mediatek: add an upstreamed spi-nand driver
[openwrt/staging/981213.git] / target / linux / mediatek / patches-5.15 / 120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
diff --git a/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch b/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
new file mode 100644 (file)
index 0000000..4353eff
--- /dev/null
@@ -0,0 +1,1526 @@
+From 1469439b3fd70e478baa4f14897ad88b321e295b Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Sat, 2 Apr 2022 10:16:11 +0800
+Subject: [PATCH v5 2/5] spi: add driver for MTK SPI NAND Flash Interface
+
+This driver implements support for the SPI-NAND mode of MTK NAND Flash
+Interface as a SPI-MEM controller with pipelined ECC capability.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+Tested-by: Daniel Golle <daniel@makrotopia.org>
+---
+ drivers/spi/Kconfig        |   10 +
+ drivers/spi/Makefile       |    1 +
+ drivers/spi/spi-mtk-snfi.c | 1467 ++++++++++++++++++++++++++++++++++++
+ 3 files changed, 1478 insertions(+)
+ create mode 100644 drivers/spi/spi-mtk-snfi.c
+
+diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
+index d2815eb361c0..739eec7d0c15 100644
+--- a/drivers/spi/Kconfig
++++ b/drivers/spi/Kconfig
+@@ -590,6 +590,16 @@ config SPI_MTK_NOR
+         SPI interface as well as several SPI NOR specific instructions
+         via SPI MEM interface.
++config SPI_MTK_SNFI
++      tristate "MediaTek SPI NAND Flash Interface"
++      depends on ARCH_MEDIATEK || COMPILE_TEST
++      depends on MTD_NAND_ECC_MEDIATEK
++      help
++        This enables support for SPI-NAND mode on the MediaTek NAND
++        Flash Interface found on MediaTek ARM SoCs. This controller
++        is implemented as a SPI-MEM controller with pipelined ECC
++        capcability.
++
+ config SPI_NPCM_FIU
+       tristate "Nuvoton NPCM FLASH Interface Unit"
+       depends on ARCH_NPCM || COMPILE_TEST
+diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
+index 3aa28ed3f761..51541ff17e67 100644
+--- a/drivers/spi/Makefile
++++ b/drivers/spi/Makefile
+@@ -76,6 +76,7 @@ obj-$(CONFIG_SPI_MPC52xx)            += spi-mpc52xx.o
+ obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
+ obj-$(CONFIG_SPI_MT7621)              += spi-mt7621.o
+ obj-$(CONFIG_SPI_MTK_NOR)             += spi-mtk-nor.o
++obj-$(CONFIG_SPI_MTK_SNFI)            += spi-mtk-snfi.o
+ obj-$(CONFIG_SPI_MXIC)                        += spi-mxic.o
+ obj-$(CONFIG_SPI_MXS)                 += spi-mxs.o
+ obj-$(CONFIG_SPI_NPCM_FIU)            += spi-npcm-fiu.o
+diff --git a/drivers/spi/spi-mtk-snfi.c b/drivers/spi/spi-mtk-snfi.c
+new file mode 100644
+index 000000000000..727057b6db89
+--- /dev/null
++++ b/drivers/spi/spi-mtk-snfi.c
+@@ -0,0 +1,1467 @@
++// SPDX-License-Identifier: GPL-2.0
++//
++// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
++//
++// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
++//
++// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
++//
++// Copyright (C) 2020 MediaTek Inc.
++// Author: Weijie Gao <weijie.gao@mediatek.com>
++//
++// This controller organize the page data as several interleaved sectors
++// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
++// +---------+------+------+---------+------+------+-----+
++// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
++// +---------+------+------+---------+------+------+-----+
++// With auto-format turned on, DMA only returns this part:
++// +---------+---------+-----+
++// | Sector1 | Sector2 | ... |
++// +---------+---------+-----+
++// The FDM data will be filled to the registers, and ECC parity data isn't
++// accessible.
++// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
++// in it's original order shown in the first table. ECC can't be turned on when
++// auto-format is off.
++//
++// However, Linux SPI-NAND driver expects the data returned as:
++// +------+-----+
++// | Page | OOB |
++// +------+-----+
++// where the page data is continuously stored instead of interleaved.
++// So we assume all instructions matching the page_op template between ECC
++// prepare_io_req and finish_io_req are for page cache r/w.
++// Here's how this spi-mem driver operates when reading:
++//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
++//  2. Perform page ops and let the controller fill the DMA bounce buffer with
++//     de-interleaved sector data and set FDM registers.
