mediatek: rename some patches
[openwrt/staging/aparcar.git] / target / linux / mediatek / patches-5.15 / 120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
diff --git a/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch b/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
deleted file mode 100644 (file)
index b77b4ad..0000000
+++ /dev/null
@@ -1,1537 +0,0 @@
-From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Sat, 2 Apr 2022 10:16:11 +0800
-Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
-
-This driver implements support for the SPI-NAND mode of MTK NAND Flash
-Interface as a SPI-MEM controller with pipelined ECC capability.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-Tested-by: Daniel Golle <daniel@makrotopia.org>
----
-Change since v1:
-  fix CI warnings
-
-Changes since v2:
- use streamed DMA api to avoid an extra memory copy during read
- make ECC engine config a per-nand context
- take user-requested ECC strength into account
-
-Change since v3: none
-Changes since v4:
- fix missing OOB write
- print page format with dev_dbg
- replace uint*_t copied from vendor driver with u*
-
-Changes since v5:
- add missing nfi mode register configuration in probe
- fix an off-by-one bug in mtk_snand_mac_io
-
- drivers/spi/Kconfig        |   10 +
- drivers/spi/Makefile       |    1 +
- drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
- 3 files changed, 1481 insertions(+)
- create mode 100644 drivers/spi/spi-mtk-snfi.c
-
---- a/drivers/spi/Kconfig
-+++ b/drivers/spi/Kconfig
-@@ -530,6 +530,16 @@ config SPI_MTK_NOR
-         SPI interface as well as several SPI NOR specific instructions
-         via SPI MEM interface.
-+config SPI_MTK_SNFI
-+      tristate "MediaTek SPI NAND Flash Interface"
-+      depends on ARCH_MEDIATEK || COMPILE_TEST
-+      depends on MTD_NAND_ECC_MEDIATEK
-+      help
-+        This enables support for SPI-NAND mode on the MediaTek NAND
-+        Flash Interface found on MediaTek ARM SoCs. This controller
-+        is implemented as a SPI-MEM controller with pipelined ECC
-+        capcability.
-+
- config SPI_NPCM_FIU
-       tristate "Nuvoton NPCM FLASH Interface Unit"
-       depends on ARCH_NPCM || COMPILE_TEST
---- a/drivers/spi/Makefile
-+++ b/drivers/spi/Makefile
-@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx)            += spi-mpc52x
- obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
- obj-$(CONFIG_SPI_MT7621)              += spi-mt7621.o
- obj-$(CONFIG_SPI_MTK_NOR)             += spi-mtk-nor.o
-+obj-$(CONFIG_SPI_MTK_SNFI)            += spi-mtk-snfi.o
- obj-$(CONFIG_SPI_MXIC)                        += spi-mxic.o
- obj-$(CONFIG_SPI_MXS)                 += spi-mxs.o
- obj-$(CONFIG_SPI_NPCM_FIU)            += spi-npcm-fiu.o
---- /dev/null
-+++ b/drivers/spi/spi-mtk-snfi.c
-@@ -0,0 +1,1470 @@
-+// SPDX-License-Identifier: GPL-2.0
-+//
-+// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
-+//
-+// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
-+//
-+// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
-+//
-+// Copyright (C) 2020 MediaTek Inc.
-+// Author: Weijie Gao <weijie.gao@mediatek.com>
-+//
-+// This controller organize the page data as several interleaved sectors
-+// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
-+// +---------+------+------+---------+------+------+-----+
-+// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
-+// +---------+------+------+---------+------+------+-----+
-+// With auto-format turned on, DMA only returns this part:
-+// +---------+---------+-----+
-+// | Sector1 | Sector2 | ... |
-+// +---------+---------+-----+
-+// The FDM data will be filled to the registers, and ECC parity data isn't
-+// accessible.
-+// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
-+// in it's original order shown in the first table. ECC can't be turned on when
-+// auto-format is off.
-+//
-+// However, Linux SPI-NAND driver expects the data returned as:
-+// +------+-----+
-+// | Page | OOB |
-+// +------+-----+
-+// where the page data is continuously stored instead of interleaved.
-+// So we assume all instructions matching the page_op template between ECC
-+// prepare_io_req and finish_io_req are for page cache r/w.
-+// Here's how this spi-mem driver operates when reading:
-+//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
-+//  2. Perform page ops and let the controller fill the DMA bounce buffer with
-+//     de-interleaved sector data and set FDM registers.
-+//  3. Return the data as:
-+//     +---------+---------+-----+------+------+-----+
-+//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
-+//     +---------+---------+-----+------+------+-----+
-+//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
-+//     read the data with auto-format off into the bounce buffer and copy
-+//     needed data to the buffer specified in the request.
-+//
-+// Write requests operates in a similar manner.
-+// As a limitation of this strategy, we won't be able to access any ECC parity
-+// data at all in Linux.
-+//
-+// Here's the bad block mark situation on MTK chips:
-+// In older chips like mt7622, MTK uses the first FDM byte in the first sector
-+// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
-+// in the returned data, which is the BBM position expected by kernel. However,
-+// the conventional bad block mark is the first byte of the OOB, which is part
-+// of the last sector data in the interleaved layout. Instead of fixing their
-+// hardware, MTK decided to address this inconsistency in software. On these
-+// later chips, the BootROM expects the following:
-+// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
-+//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
-+// 2. The original byte stored at that position in the DMA buffer will be stored
-+//    as the first byte of the FDM section in the last sector.
-+// We can't disagree with the BootROM, so after de-interleaving, we need to
-+// perform the following swaps in read:
-+// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
-+//    which is the expected BBM position by kernel.
-+// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
-+//    [page_size - (nsectors - 1) * spare_size]
-+// Similarly, when writing, we need to perform swaps in the other direction.
