(temp);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's
-+ *            device tree node and verify that it is within the allowed limits
-+ * @thread:           Pointer to the CPR3 thread
-+ * @propname:         The name of the device tree property to read
-+ * @out_value:                The output pointer to fill with the value read
-+ * @value_min:                The minimum allowed property value
-+ * @value_max:                The maximum allowed property value
-+ *
-+ * This function prints a verbose error message if the property is missing or
-+ * has a value which is not within the specified range.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
-+                     u32 *out_value, u32 value_min, u32 value_max)
-+{
-+      int rc;
-+
-+      rc = of_property_read_u32(thread->of_node, propname, out_value);
-+      if (rc) {
-+              cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n",
-+                      thread->thread_id, propname, rc);
-+              return rc;
-+      }
-+
-+      if (*out_value < value_min || *out_value > value_max) {
-+              cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n",
-+                      thread->thread_id, propname, *out_value, value_min,
-+                      value_max);
-+              return -EINVAL;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3
-+ *            controller's device tree node and verify that it is within the
-+ *            allowed limits
-+ * @ctrl:             Pointer to the CPR3 controller
-+ * @propname:         The name of the device tree property to read
-+ * @out_value:                The output pointer to fill with the value read
-+ * @value_min:                The minimum allowed property value
-+ * @value_max:                The maximum allowed property value
-+ *
-+ * This function prints a verbose error message if the property is missing or
-+ * has a value which is not within the specified range.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
-+                     u32 *out_value, u32 value_min, u32 value_max)
-+{
-+      int rc;
-+
-+      rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading property %s, rc=%d\n",
-+                      propname, rc);
-+              return rc;
-+      }
-+
-+      if (*out_value < value_min || *out_value > value_max) {
-+              cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n",
-+                      propname, *out_value, value_min, value_max);
-+              return -EINVAL;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from
-+ *            device tree
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up",
-+                      &thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN,
-+                      CPR3_CONSECUTIVE_UP_DOWN_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down",
-+                      &thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN,
-+                      CPR3_CONSECUTIVE_UP_DOWN_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold",
-+                      &thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
-+                      CPR3_UP_DOWN_THRESHOLD_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold",
-+                      &thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
-+                      CPR3_UP_DOWN_THRESHOLD_MAX);
-+      if (rc)
-+              return rc;
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl)
-+{
-+      struct device_node *cpu_node;
-+      int i, cpu;
-+      int len = 0;
-+
-+      if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity",
-+                              &len)) {
-+              /* No IRQ affinity required */
-+              return 0;
-+      }
-+
-+      len /= sizeof(u32);
-+
-+      for (i = 0; i < len; i++) {
-+              cpu_node = of_parse_phandle(ctrl->dev->of_node,
-+                                          "qcom,cpr-interrupt-affinity", i);
-+              if (!cpu_node) {
-+                      cpr3_err(ctrl, "could not find CPU node %d\n", i);
-+                      return -EINVAL;
-+              }
-+
-+              for_each_possible_cpu(cpu) {
-+                      if (of_get_cpu_node(cpu, NULL) == cpu_node) {
-+                              cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask);
-+                              break;
-+                      }
-+              }
-+              of_node_put(cpu_node);
-+      }
-+
-+      return 0;
-+}
-+
-+static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl)
-+{
-+      struct device_node *node = ctrl->dev->of_node;
-+      struct cpr3_panic_regs_info *panic_regs_info;
-+      struct cpr3_reg_info *regs;
-+      int i, reg_count, len, rc = 0;
-+
-+      if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) {
-+              /* panic register address list not specified */
-+              return rc;
-+      }
-+
-+      reg_count = len / sizeof(u32);
-+      if (!reg_count) {
-+              cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n",
-+                      len);
-+              return -EINVAL;
-+      }
-+
-+      if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) {
-+              cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n");
-+              return -EINVAL;
-+      }
-+
-+      len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list");
-+      if (reg_count != len) {
-+              cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n",
-+                      reg_count);
-+              return -EINVAL;
-+      }
-+
-+      panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info),
-+                                      GFP_KERNEL);
-+      if (!panic_regs_info)
-+              return -ENOMEM;
-+
-+      regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL);
-+      if (!regs)
-+              return -ENOMEM;
-+
-+      for (i = 0; i < reg_count; i++) {
-+              rc = of_property_read_string_index(node,
-+                              "qcom,cpr-panic-reg-name-list", i,
-+                              &(regs[i].name));
-+              if (rc) {
-+                      cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+
-+              rc = of_property_read_u32_index(node,
-+                              "qcom,cpr-panic-reg-addr-list", i,
-+                              &(regs[i].addr));
-+              if (rc) {
-+                      cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+              regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4);
-+              if (!regs[i].virt_addr) {
-+                      pr_err("Unable to map panic register addr 0x%08x\n",
-+                              regs[i].addr);
-+                      return -EINVAL;
-+              }
-+              regs[i].value = 0xFFFFFFFF;
-+      }
-+
-+      panic_regs_info->reg_count = reg_count;
-+      panic_regs_info->regs = regs;
-+      ctrl->panic_regs_info = panic_regs_info;
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from
-+ *            device tree
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time",
-+                      &ctrl->sensor_time, 0, UINT_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time",
-+                      &ctrl->loop_time, 0, UINT_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles",
-+                      &ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN,
-+                      CPR3_IDLE_CLOCKS_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min",
-+                      &ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN,
-+                      CPR3_STEP_QUOT_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max",
-+                      &ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN,
-+                      CPR3_STEP_QUOT_MAX);
-+      if (rc)
-+              return rc;
-+
-+      rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
-+                              &ctrl->step_volt);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+      if (ctrl->step_volt <= 0) {
-+              cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
-+                      ctrl->step_volt);
-+              return -EINVAL;
-+      }
-+
-+      rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode",
-+                      &ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN,
-+                      CPR3_COUNT_MODE_STAGGERED);
-+      if (rc)
-+              return rc;
-+
-+      /* Count repeat is optional */
-+      ctrl->count_repeat = 0;
-+      of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat",
-+                      &ctrl->count_repeat);
-+
-+      ctrl->cpr_allowed_sw =
-+              of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-enable") ||
-+              ctrl->cpr_global_setting == CPR_CLOSED_LOOP_EN;
-+
-+      rc = cpr3_parse_irq_affinity(ctrl);
-+      if (rc)
-+              return rc;
-+
-+      /* Aging reference voltage is optional */
-+      ctrl->aging_ref_volt = 0;
-+      of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage",
-+                      &ctrl->aging_ref_volt);
-+
-+      /* Aging possible bitmask is optional */
-+      ctrl->aging_possible_mask = 0;
-+      of_property_read_u32(ctrl->dev->of_node,
-+                      "qcom,cpr-aging-allowed-reg-mask",
-+                      &ctrl->aging_possible_mask);
-+
-+      if (ctrl->aging_possible_mask) {
-+              /*
-+               * Aging possible register value required if bitmask is
-+               * specified
-+               */
-+              rc = cpr3_parse_ctrl_u32(ctrl,
-+                              "qcom,cpr-aging-allowed-reg-value",
-+                              &ctrl->aging_possible_val, 0, UINT_MAX);
-+              if (rc)
-+                      return rc;
-+      }
-+
-+      if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) {
-+              ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk");
-+              if (IS_ERR(ctrl->core_clk)) {
-+                      rc = PTR_ERR(ctrl->core_clk);
-+                      if (rc != -EPROBE_DEFER)
-+                              cpr3_err(ctrl, "unable request core clock, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+      }
-+
-+      rc = cpr3_panic_notifier_init(ctrl);
-+      if (rc)
-+              return rc;
-+
-+      if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
-+              ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
-+              if (IS_ERR(ctrl->vdd_regulator)) {
-+                      rc = PTR_ERR(ctrl->vdd_regulator);
-+                      if (rc != -EPROBE_DEFER)
-+                              cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
-+                                       rc);
-+                      return rc;
-+              }
-+      } else {
-+              cpr3_err(ctrl, "vdd supply is not defined\n");
-+              return -ENODEV;
-+      }
-+
-+      ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
-+                                                              "system");
-+      if (IS_ERR(ctrl->system_regulator)) {
-+              rc = PTR_ERR(ctrl->system_regulator);
-+              if (rc != -EPROBE_DEFER) {
-+                      rc = 0;
-+                      ctrl->system_regulator = NULL;
-+              } else {
-+                      return rc;
-+              }
-+      }
-+
-+      ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
-+                                                            "mem-acc");
-+      if (IS_ERR(ctrl->mem_acc_regulator)) {
-+              rc = PTR_ERR(ctrl->mem_acc_regulator);
-+              if (rc != -EPROBE_DEFER) {
-+                      rc = 0;
-+                      ctrl->mem_acc_regulator = NULL;
-+              } else {
-+                      return rc;
-+              }
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_parse_open_loop_common_ctrl_data() - parse common open loop CPR3
-+ *                    controller properties from device tree
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
-+                                &ctrl->step_volt);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      if (ctrl->step_volt <= 0) {
-+              cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
-+                       ctrl->step_volt);
-+              return -EINVAL;
-+      }
-+
-+      if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
-+              ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
-+              if (IS_ERR(ctrl->vdd_regulator)) {
-+                      rc = PTR_ERR(ctrl->vdd_regulator);
-+                      if (rc != -EPROBE_DEFER)
-+                              cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
-+                                       rc);
-+                      return rc;
-+              }
-+      } else {
-+              cpr3_err(ctrl, "vdd supply is not defined\n");
-+              return -ENODEV;
-+      }
-+
-+      ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
-+                                                              "system");
-+      if (IS_ERR(ctrl->system_regulator)) {
-+              rc = PTR_ERR(ctrl->system_regulator);
-+              if (rc != -EPROBE_DEFER) {
-+                      rc = 0;
-+                      ctrl->system_regulator = NULL;
-+              } else {
-+                      return rc;
-+              }
-+      } else {
-+              rc = regulator_enable(ctrl->system_regulator);
-+      }
-+
-+      ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
-+                                                            "mem-acc");
-+      if (IS_ERR(ctrl->mem_acc_regulator)) {
-+              rc = PTR_ERR(ctrl->mem_acc_regulator);
-+              if (rc != -EPROBE_DEFER) {
-+                      rc = 0;
-+                      ctrl->mem_acc_regulator = NULL;
-+              } else {
-+                      return rc;
-+              }
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner
-+ *                            so that it fits within the floor to ceiling
-+ *                            voltage range of the corner
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function clips the open-loop voltage for each corner so that it is
-+ * limited to the floor to ceiling range.  It also rounds each open-loop voltage
-+ * so that it corresponds to a set point available to the underlying regulator.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
-+{
-+      int i, volt;
-+
-+      cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n");
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              volt = CPR3_ROUND(vreg->corner[i].open_loop_volt,
-+                                      vreg->thread->ctrl->step_volt);
-+              if (volt < vreg->corner[i].floor_volt)
-+                      volt = vreg->corner[i].floor_volt;
-+              else if (volt > vreg->corner[i].ceiling_volt)
-+                      volt = vreg->corner[i].ceiling_volt;
-+              vreg->corner[i].open_loop_volt = volt;
-+              cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt);
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each
-+ *            corner to equal the open-loop voltage if the relevant device
-+ *            tree property is found for the CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function assumes that the the open-loop voltage for each corner has
-+ * already been rounded to the nearest allowed set point and that it falls
-+ * within the floor to ceiling range.
-+ *
-+ * Return: none
-+ */
-+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg)
-+{
-+      int i;
-+
-+      if (!of_property_read_bool(vreg->of_node,
-+                              "qcom,cpr-scaled-open-loop-voltage-as-ceiling"))
-+              return;
-+
-+      for (i = 0; i < vreg->corner_count; i++)
-+              vreg->corner[i].ceiling_volt
-+                      = vreg->corner[i].open_loop_volt;
-+}
-+
-+/**
-+ * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that
-+ *            the optional maximum floor to ceiling voltage range specified in
-+ *            device tree is satisfied
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function also ensures that the open-loop voltage for each corner falls
-+ * within the final floor to ceiling voltage range and that floor voltages
-+ * increase monotonically.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
-+{
-+      char *prop = "qcom,cpr-floor-to-ceiling-max-range";
-+      int i, floor_new;
-+      u32 *floor_range;
-+      int rc = 0;
-+
-+      if (!of_find_property(vreg->of_node, prop, NULL))
-+              goto enforce_monotonicity;
-+
-+      floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range),
-+                              GFP_KERNEL);
-+      if (!floor_range)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range);
-+      if (rc)
-+              goto free_floor_adjust;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              if ((s32)floor_range[i] >= 0) {
-+                      floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt
-+                                                      - floor_range[i],
-+                                              vreg->thread->ctrl->step_volt);
-+
-+                      vreg->corner[i].floor_volt = max(floor_new,
-+                                              vreg->corner[i].floor_volt);
-+                      if (vreg->corner[i].open_loop_volt
-+                          < vreg->corner[i].floor_volt)
-+                              vreg->corner[i].open_loop_volt
-+                                      = vreg->corner[i].floor_volt;
-+              }
-+      }
-+
-+free_floor_adjust:
-+      kfree(floor_range);
-+
-+enforce_monotonicity:
-+      /* Ensure that floor voltages increase monotonically. */
-+      for (i = 1; i < vreg->corner_count; i++) {
-+              if (vreg->corner[i].floor_volt
-+                  < vreg->corner[i - 1].floor_volt) {
-+                      cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n",
-+                              i, vreg->corner[i].floor_volt,
-+                              i - 1, vreg->corner[i - 1].floor_volt,
-+                              i, vreg->corner[i - 1].floor_volt);
-+                      vreg->corner[i].floor_volt
-+                              = vreg->corner[i - 1].floor_volt;
-+
-+                      if (vreg->corner[i].open_loop_volt
-+                          < vreg->corner[i].floor_volt)
-+                              vreg->corner[i].open_loop_volt
-+                                      = vreg->corner[i].floor_volt;
-+                      if (vreg->corner[i].ceiling_volt
-+                          < vreg->corner[i].floor_volt)
-+                              vreg->corner[i].ceiling_volt
-+                                      = vreg->corner[i].floor_volt;
-+              }
-+      }
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_print_quots() - print CPR target quotients into the kernel log for
-+ *            debugging purposes
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: none
-+ */
-+void cpr3_print_quots(struct cpr3_regulator *vreg)
-+{
-+      int i, j, pos;
-+      size_t buflen;
-+      char *buf;
-+
-+      buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2);
-+      buf = kzalloc(buflen, GFP_KERNEL);
-+      if (!buf)
-+              return;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++)
-+                      pos += scnprintf(buf + pos, buflen - pos, " %u",
-+                              vreg->corner[i].target_quot[j]);
-+              cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf);
-+      }
-+
-+      kfree(buf);
-+}
-+
-+/**
-+ * cpr3_determine_part_type() - determine the part type (SS/TT/FF).