++//  3. Return the data as:
++//     +---------+---------+-----+------+------+-----+
++//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
++//     +---------+---------+-----+------+------+-----+
++//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
++//     read the data with auto-format off into the bounce buffer and copy
++//     needed data to the buffer specified in the request.
++//
++// Write requests operates in a similar manner.
++// As a limitation of this strategy, we won't be able to access any ECC parity
++// data at all in Linux.
++//
++// Here's the bad block mark situation on MTK chips:
++// In older chips like mt7622, MTK uses the first FDM byte in the first sector
++// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
++// in the returned data, which is the BBM position expected by kernel. However,
++// the conventional bad block mark is the first byte of the OOB, which is part
++// of the last sector data in the interleaved layout. Instead of fixing their
++// hardware, MTK decided to address this inconsistency in software. On these
++// later chips, the BootROM expects the following:
++// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
++//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
++// 2. The original byte stored at that position in the DMA buffer will be stored
++//    as the first byte of the FDM section in the last sector.
++// We can't disagree with the BootROM, so after de-interleaving, we need to
++// perform the following swaps in read:
++// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
++//    which is the expected BBM position by kernel.
++// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
++//    [page_size - (nsectors - 1) * spare_size]
++// Similarly, when writing, we need to perform swaps in the other direction.
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/mutex.h>
++#include <linux/clk.h>
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++#include <linux/iopoll.h>
++#include <linux/of_platform.h>
++#include <linux/mtd/nand-ecc-mtk.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/spi-mem.h>
++#include <linux/mtd/nand.h>
++
++// NFI registers
++#define NFI_CNFG 0x000
++#define CNFG_OP_MODE_S 12
++#define CNFG_OP_MODE_CUST 6
++#define CNFG_OP_MODE_PROGRAM 3
++#define CNFG_AUTO_FMT_EN BIT(9)
++#define CNFG_HW_ECC_EN BIT(8)
++#define CNFG_DMA_BURST_EN BIT(2)
++#define CNFG_READ_MODE BIT(1)
++#define CNFG_DMA_MODE BIT(0)
++
++#define NFI_PAGEFMT 0x0004
++#define NFI_SPARE_SIZE_LS_S 16
++#define NFI_FDM_ECC_NUM_S 12
++#define NFI_FDM_NUM_S 8
++#define NFI_SPARE_SIZE_S 4
++#define NFI_SEC_SEL_512 BIT(2)
++#define NFI_PAGE_SIZE_S 0
++#define NFI_PAGE_SIZE_512_2K 0
++#define NFI_PAGE_SIZE_2K_4K 1
++#define NFI_PAGE_SIZE_4K_8K 2
++#define NFI_PAGE_SIZE_8K_16K 3
++
++#define NFI_CON 0x008
++#define CON_SEC_NUM_S 12
++#define CON_BWR BIT(9)
++#define CON_BRD BIT(8)
++#define CON_NFI_RST BIT(1)
++#define CON_FIFO_FLUSH BIT(0)
++
++#define NFI_INTR_EN 0x010
++#define NFI_INTR_STA 0x014
++#define NFI_IRQ_INTR_EN BIT(31)
++#define NFI_IRQ_CUS_READ BIT(8)
++#define NFI_IRQ_CUS_PG BIT(7)
++
++#define NFI_CMD 0x020
++#define NFI_CMD_DUMMY_READ 0x00
++#define NFI_CMD_DUMMY_WRITE 0x80
++
++#define NFI_STRDATA 0x040
++#define STR_DATA BIT(0)
++
++#define NFI_STA 0x060
++#define NFI_NAND_FSM GENMASK(28, 24)
++#define NFI_FSM GENMASK(19, 16)
++#define READ_EMPTY BIT(12)
++
++#define NFI_FIFOSTA 0x064
++#define FIFO_WR_REMAIN_S 8
++#define FIFO_RD_REMAIN_S 0
++
++#define NFI_ADDRCNTR 0x070
++#define SEC_CNTR GENMASK(16, 12)
++#define SEC_CNTR_S 12
++#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_STRADDR 0x080
++
++#define NFI_BYTELEN 0x084
++#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_FDM0L 0x0a0
++#define NFI_FDM0M 0x0a4
++#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
++#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
++
++#define NFI_DEBUG_CON1 0x220
++#define WBUF_EN BIT(2)
++
++#define NFI_MASTERSTA 0x224
++#define MAS_ADDR GENMASK(11, 9)
++#define MAS_RD GENMASK(8, 6)
++#define MAS_WR GENMASK(5, 3)
++#define MAS_RDDLY GENMASK(2, 0)
++#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
++
++// SNFI registers
++#define SNF_MAC_CTL 0x500
++#define MAC_XIO_SEL BIT(4)
++#define SF_MAC_EN BIT(3)
++#define SF_TRIG BIT(2)
++#define WIP_READY BIT(1)
++#define WIP BIT(0)
++
++#define SNF_MAC_OUTL 0x504
++#define SNF_MAC_INL 0x508
++
++#define SNF_RD_CTL2 0x510
++#define DATA_READ_DUMMY_S 8
++#define DATA_READ_MAX_DUMMY 0xf
++#define DATA_READ_CMD_S 0
++
++#define SNF_RD_CTL3 0x514
++
++#define SNF_PG_CTL1 0x524
++#define PG_LOAD_CMD_S 8
++
++#define SNF_PG_CTL2 0x528
++
++#define SNF_MISC_CTL 0x538
++#define SW_RST BIT(28)
++#define FIFO_RD_LTC_S 25
++#define PG_LOAD_X4_EN BIT(20)
++#define DATA_READ_MODE_S 16
++#define DATA_READ_MODE GENMASK(18, 16)
++#define DATA_READ_MODE_X1 0