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/mutex.h>
-+#include <linux/clk.h>
-+#include <linux/interrupt.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/iopoll.h>
-+#include <linux/of_platform.h>
-+#include <linux/mtd/nand-ecc-mtk.h>
-+#include <linux/spi/spi.h>
-+#include <linux/spi/spi-mem.h>
-+#include <linux/mtd/nand.h>
-+
-+// NFI registers
-+#define NFI_CNFG 0x000
-+#define CNFG_OP_MODE_S 12
-+#define CNFG_OP_MODE_CUST 6
-+#define CNFG_OP_MODE_PROGRAM 3
-+#define CNFG_AUTO_FMT_EN BIT(9)
-+#define CNFG_HW_ECC_EN BIT(8)
-+#define CNFG_DMA_BURST_EN BIT(2)
-+#define CNFG_READ_MODE BIT(1)
-+#define CNFG_DMA_MODE BIT(0)
-+
-+#define NFI_PAGEFMT 0x0004
-+#define NFI_SPARE_SIZE_LS_S 16
-+#define NFI_FDM_ECC_NUM_S 12
-+#define NFI_FDM_NUM_S 8
-+#define NFI_SPARE_SIZE_S 4
-+#define NFI_SEC_SEL_512 BIT(2)
-+#define NFI_PAGE_SIZE_S 0
-+#define NFI_PAGE_SIZE_512_2K 0
-+#define NFI_PAGE_SIZE_2K_4K 1
-+#define NFI_PAGE_SIZE_4K_8K 2
-+#define NFI_PAGE_SIZE_8K_16K 3
-+
-+#define NFI_CON 0x008
-+#define CON_SEC_NUM_S 12
-+#define CON_BWR BIT(9)
-+#define CON_BRD BIT(8)
-+#define CON_NFI_RST BIT(1)
-+#define CON_FIFO_FLUSH BIT(0)
-+
-+#define NFI_INTR_EN 0x010
-+#define NFI_INTR_STA 0x014
-+#define NFI_IRQ_INTR_EN BIT(31)
-+#define NFI_IRQ_CUS_READ BIT(8)
-+#define NFI_IRQ_CUS_PG BIT(7)
-+
-+#define NFI_CMD 0x020
-+#define NFI_CMD_DUMMY_READ 0x00
-+#define NFI_CMD_DUMMY_WRITE 0x80
-+
-+#define NFI_STRDATA 0x040
-+#define STR_DATA BIT(0)
-+
-+#define NFI_STA 0x060
-+#define NFI_NAND_FSM GENMASK(28, 24)
-+#define NFI_FSM GENMASK(19, 16)
-+#define READ_EMPTY BIT(12)
-+
-+#define NFI_FIFOSTA 0x064
-+#define FIFO_WR_REMAIN_S 8
-+#define FIFO_RD_REMAIN_S 0
-+
-+#define NFI_ADDRCNTR 0x070
-+#define SEC_CNTR GENMASK(16, 12)
-+#define SEC_CNTR_S 12
-+#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_STRADDR 0x080
-+
-+#define NFI_BYTELEN 0x084
-+#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_FDM0L 0x0a0
-+#define NFI_FDM0M 0x0a4
-+#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
-+#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
-+
-+#define NFI_DEBUG_CON1 0x220
-+#define WBUF_EN BIT(2)
-+
-+#define NFI_MASTERSTA 0x224
-+#define MAS_ADDR GENMASK(11, 9)
-+#define MAS_RD GENMASK(8, 6)
-+#define MAS_WR GENMASK(5, 3)
-+#define MAS_RDDLY GENMASK(2, 0)
-+#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
-+
-+// SNFI registers
-+#define SNF_MAC_CTL 0x500
-+#define MAC_XIO_SEL BIT(4)
-+#define SF_MAC_EN BIT(3)
-+#define SF_TRIG BIT(2)
-+#define WIP_READY BIT(1)
-+#define WIP BIT(0)
-+
-+#define SNF_MAC_OUTL 0x504
-+#define SNF_MAC_INL 0x508
-+
-+#define SNF_RD_CTL2 0x510
-+#define DATA_READ_DUMMY_S 8
-+#define DATA_READ_MAX_DUMMY 0xf
-+#define DATA_READ_CMD_S 0
-+
-+#define SNF_RD_CTL3 0x514
-+
-+#define SNF_PG_CTL1 0x524
-+#define PG_LOAD_CMD_S 8
-+
-+#define SNF_PG_CTL2 0x528
-+
-+#define SNF_MISC_CTL 0x538
-+#define SW_RST BIT(28)
-+#define FIFO_RD_LTC_S 25
-+#define PG_LOAD_X4_EN BIT(20)
-+#define DATA_READ_MODE_S 16
-+#define DATA_READ_MODE GENMASK(18, 16)
-+#define DATA_READ_MODE_X1 0
-+#define DATA_READ_MODE_X2 1
-+#define DATA_READ_MODE_X4 2
-+#define DATA_READ_MODE_DUAL 5
-+#define DATA_READ_MODE_QUAD 6
-+#define PG_LOAD_CUSTOM_EN BIT(7)
-+#define DATARD_CUSTOM_EN BIT(6)
-+#define CS_DESELECT_CYC_S 0
-+
-+#define SNF_MISC_CTL2 0x53c
-+#define PROGRAM_LOAD_BYTE_NUM_S 16
-+#define READ_DATA_BYTE_NUM_S 11
-+
-+#define SNF_DLY_CTL3 0x548
-+#define SFCK_SAM_DLY_S 0
-+
-+#define SNF_STA_CTL1 0x550
-+#define CUS_PG_DONE BIT(28)
-+#define CUS_READ_DONE BIT(27)
-+#define SPI_STATE_S 0
-+#define SPI_STATE GENMASK(3, 0)
-+
-+#define SNF_CFG 0x55c
-+#define SPI_MODE BIT(0)
-+
-+#define SNF_GPRAM 0x800
-+#define SNF_GPRAM_SIZE 0xa0
-+
-+#define SNFI_POLL_INTERVAL 1000000
-+
-+static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
-+
-+struct mtk_snand_caps {
-+      u16 sector_size;
-+      u16 max_sectors;
-+      u16 fdm_size;
-+      u16 fdm_ecc_size;
-+      u16 fifo_size;
-+
-+      bool bbm_swap;
-+      bool empty_page_check;
-+      u32 mastersta_mask;
-+
-+      const u8 *spare_sizes;
-+      u32 num_spare_size;
-+};
-+
-+static const struct mtk_snand_caps mt7622_snand_caps = {
-+      .sector_size = 512,
-+      .max_sectors = 8,
-+      .fdm_size = 8,
-+      .fdm_ecc_size = 1,
-+      .fifo_size = 32,
-+      .bbm_swap = false,
-+      .empty_page_check = false,
-+      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+      .spare_sizes = mt7622_spare_sizes,
-+      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+static const struct mtk_snand_caps mt7629_snand_caps = {
-+      .sector_size = 512,
-+      .max_sectors = 8,
-+      .fdm_size = 8,
-+      .fdm_ecc_size = 1,
-+      .fifo_size = 32,
-+      .bbm_swap = true,
-+      .empty_page_check = false,
-+      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+      .spare_sizes = mt7622_spare_sizes,
-+      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+struct mtk_snand_conf {
-+      size_t page_size;
-+      size_t oob_size;
-+      u8 nsectors;
-+      u8 spare_size;
-+};
-+
-+struct mtk_snand {
-+      struct spi_controller *ctlr;
-+      struct device *dev;
-+      struct clk *nfi_clk;
-+      struct clk *pad_clk;
-+      void __iomem *nfi_base;
-+      int irq;
-+      struct completion op_done;
-+      const struct mtk_snand_caps *caps;
-+      struct mtk_ecc_config *ecc_cfg;
-+      struct mtk_ecc *ecc;
-+      struct mtk_snand_conf nfi_cfg;
-+      struct mtk_ecc_stats ecc_stats;
-+      struct nand_ecc_engine ecc_eng;
-+      bool autofmt;
-+      u8 *buf;
-+      size_t buf_len;
-+};
-+