-+ *
-+ * qcom,cpr-part-types prop tells the number of part types for which correction
-+ * voltages are different. Another prop qcom,cpr-parts-voltage will contain the
-+ * open loop fuse voltage which will be compared with this part voltage
-+ * and accordingly part type will de determined.
-+ *
-+ * if qcom,cpr-part-types has value n, then qcom,cpr-parts-voltage will be
-+ * array of n - 1 elements which will contain the voltage in increasing order.
-+ * This function compares the fused volatge with all these voltage and returns
-+ * the first index for which the fused volatge is greater.
-+ *
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @fuse_volt:                fused open loop voltage which will be compared with
-+ *                      qcom,cpr-parts-voltage array
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
-+{
-+      int i, rc, len;
-+      u32 volt;
-+      int soc_version_major;
-+      char prop_name[100];
-+      const char prop_name_def[] = "qcom,cpr-parts-voltage";
-+      const char prop_name_v2[] = "qcom,cpr-parts-voltage-v2";
-+
-+      soc_version_major = read_ipq_soc_version_major();
-+        BUG_ON(soc_version_major <= 0);
-+
-+      if (of_property_read_u32(vreg->of_node, "qcom,cpr-part-types",
-+                                &vreg->part_type_supported))
-+              return 0;
-+
-+      if (soc_version_major > 1)
-+              strlcpy(prop_name, prop_name_v2, sizeof(prop_name_v2));
-+      else
-+              strlcpy(prop_name, prop_name_def, sizeof(prop_name_def));
-+
-+      if (!of_find_property(vreg->of_node, prop_name, &len)) {
-+              cpr3_err(vreg, "property %s is missing\n", prop_name);
-+              return -EINVAL;
-+      }
-+
-+      if (len != (vreg->part_type_supported - 1) * sizeof(u32)) {
-+              cpr3_err(vreg, "wrong len in qcom,cpr-parts-voltage\n");
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < vreg->part_type_supported - 1; i++) {
-+              rc = of_property_read_u32_index(vreg->of_node,
-+                                      prop_name, i, &volt);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                               prop_name, rc);
-+                      return rc;
-+              }
-+
-+              if (fuse_volt < volt)
-+                      break;
-+      }
-+
-+      vreg->part_type = i;
-+      return 0;
-+}
-+
-+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
-+              int *fuse_volt)
-+{
-+      int i, rc, prev_volt;
-+      int *volt_adjust;
-+      char prop_str[75];
-+      int soc_version_major = read_ipq_soc_version_major();
-+
-+      BUG_ON(soc_version_major <= 0);
-+
-+      if (vreg->part_type_supported) {
-+              if (soc_version_major > 1)
-+                      snprintf(prop_str, sizeof(prop_str),
-+                      "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
-+                      vreg->part_type);
-+              else
-+                      snprintf(prop_str, sizeof(prop_str),
-+                      "qcom,cpr-cold-temp-voltage-adjustment-%d",
-+                      vreg->part_type);
-+      } else {
-+              strlcpy(prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
-+                      sizeof(prop_str));
-+      }
-+
-+      if (!of_find_property(vreg->of_node, prop_str, NULL)) {
-+              /* No adjustment required. */
-+              cpr3_info(vreg, "No cold temperature adjustment required.\n");
-+              return 0;
-+      }
-+
-+      volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
-+      GFP_KERNEL);
-+      if (!volt_adjust)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_array_property(vreg, prop_str,
-+                      vreg->fuse_corner_count, volt_adjust);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load cold temp voltage adjustments, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->fuse_corner_count; i++) {
-+              if (volt_adjust[i]) {
-+                      prev_volt = fuse_volt[i];
-+                      fuse_volt[i] += volt_adjust[i];
-+                      cpr3_debug(vreg,
-+                              "adjusted fuse corner %d open-loop voltage: %d -> %d uV\n",
-+                              i, prev_volt, fuse_volt[i]);
-+              }
-+      }
-+
-+done:
-+      kfree(volt_adjust);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_can_adjust_cold_temp() - Is cold temperature adjustment available
-+ *
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function checks the cold temperature threshold is available
-+ *
-+ * Return: true on cold temperature threshold is available, else false
-+ */
-+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
-+{
-+      char prop_str[75];
-+      int soc_version_major = read_ipq_soc_version_major();
-+
-+      BUG_ON(soc_version_major <= 0);
-+
-+      if (soc_version_major > 1)
-+              strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
-+                      sizeof(prop_str));
-+      else
-+              strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
-+                      sizeof(prop_str));
-+
-+      if (!of_find_property(vreg->of_node, prop_str, NULL)) {
-+              /* No adjustment required. */
-+              return false;
-+      } else
-+              return true;
-+}
-+
-+/**
-+ * cpr3_get_cold_temp_threshold() - get cold temperature threshold
-+ *
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @cold_temp:                cold temperature read.
-+ *
-+ * This function reads the cold temperature threshold below which
-+ * cold temperature adjustment margins will be applied.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
-+{
-+      int rc;
-+      u32 temp;
-+      char req_prop_str[75], prop_str[75];
-+      int soc_version_major = read_ipq_soc_version_major();
-+
-+      BUG_ON(soc_version_major <= 0);
-+
-+      if (vreg->part_type_supported) {
-+              if (soc_version_major > 1)
-+                      snprintf(req_prop_str, sizeof(req_prop_str),
-+                      "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
-+                      vreg->part_type);
-+              else
-+                      snprintf(req_prop_str, sizeof(req_prop_str),
-+                      "qcom,cpr-cold-temp-voltage-adjustment-%d",
-+                      vreg->part_type);
-+      } else {
-+              strlcpy(req_prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
-+                      sizeof(req_prop_str));
-+      }
-+
-+      if (soc_version_major > 1)
-+              strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
-+                      sizeof(prop_str));
-+      else
-+              strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
-+                      sizeof(prop_str));
-+
-+      if (!of_find_property(vreg->of_node, req_prop_str, NULL)) {
-+              /* No adjustment required. */
-+              cpr3_info(vreg, "Cold temperature adjustment not required.\n");
-+              return 0;
-+      }
-+
-+      if (!of_find_property(vreg->of_node, prop_str, NULL)) {
-+              /* No adjustment required. */
-+                cpr3_err(vreg, "Missing %s required for %s\n",
-+                      prop_str, req_prop_str);
-+              return -EINVAL;
-+        }
-+
-+      rc = of_property_read_u32(vreg->of_node, prop_str, &temp);
-+      if (rc) {
-+              cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                      prop_str, rc);
-+              return rc;
-+      }
-+
-+      *cold_temp = temp;
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages
-+ *            for each fuse corner according to device tree values
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @fuse_volt:                Pointer to an array of the fused open-loop voltage
-+ *                    values
-+ *
-+ * Voltage values in fuse_volt are modified in place.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
-+              int *fuse_volt)
-+{
-+      int i, rc, prev_volt;
-+      int *volt_adjust;
-+      char prop_str[75];
-+      int soc_version_major = read_ipq_soc_version_major();
-+
-+      BUG_ON(soc_version_major <= 0);
-+
-+      if (vreg->part_type_supported) {
-+              if (soc_version_major > 1)
-+                      snprintf(prop_str, sizeof(prop_str),
-+                      "qcom,cpr-open-loop-voltage-fuse-adjustment-v2-%d",
-+                      vreg->part_type);
-+              else
-+              snprintf(prop_str, sizeof(prop_str),
-+                       "qcom,cpr-open-loop-voltage-fuse-adjustment-%d",
-+                       vreg->part_type);
-+      } else {
-+              strlcpy(prop_str, "qcom,cpr-open-loop-voltage-fuse-adjustment",
-+                      sizeof(prop_str));
-+      }
-+
-+      if (!of_find_property(vreg->of_node, prop_str, NULL)) {
-+              /* No adjustment required. */
-+              return 0;
-+      }
-+
-+      volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
-+                              GFP_KERNEL);
-+      if (!volt_adjust)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_array_property(vreg,
-+              prop_str, vreg->fuse_corner_count, volt_adjust);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->fuse_corner_count; i++) {
-+              if (volt_adjust[i]) {
-+                      prev_volt = fuse_volt[i];
-+                      fuse_volt[i] += volt_adjust[i];
-+                      cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n",
-+                              i, prev_volt, fuse_volt[i]);
-+              }
-+      }
-+
-+done:
-+      kfree(volt_adjust);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each
-+ *            corner according to device tree values
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
-+{
-+      int i, rc, prev_volt, min_volt;
-+      int *volt_adjust, *volt_diff;
-+
-+      if (!of_find_property(vreg->of_node,
-+                      "qcom,cpr-open-loop-voltage-adjustment", NULL)) {
-+              /* No adjustment required. */
-+              return 0;
-+      }
-+
-+      volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
-+                              GFP_KERNEL);
-+      volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL);
-+      if (!volt_adjust || !volt_diff) {
-+              rc = -ENOMEM;
-+              goto done;
-+      }
-+
-+      rc = cpr3_parse_corner_array_property(vreg,
-+              "qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              if (volt_adjust[i]) {
-+                      prev_volt = vreg->corner[i].open_loop_volt;
-+                      vreg->corner[i].open_loop_volt += volt_adjust[i];
-+                      cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n",
-+                              i, prev_volt, vreg->corner[i].open_loop_volt);
-+              }
-+      }
-+
-+      if (of_find_property(vreg->of_node,
-+                      "qcom,cpr-open-loop-voltage-min-diff", NULL)) {
-+              rc = cpr3_parse_corner_array_property(vreg,
-+                      "qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff);
-+              if (rc) {
-+                      cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      /*
-+       * Ensure that open-loop voltages increase monotonically with respect
-+       * to configurable minimum allowed differences.
-+       */
-+      for (i = 1; i < vreg->corner_count; i++) {
-+              min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i];
-+              if (vreg->corner[i].open_loop_volt < min_volt) {
-+                      cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n",
-+                              i, vreg->corner[i].open_loop_volt,
-+                              i - 1, vreg->corner[i - 1].open_loop_volt,
-+                              volt_diff[i], i, min_volt);
-+                      vreg->corner[i].open_loop_volt = min_volt;
-+              }
-+      }
-+
-+done:
-+      kfree(volt_diff);
-+      kfree(volt_adjust);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from
-+ *            the specified voltage adjustment and RO scaling factor
-+ * @ro_scale:         The CPR ring oscillator (RO) scaling factor with units
-+ *                    of QUOT/V
-+ * @volt_adjust:      The amount to adjust the voltage by in units of
-+ *                    microvolts.  This value may be positive or negative.
-+ */
-+int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
-+{
-+      unsigned long long temp;
-+      int quot_adjust;
-+      int sign = 1;
-+
-+      if (ro_scale < 0) {
-+              sign = -sign;
-+              ro_scale = -ro_scale;
-+      }
-+
-+      if (volt_adjust < 0) {
-+              sign = -sign;
-+              volt_adjust = -volt_adjust;
-+      }
-+
-+      temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust;
-+      do_div(temp, 1000000);
-+
-+      quot_adjust = temp;
-+      quot_adjust *= sign;
-+
-+      return quot_adjust;
-+}
-+
-+/**
-+ * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting
-+ *            from the specified quotient adjustment and RO scaling factor
-+ * @ro_scale:         The CPR ring oscillator (RO) scaling factor with units
-+ *                    of QUOT/V
-+ * @quot_adjust:      The amount to adjust the quotient by in units of
-+ *                    QUOT.  This value may be positive or negative.
-+ */
-+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
-+{
-+      unsigned long long temp;
-+      int volt_adjust;
-+      int sign = 1;
-+
-+      if (ro_scale < 0) {
-+              sign = -sign;
-+              ro_scale = -ro_scale;
-+      }
-+
-+      if (quot_adjust < 0) {
-+              sign = -sign;
-+              quot_adjust = -quot_adjust;
-+      }
-+
-+      if (ro_scale == 0)
-+              return 0;
-+
-+      temp = (unsigned long long)quot_adjust * 1000000;
-+      do_div(temp, ro_scale);
-+
-+      volt_adjust = temp;
-+      volt_adjust *= sign;
-+
-+      return volt_adjust;
-+}
-+
-+/**
-+ * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and
-+ *            per-corner closed-loop adjustment values from device tree
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @ro_sel:           Array of ring oscillator values selected for each
-+ *                    fuse corner
-+ * @volt_adjust:      Pointer to array which will be filled with the
-+ *                    per-corner closed-loop adjustment voltages
-+ * @volt_adjust_fuse: Pointer to array which will be filled with the
-+ *                    per-fuse-corner closed-loop adjustment voltages
-+ * @ro_scale:         Pointer to array which will be filled with the
-+ *                    per-fuse-corner RO scaling factor values with units of
-+ *                    QUOT/V
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_parse_closed_loop_voltage_adjustments(
-+                      struct cpr3_regulator *vreg, u64 *ro_sel,
-+                      int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
-+{
-+      int i, rc;
-+      u32 *ro_all_scale;
-+
-+      char volt_adj[] = "qcom,cpr-closed-loop-voltage-adjustment";
-+      char volt_fuse_adj[] = "qcom,cpr-closed-loop-voltage-fuse-adjustment";
-+      char ro_scaling[] = "qcom,cpr-ro-scaling-factor";
-+
-+      if (!of_find_property(vreg->of_node, volt_adj, NULL)
-+          && !of_find_property(vreg->of_node, volt_fuse_adj, NULL)
-+          && !vreg->aging_allowed) {
-+              /* No adjustment required. */
-+              return 0;
-+      } else if (!of_find_property(vreg->of_node, ro_scaling, NULL)) {
-+              cpr3_err(vreg, "Missing %s required for closed-loop voltage adjustment.\n",
-+                              ro_scaling);
-+              return -EINVAL;
-+      }
-+
-+      ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT,
-+                              sizeof(*ro_all_scale), GFP_KERNEL);
-+      if (!ro_all_scale)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_array_property(vreg, ro_scaling,
-+              vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->fuse_corner_count; i++)
-+              ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]];
-+
-+      for (i = 0; i < vreg->corner_count; i++)
-+              memcpy(vreg->corner[i].ro_scale,
-+               &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT],
-+               sizeof(*ro_all_scale) * CPR3_RO_COUNT);
-+
-+      if (of_find_property(vreg->of_node, volt_fuse_adj, NULL)) {
-+              rc = cpr3_parse_array_property(vreg, volt_fuse_adj,
-+                      vreg->fuse_corner_count, volt_adjust_fuse);
-+              if (rc) {
-+                      cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      if (of_find_property(vreg->of_node, volt_adj, NULL)) {
-+              rc = cpr3_parse_corner_array_property(vreg, volt_adj,
-+                      1, volt_adjust);
-+              if (rc) {
-+                      cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+done:
-+      kfree(ro_all_scale);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_apm_init() - initialize APM data for a CPR3 controller
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * This function loads memory array power mux (APM) data from device tree
-+ * if it is present and requests a handle to the appropriate APM controller
-+ * device.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_apm_init(struct cpr3_controller *ctrl)
-+{
-+      struct device_node *node = ctrl->dev->of_node;
-+      int rc;
-+
-+      if (!of_find_property(node, "qcom,apm-ctrl", NULL)) {
-+              /* No APM used */
-+              return 0;
-+      }
-+
-+      ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev);
-+      if (IS_ERR(ctrl->apm)) {
-+              rc = PTR_ERR(ctrl->apm);
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "APM get failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      rc = of_property_read_u32(node, "qcom,apm-threshold-voltage",
-+                              &ctrl->apm_threshold_volt);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+      ctrl->apm_threshold_volt
-+              = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt);
-+
-+      /* No error check since this is an optional property. */
-+      of_property_read_u32(node, "qcom,apm-hysteresis-voltage",
-+                              &ctrl->apm_adj_volt);
-+      ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
-+
-+      ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC;
-+      ctrl->apm_low_supply = MSM_APM_SUPPLY_MX;
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr3_mem_acc_init() - initialize mem-acc regulator data for
-+ *            a CPR3 regulator
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      u32 *temp;
-+      int i, rc;
-+
-+      if (!ctrl->mem_acc_regulator) {
-+              cpr3_info(ctrl, "not using memory accelerator regulator\n");
-+              return 0;
-+      }
-+
-+      temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
-+      if (!temp)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage",
-+                                            1, temp);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc);
-+      } else {
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      vreg->corner[i].mem_acc_volt = temp[i];
-+      }
-+
-+      kfree(temp);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for
-+ *            per-online-core and per-temperature voltage adjustment for a
-+ *            given corner or corner band from device tree.