++#define DATA_READ_MODE_X2 1
++#define DATA_READ_MODE_X4 2
++#define DATA_READ_MODE_DUAL 5
++#define DATA_READ_MODE_QUAD 6
++#define PG_LOAD_CUSTOM_EN BIT(7)
++#define DATARD_CUSTOM_EN BIT(6)
++#define CS_DESELECT_CYC_S 0
++
++#define SNF_MISC_CTL2 0x53c
++#define PROGRAM_LOAD_BYTE_NUM_S 16
++#define READ_DATA_BYTE_NUM_S 11
++
++#define SNF_DLY_CTL3 0x548
++#define SFCK_SAM_DLY_S 0
++
++#define SNF_STA_CTL1 0x550
++#define CUS_PG_DONE BIT(28)
++#define CUS_READ_DONE BIT(27)
++#define SPI_STATE_S 0
++#define SPI_STATE GENMASK(3, 0)
++
++#define SNF_CFG 0x55c
++#define SPI_MODE BIT(0)
++
++#define SNF_GPRAM 0x800
++#define SNF_GPRAM_SIZE 0xa0
++
++#define SNFI_POLL_INTERVAL 1000000
++
++static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
++
++struct mtk_snand_caps {
++      u16 sector_size;
++      u16 max_sectors;
++      u16 fdm_size;
++      u16 fdm_ecc_size;
++      u16 fifo_size;
++
++      bool bbm_swap;
++      bool empty_page_check;
++      u32 mastersta_mask;
++
++      const u8 *spare_sizes;
++      u32 num_spare_size;
++};
++
++static const struct mtk_snand_caps mt7622_snand_caps = {
++      .sector_size = 512,
++      .max_sectors = 8,
++      .fdm_size = 8,
++      .fdm_ecc_size = 1,
++      .fifo_size = 32,
++      .bbm_swap = false,
++      .empty_page_check = false,
++      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++      .spare_sizes = mt7622_spare_sizes,
++      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++static const struct mtk_snand_caps mt7629_snand_caps = {
++      .sector_size = 512,
++      .max_sectors = 8,
++      .fdm_size = 8,
++      .fdm_ecc_size = 1,
++      .fifo_size = 32,
++      .bbm_swap = true,
++      .empty_page_check = false,
++      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++      .spare_sizes = mt7622_spare_sizes,
++      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++struct mtk_snand_conf {
++      size_t page_size;
++      size_t oob_size;
++      u8 nsectors;
++      u8 spare_size;
++};
++
++struct mtk_snand {
++      struct spi_controller *ctlr;
++      struct device *dev;
++      struct clk *nfi_clk;
++      struct clk *pad_clk;
++      void __iomem *nfi_base;
++      int irq;
++      struct completion op_done;
++      const struct mtk_snand_caps *caps;
++      struct mtk_ecc_config *ecc_cfg;
++      struct mtk_ecc *ecc;
++      struct mtk_snand_conf nfi_cfg;
++      struct mtk_ecc_stats ecc_stats;
++      struct nand_ecc_engine ecc_eng;
++      bool autofmt;
++      u8 *buf;
++      size_t buf_len;
++};
++
++static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
++{
++      struct nand_ecc_engine *eng = nand->ecc.engine;
++
++      return container_of(eng, struct mtk_snand, ecc_eng);
++}
++
++static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
++{
++      if (snf->buf_len >= size)
++              return 0;
++      kfree(snf->buf);
++      snf->buf = kmalloc(size, GFP_KERNEL);
++      if (!snf->buf)
++              return -ENOMEM;
++      snf->buf_len = size;
++      memset(snf->buf, 0xff, snf->buf_len);
++      return 0;
++}
++
++static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
++{
++      return readl(snf->nfi_base + reg);
++}
++
++static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
++{
++      writel(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
++{
++      writew(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
++{
++      u32 val;
++
++      val = readl(snf->nfi_base + reg);
++      val &= ~clr;
++      val |= set;
++      writel(val, snf->nfi_base + reg);
++}
++
++static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
++{
++      u32 i, val = 0, es = sizeof(u32);
++
++      for (i = reg; i < reg + len; i++) {
++              if (i == reg || i % es == 0)
++                      val = nfi_read32(snf, i & ~(es - 1));
++
++              *data++ = (u8)(val >> (8 * (i % es)));
++      }
++}
++
++static int mtk_nfi_reset(struct mtk_snand *snf)
++{
++      u32 val, fifo_mask;
++      int ret;
++
++      nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
++
++      ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++                               !(val & snf->caps->mastersta_mask), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "NFI master is still busy after reset\n");
++              return ret;
++      }
++
++      ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
++                               !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Failed to reset NFI\n");
++              return ret;
++      }
++
++      fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
++                  ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
++      ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
++                               !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "NFI FIFOs are not empty\n");