-+static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
-+{
-+      struct nand_ecc_engine *eng = nand->ecc.engine;
-+
-+      return container_of(eng, struct mtk_snand, ecc_eng);
-+}
-+
-+static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
-+{
-+      if (snf->buf_len >= size)
-+              return 0;
-+      kfree(snf->buf);
-+      snf->buf = kmalloc(size, GFP_KERNEL);
-+      if (!snf->buf)
-+              return -ENOMEM;
-+      snf->buf_len = size;
-+      memset(snf->buf, 0xff, snf->buf_len);
-+      return 0;
-+}
-+
-+static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
-+{
-+      return readl(snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
-+{
-+      writel(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
-+{
-+      writew(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
-+{
-+      u32 val;
-+
-+      val = readl(snf->nfi_base + reg);
-+      val &= ~clr;
-+      val |= set;
-+      writel(val, snf->nfi_base + reg);
-+}
-+
-+static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
-+{
-+      u32 i, val = 0, es = sizeof(u32);
-+
-+      for (i = reg; i < reg + len; i++) {
-+              if (i == reg || i % es == 0)
-+                      val = nfi_read32(snf, i & ~(es - 1));
-+
-+              *data++ = (u8)(val >> (8 * (i % es)));
-+      }
-+}
-+
-+static int mtk_nfi_reset(struct mtk_snand *snf)
-+{
-+      u32 val, fifo_mask;
-+      int ret;
-+
-+      nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
-+
-+      ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+                               !(val & snf->caps->mastersta_mask), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "NFI master is still busy after reset\n");
-+              return ret;
-+      }
-+
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
-+                               !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Failed to reset NFI\n");
-+              return ret;
-+      }
-+
-+      fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
-+                  ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
-+      ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
-+                               !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "NFI FIFOs are not empty\n");
-+              return ret;
-+      }
-+
-+      return 0;
-+}
-+
-+static int mtk_snand_mac_reset(struct mtk_snand *snf)
-+{
-+      int ret;
-+      u32 val;
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
-+                               !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Failed to reset SNFI MAC\n");
-+
-+      nfi_write32(snf, SNF_MISC_CTL,
-+                  (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
-+
-+      return ret;
-+}
-+
-+static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
-+{
-+      int ret;
-+      u32 val;
-+
-+      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
-+      nfi_write32(snf, SNF_MAC_OUTL, outlen);
-+      nfi_write32(snf, SNF_MAC_INL, inlen);
-+
-+      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
-+                               val & WIP_READY, 0, SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
-+              goto cleanup;
-+      }
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
-+                               0, SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
-+
-+cleanup:
-+      nfi_write32(snf, SNF_MAC_CTL, 0);
-+
-+      return ret;
-+}
-+
-+static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
-+{
-+      u32 rx_len = 0;
-+      u32 reg_offs = 0;
-+      u32 val = 0;
-+      const u8 *tx_buf = NULL;
-+      u8 *rx_buf = NULL;
-+      int i, ret;
-+      u8 b;
-+
-+      if (op->data.dir == SPI_MEM_DATA_IN) {
-+              rx_len = op->data.nbytes;
-+              rx_buf = op->data.buf.in;
-+      } else {
-+              tx_buf = op->data.buf.out;
-+      }
-+
-+      mtk_snand_mac_reset(snf);
-+
-+      for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
-+              b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
-+              val |= b << (8 * (reg_offs % 4));
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
-+              b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
-+              val |= b << (8 * (reg_offs % 4));
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      if (op->data.dir == SPI_MEM_DATA_OUT) {
-+              for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
-+                      val |= tx_buf[i] << (8 * (reg_offs % 4));
-+                      if (reg_offs % 4 == 3) {
-+                              nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                              val = 0;
-+                      }
-+              }
-+      }
-+
-+      if (reg_offs % 4)
-+              nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
-+
-+      for (i = 0; i < reg_offs; i += 4)
-+              dev_dbg(snf->dev, "%d: %08X", i,
-+                      nfi_read32(snf, SNF_GPRAM + i));
-+
-+      dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
-+
-+      ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
-+      if (ret)
-+              return ret;
-+
-+      if (!rx_len)
-+              return 0;
-+
-+      nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
-+      return 0;
-+}
-+
-+static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
-+                                 u32 oob_size)
-+{
-+      int spare_idx = -1;
-+      u32 spare_size, spare_size_shift, pagesize_idx;
-+      u32 sector_size_512;
-+      u8 nsectors;
-+      int i;
-+
-+      // skip if it's already configured as required.