-+ * @vreg:     Pointer to the CPR3 regulator
-+ * @num:      Corner number or corner band number
-+ * @use_corner_band:  Boolean indicating if the CPR3 regulator supports
-+ *                    adjustments per corner band
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg,
-+                                      int num, bool use_corner_band)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct cpr4_sdelta *sdelta;
-+      int sdelta_size, i, j, pos, rc = 0;
-+      char str[75];
-+      size_t buflen;
-+      char *buf;
-+
-+      sdelta = use_corner_band ? vreg->corner_band[num].sdelta :
-+              vreg->corner[num].sdelta;
-+
-+      if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
-+              /* corner doesn't need sdelta table */
-+              sdelta->max_core_count = 0;
-+              sdelta->temp_band_count = 0;
-+              return rc;
-+      }
-+
-+      sdelta_size = sdelta->max_core_count * sdelta->temp_band_count;
-+      if (use_corner_band)
-+              snprintf(str, sizeof(str),
-+                       "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
-+                       num, sdelta->max_core_count,
-+                       sdelta->temp_band_count, sdelta_size);
-+      else
-+              snprintf(str, sizeof(str),
-+                       "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
-+                       num, sdelta->max_core_count,
-+                       sdelta->temp_band_count, sdelta_size);
-+
-+      cpr3_debug(vreg, "%s", str);
-+
-+      sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size,
-+                              sizeof(*sdelta->table), GFP_KERNEL);
-+      if (!sdelta->table)
-+              return -ENOMEM;
-+
-+      if (use_corner_band)
-+              snprintf(str, sizeof(str),
-+                       "qcom,cpr-corner-band%d-temp-core-voltage-adjustment",
-+                       num + CPR3_CORNER_OFFSET);
-+      else
-+              snprintf(str, sizeof(str),
-+                       "qcom,cpr-corner%d-temp-core-voltage-adjustment",
-+                       num + CPR3_CORNER_OFFSET);
-+
-+      rc = cpr3_parse_array_property(vreg, str, sdelta_size,
-+                              sdelta->table);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc);
-+              return rc;
-+      }
-+
-+      /*
-+       * Convert sdelta margins from uV to PMIC steps and apply negation to
-+       * follow the SDELTA register semantics.
-+       */
-+      for (i = 0; i < sdelta_size; i++)
-+              sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt);
-+
-+      buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2);
-+      buf = kzalloc(buflen, GFP_KERNEL);
-+      if (!buf)
-+              return rc;
-+
-+      for (i = 0; i < sdelta->max_core_count; i++) {
-+              for (j = 0, pos = 0; j < sdelta->temp_band_count; j++)
-+                      pos += scnprintf(buf + pos, buflen - pos, " %u",
-+                       sdelta->table[i * sdelta->temp_band_count + j]);
-+              cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf);
-+      }
-+
-+      kfree(buf);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for
-+ *            per-online-core and per-temperature voltage adjustment for
-+ *            a CPR3 regulator from device tree.
-+ * @vreg:     Pointer to the CPR3 regulator
-+ * @use_corner_band:  Boolean indicating if the CPR3 regulator supports
-+ *                    adjustments per corner band
-+ *
-+ * This function supports parsing of per-online-core and per-temperature
-+ * adjustments per corner or per corner band. CPR controllers which support
-+ * corner bands apply the same adjustments to all corners within a corner band.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr4_parse_core_count_temp_voltage_adj(
-+                      struct cpr3_regulator *vreg, bool use_corner_band)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct device_node *node = vreg->of_node;
-+      struct cpr3_corner *corner;
-+      struct cpr4_sdelta *sdelta;
-+      int i, sdelta_table_count, rc = 0;
-+      int *allow_core_count_adj = NULL, *allow_temp_adj = NULL;
-+      char prop_str[75];
-+
-+      if (of_find_property(node, use_corner_band ?
-+                           "qcom,corner-band-allow-temp-adjustment"
-+                           : "qcom,corner-allow-temp-adjustment", NULL)) {
-+              if (!ctrl->allow_temp_adj) {
-+                      cpr3_err(ctrl, "Temperature adjustment configurations missing\n");
-+                      return -EINVAL;
-+              }
-+
-+              vreg->allow_temp_adj = true;
-+      }
-+
-+      if (of_find_property(node, use_corner_band ?
-+                           "qcom,corner-band-allow-core-count-adjustment"
-+                           : "qcom,corner-allow-core-count-adjustment",
-+                           NULL)) {
-+              rc = of_property_read_u32(node, "qcom,max-core-count",
-+                              &vreg->max_core_count);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n",
-+                              rc);
-+                      return -EINVAL;
-+              }
-+
-+              vreg->allow_core_count_adj = true;
-+              ctrl->allow_core_count_adj = true;
-+      }
-+
-+      if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) {
-+              /*
-+               * Both per-online-core and temperature based adjustments are
-+               * disabled for this regulator.
-+               */
-+              return 0;
-+      } else if (!vreg->allow_core_count_adj) {
-+              /*
-+               * Only per-temperature voltage adjusments are allowed.
-+               * Keep max core count value as 1 to allocate SDELTA.
-+               */
-+              vreg->max_core_count = 1;
-+      }
-+
-+      if (vreg->allow_core_count_adj) {
-+              allow_core_count_adj = kcalloc(vreg->corner_count,
-+                                      sizeof(*allow_core_count_adj),
-+                                      GFP_KERNEL);
-+              if (!allow_core_count_adj)
-+                      return -ENOMEM;
-+
-+              snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
-+                       "qcom,corner-band-allow-core-count-adjustment" :
-+                       "qcom,corner-allow-core-count-adjustment");
-+
-+              rc = use_corner_band ?
-+                      cpr3_parse_corner_band_array_property(vreg, prop_str,
-+                                            1, allow_core_count_adj) :
-+                      cpr3_parse_corner_array_property(vreg, prop_str,
-+                                               1, allow_core_count_adj);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
-+                               rc);
-+                      goto done;
-+              }
-+      }
-+
-+      if (vreg->allow_temp_adj) {
-+              allow_temp_adj = kcalloc(vreg->corner_count,
-+                                      sizeof(*allow_temp_adj), GFP_KERNEL);
-+              if (!allow_temp_adj) {
-+                      rc = -ENOMEM;
-+                      goto done;
-+              }
-+
-+              snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
-+                       "qcom,corner-band-allow-temp-adjustment" :
-+                       "qcom,corner-allow-temp-adjustment");
-+
-+              rc = use_corner_band ?
-+                      cpr3_parse_corner_band_array_property(vreg, prop_str,
-+                                                    1, allow_temp_adj) :
-+                      cpr3_parse_corner_array_property(vreg, prop_str,
-+                                               1, allow_temp_adj);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
-+                               rc);
-+                      goto done;
-+              }
-+      }
-+
-+      sdelta_table_count = use_corner_band ? vreg->corner_band_count :
-+              vreg->corner_count;
-+
-+      for (i = 0; i < sdelta_table_count; i++) {
-+              sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta),
-+                                    GFP_KERNEL);
-+              if (!sdelta) {
-+                      rc = -ENOMEM;
-+                      goto done;
-+              }
-+
-+              if (allow_core_count_adj)
-+                      sdelta->allow_core_count_adj = allow_core_count_adj[i];
-+              if (allow_temp_adj)
-+                      sdelta->allow_temp_adj = allow_temp_adj[i];
-+              sdelta->max_core_count = vreg->max_core_count;
-+              sdelta->temp_band_count = ctrl->temp_band_count;
-+
-+              if (use_corner_band)
-+                      vreg->corner_band[i].sdelta = sdelta;
-+              else
-+                      vreg->corner[i].sdelta = sdelta;
-+
-+              rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band);
-+              if (rc) {
-+                      cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n",
-+                               i, rc);
-+                      goto done;
-+              }
-+      }
-+
-+done:
-+      kfree(allow_core_count_adj);
-+      kfree(allow_temp_adj);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages
-+ *            so that they do not overlap the APM threshold voltage.
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * The memory array power mux (APM) must be configured for a specific supply
-+ * based upon where the VDD voltage lies with respect to the APM threshold
-+ * voltage.  When using CPR hardware closed-loop, the voltage may vary anywhere
-+ * between the floor and ceiling voltage without software notification.
-+ * Therefore, it is required that the floor to ceiling range for every corner
-+ * not intersect the APM threshold voltage.  This function adjusts the floor to
-+ * ceiling range for each corner which violates this requirement.
-+ *
-+ * The following algorithm is applied:
-+ *    if floor < threshold <= ceiling:
-+ *            if open_loop >= threshold, then floor = threshold - adj
-+ *            else ceiling = threshold - step
-+ * where:
-+ *    adj = APM hysteresis voltage established to minimize the number of
-+ *          corners with artificially increased floor voltages
-+ *    step = voltage in microvolts of a single step of the VDD supply
-+ *
-+ * The open-loop voltage is also bounded by the new floor or ceiling value as
-+ * needed.
-+ *
-+ * Return: none
-+ */
-+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct cpr3_corner *corner;
-+      int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop;
-+
-+      if (!ctrl->apm_threshold_volt) {
-+              /* APM not being used. */
-+              return;
-+      }
-+
-+      ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt,
-+                                              ctrl->step_volt);
-+      ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
-+
-+      threshold = ctrl->apm_threshold_volt;
-+      adj = ctrl->apm_adj_volt;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              corner = &vreg->corner[i];
-+
-+              if (threshold <= corner->floor_volt
-+                  || threshold > corner->ceiling_volt)
-+                      continue;
-+
-+              prev_floor = corner->floor_volt;
-+              prev_ceiling = corner->ceiling_volt;
-+              prev_open_loop = corner->open_loop_volt;
-+
-+              if (corner->open_loop_volt >= threshold) {
-+                      corner->floor_volt = max(corner->floor_volt,
-+                                               threshold - adj);
-+                      if (corner->open_loop_volt < corner->floor_volt)
-+                              corner->open_loop_volt = corner->floor_volt;
-+              } else {
-+                      corner->ceiling_volt = threshold - ctrl->step_volt;
-+              }
-+
-+              if (corner->floor_volt != prev_floor
-+                  || corner->ceiling_volt != prev_ceiling
-+                  || corner->open_loop_volt != prev_open_loop)
-+                      cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
-+                              threshold, adj, i, prev_floor, prev_ceiling,
-+                              prev_open_loop, corner->floor_volt,
-+                              corner->ceiling_volt, corner->open_loop_volt);
-+      }
-+}
-+
-+/**
-+ * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling
-+ *            voltages so that they do not intersect the MEM ACC threshold
-+ *            voltage
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * The following algorithm is applied:
-+ *    if floor < threshold <= ceiling:
-+ *            if open_loop >= threshold, then floor = threshold
-+ *            else ceiling = threshold - step
-+ * where:
-+ *    step = voltage in microvolts of a single step of the VDD supply
-+ *
-+ * The open-loop voltage is also bounded by the new floor or ceiling value as
-+ * needed.
-+ *
-+ * Return: none
-+ */
-+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct cpr3_corner *corner;
-+      int i, threshold, prev_ceiling, prev_floor, prev_open_loop;
-+
-+      if (!ctrl->mem_acc_threshold_volt) {
-+              /* MEM ACC not being used. */
-+              return;
-+      }
-+
-+      ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt,
-+                                              ctrl->step_volt);
-+
-+      threshold = ctrl->mem_acc_threshold_volt;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              corner = &vreg->corner[i];
-+
-+              if (threshold <= corner->floor_volt
-+                  || threshold > corner->ceiling_volt)
-+                      continue;
-+
-+              prev_floor = corner->floor_volt;
-+              prev_ceiling = corner->ceiling_volt;
-+              prev_open_loop = corner->open_loop_volt;
-+
-+              if (corner->open_loop_volt >= threshold) {
-+                      corner->floor_volt = max(corner->floor_volt, threshold);
-+                      if (corner->open_loop_volt < corner->floor_volt)
-+                              corner->open_loop_volt = corner->floor_volt;
-+              } else {
-+                      corner->ceiling_volt = threshold - ctrl->step_volt;
-+              }
-+
-+              if (corner->floor_volt != prev_floor
-+                  || corner->ceiling_volt != prev_ceiling
-+                  || corner->open_loop_volt != prev_open_loop)
-+                      cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
-+                              threshold, i, prev_floor, prev_ceiling,
-+                              prev_open_loop, corner->floor_volt,
-+                              corner->ceiling_volt, corner->open_loop_volt);
-+      }
-+}
-+
-+/**
-+ * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage
-+ *            adjustments by the amounts that are needed for this
-+ *            fuse combo
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @volt_adjust:      Array of closed-loop voltage adjustment values of length
-+ *                    vreg->corner_count which is further adjusted based upon
-+ *                    offset voltage fuse values.