++              return ret;
++      }
++
++      return 0;
++}
++
++static int mtk_snand_mac_reset(struct mtk_snand *snf)
++{
++      int ret;
++      u32 val;
++
++      nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
++                               !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Failed to reset SNFI MAC\n");
++
++      nfi_write32(snf, SNF_MISC_CTL,
++                  (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
++
++      return ret;
++}
++
++static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
++{
++      int ret;
++      u32 val;
++
++      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
++      nfi_write32(snf, SNF_MAC_OUTL, outlen);
++      nfi_write32(snf, SNF_MAC_INL, inlen);
++
++      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
++                               val & WIP_READY, 0, SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
++              goto cleanup;
++      }
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
++                               0, SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
++
++cleanup:
++      nfi_write32(snf, SNF_MAC_CTL, 0);
++
++      return ret;
++}
++
++static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
++{
++      u32 rx_len = 0;
++      u32 reg_offs = 0;
++      u32 val = 0;
++      const u8 *tx_buf = NULL;
++      u8 *rx_buf = NULL;
++      int i, ret;
++      u8 b;
++
++      if (op->data.dir == SPI_MEM_DATA_IN) {
++              rx_len = op->data.nbytes;
++              rx_buf = op->data.buf.in;
++      } else {
++              tx_buf = op->data.buf.out;
++      }
++
++      mtk_snand_mac_reset(snf);
++
++      for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
++              b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
++              val |= b << (8 * (reg_offs % 4));
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
++              b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
++              val |= b << (8 * (reg_offs % 4));
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      if (op->data.dir == SPI_MEM_DATA_OUT) {
++              for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
++                      val |= tx_buf[i] << (8 * (reg_offs % 4));
++                      if (reg_offs % 4 == 3) {
++                              nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                              val = 0;
++                      }
++              }
++      }
++
++      if (reg_offs % 4 != 3)
++              nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
++
++      for (i = 0; i < reg_offs; i += 4)
++              dev_dbg(snf->dev, "%d: %08X", i,
++                      nfi_read32(snf, SNF_GPRAM + i));
++
++      dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
++
++      ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
++      if (ret)
++              return ret;
++
++      if (!rx_len)
++              return 0;
++
++      nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
++      return 0;
++}
++
++static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
++                                 u32 oob_size)
++{
++      int spare_idx = -1;
++      u32 spare_size, spare_size_shift, pagesize_idx;
++      u32 sector_size_512;
++      u8 nsectors;
++      int i;
++
++      // skip if it's already configured as required.
++      if (snf->nfi_cfg.page_size == page_size &&
++          snf->nfi_cfg.oob_size == oob_size)
++              return 0;
++
++      nsectors = page_size / snf->caps->sector_size;
++      if (nsectors > snf->caps->max_sectors) {
++              dev_err(snf->dev, "too many sectors required.\n");
++              goto err;
++      }
++
++      if (snf->caps->sector_size == 512) {
++              sector_size_512 = NFI_SEC_SEL_512;
++              spare_size_shift = NFI_SPARE_SIZE_S;
++      } else {
++              sector_size_512 = 0;
++              spare_size_shift = NFI_SPARE_SIZE_LS_S;
++      }
++
++      switch (page_size) {
++      case SZ_512:
++              pagesize_idx = NFI_PAGE_SIZE_512_2K;
++              break;
++      case SZ_2K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_512_2K;
++              break;
++      case SZ_4K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++              break;
++      case SZ_8K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++              break;
++      case SZ_16K:
++              pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++              break;
++      default:
++              dev_err(snf->dev, "unsupported page size.\n");
++              goto err;
++      }
++
++      spare_size = oob_size / nsectors;
++      // If we're using the 1KB sector size, HW will automatically double the
++      // spare size. We should only use half of the value in this case.