-+      if (snf->nfi_cfg.page_size == page_size &&
-+          snf->nfi_cfg.oob_size == oob_size)
-+              return 0;
-+
-+      nsectors = page_size / snf->caps->sector_size;
-+      if (nsectors > snf->caps->max_sectors) {
-+              dev_err(snf->dev, "too many sectors required.\n");
-+              goto err;
-+      }
-+
-+      if (snf->caps->sector_size == 512) {
-+              sector_size_512 = NFI_SEC_SEL_512;
-+              spare_size_shift = NFI_SPARE_SIZE_S;
-+      } else {
-+              sector_size_512 = 0;
-+              spare_size_shift = NFI_SPARE_SIZE_LS_S;
-+      }
-+
-+      switch (page_size) {
-+      case SZ_512:
-+              pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+              break;
-+      case SZ_2K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+              break;
-+      case SZ_4K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+              break;
-+      case SZ_8K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+              break;
-+      case SZ_16K:
-+              pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+              break;
-+      default:
-+              dev_err(snf->dev, "unsupported page size.\n");
-+              goto err;
-+      }
-+
-+      spare_size = oob_size / nsectors;
-+      // If we're using the 1KB sector size, HW will automatically double the
-+      // spare size. We should only use half of the value in this case.
-+      if (snf->caps->sector_size == 1024)
-+              spare_size /= 2;
-+
-+      for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
-+              if (snf->caps->spare_sizes[i] <= spare_size) {
-+                      spare_size = snf->caps->spare_sizes[i];
-+                      if (snf->caps->sector_size == 1024)
-+                              spare_size *= 2;
-+                      spare_idx = i;
-+                      break;
-+              }
-+      }
-+
-+      if (spare_idx < 0) {
-+              dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
-+              goto err;
-+      }
-+
-+      nfi_write32(snf, NFI_PAGEFMT,
-+                  (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
-+                          (snf->caps->fdm_size << NFI_FDM_NUM_S) |
-+                          (spare_idx << spare_size_shift) |
-+                          (pagesize_idx << NFI_PAGE_SIZE_S) |
-+                          sector_size_512);
-+
-+      snf->nfi_cfg.page_size = page_size;
-+      snf->nfi_cfg.oob_size = oob_size;
-+      snf->nfi_cfg.nsectors = nsectors;
-+      snf->nfi_cfg.spare_size = spare_size;
-+
-+      dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
-+              snf->caps->sector_size, spare_size, nsectors);
-+      return snand_prepare_bouncebuf(snf, page_size + oob_size);
-+err:
-+      dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
-+              oob_size);
-+      return -EOPNOTSUPP;
-+}
-+
-+static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
-+                                 struct mtd_oob_region *oobecc)
-+{
-+      // ECC area is not accessible
-+      return -ERANGE;
-+}
-+
-+static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
-+                                  struct mtd_oob_region *oobfree)
-+{
-+      struct nand_device *nand = mtd_to_nanddev(mtd);
-+      struct mtk_snand *ms = nand_to_mtk_snand(nand);
-+
-+      if (section >= ms->nfi_cfg.nsectors)
-+              return -ERANGE;
-+
-+      oobfree->length = ms->caps->fdm_size - 1;
-+      oobfree->offset = section * ms->caps->fdm_size + 1;
-+      return 0;
-+}
-+
-+static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
-+      .ecc = mtk_snand_ooblayout_ecc,
-+      .free = mtk_snand_ooblayout_free,
-+};
-+
-+static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
-+      struct nand_ecc_props *reqs = &nand->ecc.requirements;
-+      struct nand_ecc_props *user = &nand->ecc.user_conf;
-+      struct mtd_info *mtd = nanddev_to_mtd(nand);
-+      int step_size = 0, strength = 0, desired_correction = 0, steps;
-+      bool ecc_user = false;
-+      int ret;
-+      u32 parity_bits, max_ecc_bytes;
-+      struct mtk_ecc_config *ecc_cfg;
-+
-+      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+                                    nand->memorg.oobsize);
-+      if (ret)
-+              return ret;
-+
-+      ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
-+      if (!ecc_cfg)
-+              return -ENOMEM;
-+
-+      nand->ecc.ctx.priv = ecc_cfg;
-+
-+      if (user->step_size && user->strength) {
-+              step_size = user->step_size;
-+              strength = user->strength;
-+              ecc_user = true;
-+      } else if (reqs->step_size && reqs->strength) {
-+              step_size = reqs->step_size;
-+              strength = reqs->strength;
-+      }
-+
-+      if (step_size && strength) {
-+              steps = mtd->writesize / step_size;
-+              desired_correction = steps * strength;
-+              strength = desired_correction / snf->nfi_cfg.nsectors;
-+      }
-+
-+      ecc_cfg->mode = ECC_NFI_MODE;
-+      ecc_cfg->sectors = snf->nfi_cfg.nsectors;
-+      ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
-+
-+      // calculate the max possible strength under current page format
-+      parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
-+      max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
-+      ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
-+      mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
-+
-+      // if there's a user requested strength, find the minimum strength that
-+      // meets the requirement. Otherwise use the maximum strength which is
-+      // expected by BootROM.