-+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
-+ *                    vreg->fuse_corner_count.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg,
-+                      int *volt_adjust, int *fuse_volt_adjust)
-+{
-+      u32 *corner_map;
-+      int rc = 0, i;
-+
-+      if (!of_find_property(vreg->of_node,
-+              "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) {
-+              /* No closed-loop offset required. */
-+              return 0;
-+      }
-+
-+      corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map),
-+                              GFP_KERNEL);
-+      if (!corner_map)
-+              return -ENOMEM;
-+
-+      rc = cpr3_parse_corner_array_property(vreg,
-+              "qcom,cpr-fused-closed-loop-voltage-adjustment-map",
-+              1, corner_map);
-+      if (rc)
-+              goto done;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              if (corner_map[i] == 0) {
-+                      continue;
-+              } else if (corner_map[i] > vreg->fuse_corner_count) {
-+                      cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n",
-+                              i, corner_map[i]);
-+                      rc = -EINVAL;
-+                      goto done;
-+              }
-+
-+              volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1];
-+      }
-+
-+done:
-+      kfree(corner_map);
-+      return rc;
-+}
-+
-+/**
-+ * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients
-+ *            increase monotonically from lower to higher corners
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg)
-+{
-+      int i, j;
-+
-+      for (i = 1; i < vreg->corner_count; i++) {
-+              for (j = 0; j < CPR3_RO_COUNT; j++) {
-+                      if (vreg->corner[i].target_quot[j]
-+                          && vreg->corner[i].target_quot[j]
-+                                      < vreg->corner[i - 1].target_quot[j]) {
-+                              cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
-+                                      i, j,
-+                                      vreg->corner[i].target_quot[j],
-+                                      i - 1, j,
-+                                      vreg->corner[i - 1].target_quot[j],
-+                                      i, j,
-+                                      vreg->corner[i - 1].target_quot[j]);
-+                              vreg->corner[i].target_quot[j]
-+                                      = vreg->corner[i - 1].target_quot[j];
-+                      }
-+              }
-+      }
-+}
-+
-+/**
-+ * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients
-+ *            decrease monotonically from higher to lower corners
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg)
-+{
-+      int i, j;
-+
-+      for (i = vreg->corner_count - 2; i >= 0; i--) {
-+              for (j = 0; j < CPR3_RO_COUNT; j++) {
-+                      if (vreg->corner[i + 1].target_quot[j]
-+                          && vreg->corner[i].target_quot[j]
-+                                      > vreg->corner[i + 1].target_quot[j]) {
-+                              cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
-+                                      i, j,
-+                                      vreg->corner[i].target_quot[j],
-+                                      i + 1, j,
-+                                      vreg->corner[i + 1].target_quot[j],
-+                                      i, j,
-+                                      vreg->corner[i + 1].target_quot[j]);
-+                              vreg->corner[i].target_quot[j]
-+                                      = vreg->corner[i + 1].target_quot[j];
-+                      }
-+              }
-+      }
-+}
-+
-+/**
-+ * _cpr3_adjust_target_quotients() - adjust the target quotients for each
-+ *            corner of the regulator according to input adjustment and
-+ *            scaling arrays
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @volt_adjust:      Pointer to an array of closed-loop voltage adjustments
-+ *                    with units of microvolts.  The array must have
-+ *                    vreg->corner_count number of elements.
-+ * @ro_scale:         Pointer to a flattened 2D array of RO scaling factors.
-+ *                    The array must have an inner dimension of CPR3_RO_COUNT
-+ *                    and an outer dimension of vreg->corner_count
-+ * @label:            Null terminated string providing a label for the type
-+ *                    of adjustment.
-+ *
-+ * Return: true if any corners received a positive voltage adjustment (> 0),
-+ *       else false
-+ */
-+static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
-+              const int *volt_adjust, const int *ro_scale, const char *label)
-+{
-+      int i, j, quot_adjust;
-+      bool is_increasing = false;
-+      u32 prev_quot;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              for (j = 0; j < CPR3_RO_COUNT; j++) {
-+                      if (vreg->corner[i].target_quot[j]) {
-+                              quot_adjust = cpr3_quot_adjustment(
-+                                      ro_scale[i * CPR3_RO_COUNT + j],
-+                                      volt_adjust[i]);
-+                              if (quot_adjust) {
-+                                      prev_quot = vreg->corner[i].
-+                                                      target_quot[j];
-+                                      vreg->corner[i].target_quot[j]
-+                                              += quot_adjust;
-+                                      cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n",
-+                                              i, j, label, prev_quot,
-+                                              vreg->corner[i].target_quot[j],
-+                                              volt_adjust[i]);
-+                              }
-+                      }
-+              }
-+              if (volt_adjust[i] > 0)
-+                      is_increasing = true;
-+      }
-+
-+      return is_increasing;
-+}
-+
-+/**
-+ * cpr3_adjust_target_quotients() - adjust the target quotients for each
-+ *                    corner according to device tree values and fuse values
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
-+ *                    vreg->fuse_corner_count. This parameter could be null
-+ *                    pointer when no fused adjustments are needed.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
-+                      int *fuse_volt_adjust)
-+{
-+      int i, rc;
-+      int *volt_adjust, *ro_scale;
-+      bool explicit_adjustment, fused_adjustment, is_increasing;
-+
-+      explicit_adjustment = of_find_property(vreg->of_node,
-+              "qcom,cpr-closed-loop-voltage-adjustment", NULL);
-+      fused_adjustment = of_find_property(vreg->of_node,
-+              "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL);
-+
-+      if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) {
-+              /* No adjustment required. */
-+              return 0;
-+      } else if (!of_find_property(vreg->of_node,
-+                      "qcom,cpr-ro-scaling-factor", NULL)) {
-+              cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
-+              return -EINVAL;
-+      }
-+
-+      volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
-+                              GFP_KERNEL);
-+      ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT,
-+                              sizeof(*ro_scale), GFP_KERNEL);
-+      if (!volt_adjust || !ro_scale) {
-+              rc = -ENOMEM;
-+              goto done;
-+      }
-+
-+      rc = cpr3_parse_corner_array_property(vreg,
-+                      "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->corner_count; i++)
-+              memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT],
-+                      sizeof(*ro_scale) * CPR3_RO_COUNT);
-+
-+      if (explicit_adjustment) {
-+              rc = cpr3_parse_corner_array_property(vreg,
-+                      "qcom,cpr-closed-loop-voltage-adjustment",
-+                      1, volt_adjust);
-+              if (rc) {
-+                      cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+
-+              _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale,
-+                      "from DT");
-+              cpr3_enforce_inc_quotient_monotonicity(vreg);
-+      }
-+
-+      if (fused_adjustment && fuse_volt_adjust) {
-+              memset(volt_adjust, 0,
-+                      sizeof(*volt_adjust) * vreg->corner_count);
-+
-+              rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust,
-+                              fuse_volt_adjust);
-+              if (rc) {
-+                      cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+
-+              is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust,
-+                                      ro_scale, "from fuse");
-+              if (is_increasing)
-+                      cpr3_enforce_inc_quotient_monotonicity(vreg);
-+              else
-+                      cpr3_enforce_dec_quotient_monotonicity(vreg);
-+      }
-+
-+done:
-+      kfree(volt_adjust);
-+      kfree(ro_scale);
-+      return rc;
-+}
---- /dev/null
-+++ b/drivers/regulator/cpr4-apss-regulator.c
-@@ -0,0 +1,1819 @@
-+/*
-+ * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 and
-+ * only version 2 as published by the Free Software Foundation.
-+ *
-+ * This program is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-+ * GNU General Public License for more details.
-+ */
-+
-+#define pr_fmt(fmt) "%s: " fmt, __func__
-+
-+#include <linux/bitops.h>
-+#include <linux/debugfs.h>
-+#include <linux/err.h>
-+#include <linux/init.h>
-+#include <linux/interrupt.h>
-+#include <linux/io.h>
-+#include <linux/kernel.h>
-+#include <linux/list.h>
-+#include <linux/module.h>
-+#include <linux/of.h>
-+#include <linux/of_device.h>
-+#include <linux/platform_device.h>
-+#include <linux/pm_opp.h>
-+#include <linux/slab.h>
-+#include <linux/string.h>
-+#include <linux/uaccess.h>
-+#include <linux/regulator/driver.h>
-+#include <linux/regulator/machine.h>
-+#include <linux/regulator/of_regulator.h>
-+
-+#include "cpr3-regulator.h"
-+
-+#define IPQ807x_APSS_FUSE_CORNERS     4
-+#define IPQ817x_APPS_FUSE_CORNERS     2
-+#define IPQ6018_APSS_FUSE_CORNERS     4
-+#define IPQ9574_APSS_FUSE_CORNERS       4
-+
-+u32 g_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS;
-+
-+/**
-+ * struct cpr4_ipq807x_apss_fuses - APSS specific fuse data for IPQ807x
-+ * @ro_sel:           Ring oscillator select fuse parameter value for each
-+ *                    fuse corner
-+ * @init_voltage:     Initial (i.e. open-loop) voltage fuse parameter value
-+ *                    for each fuse corner (raw, not converted to a voltage)
-+ * @target_quot:      CPR target quotient fuse parameter value for each fuse
-+ *                    corner
-+ * @quot_offset:      CPR target quotient offset fuse parameter value for each
-+ *                    fuse corner (raw, not unpacked) used for target quotient
-+ *                    interpolation
-+ * @speed_bin:                Application processor speed bin fuse parameter value for
-+ *                    the given chip
-+ * @cpr_fusing_rev:   CPR fusing revision fuse parameter value
-+ * @boost_cfg:                CPR boost configuration fuse parameter value
-+ * @boost_voltage:    CPR boost voltage fuse parameter value (raw, not
-+ *                    converted to a voltage)
-+ *
-+ * This struct holds the values for all of the fuses read from memory.
-+ */
-+struct cpr4_ipq807x_apss_fuses {
-+      u64     ro_sel[IPQ807x_APSS_FUSE_CORNERS];
-+      u64     init_voltage[IPQ807x_APSS_FUSE_CORNERS];
-+      u64     target_quot[IPQ807x_APSS_FUSE_CORNERS];
-+      u64     quot_offset[IPQ807x_APSS_FUSE_CORNERS];
-+      u64     speed_bin;
-+      u64     cpr_fusing_rev;
-+      u64     boost_cfg;
-+      u64     boost_voltage;
-+      u64     misc;
-+};
-+
-+/*
-+ * fuse combo = fusing revision + 8 * (speed bin)
-+ * where: fusing revision = 0 - 7 and speed bin = 0 - 7
-+ */
-+#define CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT    64
-+
-+/*
-+ * Constants which define the name of each fuse corner.
-+ */
-+enum cpr4_ipq807x_apss_fuse_corner {
-+      CPR4_IPQ807x_APSS_FUSE_CORNER_SVS       = 0,
-+      CPR4_IPQ807x_APSS_FUSE_CORNER_NOM       = 1,
-+      CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO     = 2,
-+      CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO    = 3,
-+};
-+
-+static const char * const cpr4_ipq807x_apss_fuse_corner_name[] = {
-+      [CPR4_IPQ807x_APSS_FUSE_CORNER_SVS]     = "SVS",
-+      [CPR4_IPQ807x_APSS_FUSE_CORNER_NOM]     = "NOM",
-+      [CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO]   = "TURBO",
-+      [CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO]  = "STURBO",
-+};
-+
-+/*
-+ * IPQ807x APSS fuse parameter locations:
-+ *
-+ * Structs are organized with the following dimensions:
-+ *    Outer: 0 to 3 for fuse corners from lowest to highest corner
-+ *    Inner: large enough to hold the longest set of parameter segments which
-+ *            fully defines a fuse parameter, +1 (for NULL termination).
-+ *            Each segment corresponds to a contiguous group of bits from a
-+ *            single fuse row.  These segments are concatentated together in
-+ *            order to form the full fuse parameter value.  The segments for
-+ *            a given parameter may correspond to different fuse rows.
-+ */
-+static struct cpr3_fuse_param
-+ipq807x_apss_ro_sel_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
-+      {{73,  8, 11}, {} },
-+      {{73,  4,  7}, {} },
-+      {{73,  0,  3}, {} },
-+      {{73, 12, 15}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq807x_apss_init_voltage_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
-+      {{71, 18, 23}, {} },
-+      {{71, 12, 17}, {} },
-+      {{71,  6, 11}, {} },
-+      {{71,  0,  5}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq807x_apss_target_quot_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
-+      {{72, 32, 43}, {} },
-+      {{72, 20, 31}, {} },
-+      {{72,  8, 19}, {} },
-+      {{72, 44, 55}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq807x_apss_quot_offset_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
-+      {{} },
-+      {{71, 46, 52}, {} },
-+      {{71, 39, 45}, {} },
-+      {{71, 32, 38}, {} },
-+};
-+
-+static struct cpr3_fuse_param ipq807x_cpr_fusing_rev_param[] = {
-+      {71, 53, 55},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq807x_apss_speed_bin_param[] = {
-+      {36, 40, 42},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq807x_cpr_boost_fuse_cfg_param[] = {
-+      {36, 43, 45},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq807x_apss_boost_fuse_volt_param[] = {
-+      {71, 0, 5},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq807x_misc_fuse_volt_adj_param[] = {
-+      {36, 54, 54},
-+      {},
-+};
-+
-+static struct cpr3_fuse_parameters ipq807x_fuse_params = {
-+      .apss_ro_sel_param = ipq807x_apss_ro_sel_param,
-+      .apss_init_voltage_param = ipq807x_apss_init_voltage_param,
-+      .apss_target_quot_param = ipq807x_apss_target_quot_param,
-+      .apss_quot_offset_param = ipq807x_apss_quot_offset_param,
-+      .cpr_fusing_rev_param = ipq807x_cpr_fusing_rev_param,
-+      .apss_speed_bin_param = ipq807x_apss_speed_bin_param,
-+      .cpr_boost_fuse_cfg_param = ipq807x_cpr_boost_fuse_cfg_param,
-+      .apss_boost_fuse_volt_param = ipq807x_apss_boost_fuse_volt_param,
-+      .misc_fuse_volt_adj_param = ipq807x_misc_fuse_volt_adj_param
-+};
-+
-+/*
-+ * The number of possible values for misc fuse is
-+ * 2^(#bits defined for misc fuse)
-+ */
-+#define IPQ807x_MISC_FUSE_VAL_COUNT           BIT(1)
-+
-+/*
-+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
-+ */
-+static int ipq807x_apss_fuse_ref_volt
-+      [IPQ807x_APSS_FUSE_CORNERS] = {
-+      720000,
-+      864000,
-+      992000,
-+      1064000,
-+};
-+
-+#define IPQ807x_APSS_FUSE_STEP_VOLT           8000
-+#define IPQ807x_APSS_VOLTAGE_FUSE_SIZE        6
-+#define IPQ807x_APSS_QUOT_OFFSET_SCALE        5
-+
-+#define IPQ807x_APSS_CPR_SENSOR_COUNT 6
-+
-+#define IPQ807x_APSS_CPR_CLOCK_RATE           19200000
-+
-+#define IPQ807x_APSS_MAX_TEMP_POINTS  3
-+#define IPQ807x_APSS_TEMP_SENSOR_ID_START     4
-+#define IPQ807x_APSS_TEMP_SENSOR_ID_END       13
-+/*
-+ * Boost voltage fuse reference and ceiling voltages in microvolts for
-+ * IPQ807x.