++      if (snf->caps->sector_size == 1024)
++              spare_size /= 2;
++
++      for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
++              if (snf->caps->spare_sizes[i] <= spare_size) {
++                      spare_size = snf->caps->spare_sizes[i];
++                      if (snf->caps->sector_size == 1024)
++                              spare_size *= 2;
++                      spare_idx = i;
++                      break;
++              }
++      }
++
++      if (spare_idx < 0) {
++              dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
++              goto err;
++      }
++
++      nfi_write32(snf, NFI_PAGEFMT,
++                  (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
++                          (snf->caps->fdm_size << NFI_FDM_NUM_S) |
++                          (spare_idx << spare_size_shift) |
++                          (pagesize_idx << NFI_PAGE_SIZE_S) |
++                          sector_size_512);
++
++      snf->nfi_cfg.page_size = page_size;
++      snf->nfi_cfg.oob_size = oob_size;
++      snf->nfi_cfg.nsectors = nsectors;
++      snf->nfi_cfg.spare_size = spare_size;
++
++      dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
++              snf->caps->sector_size, spare_size, nsectors);
++      return snand_prepare_bouncebuf(snf, page_size + oob_size);
++err:
++      dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
++              oob_size);
++      return -EOPNOTSUPP;
++}
++
++static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
++                                 struct mtd_oob_region *oobecc)
++{
++      // ECC area is not accessible
++      return -ERANGE;
++}
++
++static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
++                                  struct mtd_oob_region *oobfree)
++{
++      struct nand_device *nand = mtd_to_nanddev(mtd);
++      struct mtk_snand *ms = nand_to_mtk_snand(nand);
++
++      if (section >= ms->nfi_cfg.nsectors)
++              return -ERANGE;
++
++      oobfree->length = ms->caps->fdm_size - 1;
++      oobfree->offset = section * ms->caps->fdm_size + 1;
++      return 0;
++}
++
++static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
++      .ecc = mtk_snand_ooblayout_ecc,
++      .free = mtk_snand_ooblayout_free,
++};
++
++static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
++      struct nand_ecc_props *reqs = &nand->ecc.requirements;
++      struct nand_ecc_props *user = &nand->ecc.user_conf;
++      struct mtd_info *mtd = nanddev_to_mtd(nand);
++      int step_size = 0, strength = 0, desired_correction = 0, steps;
++      bool ecc_user = false;
++      int ret;
++      u32 parity_bits, max_ecc_bytes;
++      struct mtk_ecc_config *ecc_cfg;
++
++      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++                                    nand->memorg.oobsize);
++      if (ret)
++              return ret;
++
++      ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
++      if (!ecc_cfg)
++              return -ENOMEM;
++
++      nand->ecc.ctx.priv = ecc_cfg;
++
++      if (user->step_size && user->strength) {
++              step_size = user->step_size;
++              strength = user->strength;
++              ecc_user = true;
++      } else if (reqs->step_size && reqs->strength) {
++              step_size = reqs->step_size;
++              strength = reqs->strength;
++      }
++
++      if (step_size && strength) {
++              steps = mtd->writesize / step_size;
++              desired_correction = steps * strength;
++              strength = desired_correction / snf->nfi_cfg.nsectors;
++      }
++
++      ecc_cfg->mode = ECC_NFI_MODE;
++      ecc_cfg->sectors = snf->nfi_cfg.nsectors;
++      ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
++
++      // calculate the max possible strength under current page format
++      parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
++      max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
++      ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
++      mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
++
++      // if there's a user requested strength, find the minimum strength that
++      // meets the requirement. Otherwise use the maximum strength which is
++      // expected by BootROM.