-+      if (ecc_user && strength) {
-+              u32 s_next = ecc_cfg->strength - 1;
-+
-+              while (1) {
-+                      mtk_ecc_adjust_strength(snf->ecc, &s_next);
-+                      if (s_next >= ecc_cfg->strength)
-+                              break;
-+                      if (s_next < strength)
-+                              break;
-+                      s_next = ecc_cfg->strength - 1;
-+              }
-+      }
-+
-+      mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
-+
-+      conf->step_size = snf->caps->sector_size;
-+      conf->strength = ecc_cfg->strength;
-+
-+      if (ecc_cfg->strength < strength)
-+              dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
-+                       strength);
-+      dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
-+               ecc_cfg->strength, snf->caps->sector_size);
-+
-+      return 0;
-+}
-+
-+static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
-+{
-+      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+
-+      kfree(ecc_cfg);
-+}
-+
-+static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
-+                                      struct nand_page_io_req *req)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+      int ret;
-+
-+      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+                                    nand->memorg.oobsize);
-+      if (ret)
-+              return ret;
-+      snf->autofmt = true;
-+      snf->ecc_cfg = ecc_cfg;
-+      return 0;
-+}
-+
-+static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
-+                                     struct nand_page_io_req *req)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct mtd_info *mtd = nanddev_to_mtd(nand);
-+
-+      snf->ecc_cfg = NULL;
-+      snf->autofmt = false;
-+      if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
-+              return 0;
-+
-+      if (snf->ecc_stats.failed)
-+              mtd->ecc_stats.failed += snf->ecc_stats.failed;
-+      mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
-+      return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
-+}
-+
-+static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
-+      .init_ctx = mtk_snand_ecc_init_ctx,
-+      .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
-+      .prepare_io_req = mtk_snand_ecc_prepare_io_req,
-+      .finish_io_req = mtk_snand_ecc_finish_io_req,
-+};
-+
-+static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
-+{
-+      u32 vall, valm;
-+      u8 *oobptr = buf;
-+      int i, j;
-+
-+      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+              vall = nfi_read32(snf, NFI_FDML(i));
-+              valm = nfi_read32(snf, NFI_FDMM(i));
-+
-+              for (j = 0; j < snf->caps->fdm_size; j++)
-+                      oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
-+
-+              oobptr += snf->caps->fdm_size;
-+      }
-+}
-+
-+static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
-+{
-+      u32 fdm_size = snf->caps->fdm_size;
-+      const u8 *oobptr = buf;
-+      u32 vall, valm;
-+      int i, j;
-+
-+      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+              vall = 0;
-+              valm = 0;
-+
-+              for (j = 0; j < 8; j++) {
-+                      if (j < 4)
-+                              vall |= (j < fdm_size ? oobptr[j] : 0xff)
-+                                      << (j * 8);
-+                      else
-+                              valm |= (j < fdm_size ? oobptr[j] : 0xff)
-+                                      << ((j - 4) * 8);
-+              }
-+
-+              nfi_write32(snf, NFI_FDML(i), vall);
-+              nfi_write32(snf, NFI_FDMM(i), valm);
-+
-+              oobptr += fdm_size;
-+      }
-+}
-+
-+static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
-+{
-+      u32 buf_bbm_pos, fdm_bbm_pos;
-+
-+      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+              return;
-+
-+      // swap [pagesize] byte on nand with the first fdm byte
-+      // in the last sector.
-+      buf_bbm_pos = snf->nfi_cfg.page_size -
-+                    (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
-+      fdm_bbm_pos = snf->nfi_cfg.page_size +
-+                    (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+
-+      swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
-+}
-+
-+static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
-+{
-+      u32 fdm_bbm_pos1, fdm_bbm_pos2;
-+
-+      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+              return;
-+
-+      // swap the first fdm byte in the first and the last sector.
-+      fdm_bbm_pos1 = snf->nfi_cfg.page_size;
-+      fdm_bbm_pos2 = snf->nfi_cfg.page_size +
-+                     (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+      swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
-+}
-+
-+static int mtk_snand_read_page_cache(struct mtk_snand *snf,
-+                                   const struct spi_mem_op *op)
-+{
-+      u8 *buf = snf->buf;
-+      u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
-+      // the address part to be sent by the controller
-+      u32 op_addr = op->addr.val;
-+      // where to start copying data from bounce buffer
-+      u32 rd_offset = 0;
-+      u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
-+      u32 op_mode = 0;
-+      u32 dma_len = snf->buf_len;
-+      int ret = 0;
-+      u32 rd_mode, rd_bytes, val;
-+      dma_addr_t buf_dma;
-+
-+      if (snf->autofmt) {
-+              u32 last_bit;
-+              u32 mask;
-+
-+              dma_len = snf->nfi_cfg.page_size;
-+              op_mode = CNFG_AUTO_FMT_EN;
-+              if (op->data.ecc)
-+                      op_mode |= CNFG_HW_ECC_EN;
-+              // extract the plane bit:
-+              // Find the highest bit set in (pagesize+oobsize).
-+              // Bits higher than that in op->addr are kept and sent over SPI
-+              // Lower bits are used as an offset for copying data from DMA
-+              // bounce buffer.