-+ */
-+#define IPQ807x_APSS_BOOST_FUSE_REF_VOLT      1140000
-+#define IPQ807x_APSS_BOOST_CEILING_VOLT       1140000
-+#define IPQ807x_APSS_BOOST_FLOOR_VOLT 900000
-+#define MAX_BOOST_CONFIG_FUSE_VALUE           8
-+
-+#define IPQ807x_APSS_CPR_SDELTA_CORE_COUNT    15
-+
-+#define IPQ807x_APSS_CPR_TCSR_START           8
-+#define IPQ807x_APSS_CPR_TCSR_END             9
-+
-+/*
-+ * Array of integer values mapped to each of the boost config fuse values to
-+ * indicate boost enable/disable status.
-+ */
-+static bool boost_fuse[MAX_BOOST_CONFIG_FUSE_VALUE] = {0, 1, 1, 1, 1, 1, 1, 1};
-+
-+/*
-+ * IPQ6018 (Few parameters are changed, remaining are same as IPQ807x)
-+ */
-+#define IPQ6018_APSS_FUSE_STEP_VOLT           12500
-+#define IPQ6018_APSS_CPR_CLOCK_RATE           24000000
-+
-+static struct cpr3_fuse_param
-+ipq6018_apss_ro_sel_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
-+      {{75,  8, 11}, {} },
-+      {{75,  4,  7}, {} },
-+      {{75,  0,  3}, {} },
-+      {{75, 12, 15}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq6018_apss_init_voltage_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
-+      {{73, 18, 23}, {} },
-+      {{73, 12, 17}, {} },
-+      {{73,  6, 11}, {} },
-+      {{73,  0,  5}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq6018_apss_target_quot_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
-+      {{74, 32, 43}, {} },
-+      {{74, 20, 31}, {} },
-+      {{74,  8, 19}, {} },
-+      {{74, 44, 55}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq6018_apss_quot_offset_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
-+      {{} },
-+      {{73, 48, 55}, {} },
-+      {{73, 40, 47}, {} },
-+      {{73, 32, 39}, {} },
-+};
-+
-+static struct cpr3_fuse_param ipq6018_cpr_fusing_rev_param[] = {
-+      {75, 16, 18},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq6018_apss_speed_bin_param[] = {
-+      {36, 40, 42},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq6018_cpr_boost_fuse_cfg_param[] = {
-+      {36, 43, 45},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq6018_apss_boost_fuse_volt_param[] = {
-+      {73, 0, 5},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq6018_misc_fuse_volt_adj_param[] = {
-+      {36, 54, 54},
-+      {},
-+};
-+
-+static struct cpr3_fuse_parameters ipq6018_fuse_params = {
-+      .apss_ro_sel_param = ipq6018_apss_ro_sel_param,
-+      .apss_init_voltage_param = ipq6018_apss_init_voltage_param,
-+      .apss_target_quot_param = ipq6018_apss_target_quot_param,
-+      .apss_quot_offset_param = ipq6018_apss_quot_offset_param,
-+      .cpr_fusing_rev_param = ipq6018_cpr_fusing_rev_param,
-+      .apss_speed_bin_param = ipq6018_apss_speed_bin_param,
-+      .cpr_boost_fuse_cfg_param = ipq6018_cpr_boost_fuse_cfg_param,
-+      .apss_boost_fuse_volt_param = ipq6018_apss_boost_fuse_volt_param,
-+      .misc_fuse_volt_adj_param = ipq6018_misc_fuse_volt_adj_param
-+};
-+
-+
-+/*
-+ * Boost voltage fuse reference and ceiling voltages in microvolts for
-+ * IPQ6018.
-+ */
-+#define IPQ6018_APSS_BOOST_FUSE_REF_VOLT      1140000
-+#define IPQ6018_APSS_BOOST_CEILING_VOLT       1140000
-+#define IPQ6018_APSS_BOOST_FLOOR_VOLT 900000
-+
-+/*
-+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
-+ */
-+static int ipq6018_apss_fuse_ref_volt
-+      [IPQ6018_APSS_FUSE_CORNERS] = {
-+      725000,
-+      862500,
-+      987500,
-+      1062500,
-+};
-+
-+/*
-+ * IPQ6018 Memory ACC settings on TCSR
-+ *
-+ * Turbo_L1: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x10
-+ *           write TCSR_CUSTOM_VDDAPC0_ACC_1            0x1
-+ * Other modes: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x0
-+ *              write TCSR_CUSTOM_VDDAPC0_ACC_1            0x0
-+ *
-+ */
-+#define IPQ6018_APSS_MEM_ACC_TCSR_COUNT         2
-+#define TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0    0x1946178
-+#define TCSR_CUSTOM_VDDAPC0_ACC_1               0x1946124
-+
-+struct mem_acc_tcsr {
-+      u32 phy_addr;
-+      void __iomem *ioremap_addr;
-+      u32 value;
-+};
-+
-+static struct mem_acc_tcsr ipq6018_mem_acc_tcsr[IPQ6018_APSS_MEM_ACC_TCSR_COUNT] = {
-+      {TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0, NULL, 0x10},
-+      {TCSR_CUSTOM_VDDAPC0_ACC_1, NULL, 0x1},
-+};
-+
-+/*
-+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ6018)
-+ */
-+#define IPQ9574_APSS_FUSE_STEP_VOLT             10000
-+
-+static struct cpr3_fuse_param
-+ipq9574_apss_ro_sel_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
-+      {{107, 4, 7}, {} },
-+      {{107, 0, 3}, {} },
-+      {{106, 4, 7}, {} },
-+      {{106, 0, 3}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq9574_apss_init_voltage_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
-+      {{104, 24, 29}, {} },
-+      {{104, 18, 23}, {} },
-+      {{104, 12, 17}, {} },
-+      {{104,  6, 11}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq9574_apss_target_quot_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
-+      {{106, 32, 43}, {} },
-+      {{106, 20, 31}, {} },
-+      {{106,  8, 19}, {} },
-+      {{106, 44, 55}, {} },
-+};
-+
-+static struct cpr3_fuse_param
-+ipq9574_apss_quot_offset_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
-+      {{} },
-+      {{105, 48, 55}, {} },
-+      {{105, 40, 47}, {} },
-+      {{105, 32, 39}, {} },
-+};
-+
-+static struct cpr3_fuse_param ipq9574_cpr_fusing_rev_param[] = {
-+      {107, 8, 10},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq9574_apss_speed_bin_param[] = {
-+      {0, 40, 42},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq9574_cpr_boost_fuse_cfg_param[] = {
-+      {0, 43, 45},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq9574_apss_boost_fuse_volt_param[] = {
-+      {104, 0, 5},
-+      {},
-+};
-+
-+static struct cpr3_fuse_param ipq9574_misc_fuse_volt_adj_param[] = {
-+      {0, 54, 54},
-+      {},
-+};
-+
-+static struct cpr3_fuse_parameters ipq9574_fuse_params = {
-+      .apss_ro_sel_param = ipq9574_apss_ro_sel_param,
-+      .apss_init_voltage_param = ipq9574_apss_init_voltage_param,
-+      .apss_target_quot_param = ipq9574_apss_target_quot_param,
-+      .apss_quot_offset_param = ipq9574_apss_quot_offset_param,
-+      .cpr_fusing_rev_param = ipq9574_cpr_fusing_rev_param,
-+      .apss_speed_bin_param = ipq9574_apss_speed_bin_param,
-+      .cpr_boost_fuse_cfg_param = ipq9574_cpr_boost_fuse_cfg_param,
-+      .apss_boost_fuse_volt_param = ipq9574_apss_boost_fuse_volt_param,
-+      .misc_fuse_volt_adj_param = ipq9574_misc_fuse_volt_adj_param
-+};
-+
-+/*
-+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
-+ */
-+static int ipq9574_apss_fuse_ref_volt
-+      [IPQ9574_APSS_FUSE_CORNERS] = {
-+      725000,
-+      862500,
-+      987500,
-+      1062500,
-+};
-+
-+/**
-+ * cpr4_ipq807x_apss_read_fuse_data() - load APSS specific fuse parameter values
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * This function allocates a cpr4_ipq807x_apss_fuses struct, fills it with
-+ * values read out of hardware fuses, and finally copies common fuse values
-+ * into the CPR3 regulator struct.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_ipq807x_apss_read_fuse_data(struct cpr3_regulator *vreg)
-+{
-+      void __iomem *base = vreg->thread->ctrl->fuse_base;
-+      struct cpr4_ipq807x_apss_fuses *fuse;
-+      int i, rc;
-+
-+      fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
-+      if (!fuse)
-+              return -ENOMEM;
-+
-+      rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->apss_speed_bin_param,
-+                                &fuse->speed_bin);
-+      if (rc) {
-+              cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
-+              return rc;
-+      }
-+      cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
-+
-+      rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_fusing_rev_param,
-+                                &fuse->cpr_fusing_rev);
-+      if (rc) {
-+              cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+      cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
-+
-+      rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->misc_fuse_volt_adj_param,
-+                                &fuse->misc);
-+      if (rc) {
-+              cpr3_err(vreg, "Unable to read misc voltage adjustment fuse, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+      cpr3_info(vreg, "CPR misc fuse value = %llu\n", fuse->misc);
-+      if (fuse->misc >= IPQ807x_MISC_FUSE_VAL_COUNT) {
-+              cpr3_err(vreg, "CPR misc fuse value = %llu, should be < %lu\n",
-+                      fuse->misc, IPQ807x_MISC_FUSE_VAL_COUNT);
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < g_valid_fuse_count; i++) {
-+              rc = cpr3_read_fuse_param(base,
-+                              vreg->cpr4_regulator_data->cpr3_fuse_params->apss_init_voltage_param[i],
-+                              &fuse->init_voltage[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
-+                              i, rc);
-+                      return rc;
-+              }
-+
-+              rc = cpr3_read_fuse_param(base,
-+                              vreg->cpr4_regulator_data->cpr3_fuse_params->apss_target_quot_param[i],
-+                              &fuse->target_quot[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
-+                              i, rc);
-+                      return rc;
-+              }
-+
-+              rc = cpr3_read_fuse_param(base,
-+                              vreg->cpr4_regulator_data->cpr3_fuse_params->apss_ro_sel_param[i],
-+                              &fuse->ro_sel[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
-+                              i, rc);
-+                      return rc;
-+              }
-+
-+              rc = cpr3_read_fuse_param(base,
-+                              vreg->cpr4_regulator_data->cpr3_fuse_params->apss_quot_offset_param[i],
-+                              &fuse->quot_offset[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
-+                              i, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_boost_fuse_cfg_param,
-+                                &fuse->boost_cfg);
-+      if (rc) {
-+              cpr3_err(vreg, "Unable to read CPR boost config fuse, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+      cpr3_info(vreg, "Voltage boost fuse config = %llu boost = %s\n",
-+                      fuse->boost_cfg, boost_fuse[fuse->boost_cfg]
-+                      ? "enable" : "disable");
-+
-+      rc = cpr3_read_fuse_param(base,
-+                              vreg->cpr4_regulator_data->cpr3_fuse_params->apss_boost_fuse_volt_param,
-+                              &fuse->boost_voltage);
-+      if (rc) {
-+              cpr3_err(vreg, "failed to read boost fuse voltage, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
-+      if (vreg->fuse_combo >= CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT) {
-+              cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
-+                      vreg->fuse_combo);
-+              return -EINVAL;
-+      }
-+
-+      vreg->speed_bin_fuse    = fuse->speed_bin;
-+      vreg->cpr_rev_fuse      = fuse->cpr_fusing_rev;
-+      vreg->fuse_corner_count = g_valid_fuse_count;
-+      vreg->platform_fuses    = fuse;
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
-+ *            properties of the CPR3 regulator's device node
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
-+{
-+      struct device_node *node = vreg->of_node;
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      u32 *temp = NULL;
-+      int i, rc;
-+
-+      rc = cpr3_parse_common_corner_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      /* If fuse has incorrect RO Select values and dtsi has "qcom,cpr-ro-sel"
-+       * entry with RO select values other than zero, then dtsi values will
-+       * be used.
-+       */
-+      if (of_find_property(node, "qcom,cpr-ro-sel", NULL)) {
-+              temp = kcalloc(vreg->fuse_corner_count, sizeof(*temp),
-+                              GFP_KERNEL);
-+              if (!temp)
-+                      return -ENOMEM;
-+
-+              rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-sel",
-+                              vreg->fuse_corner_count, temp);
-+              if (rc)
-+                      goto done;
-+
-+              for (i = 0; i < vreg->fuse_corner_count; i++) {
-+                      if (temp[i] != 0)
-+                              fuse->ro_sel[i] = temp[i];
-+              }
-+      }
-+done:
-+      kfree(temp);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_apss_parse_misc_fuse_voltage_adjustments() - fill an array from a
-+ *            portion of the voltage adjustments specified based on
-+ *            miscellaneous fuse bits.
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @volt_adjust:      Voltage adjustment output data array which must be
-+ *                    of size vreg->corner_count
-+ *
-+ * cpr3_parse_common_corner_data() must be called for vreg before this function
-+ * is called so that speed bin size elements are initialized.
-+ *
-+ * Two formats are supported for the device tree property:
-+ * 1. Length == tuple_list_size * vreg->corner_count
-+ *    (reading begins at index 0)
-+ * 2. Length == tuple_list_size * vreg->speed_bin_corner_sum
-+ *    (reading begins at index tuple_list_size * vreg->speed_bin_offset)
-+ *
-+ * Here, tuple_list_size is the number of possible values for misc fuse.