++      if (ecc_user && strength) {
++              u32 s_next = ecc_cfg->strength - 1;
++
++              while (1) {
++                      mtk_ecc_adjust_strength(snf->ecc, &s_next);
++                      if (s_next >= ecc_cfg->strength)
++                              break;
++                      if (s_next < strength)
++                              break;
++                      s_next = ecc_cfg->strength - 1;
++              }
++      }
++
++      mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
++
++      conf->step_size = snf->caps->sector_size;
++      conf->strength = ecc_cfg->strength;
++
++      if (ecc_cfg->strength < strength)
++              dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
++                       strength);
++      dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
++               ecc_cfg->strength, snf->caps->sector_size);
++
++      return 0;
++}
++
++static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
++{
++      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++
++      kfree(ecc_cfg);
++}
++
++static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
++                                      struct nand_page_io_req *req)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++      int ret;
++
++      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++                                    nand->memorg.oobsize);
++      if (ret)
++              return ret;
++      snf->autofmt = true;
++      snf->ecc_cfg = ecc_cfg;
++      return 0;
++}
++
++static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
++                                     struct nand_page_io_req *req)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct mtd_info *mtd = nanddev_to_mtd(nand);
++
++      snf->ecc_cfg = NULL;
++      snf->autofmt = false;
++      if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
++              return 0;
++
++      if (snf->ecc_stats.failed)
++              mtd->ecc_stats.failed += snf->ecc_stats.failed;
++      mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
++      return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
++}
++
++static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
++      .init_ctx = mtk_snand_ecc_init_ctx,
++      .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
++      .prepare_io_req = mtk_snand_ecc_prepare_io_req,
++      .finish_io_req = mtk_snand_ecc_finish_io_req,
++};
++
++static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
++{
++      u32 vall, valm;
++      u8 *oobptr = buf;
++      int i, j;
++
++      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++              vall = nfi_read32(snf, NFI_FDML(i));
++              valm = nfi_read32(snf, NFI_FDMM(i));
++
++              for (j = 0; j < snf->caps->fdm_size; j++)
++                      oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
++
++              oobptr += snf->caps->fdm_size;
++      }
++}
++
++static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
++{
++      u32 fdm_size = snf->caps->fdm_size;
++      const u8 *oobptr = buf;
++      u32 vall, valm;
++      int i, j;
++
++      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++              vall = 0;
++              valm = 0;
++
++              for (j = 0; j < 8; j++) {
++                      if (j < 4)
++                              vall |= (j < fdm_size ? oobptr[j] : 0xff)
++                                      << (j * 8);
++                      else
++                              valm |= (j < fdm_size ? oobptr[j] : 0xff)
++                                      << ((j - 4) * 8);
++              }
++
++              nfi_write32(snf, NFI_FDML(i), vall);
++              nfi_write32(snf, NFI_FDMM(i), valm);
++
++              oobptr += fdm_size;
++      }
++}
++
++static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
++{
++      u32 buf_bbm_pos, fdm_bbm_pos;
++
++      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++              return;
++
++      // swap [pagesize] byte on nand with the first fdm byte
++      // in the last sector.
++      buf_bbm_pos = snf->nfi_cfg.page_size -
++                    (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
++      fdm_bbm_pos = snf->nfi_cfg.page_size +
++                    (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++
++      swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
++}
++
++static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
++{
++      u32 fdm_bbm_pos1, fdm_bbm_pos2;
++
++      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++              return;
++
++      // swap the first fdm byte in the first and the last sector.
++      fdm_bbm_pos1 = snf->nfi_cfg.page_size;
++      fdm_bbm_pos2 = snf->nfi_cfg.page_size +
++                     (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++      swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
++}
++
++static int mtk_snand_read_page_cache(struct mtk_snand *snf,
++                                   const struct spi_mem_op *op)
++{
++      u8 *buf = snf->buf;
++      u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
++      // the address part to be sent by the controller
++      u32 op_addr = op->addr.val;
++      // where to start copying data from bounce buffer
++      u32 rd_offset = 0;
++      u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
++      u32 op_mode = 0;
++      u32 dma_len = snf->buf_len;
++      int ret = 0;
++      u32 rd_mode, rd_bytes, val;
++      dma_addr_t buf_dma;
++
++      if (snf->autofmt) {
++              u32 last_bit;
++              u32 mask;
++
++              dma_len = snf->nfi_cfg.page_size;
++              op_mode = CNFG_AUTO_FMT_EN;
++              if (op->data.ecc)
++                      op_mode |= CNFG_HW_ECC_EN;
++              // extract the plane bit:
++              // Find the highest bit set in (pagesize+oobsize).
++              // Bits higher than that in op->addr are kept and sent over SPI
++              // Lower bits are used as an offset for copying data from DMA
++              // bounce buffer.