-+              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+              mask = (1 << last_bit) - 1;
-+              rd_offset = op_addr & mask;
-+              op_addr &= ~mask;
-+
-+              // check if we can dma to the caller memory
-+              if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
-+                      buf = op->data.buf.in;
-+      }
-+      mtk_snand_mac_reset(snf);
-+      mtk_nfi_reset(snf);
-+
-+      // command and dummy cycles
-+      nfi_write32(snf, SNF_RD_CTL2,
-+                  (dummy_clk << DATA_READ_DUMMY_S) |
-+                          (op->cmd.opcode << DATA_READ_CMD_S));
-+
-+      // read address
-+      nfi_write32(snf, SNF_RD_CTL3, op_addr);
-+
-+      // Set read op_mode
-+      if (op->data.buswidth == 4)
-+              rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
-+                                                 DATA_READ_MODE_X4;
-+      else if (op->data.buswidth == 2)
-+              rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
-+                                                 DATA_READ_MODE_X2;
-+      else
-+              rd_mode = DATA_READ_MODE_X1;
-+      rd_mode <<= DATA_READ_MODE_S;
-+      nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
-+                rd_mode | DATARD_CUSTOM_EN);
-+
-+      // Set bytes to read
-+      rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+                 snf->nfi_cfg.nsectors;
-+      nfi_write32(snf, SNF_MISC_CTL2,
-+                  (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
-+
-+      // NFI read prepare
-+      nfi_write16(snf, NFI_CNFG,
-+                  (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
-+                          CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
-+
-+      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+
-+      buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
-+      if (dma_mapping_error(snf->dev, buf_dma)) {
-+              dev_err(snf->dev, "DMA mapping failed.\n");
-+              goto cleanup;
-+      }
-+      nfi_write32(snf, NFI_STRADDR, buf_dma);
-+      if (op->data.ecc) {
-+              snf->ecc_cfg->op = ECC_DECODE;
-+              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+              if (ret)
-+                      goto cleanup_dma;
-+      }
-+      // Prepare for custom read interrupt
-+      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
-+      reinit_completion(&snf->op_done);
-+
-+      // Trigger NFI into custom mode
-+      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
-+
-+      // Start DMA read
-+      nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
-+      nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+      if (!wait_for_completion_timeout(
-+                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+              dev_err(snf->dev, "DMA timed out for reading from cache.\n");
-+              ret = -ETIMEDOUT;
-+              goto cleanup;
-+      }
-+
-+      // Wait for BUS_SEC_CNTR returning expected value
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
-+                               BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
-+              goto cleanup2;
-+      }
-+
-+      // Wait for bus becoming idle
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+                               !(val & snf->caps->mastersta_mask), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
-+              goto cleanup2;
-+      }
-+
-+      if (op->data.ecc) {
-+              ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
-+              if (ret) {
-+                      dev_err(snf->dev, "wait ecc done timeout\n");
-+                      goto cleanup2;
-+              }
-+              // save status before disabling ecc
-+              mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
-+                                snf->nfi_cfg.nsectors);
-+      }
-+
-+      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+
-+      if (snf->autofmt) {
-+              mtk_snand_read_fdm(snf, buf_fdm);
-+              if (snf->caps->bbm_swap) {
-+                      mtk_snand_bm_swap(snf, buf);
-+                      mtk_snand_fdm_bm_swap(snf);
-+              }
-+      }
-+
-+      // copy data back
-+      if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
-+              memset(op->data.buf.in, 0xff, op->data.nbytes);
-+              snf->ecc_stats.bitflips = 0;
-+              snf->ecc_stats.failed = 0;
-+              snf->ecc_stats.corrected = 0;
-+      } else {
-+              if (buf == op->data.buf.in) {
-+                      u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
-+                      u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
-+
-+                      if (req_left)
-+                              memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
-+                                     buf_fdm,
-+                                     cap_len < req_left ? cap_len : req_left);
-+              } else if (rd_offset < snf->buf_len) {
-+                      u32 cap_len = snf->buf_len - rd_offset;
-+
-+                      if (op->data.nbytes < cap_len)
-+                              cap_len = op->data.nbytes;
-+                      memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
-+              }
-+      }
-+cleanup2:
-+      if (op->data.ecc)
-+              mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+      // unmap dma only if any error happens. (otherwise it's done before
-+      // data copying)
-+      if (ret)
-+              dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+cleanup:
-+      // Stop read
-+      nfi_write32(snf, NFI_CON, 0);
-+      nfi_write16(snf, NFI_CNFG, 0);
-+
-+      // Clear SNF done flag
-+      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
-+      nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+      // Disable interrupt
-+      nfi_read32(snf, NFI_INTR_STA);
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
-+      return ret;
-+}
-+
-+static int mtk_snand_write_page_cache(struct mtk_snand *snf,
-+                                    const struct spi_mem_op *op)
-+{
-+      // the address part to be sent by the controller
-+      u32 op_addr = op->addr.val;
-+      // where to start copying data from bounce buffer
-+      u32 wr_offset = 0;
-+      u32 op_mode = 0;
-+      int ret = 0;
-+      u32 wr_mode = 0;
-+      u32 dma_len = snf->buf_len;
-+      u32 wr_bytes, val;
-+      size_t cap_len;
-+      dma_addr_t buf_dma;
-+
-+      if (snf->autofmt) {
-+              u32 last_bit;
-+              u32 mask;
-+
-+              dma_len = snf->nfi_cfg.page_size;