-+ * All other property lengths are treated as errors.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_parse_misc_fuse_voltage_adjustments(
-+      struct cpr3_regulator *vreg, u32 *volt_adjust)
-+{
-+      struct device_node *node = vreg->of_node;
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      int tuple_list_size = IPQ807x_MISC_FUSE_VAL_COUNT;
-+      int i, offset, rc, len = 0;
-+      const char *prop_name = "qcom,cpr-misc-fuse-voltage-adjustment";
-+
-+      if (!of_find_property(node, prop_name, &len)) {
-+              cpr3_err(vreg, "property %s is missing\n", prop_name);
-+              return -EINVAL;
-+      }
-+
-+      if (len == tuple_list_size * vreg->corner_count * sizeof(u32)) {
-+              offset = 0;
-+      } else if (vreg->speed_bin_corner_sum > 0 &&
-+                      len == tuple_list_size * vreg->speed_bin_corner_sum
-+                      * sizeof(u32)) {
-+              offset = tuple_list_size * vreg->speed_bin_offset
-+                      + fuse->misc * vreg->corner_count;
-+      } else {
-+              if (vreg->speed_bin_corner_sum > 0)
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
-+                              prop_name, len,
-+                              tuple_list_size * vreg->corner_count
-+                                      * sizeof(u32),
-+                              tuple_list_size * vreg->speed_bin_corner_sum
-+                                      * sizeof(u32));
-+              else
-+                      cpr3_err(vreg, "property %s has invalid length=%d, should be %zu\n",
-+                              prop_name, len,
-+                              tuple_list_size * vreg->corner_count
-+                              * sizeof(u32));
-+              return -EINVAL;
-+      }
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              rc = of_property_read_u32_index(node, prop_name, offset + i,
-+                                              &volt_adjust[i]);
-+              if (rc) {
-+                      cpr3_err(vreg, "error reading property %s, rc=%d\n",
-+                              prop_name, rc);
-+                      return rc;
-+              }
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr4_ipq807x_apss_calculate_open_loop_voltages() - calculate the open-loop
-+ *            voltage for each corner of a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * If open-loop voltage interpolation is allowed in device tree, then
-+ * this function calculates the open-loop voltage for a given corner using
-+ * linear interpolation.  This interpolation is performed using the processor
-+ * frequencies of the lower and higher Fmax corners along with their fused
-+ * open-loop voltages.
-+ *
-+ * If open-loop voltage interpolation is not allowed, then this function uses
-+ * the Fmax fused open-loop voltage for all of the corners associated with a
-+ * given fuse corner.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_ipq807x_apss_calculate_open_loop_voltages(
-+                      struct cpr3_regulator *vreg)
-+{
-+      struct device_node *node = vreg->of_node;
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      int i, j, rc = 0;
-+      bool allow_interpolation;
-+      u64 freq_low, volt_low, freq_high, volt_high;
-+      int *fuse_volt, *misc_adj_volt;
-+      int *fmax_corner;
-+
-+      fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
-+                              GFP_KERNEL);
-+      fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
-+                              GFP_KERNEL);
-+      if (!fuse_volt || !fmax_corner) {
-+              rc = -ENOMEM;
-+              goto done;
-+      }
-+
-+      for (i = 0; i < vreg->fuse_corner_count; i++) {
-+              if (ctrl->cpr_global_setting == CPR_DISABLED)
-+                      fuse_volt[i] = vreg->cpr4_regulator_data->fuse_ref_volt[i];
-+              else
-+                      fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
-+                              vreg->cpr4_regulator_data->fuse_ref_volt[i],
-+                              vreg->cpr4_regulator_data->fuse_step_volt,
-+                              fuse->init_voltage[i],
-+                              IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
-+
-+              /* Log fused open-loop voltage values for debugging purposes. */
-+              cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
-+                        cpr4_ipq807x_apss_fuse_corner_name[i],
-+                        fuse_volt[i]);
-+      }
-+
-+      rc = cpr3_determine_part_type(vreg,
-+                        fuse_volt[vreg->fuse_corner_count - 1]);
-+      if (rc) {
-+              cpr3_err(vreg, "fused part type detection failed failed, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
-+      if (rc) {
-+              cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      allow_interpolation = of_property_read_bool(node,
-+                              "qcom,allow-voltage-interpolation");
-+
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              if (fuse_volt[i] < fuse_volt[i - 1]) {
-+                      cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
-+                              i, fuse_volt[i], i - 1, fuse_volt[i - 1],
-+                              i, fuse_volt[i - 1]);
-+                      fuse_volt[i] = fuse_volt[i - 1];
-+              }
-+      }
-+
-+      if (!allow_interpolation) {
-+              /* Use fused open-loop voltage for lower frequencies. */
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      vreg->corner[i].open_loop_volt
-+                              = fuse_volt[vreg->corner[i].cpr_fuse_corner];
-+              goto done;
-+      }
-+
-+      /* Determine highest corner mapped to each fuse corner */
-+      j = vreg->fuse_corner_count - 1;
-+      for (i = vreg->corner_count - 1; i >= 0; i--) {
-+              if (vreg->corner[i].cpr_fuse_corner == j) {
-+                      fmax_corner[j] = i;
-+                      j--;
-+              }
-+      }
-+      if (j >= 0) {
-+              cpr3_err(vreg, "invalid fuse corner mapping\n");
-+              rc = -EINVAL;
-+              goto done;
-+      }
-+
-+      /*
-+       * Interpolation is not possible for corners mapped to the lowest fuse
-+       * corner so use the fuse corner value directly.
-+       */
-+      for (i = 0; i <= fmax_corner[0]; i++)
-+              vreg->corner[i].open_loop_volt = fuse_volt[0];
-+
-+      /* Interpolate voltages for the higher fuse corners. */
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
-+              volt_low = fuse_volt[i - 1];
-+              freq_high = vreg->corner[fmax_corner[i]].proc_freq;
-+              volt_high = fuse_volt[i];
-+
-+              for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
-+                      vreg->corner[j].open_loop_volt = cpr3_interpolate(
-+                              freq_low, volt_low, freq_high, volt_high,
-+                              vreg->corner[j].proc_freq);
-+      }
-+
-+done:
-+      if (rc == 0) {
-+              cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
-+                              vreg->corner[i].open_loop_volt);
-+
-+              rc = cpr3_adjust_open_loop_voltages(vreg);
-+              if (rc)
-+                      cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
-+                              rc);
-+
-+              if (of_find_property(node,
-+                      "qcom,cpr-misc-fuse-voltage-adjustment",
-+                      NULL)) {
-+                      misc_adj_volt = kcalloc(vreg->corner_count,
-+                                      sizeof(*misc_adj_volt), GFP_KERNEL);
-+                      if (!misc_adj_volt) {
-+                              rc = -ENOMEM;
-+                              goto _exit;
-+                      }
-+
-+                      rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
-+                              misc_adj_volt);
-+                      if (rc) {
-+                              cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
-+                                      rc);
-+                              kfree(misc_adj_volt);
-+                              goto _exit;
-+                      }
-+
-+                      for (i = 0; i < vreg->corner_count; i++)
-+                              vreg->corner[i].open_loop_volt
-+                                              += misc_adj_volt[i];
-+                      kfree(misc_adj_volt);
-+              }
-+      }
-+
-+_exit:
-+      kfree(fuse_volt);
-+      kfree(fmax_corner);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_ipq807x_apss_set_no_interpolation_quotients() - use the fused target
-+ *            quotient values for lower frequencies.
-+ * @vreg:             Pointer to the CPR3 regulator
-+ * @volt_adjust:      Pointer to array of per-corner closed-loop adjustment
-+ *                    voltages
-+ * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
-+ *                    adjustment voltages
-+ * @ro_scale:         Pointer to array of per-fuse-corner RO scaling factor
-+ *                    values with units of QUOT/V
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_ipq807x_apss_set_no_interpolation_quotients(
-+                      struct cpr3_regulator *vreg, int *volt_adjust,
-+                      int *volt_adjust_fuse, int *ro_scale)
-+{
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      u32 quot, ro;
-+      int quot_adjust;
-+      int i, fuse_corner;
-+
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              fuse_corner = vreg->corner[i].cpr_fuse_corner;
-+              quot = fuse->target_quot[fuse_corner];
-+              quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
-+                                         volt_adjust_fuse[fuse_corner] +
-+                                         volt_adjust[i]);
-+              ro = fuse->ro_sel[fuse_corner];
-+              vreg->corner[i].target_quot[ro] = quot + quot_adjust;
-+              cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
-+                        i, ro, quot);
-+
-+              if (quot_adjust)
-+                      cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
-+                                i, ro, quot, vreg->corner[i].target_quot[ro],
-+                                volt_adjust_fuse[fuse_corner] +
-+                                volt_adjust[i]);
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr4_ipq807x_apss_calculate_target_quotients() - calculate the CPR target
-+ *            quotient for each corner of a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * If target quotient interpolation is allowed in device tree, then this
-+ * function calculates the target quotient for a given corner using linear
-+ * interpolation.  This interpolation is performed using the processor
-+ * frequencies of the lower and higher Fmax corners along with the fused
-+ * target quotient and quotient offset of the higher Fmax corner.
-+ *
-+ * If target quotient interpolation is not allowed, then this function uses
-+ * the Fmax fused target quotient for all of the corners associated with a
-+ * given fuse corner.
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_ipq807x_apss_calculate_target_quotients(
-+                      struct cpr3_regulator *vreg)
-+{
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      int rc;
-+      bool allow_interpolation;
-+      u64 freq_low, freq_high, prev_quot;
-+      u64 *quot_low;
-+      u64 *quot_high;
-+      u32 quot, ro;
-+      int i, j, fuse_corner, quot_adjust;
-+      int *fmax_corner;
-+      int *volt_adjust, *volt_adjust_fuse, *ro_scale;
-+      int *voltage_adj_misc;
-+
-+      /* Log fused quotient values for debugging purposes. */
-+      for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
-+              i < vreg->fuse_corner_count; i++)
-+              cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
-+                      cpr4_ipq807x_apss_fuse_corner_name[i],
-+                      fuse->ro_sel[i], fuse->target_quot[i],
-+                      fuse->ro_sel[i], fuse->quot_offset[i] *
-+                      IPQ807x_APSS_QUOT_OFFSET_SCALE);
-+
-+      allow_interpolation = of_property_read_bool(vreg->of_node,
-+                                      "qcom,allow-quotient-interpolation");
-+
-+      volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
-+                                      GFP_KERNEL);
-+      volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
-+                                      sizeof(*volt_adjust_fuse), GFP_KERNEL);
-+      ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
-+                                      GFP_KERNEL);
-+      fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
-+                                      GFP_KERNEL);
-+      quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
-+                                      GFP_KERNEL);
-+      quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
-+                                      GFP_KERNEL);
-+      if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
-+          !fmax_corner || !quot_low || !quot_high) {
-+              rc = -ENOMEM;
-+              goto done;
-+      }
-+
-+      rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
-+                              volt_adjust, volt_adjust_fuse, ro_scale);
-+      if (rc) {
-+              cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
-+                      rc);
-+              goto done;
-+      }
-+
-+      if (of_find_property(vreg->of_node,
-+              "qcom,cpr-misc-fuse-voltage-adjustment", NULL)) {
-+              voltage_adj_misc = kcalloc(vreg->corner_count,
-+                              sizeof(*voltage_adj_misc), GFP_KERNEL);
-+              if (!voltage_adj_misc) {
-+                      rc = -ENOMEM;
-+                      goto done;
-+              }
-+
-+              rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
-+                      voltage_adj_misc);
-+              if (rc) {
-+                      cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
-+                              rc);
-+                      kfree(voltage_adj_misc);
-+                      goto done;
-+              }
-+
-+              for (i = 0; i < vreg->corner_count; i++)
-+                      volt_adjust[i] += voltage_adj_misc[i];
-+
-+              kfree(voltage_adj_misc);
-+      }
-+
-+      if (!allow_interpolation) {
-+              /* Use fused target quotients for lower frequencies. */
-+              return cpr4_ipq807x_apss_set_no_interpolation_quotients(
-+                              vreg, volt_adjust, volt_adjust_fuse, ro_scale);
-+      }
-+
-+      /* Determine highest corner mapped to each fuse corner */
-+      j = vreg->fuse_corner_count - 1;
-+      for (i = vreg->corner_count - 1; i >= 0; i--) {
-+              if (vreg->corner[i].cpr_fuse_corner == j) {
-+                      fmax_corner[j] = i;
-+                      j--;
-+              }
-+      }
-+      if (j >= 0) {
-+              cpr3_err(vreg, "invalid fuse corner mapping\n");
-+              rc = -EINVAL;
-+              goto done;
-+      }
-+
-+      /*
-+       * Interpolation is not possible for corners mapped to the lowest fuse
-+       * corner so use the fuse corner value directly.
-+       */
-+      i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
-+      quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
-+      quot = fuse->target_quot[i] + quot_adjust;
-+      quot_high[i] = quot_low[i] = quot;
-+      ro = fuse->ro_sel[i];
-+      if (quot_adjust)
-+              cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
-+                      i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
-+
-+      for (i = 0; i <= fmax_corner[CPR4_IPQ807x_APSS_FUSE_CORNER_SVS];
-+              i++)
-+              vreg->corner[i].target_quot[ro] = quot;
-+
-+      for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_NOM;
-+           i < vreg->fuse_corner_count; i++) {
-+              quot_high[i] = fuse->target_quot[i];
-+              if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
-+                      quot_low[i] = quot_high[i - 1];
-+              else
-+                      quot_low[i] = quot_high[i]
-+                                      - fuse->quot_offset[i]
-+                                        * IPQ807x_APSS_QUOT_OFFSET_SCALE;
-+              if (quot_high[i] < quot_low[i]) {
-+                      cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
-+                              i, quot_high[i], i, quot_low[i],
-+                              i, quot_low[i]);
-+                      quot_high[i] = quot_low[i];
-+              }
-+      }
-+
-+      /* Perform per-fuse-corner target quotient adjustment */
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              quot_adjust = cpr3_quot_adjustment(ro_scale[i],
-+                                                 volt_adjust_fuse[i]);
-+              if (quot_adjust) {
-+                      prev_quot = quot_high[i];
-+                      quot_high[i] += quot_adjust;
-+                      cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
-+                              i, fuse->ro_sel[i], prev_quot, quot_high[i],
-+                              volt_adjust_fuse[i]);
-+              }
-+
-+              if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
-+                      quot_low[i] = quot_high[i - 1];
-+              else
-+                      quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
-+                                                  volt_adjust_fuse[i - 1]);
-+
-+              if (quot_high[i] < quot_low[i]) {
-+                      cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
-+                              i, quot_high[i], i, quot_low[i],
-+                              i, quot_low[i]);
-+                      quot_high[i] = quot_low[i];
-+              }
-+      }
-+
-+      /* Interpolate voltages for the higher fuse corners. */
-+      for (i = 1; i < vreg->fuse_corner_count; i++) {
-+              freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
-+              freq_high = vreg->corner[fmax_corner[i]].proc_freq;
-+
-+              ro = fuse->ro_sel[i];
-+              for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
-+                      vreg->corner[j].target_quot[ro] = cpr3_interpolate(
-+                              freq_low, quot_low[i], freq_high, quot_high[i],
-+                              vreg->corner[j].proc_freq);
-+      }
-+
-+      /* Perform per-corner target quotient adjustment */
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              fuse_corner = vreg->corner[i].cpr_fuse_corner;
-+              ro = fuse->ro_sel[fuse_corner];
-+              quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
-+                                                 volt_adjust[i]);
-+              if (quot_adjust) {
-+                      prev_quot = vreg->corner[i].target_quot[ro];
-+                      vreg->corner[i].target_quot[ro] += quot_adjust;
-+                      cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
-+                              i, ro, prev_quot,
-+                              vreg->corner[i].target_quot[ro],
-+                              volt_adjust[i]);
-+              }
-+      }
-+
-+      /* Ensure that target quotients increase monotonically */
-+      for (i = 1; i < vreg->corner_count; i++) {
-+              ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
-+              if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
-+                  && vreg->corner[i].target_quot[ro]
-+                              < vreg->corner[i - 1].target_quot[ro]) {
-+                      cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
-+                              i, ro, vreg->corner[i].target_quot[ro],
-+                              i - 1, ro, vreg->corner[i - 1].target_quot[ro],
-+                              i, ro, vreg->corner[i - 1].target_quot[ro]);
-+                      vreg->corner[i].target_quot[ro]
-+                              = vreg->corner[i - 1].target_quot[ro];
-+              }
-+      }
-+
-+done:
-+      kfree(volt_adjust);
-+      kfree(volt_adjust_fuse);
-+      kfree(ro_scale);
-+      kfree(fmax_corner);
-+      kfree(quot_low);
-+      kfree(quot_high);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_apss_print_settings() - print out APSS CPR configuration settings into
-+ *            the kernel log for debugging purposes
-+ * @vreg:             Pointer to the CPR3 regulator
-+ */
-+static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_corner *corner;
-+      int i;
-+
-+      cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
-+      for (i = 0; i < vreg->corner_count; i++) {
-+              corner = &vreg->corner[i];
-+              cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
-+                      i, corner->proc_freq, corner->cpr_fuse_corner,
-+                      corner->floor_volt, corner->open_loop_volt,
-+                      corner->ceiling_volt);
-+      }
-+
-+      if (vreg->thread->ctrl->apm)
-+              cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
-+                      vreg->thread->ctrl->apm_threshold_volt,
-+                      vreg->thread->ctrl->apm_adj_volt);
-+}
-+
-+/**
-+ * cpr4_apss_init_thread() - perform steps necessary to initialize the
-+ *            configuration data for a CPR3 thread
-+ * @thread:           Pointer to the CPR3 thread
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_init_thread(struct cpr3_thread *thread)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_common_thread_data(thread);
-+      if (rc) {
-+              cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
-+                      thread->thread_id, rc);
-+              return rc;
-+      }
-+
-+      return 0;
-+}
-+
-+/**
-+ * cpr4_apss_parse_temp_adj_properties() - parse temperature based
-+ *            adjustment properties from device tree.