++              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++              mask = (1 << last_bit) - 1;
++              rd_offset = op_addr & mask;
++              op_addr &= ~mask;
++
++              // check if we can dma to the caller memory
++              if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
++                      buf = op->data.buf.in;
++      }
++      mtk_snand_mac_reset(snf);
++      mtk_nfi_reset(snf);
++
++      // command and dummy cycles
++      nfi_write32(snf, SNF_RD_CTL2,
++                  (dummy_clk << DATA_READ_DUMMY_S) |
++                          (op->cmd.opcode << DATA_READ_CMD_S));
++
++      // read address
++      nfi_write32(snf, SNF_RD_CTL3, op_addr);
++
++      // Set read op_mode
++      if (op->data.buswidth == 4)
++              rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
++                                                 DATA_READ_MODE_X4;
++      else if (op->data.buswidth == 2)
++              rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
++                                                 DATA_READ_MODE_X2;
++      else
++              rd_mode = DATA_READ_MODE_X1;
++      rd_mode <<= DATA_READ_MODE_S;
++      nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
++                rd_mode | DATARD_CUSTOM_EN);
++
++      // Set bytes to read
++      rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++                 snf->nfi_cfg.nsectors;
++      nfi_write32(snf, SNF_MISC_CTL2,
++                  (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
++
++      // NFI read prepare
++      nfi_write16(snf, NFI_CNFG,
++                  (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
++                          CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
++
++      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++
++      buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
++      if (dma_mapping_error(snf->dev, buf_dma)) {
++              dev_err(snf->dev, "DMA mapping failed.\n");
++              goto cleanup;
++      }
++      nfi_write32(snf, NFI_STRADDR, buf_dma);
++      if (op->data.ecc) {
++              snf->ecc_cfg->op = ECC_DECODE;
++              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++              if (ret)
++                      goto cleanup_dma;
++      }
++      // Prepare for custom read interrupt
++      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
++      reinit_completion(&snf->op_done);
++
++      // Trigger NFI into custom mode
++      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
++
++      // Start DMA read
++      nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
++      nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++      if (!wait_for_completion_timeout(
++                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++              dev_err(snf->dev, "DMA timed out for reading from cache.\n");
++              ret = -ETIMEDOUT;
++              goto cleanup;
++      }
++
++      // Wait for BUS_SEC_CNTR returning expected value
++      ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
++                               BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
++              goto cleanup2;
++      }
++
++      // Wait for bus becoming idle
++      ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++                               !(val & snf->caps->mastersta_mask), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
++              goto cleanup2;
++      }
++
++      if (op->data.ecc) {
++              ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
++              if (ret) {
++                      dev_err(snf->dev, "wait ecc done timeout\n");
++                      goto cleanup2;
++              }
++              // save status before disabling ecc
++              mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
++                                snf->nfi_cfg.nsectors);
++      }
++
++      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++
++      if (snf->autofmt) {
++              mtk_snand_read_fdm(snf, buf_fdm);
++              if (snf->caps->bbm_swap) {
++                      mtk_snand_bm_swap(snf, buf);
++                      mtk_snand_fdm_bm_swap(snf);
++              }
++      }
++
++      // copy data back
++      if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
++              memset(op->data.buf.in, 0xff, op->data.nbytes);
++              snf->ecc_stats.bitflips = 0;
++              snf->ecc_stats.failed = 0;
++              snf->ecc_stats.corrected = 0;
++      } else {
++              if (buf == op->data.buf.in) {
++                      u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
++                      u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
++
++                      if (req_left)
++                              memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
++                                     buf_fdm,
++                                     cap_len < req_left ? cap_len : req_left);
++              } else if (rd_offset < snf->buf_len) {
++                      u32 cap_len = snf->buf_len - rd_offset;
++
++                      if (op->data.nbytes < cap_len)
++                              cap_len = op->data.nbytes;
++                      memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
++              }
++      }
++cleanup2:
++      if (op->data.ecc)
++              mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++      // unmap dma only if any error happens. (otherwise it's done before
++      // data copying)
++      if (ret)
++              dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++cleanup:
++      // Stop read
++      nfi_write32(snf, NFI_CON, 0);
++      nfi_write16(snf, NFI_CNFG, 0);
++
++      // Clear SNF done flag
++      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
++      nfi_write32(snf, SNF_STA_CTL1, 0);
++
++      // Disable interrupt
++      nfi_read32(snf, NFI_INTR_STA);
++      nfi_write32(snf, NFI_INTR_EN, 0);
++
++      nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
++      return ret;
++}
++