-+              op_mode = CNFG_AUTO_FMT_EN;
-+              if (op->data.ecc)
-+                      op_mode |= CNFG_HW_ECC_EN;
-+
-+              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+              mask = (1 << last_bit) - 1;
-+              wr_offset = op_addr & mask;
-+              op_addr &= ~mask;
-+      }
-+      mtk_snand_mac_reset(snf);
-+      mtk_nfi_reset(snf);
-+
-+      if (wr_offset)
-+              memset(snf->buf, 0xff, wr_offset);
-+
-+      cap_len = snf->buf_len - wr_offset;
-+      if (op->data.nbytes < cap_len)
-+              cap_len = op->data.nbytes;
-+      memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
-+      if (snf->autofmt) {
-+              if (snf->caps->bbm_swap) {
-+                      mtk_snand_fdm_bm_swap(snf);
-+                      mtk_snand_bm_swap(snf, snf->buf);
-+              }
-+              mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
-+      }
-+
-+      // Command
-+      nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
-+
-+      // write address
-+      nfi_write32(snf, SNF_PG_CTL2, op_addr);
-+
-+      // Set read op_mode
-+      if (op->data.buswidth == 4)
-+              wr_mode = PG_LOAD_X4_EN;
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
-+                wr_mode | PG_LOAD_CUSTOM_EN);
-+
-+      // Set bytes to write
-+      wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+                 snf->nfi_cfg.nsectors;
-+      nfi_write32(snf, SNF_MISC_CTL2,
-+                  (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
-+
-+      // NFI write prepare
-+      nfi_write16(snf, NFI_CNFG,
-+                  (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
-+                          CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
-+
-+      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+      buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
-+      if (dma_mapping_error(snf->dev, buf_dma)) {
-+              dev_err(snf->dev, "DMA mapping failed.\n");
-+              goto cleanup;
-+      }
-+      nfi_write32(snf, NFI_STRADDR, buf_dma);
-+      if (op->data.ecc) {
-+              snf->ecc_cfg->op = ECC_ENCODE;
-+              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+              if (ret)
-+                      goto cleanup_dma;
-+      }
-+      // Prepare for custom write interrupt
-+      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
-+      reinit_completion(&snf->op_done);
-+      ;
-+
-+      // Trigger NFI into custom mode
-+      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
-+
-+      // Start DMA write
-+      nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
-+      nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+      if (!wait_for_completion_timeout(
-+                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+              dev_err(snf->dev, "DMA timed out for program load.\n");
-+              ret = -ETIMEDOUT;
-+              goto cleanup_ecc;
-+      }
-+
-+      // Wait for NFI_SEC_CNTR returning expected value
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
-+                               NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
-+
-+cleanup_ecc:
-+      if (op->data.ecc)
-+              mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
-+cleanup:
-+      // Stop write
-+      nfi_write32(snf, NFI_CON, 0);
-+      nfi_write16(snf, NFI_CNFG, 0);
-+
-+      // Clear SNF done flag
-+      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
-+      nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+      // Disable interrupt
-+      nfi_read32(snf, NFI_INTR_STA);
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
-+
-+      return ret;
-+}
-+
-+/**
-+ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
-+ * @op spi-mem op to check
-+ *
-+ * Check whether op can be executed with read_from_cache or program_load
-+ * mode in the controller.
-+ * This controller can execute typical Read From Cache and Program Load
-+ * instructions found on SPI-NAND with 2-byte address.
-+ * DTR and cmd buswidth & nbytes should be checked before calling this.
-+ *
-+ * Return: true if the op matches the instruction template
-+ */
-+static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
-+{
-+      if (op->addr.nbytes != 2)
-+              return false;
-+
-+      if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
-+          op->addr.buswidth != 4)
-+              return false;
-+
-+      // match read from page instructions
-+      if (op->data.dir == SPI_MEM_DATA_IN) {
-+              // check dummy cycle first
-+              if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
-+                  DATA_READ_MAX_DUMMY)
-+                      return false;
-+              // quad io / quad out
-+              if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
-+                  op->data.buswidth == 4)
-+                      return true;
-+
-+              // dual io / dual out
-+              if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
-+                  op->data.buswidth == 2)
-+                      return true;
-+
-+              // standard spi
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+                      return true;
-+      } else if (op->data.dir == SPI_MEM_DATA_OUT) {
-+              // check dummy cycle first
-+              if (op->dummy.nbytes)
-+                      return false;
-+              // program load quad out
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 4)
-+                      return true;
-+              // standard spi
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+                      return true;
-+      }
-+      return false;
-+}
-+
-+static bool mtk_snand_supports_op(struct spi_mem *mem,
-+                                const struct spi_mem_op *op)
-+{
-+      if (!spi_mem_default_supports_op(mem, op))
-+              return false;
-+      if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
-+              return false;
-+      if (mtk_snand_is_page_ops(op))
-+              return true;
-+      return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
-+              (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
-+              (op->data.nbytes == 0 || op->data.buswidth == 1));
-+}
-+
-+static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
-+{
-+      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+      // page ops transfer size must be exactly ((sector_size + spare_size) *
-+      // nsectors). Limit the op size if the caller requests more than that.
-+      // exec_op will read more than needed and discard the leftover if the
-+      // caller requests less data.