-+ * @ctrl:     Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
-+{
-+      struct device_node *of_node = ctrl->dev->of_node;
-+      int rc, i, len, temp_point_count;
-+
-+      if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) {
-+              /*
-+               * Temperature based adjustments are not defined. Single
-+               * temperature band is still valid for per-online-core
-+               * adjustments.
-+               */
-+              ctrl->temp_band_count = 1;
-+              return 0;
-+      }
-+
-+      temp_point_count = len / sizeof(u32);
-+      if (temp_point_count <= 0 ||
-+          temp_point_count > IPQ807x_APSS_MAX_TEMP_POINTS) {
-+              cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
-+                       temp_point_count, IPQ807x_APSS_MAX_TEMP_POINTS);
-+              return -EINVAL;
-+      }
-+
-+      ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
-+                                      sizeof(*ctrl->temp_points), GFP_KERNEL);
-+      if (!ctrl->temp_points)
-+              return -ENOMEM;
-+
-+      rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
-+                                      ctrl->temp_points, temp_point_count);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < temp_point_count; i++)
-+              cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
-+                                 ctrl->temp_points[i]);
-+
-+      /*
-+       * If t1, t2, and t3 are the temperature points, then the temperature
-+       * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
-+       */
-+      ctrl->temp_band_count = temp_point_count + 1;
-+      cpr3_debug(ctrl, "Number of temp bands =%d\n", ctrl->temp_band_count);
-+
-+      rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
-+                                &ctrl->initial_temp_band);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
-+              cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
-+                      ctrl->initial_temp_band, ctrl->temp_band_count - 1);
-+              return -EINVAL;
-+      }
-+
-+      ctrl->temp_sensor_id_start = IPQ807x_APSS_TEMP_SENSOR_ID_START;
-+      ctrl->temp_sensor_id_end = IPQ807x_APSS_TEMP_SENSOR_ID_END;
-+      ctrl->allow_temp_adj = true;
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_apss_parse_boost_properties() - parse configuration data for boost
-+ *            voltage adjustment for CPR3 regulator from device tree.
-+ * @vreg:     Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_parse_boost_properties(struct cpr3_regulator *vreg)
-+{
-+      struct cpr3_controller *ctrl = vreg->thread->ctrl;
-+      struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
-+      struct cpr3_corner *corner;
-+      int i, boost_voltage, final_boost_volt, rc = 0;
-+      int *boost_table = NULL, *boost_temp_adj = NULL;
-+      int boost_voltage_adjust = 0, boost_num_cores = 0;
-+      u32 boost_allowed = 0;
-+
-+      if (!boost_fuse[fuse->boost_cfg])
-+              /* Voltage boost is disabled in fuse */
-+              return 0;
-+
-+      if (of_find_property(vreg->of_node, "qcom,allow-boost", NULL)) {
-+              rc = cpr3_parse_array_property(vreg, "qcom,allow-boost", 1,
-+                              &boost_allowed);
-+              if (rc)
-+                      return rc;
-+      }
-+
-+      if (!boost_allowed) {
-+              /* Voltage boost is not enabled for this regulator */
-+              return 0;
-+      }
-+
-+      boost_voltage = cpr3_convert_open_loop_voltage_fuse(
-+                              vreg->cpr4_regulator_data->boost_fuse_ref_volt,
-+                              vreg->cpr4_regulator_data->fuse_step_volt,
-+                              fuse->boost_voltage,
-+                              IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
-+
-+      /* Log boost voltage value for debugging purposes. */
-+      cpr3_info(vreg, "Boost open-loop=%7d uV\n", boost_voltage);
-+
-+      if (of_find_property(vreg->of_node,
-+                      "qcom,cpr-boost-voltage-fuse-adjustment", NULL)) {
-+              rc = cpr3_parse_array_property(vreg,
-+                      "qcom,cpr-boost-voltage-fuse-adjustment",
-+                      1, &boost_voltage_adjust);
-+              if (rc) {
-+                      cpr3_err(vreg, "qcom,cpr-boost-voltage-fuse-adjustment reading failed, rc=%d\n",
-+                              rc);
-+                      return rc;
-+              }
-+
-+              boost_voltage += boost_voltage_adjust;
-+              /* Log boost voltage value for debugging purposes. */
-+              cpr3_info(vreg, "Adjusted boost open-loop=%7d uV\n",
-+                      boost_voltage);
-+      }
-+
-+      /* Limit boost voltage value between ceiling and floor voltage limits */
-+      boost_voltage = min(boost_voltage, vreg->cpr4_regulator_data->boost_ceiling_volt);
-+      boost_voltage = max(boost_voltage, vreg->cpr4_regulator_data->boost_floor_volt);
-+
-+      /*
-+       * The boost feature can only be used for the highest voltage corner.
-+       * Also, keep core-count adjustments disabled when the boost feature
-+       * is enabled.
-+       */
-+      corner = &vreg->corner[vreg->corner_count - 1];
-+      if (!corner->sdelta) {
-+              /*
-+               * If core-count/temp adjustments are not defined, the cpr4
-+               * sdelta for this corner will not be allocated. Allocate it
-+               * here for boost configuration.
-+               */
-+              corner->sdelta = devm_kzalloc(ctrl->dev,
-+                                      sizeof(*corner->sdelta), GFP_KERNEL);
-+              if (!corner->sdelta)
-+                      return -ENOMEM;
-+      }
-+      corner->sdelta->temp_band_count = ctrl->temp_band_count;
-+
-+      rc = of_property_read_u32(vreg->of_node, "qcom,cpr-num-boost-cores",
-+                              &boost_num_cores);
-+      if (rc) {
-+              cpr3_err(vreg, "qcom,cpr-num-boost-cores reading failed, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      if (boost_num_cores <= 0 ||
-+          boost_num_cores > IPQ807x_APSS_CPR_SDELTA_CORE_COUNT) {
-+              cpr3_err(vreg, "Invalid boost number of cores = %d\n",
-+                      boost_num_cores);
-+              return -EINVAL;
-+      }
-+      corner->sdelta->boost_num_cores = boost_num_cores;
-+
-+      boost_table = devm_kcalloc(ctrl->dev, corner->sdelta->temp_band_count,
-+                                      sizeof(*boost_table), GFP_KERNEL);
-+      if (!boost_table)
-+              return -ENOMEM;
-+
-+      if (of_find_property(vreg->of_node,
-+                              "qcom,cpr-boost-temp-adjustment", NULL)) {
-+              boost_temp_adj = kcalloc(corner->sdelta->temp_band_count,
-+                                      sizeof(*boost_temp_adj), GFP_KERNEL);
-+              if (!boost_temp_adj)
-+                      return -ENOMEM;
-+
-+              rc = cpr3_parse_array_property(vreg,
-+                              "qcom,cpr-boost-temp-adjustment",
-+                              corner->sdelta->temp_band_count,
-+                              boost_temp_adj);
-+              if (rc) {
-+                      cpr3_err(vreg, "qcom,cpr-boost-temp-adjustment reading failed, rc=%d\n",
-+                              rc);
-+                      goto done;
-+              }
-+      }
-+
-+      for (i = 0; i < corner->sdelta->temp_band_count; i++) {
-+              /* Apply static adjustments to boost voltage */
-+              final_boost_volt = boost_voltage + (boost_temp_adj == NULL
-+                                              ? 0 : boost_temp_adj[i]);
-+              /*
-+               * Limit final adjusted boost voltage value between ceiling
-+               * and floor voltage limits
-+               */
-+              final_boost_volt = min(final_boost_volt,
-+                                      vreg->cpr4_regulator_data->boost_ceiling_volt);
-+              final_boost_volt = max(final_boost_volt,
-+                                      vreg->cpr4_regulator_data->boost_floor_volt);
-+
-+              boost_table[i] = (corner->open_loop_volt - final_boost_volt)
-+                                      / ctrl->step_volt;
-+              cpr3_debug(vreg, "Adjusted boost voltage margin for temp band %d = %d steps\n",
-+                      i, boost_table[i]);
-+      }
-+
-+      corner->ceiling_volt = vreg->cpr4_regulator_data->boost_ceiling_volt;
-+      corner->sdelta->boost_table = boost_table;
-+      corner->sdelta->allow_boost = true;
-+      corner->sdelta->allow_core_count_adj = false;
-+      vreg->allow_boost = true;
-+      ctrl->allow_boost = true;
-+done:
-+      kfree(boost_temp_adj);
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_apss_init_regulator() - perform all steps necessary to initialize the
-+ *            configuration data for a CPR3 regulator
-+ * @vreg:             Pointer to the CPR3 regulator
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
-+{
-+      struct cpr4_ipq807x_apss_fuses *fuse;
-+      int rc;
-+
-+      rc = cpr4_ipq807x_apss_read_fuse_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      fuse = vreg->platform_fuses;
-+
-+      rc = cpr4_apss_parse_corner_data(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_mem_acc_init(vreg);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
-+                               rc);
-+              return rc;
-+      }
-+
-+      rc = cpr4_ipq807x_apss_calculate_open_loop_voltages(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_limit_open_loop_voltages(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      cpr3_open_loop_voltage_as_ceiling(vreg);
-+
-+      rc = cpr3_limit_floor_voltages(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      rc = cpr4_ipq807x_apss_calculate_target_quotients(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
-+                                 || vreg->max_core_count >
-+                                 IPQ807x_APSS_CPR_SDELTA_CORE_COUNT)) {
-+              cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
-+                       vreg->max_core_count);
-+              return -EINVAL;
-+      }
-+
-+      rc = cpr4_apss_parse_boost_properties(vreg);
-+      if (rc) {
-+              cpr3_err(vreg, "unable to parse boost adjustments, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      cpr4_apss_print_settings(vreg);
-+
-+      return rc;
-+}
-+
-+/**
-+ * cpr4_apss_init_controller() - perform APSS CPR4 controller specific
-+ *            initializations
-+ * @ctrl:             Pointer to the CPR3 controller
-+ *
-+ * Return: 0 on success, errno on failure
-+ */
-+static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
-+{
-+      int rc;
-+
-+      rc = cpr3_parse_common_ctrl_data(ctrl);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
-+                              rc);
-+              return rc;
-+      }
-+
-+      rc = of_property_read_u32(ctrl->dev->of_node,
-+                                "qcom,cpr-down-error-step-limit",
-+                                &ctrl->down_error_step_limit);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      rc = of_property_read_u32(ctrl->dev->of_node,
-+                                "qcom,cpr-up-error-step-limit",
-+                                &ctrl->up_error_step_limit);
-+      if (rc) {
-+              cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      /*
-+       * Use fixed step quotient if specified otherwise use dynamic
-+       * calculated per RO step quotient
-+       */
-+      of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
-+                      &ctrl->step_quot_fixed);
-+      ctrl->use_dynamic_step_quot = ctrl->step_quot_fixed ? false : true;
-+
-+      ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
-+                                      "qcom,cpr-saw-use-unit-mV");
-+
-+      of_property_read_u32(ctrl->dev->of_node,
-+                      "qcom,cpr-voltage-settling-time",
-+                      &ctrl->voltage_settling_time);
-+
-+      if (of_find_property(ctrl->dev->of_node, "vdd-limit-supply", NULL)) {
-+              ctrl->vdd_limit_regulator =
-+                      devm_regulator_get(ctrl->dev, "vdd-limit");
-+              if (IS_ERR(ctrl->vdd_limit_regulator)) {
-+                      rc = PTR_ERR(ctrl->vdd_limit_regulator);
-+                      if (rc != -EPROBE_DEFER)
-+                              cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
-+                                       rc);
-+                      return rc;
-+              }
-+      }
-+
-+      rc = cpr3_apm_init(ctrl);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
-+                              rc);
-+              return rc;
-+      }
-+
-+      rc = cpr4_apss_parse_temp_adj_properties(ctrl);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to parse temperature adjustment properties, rc=%d\n",
-+                       rc);
-+              return rc;
-+      }
-+
-+      ctrl->sensor_count = IPQ807x_APSS_CPR_SENSOR_COUNT;
-+
-+      /*
-+       * APSS only has one thread (0) per controller so the zeroed
-+       * array does not need further modification.
-+       */
-+      ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
-+              sizeof(*ctrl->sensor_owner), GFP_KERNEL);
-+      if (!ctrl->sensor_owner)
-+              return -ENOMEM;
-+
-+      ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
-+      ctrl->supports_hw_closed_loop = false;
-+      ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
-+                                              "qcom,cpr-hw-closed-loop");
-+      return 0;
-+}
-+
-+static int cpr4_apss_regulator_suspend(struct platform_device *pdev,
-+                              pm_message_t state)
-+{
-+      struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
-+
-+      return cpr3_regulator_suspend(ctrl);
-+}
-+
-+static int cpr4_apss_regulator_resume(struct platform_device *pdev)
-+{
-+      struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
-+
-+      return cpr3_regulator_resume(ctrl);
-+}
-+
-+static void ipq6018_set_mem_acc(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+
-+      ipq6018_mem_acc_tcsr[0].ioremap_addr =
-+              ioremap(ipq6018_mem_acc_tcsr[0].phy_addr, 0x4);
-+      ipq6018_mem_acc_tcsr[1].ioremap_addr =
-+              ioremap(ipq6018_mem_acc_tcsr[1].phy_addr, 0x4);
-+
-+      if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
-+                      (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
-+                      (vreg->current_corner == (vreg->corner_count - CPR3_CORNER_OFFSET))) {
-+
-+              writel_relaxed(ipq6018_mem_acc_tcsr[0].value,
-+                              ipq6018_mem_acc_tcsr[0].ioremap_addr);
-+              writel_relaxed(ipq6018_mem_acc_tcsr[1].value,
-+                              ipq6018_mem_acc_tcsr[1].ioremap_addr);
-+      }
-+}
-+
-+static void ipq6018_clr_mem_acc(struct regulator_dev *rdev)
-+{
-+      struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
-+
-+      if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
-+                      (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
-+                      (vreg->current_corner != vreg->corner_count - CPR3_CORNER_OFFSET)) {
-+              writel_relaxed(0x0, ipq6018_mem_acc_tcsr[0].ioremap_addr);
-+              writel_relaxed(0x0, ipq6018_mem_acc_tcsr[1].ioremap_addr);
-+      }
-+
-+      iounmap(ipq6018_mem_acc_tcsr[0].ioremap_addr);
-+      iounmap(ipq6018_mem_acc_tcsr[1].ioremap_addr);
-+}
-+
-+static struct cpr4_mem_acc_func ipq6018_mem_acc_funcs = {
-+      .set_mem_acc = ipq6018_set_mem_acc,
-+      .clear_mem_acc = ipq6018_clr_mem_acc
-+};
-+
-+static const struct cpr4_reg_data ipq807x_cpr_apss = {
-+      .cpr_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS,
-+      .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
-+      .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
-+      .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
-+      .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
-+      .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
-+      .cpr3_fuse_params = &ipq807x_fuse_params,
-+      .mem_acc_funcs = NULL,
-+};
-+
-+static const struct cpr4_reg_data ipq817x_cpr_apss = {
-+      .cpr_valid_fuse_count = IPQ817x_APPS_FUSE_CORNERS,
-+      .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
-+      .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
-+      .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
-+      .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
-+      .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
-+      .cpr3_fuse_params = &ipq807x_fuse_params,
-+      .mem_acc_funcs = NULL,
-+};
-+
-+static const struct cpr4_reg_data ipq6018_cpr_apss = {
-+      .cpr_valid_fuse_count = IPQ6018_APSS_FUSE_CORNERS,
-+      .fuse_ref_volt = ipq6018_apss_fuse_ref_volt,
-+      .fuse_step_volt = IPQ6018_APSS_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
-+      .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
-+      .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
-+      .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
-+      .cpr3_fuse_params = &ipq6018_fuse_params,
-+      .mem_acc_funcs = &ipq6018_mem_acc_funcs,
-+};
-+
-+static const struct cpr4_reg_data ipq9574_cpr_apss = {
-+      .cpr_valid_fuse_count = IPQ9574_APSS_FUSE_CORNERS,
-+      .fuse_ref_volt = ipq9574_apss_fuse_ref_volt,
-+      .fuse_step_volt = IPQ9574_APSS_FUSE_STEP_VOLT,
-+      .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
-+      .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
-+      .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
-+      .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
-+      .cpr3_fuse_params = &ipq9574_fuse_params,
-+      .mem_acc_funcs = NULL,
-+};
-+
-+static struct of_device_id cpr4_regulator_match_table[] = {
-+      {
-+              .compatible = "qcom,cpr4-ipq807x-apss-regulator",
-+              .data = &ipq807x_cpr_apss
-+      },
-+      {
-+              .compatible = "qcom,cpr4-ipq817x-apss-regulator",
-+              .data = &ipq817x_cpr_apss
-+      },
-+      {
-+              .compatible = "qcom,cpr4-ipq6018-apss-regulator",
-+              .data = &ipq6018_cpr_apss
-+      },
-+      {
-+              .compatible = "qcom,cpr4-ipq9574-apss-regulator",
-+              .data = &ipq9574_cpr_apss
-+      },
-+      {}
-+};
-+
-+static int cpr4_apss_regulator_probe(struct platform_device *pdev)
-+{
-+      struct device *dev = &pdev->dev;
-+      struct cpr3_controller *ctrl;
-+      const struct of_device_id *match;
-+      struct cpr4_reg_data *cpr_data;
-+      int i, rc;
-+
-+      if (!dev->of_node) {
-+              dev_err(dev, "Device tree node is missing\n");
-+              return -EINVAL;
-+      }
-+
-+      ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
-+      if (!ctrl)
-+              return -ENOMEM;
-+
-+      match = of_match_device(cpr4_regulator_match_table, &pdev->dev);
-+      if (!match)
-+              return -ENODEV;
-+
-+      cpr_data = (struct cpr4_reg_data *)match->data;
-+      g_valid_fuse_count = cpr_data->cpr_valid_fuse_count;
-+      dev_info(dev, "CPR valid fuse count: %d\n", g_valid_fuse_count);
-+      ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
-+
-+      ctrl->dev = dev;
-+      /* Set to false later if anything precludes CPR operation. */
-+      ctrl->cpr_allowed_hw = true;
-+
-+      rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
-+                                      &ctrl->name);
-+      if (rc) {
-+              cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      rc = cpr3_map_fuse_base(ctrl, pdev);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not map fuse base address\n");
-+              return rc;
-+      }
-+
-+      rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_APSS_CPR_TCSR_START,
-+                                  IPQ807x_APSS_CPR_TCSR_END);
-+      if (rc) {
-+              cpr3_err(ctrl, "could not read CPR tcsr setting\n");
-+              return rc;
-+      }
-+
-+      rc = cpr3_allocate_threads(ctrl, 0, 0);
-+      if (rc) {
-+              cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
-+                      rc);
-+              return rc;
-+      }
-+
-+      if (ctrl->thread_count != 1) {
-+              cpr3_err(ctrl, "expected 1 thread but found %d\n",
-+                      ctrl->thread_count);
-+              return -EINVAL;
-+      }
-+
-+      rc = cpr4_apss_init_controller(ctrl);
-+      if (rc) {
-+              if (rc != -EPROBE_DEFER)
-+                      cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
-+                              rc);
-+              return rc;
-+      }
-+
-+      rc = cpr4_apss_init_thread(&ctrl->thread[0]);
-+      if (rc) {
-+              cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
-+              return rc;
-+      }
-+
-+      for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
-+              ctrl->thread[0].vreg[i].cpr4_regulator_data = cpr_data;
-+              rc = cpr4_apss_init_regulator(&ctrl->thread[0].vreg[i]);
-+              if (rc) {
-+                      cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
-+                               rc);
-+                      return rc;
-+              }
-+      }
-+
-+      platform_set_drvdata(pdev, ctrl);
-+
-+      return cpr3_regulator_register(pdev, ctrl);
-+}
-+
-+static int cpr4_apss_regulator_remove(struct platform_device *pdev)
-+{
-+      struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
-+
-+      return cpr3_regulator_unregister(ctrl);
-+}
-+
-+static struct platform_driver cpr4_apss_regulator_driver = {
-+      .driver         = {
-+              .name           = "qcom,cpr4-apss-regulator",
-+              .of_match_table = cpr4_regulator_match_table,
-+              .owner          = THIS_MODULE,
-+      },
-+      .probe          = cpr4_apss_regulator_probe,
-+      .remove         = cpr4_apss_regulator_remove,
-+      .suspend        = cpr4_apss_regulator_suspend,
-+      .resume         = cpr4_apss_regulator_resume,
-+};
-+
-+static int cpr4_regulator_init(void)
-+{
-+      return platform_driver_register(&cpr4_apss_regulator_driver);
-+}
-+
-+static void cpr4_regulator_exit(void)
-+{
-+      platform_driver_unregister(&cpr4_apss_regulator_driver);
-+}
-+
-+MODULE_DESCRIPTION("CPR4 APSS regulator driver");
-+MODULE_LICENSE("GPL v2");
-+
-+arch_initcall(cpr4_regulator_init);
-+module_exit(cpr4_regulator_exit);
---- /dev/null
-+++ b/include/soc/qcom/socinfo.h
-@@ -0,0 +1,463 @@
-+/* Copyright (c) 2009-2014, 2016, 2020, The Linux Foundation. All rights reserved.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 and
-+ * only version 2 as published by the Free Software Foundation.
-+ *
-+ * This program is distributed in the hope that it will be useful,
-+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
-+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-+ * GNU General Public License for more details.
-+ *
-+ */
-+
-+#ifndef _ARCH_ARM_MACH_MSM_SOCINFO_H_
-+#define _ARCH_ARM_MACH_MSM_SOCINFO_H_
-+
-+#include <linux/of.h>
-+
-+#define CPU_IPQ8074 323
-+#define CPU_IPQ8072 342
-+#define CPU_IPQ8076 343
-+#define CPU_IPQ8078 344
-+#define CPU_IPQ8070 375
-+#define CPU_IPQ8071 376
-+
-+#define CPU_IPQ8072A 389
-+#define CPU_IPQ8074A 390
-+#define CPU_IPQ8076A 391
-+#define CPU_IPQ8078A 392
-+#define CPU_IPQ8070A 395
-+#define CPU_IPQ8071A 396
-+
-+#define CPU_IPQ8172  397
-+#define CPU_IPQ8173  398
-+#define CPU_IPQ8174  399
-+
-+#define CPU_IPQ6018 402
-+#define CPU_IPQ6028 403
-+#define CPU_IPQ6000 421
-+#define CPU_IPQ6010 422
-+#define CPU_IPQ6005 453
-+
-+#define CPU_IPQ5010 446
-+#define CPU_IPQ5018 447
-+#define CPU_IPQ5028 448
-+#define CPU_IPQ5000 503
-+#define CPU_IPQ0509 504
-+#define CPU_IPQ0518 505
-+
-+#define CPU_IPQ9514 510
-+#define CPU_IPQ9554 512
-+#define CPU_IPQ9570 513
-+#define CPU_IPQ9574 514
-+#define CPU_IPQ9550 511
-+#define CPU_IPQ9510 521
-+
-+static inline int read_ipq_soc_version_major(void)
-+{
-+      const int *prop;
-+      prop = of_get_property(of_find_node_by_path("/"), "soc_version_major",
-+                              NULL);
-+
-+      if (!prop)
-+              return -EINVAL;
-+
-+      return le32_to_cpu(*prop);
-+}
-+
-+static inline int read_ipq_cpu_type(void)
-+{
-+      const int *prop;
-+      prop = of_get_property(of_find_node_by_path("/"), "cpu_type", NULL);
-+      /*
-+       * Return Default CPU type if "cpu_type" property is not found in DTSI
-+       */
-+      if (!prop)
-+              return CPU_IPQ8074;
-+
-+      return le32_to_cpu(*prop);
-+}
-+
-+static inline int cpu_is_ipq8070(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8070;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8071(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8071;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8072(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8072;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8074(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8074;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8076(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8076;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8078(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8078;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8072a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8072A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8074a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8074A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8076a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8076A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8078a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8078A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8070a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8070A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8071a(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8071A;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8172(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8172;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8173(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8173;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq8174(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ8174;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq6018(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ6018;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq6028(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ6028;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq6000(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ6000;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq6010(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ6010;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq6005(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ6005;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq5010(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ5010;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq5018(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ5018;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq5028(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ5028;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq5000(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ5000;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq0509(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ0509;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq0518(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ0518;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9514(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9514;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9554(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9554;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9570(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9570;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9574(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9574;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9550(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9550;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq9510(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return read_ipq_cpu_type() == CPU_IPQ9510;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq807x(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq8072() || cpu_is_ipq8074() ||
-+              cpu_is_ipq8076() || cpu_is_ipq8078() ||
-+              cpu_is_ipq8070() || cpu_is_ipq8071() ||
-+              cpu_is_ipq8072a() || cpu_is_ipq8074a() ||
-+              cpu_is_ipq8076a() || cpu_is_ipq8078a() ||
-+              cpu_is_ipq8070a() || cpu_is_ipq8071a() ||
-+              cpu_is_ipq8172() || cpu_is_ipq8173() ||
-+              cpu_is_ipq8174();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq60xx(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq6018() || cpu_is_ipq6028() ||
-+              cpu_is_ipq6000() || cpu_is_ipq6010() ||
-+              cpu_is_ipq6005();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq50xx(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq5010() || cpu_is_ipq5018() ||
-+              cpu_is_ipq5028() || cpu_is_ipq5000() ||
-+              cpu_is_ipq0509() || cpu_is_ipq0518();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_ipq95xx(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq9514() || cpu_is_ipq9554() ||
-+              cpu_is_ipq9570() || cpu_is_ipq9574() ||
-+              cpu_is_ipq9550() || cpu_is_ipq9510();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_nss_crypto_enabled(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq807x() || cpu_is_ipq60xx() ||
-+              cpu_is_ipq50xx() || cpu_is_ipq9570() ||
-+              cpu_is_ipq9550() || cpu_is_ipq9574() ||
-+              cpu_is_ipq9554();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_internal_wifi_enabled(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq807x() || cpu_is_ipq60xx() ||
-+              cpu_is_ipq50xx() || cpu_is_ipq9514() ||
-+              cpu_is_ipq9554() || cpu_is_ipq9574();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_uniphy1_enabled(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq807x() || cpu_is_ipq60xx() ||
-+              cpu_is_ipq9554() || cpu_is_ipq9570() ||
-+              cpu_is_ipq9574() || cpu_is_ipq9550();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+static inline int cpu_is_uniphy2_enabled(void)
-+{
-+#ifdef CONFIG_ARCH_QCOM
-+      return  cpu_is_ipq807x() || cpu_is_ipq9570() ||
-+              cpu_is_ipq9574();
-+#else
-+      return 0;
-+#endif
-+}
-+
-+#endif /* _ARCH_ARM_MACH_MSM_SOCINFO_H_ */