-+      if (mtk_snand_is_page_ops(op)) {
-+              size_t l;
-+              // skip adjust_op_size for page ops
-+              if (ms->autofmt)
-+                      return 0;
-+              l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
-+              l *= ms->nfi_cfg.nsectors;
-+              if (op->data.nbytes > l)
-+                      op->data.nbytes = l;
-+      } else {
-+              size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
-+
-+              if (hl >= SNF_GPRAM_SIZE)
-+                      return -EOPNOTSUPP;
-+              if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
-+                      op->data.nbytes = SNF_GPRAM_SIZE - hl;
-+      }
-+      return 0;
-+}
-+
-+static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
-+{
-+      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+
-+      dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
-+              op->addr.val, op->addr.buswidth, op->addr.nbytes,
-+              op->data.buswidth, op->data.nbytes);
-+      if (mtk_snand_is_page_ops(op)) {
-+              if (op->data.dir == SPI_MEM_DATA_IN)
-+                      return mtk_snand_read_page_cache(ms, op);
-+              else
-+                      return mtk_snand_write_page_cache(ms, op);
-+      } else {
-+              return mtk_snand_mac_io(ms, op);
-+      }
-+}
-+
-+static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
-+      .adjust_op_size = mtk_snand_adjust_op_size,
-+      .supports_op = mtk_snand_supports_op,
-+      .exec_op = mtk_snand_exec_op,
-+};
-+
-+static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
-+      .ecc = true,
-+};
-+
-+static irqreturn_t mtk_snand_irq(int irq, void *id)
-+{
-+      struct mtk_snand *snf = id;
-+      u32 sta, ien;
-+
-+      sta = nfi_read32(snf, NFI_INTR_STA);
-+      ien = nfi_read32(snf, NFI_INTR_EN);
-+
-+      if (!(sta & ien))
-+              return IRQ_NONE;
-+
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+      complete(&snf->op_done);
-+      return IRQ_HANDLED;
-+}
-+
-+static const struct of_device_id mtk_snand_ids[] = {
-+      { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
-+      { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
-+      {},
-+};
-+
-+MODULE_DEVICE_TABLE(of, mtk_snand_ids);
-+
-+static int mtk_snand_enable_clk(struct mtk_snand *ms)
-+{
-+      int ret;
-+
-+      ret = clk_prepare_enable(ms->nfi_clk);
-+      if (ret) {
-+              dev_err(ms->dev, "unable to enable nfi clk\n");
-+              return ret;
-+      }
-+      ret = clk_prepare_enable(ms->pad_clk);
-+      if (ret) {
-+              dev_err(ms->dev, "unable to enable pad clk\n");
-+              goto err1;
-+      }
-+      return 0;
-+err1:
-+      clk_disable_unprepare(ms->nfi_clk);
-+      return ret;
-+}
-+
-+static void mtk_snand_disable_clk(struct mtk_snand *ms)
-+{
-+      clk_disable_unprepare(ms->pad_clk);
-+      clk_disable_unprepare(ms->nfi_clk);
-+}
-+
-+static int mtk_snand_probe(struct platform_device *pdev)
-+{
-+      struct device_node *np = pdev->dev.of_node;
-+      const struct of_device_id *dev_id;
-+      struct spi_controller *ctlr;
-+      struct mtk_snand *ms;
-+      int ret;
-+
-+      dev_id = of_match_node(mtk_snand_ids, np);
-+      if (!dev_id)
-+              return -EINVAL;
-+
-+      ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
-+      if (!ctlr)
-+              return -ENOMEM;
-+      platform_set_drvdata(pdev, ctlr);
-+
-+      ms = spi_controller_get_devdata(ctlr);
-+
-+      ms->ctlr = ctlr;
-+      ms->caps = dev_id->data;
-+
-+      ms->ecc = of_mtk_ecc_get(np);
-+      if (IS_ERR(ms->ecc))
-+              return PTR_ERR(ms->ecc);
-+      else if (!ms->ecc)
-+              return -ENODEV;
-+
-+      ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
-+      if (IS_ERR(ms->nfi_base)) {
-+              ret = PTR_ERR(ms->nfi_base);
-+              goto release_ecc;
-+      }
-+
-+      ms->dev = &pdev->dev;
-+
-+      ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
-+      if (IS_ERR(ms->nfi_clk)) {
-+              ret = PTR_ERR(ms->nfi_clk);
-+              dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
-+              goto release_ecc;
-+      }
-+
-+      ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
-+      if (IS_ERR(ms->pad_clk)) {
-+              ret = PTR_ERR(ms->pad_clk);
-+              dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
-+              goto release_ecc;
-+      }
-+
-+      ret = mtk_snand_enable_clk(ms);
-+      if (ret)
-+              goto release_ecc;
-+
-+      init_completion(&ms->op_done);
-+
-+      ms->irq = platform_get_irq(pdev, 0);
-+      if (ms->irq < 0) {
-+              ret = ms->irq;
-+              goto disable_clk;
-+      }
-+      ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
-+                             "mtk-snand", ms);
-+      if (ret) {
-+              dev_err(ms->dev, "failed to request snfi irq\n");
-+              goto disable_clk;
-+      }
-+
-+      ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
-+      if (ret) {
-+              dev_err(ms->dev, "failed to set dma mask\n");
-+              goto disable_clk;
-+      }
-+
-+      // switch to SNFI mode
-+      nfi_write32(ms, SNF_CFG, SPI_MODE);
-+
-+      // setup an initial page format for ops matching page_cache_op template
-+      // before ECC is called.
-+      ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
-+                                    ms->caps->spare_sizes[0]);
-+      if (ret) {
-+              dev_err(ms->dev, "failed to set initial page format\n");
-+              goto disable_clk;
-+      }
-+
-+      // setup ECC engine
-+      ms->ecc_eng.dev = &pdev->dev;
-+      ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
-+      ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
-+      ms->ecc_eng.priv = ms;
-+
-+      ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
-+      if (ret) {
-+              dev_err(&pdev->dev, "failed to register ecc engine.\n");
-+              goto disable_clk;
-+      }
-+
-+      ctlr->num_chipselect = 1;
-+      ctlr->mem_ops = &mtk_snand_mem_ops;
-+      ctlr->mem_caps = &mtk_snand_mem_caps;
-+      ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
-+      ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
-+      ctlr->dev.of_node = pdev->dev.of_node;
-+      ret = spi_register_controller(ctlr);
-+      if (ret) {
-+              dev_err(&pdev->dev, "spi_register_controller failed.\n");
-+              goto disable_clk;
-+      }
-+
-+      return 0;
-+disable_clk:
-+      mtk_snand_disable_clk(ms);
-+release_ecc:
-+      mtk_ecc_release(ms->ecc);
-+      return ret;
-+}
-+
-+static int mtk_snand_remove(struct platform_device *pdev)
-+{
-+      struct spi_controller *ctlr = platform_get_drvdata(pdev);
-+      struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
-+
-+      spi_unregister_controller(ctlr);
-+      mtk_snand_disable_clk(ms);
-+      mtk_ecc_release(ms->ecc);
-+      kfree(ms->buf);
-+      return 0;
-+}
-+
-+static struct platform_driver mtk_snand_driver = {
-+      .probe = mtk_snand_probe,
-+      .remove = mtk_snand_remove,
-+      .driver = {
-+              .name = "mtk-snand",
-+              .of_match_table = mtk_snand_ids,
-+      },
-+};
-+
-+module_platform_driver(mtk_snand_driver);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
-+MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");