++static int mtk_snand_write_page_cache(struct mtk_snand *snf,
++                                    const struct spi_mem_op *op)
++{
++      // the address part to be sent by the controller
++      u32 op_addr = op->addr.val;
++      // where to start copying data from bounce buffer
++      u32 wr_offset = 0;
++      u32 op_mode = 0;
++      int ret = 0;
++      u32 wr_mode = 0;
++      u32 dma_len = snf->buf_len;
++      u32 wr_bytes, val;
++      size_t cap_len;
++      dma_addr_t buf_dma;
++
++      if (snf->autofmt) {
++              u32 last_bit;
++              u32 mask;
++
++              dma_len = snf->nfi_cfg.page_size;
++              op_mode = CNFG_AUTO_FMT_EN;
++              if (op->data.ecc)
++                      op_mode |= CNFG_HW_ECC_EN;
++
++              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++              mask = (1 << last_bit) - 1;
++              wr_offset = op_addr & mask;
++              op_addr &= ~mask;
++      }
++      mtk_snand_mac_reset(snf);
++      mtk_nfi_reset(snf);
++
++      if (wr_offset)
++              memset(snf->buf, 0xff, wr_offset);
++
++      cap_len = snf->buf_len - wr_offset;
++      if (op->data.nbytes < cap_len)
++              cap_len = op->data.nbytes;
++      memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
++      if (snf->autofmt) {
++              if (snf->caps->bbm_swap) {
++                      mtk_snand_fdm_bm_swap(snf);
++                      mtk_snand_bm_swap(snf, snf->buf);
++              }
++              mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
++      }
++
++      // Command
++      nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
++
++      // write address
++      nfi_write32(snf, SNF_PG_CTL2, op_addr);
++
++      // Set read op_mode
++      if (op->data.buswidth == 4)
++              wr_mode = PG_LOAD_X4_EN;
++
++      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
++                wr_mode | PG_LOAD_CUSTOM_EN);
++
++      // Set bytes to write
++      wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++                 snf->nfi_cfg.nsectors;
++      nfi_write32(snf, SNF_MISC_CTL2,
++                  (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
++
++      // NFI write prepare
++      nfi_write16(snf, NFI_CNFG,
++                  (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
++                          CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
++
++      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++      buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
++      if (dma_mapping_error(snf->dev, buf_dma)) {
++              dev_err(snf->dev, "DMA mapping failed.\n");
++              goto cleanup;
++      }
++      nfi_write32(snf, NFI_STRADDR, buf_dma);
++      if (op->data.ecc) {
++              snf->ecc_cfg->op = ECC_ENCODE;
++              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++              if (ret)
++                      goto cleanup_dma;
++      }
++      // Prepare for custom write interrupt
++      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
++      reinit_completion(&snf->op_done);
++      ;
++
++      // Trigger NFI into custom mode
++      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
++
++      // Start DMA write
++      nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
++      nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++      if (!wait_for_completion_timeout(
++                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++              dev_err(snf->dev, "DMA timed out for program load.\n");
++              ret = -ETIMEDOUT;
++              goto cleanup_ecc;
++      }
++
++      // Wait for NFI_SEC_CNTR returning expected value
++      ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
++                               NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
++
++cleanup_ecc:
++      if (op->data.ecc)
++              mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
++cleanup:
++      // Stop write
++      nfi_write32(snf, NFI_CON, 0);
++      nfi_write16(snf, NFI_CNFG, 0);
++
++      // Clear SNF done flag
++      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
++      nfi_write32(snf, SNF_STA_CTL1, 0);
++
++      // Disable interrupt
++      nfi_read32(snf, NFI_INTR_STA);
++      nfi_write32(snf, NFI_INTR_EN, 0);
++
++      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
++
++      return ret;
++}
++
++/**
++ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
++ * @op spi-mem op to check
++ *
++ * Check whether op can be executed with read_from_cache or program_load
++ * mode in the controller.
++ * This controller can execute typical Read From Cache and Program Load
++ * instructions found on SPI-NAND with 2-byte address.
++ * DTR and cmd buswidth & nbytes should be checked before calling this.
++ *
++ * Return: true if the op matches the instruction template
++ */
++static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
++{
++      if (op->addr.nbytes != 2)
++              return false;
++
++      if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
++          op->addr.buswidth != 4)
++              return false;
++
++      // match read from page instructions
++      if (op->data.dir == SPI_MEM_DATA_IN) {
++              // check dummy cycle first
++              if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
++                  DATA_READ_MAX_DUMMY)
++                      return false;
++              // quad io / quad out
++              if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
++                  op->data.buswidth == 4)
++                      return true;
++
++              // dual io / dual out
++              if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
++                  op->data.buswidth == 2)
++                      return true;
++
++              // standard spi
++              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++                      return true;
++      } else if (op->data.dir == SPI_MEM_DATA_OUT) {
++              // check dummy cycle first
++              if (op->dummy.nbytes)
++                      return false;
++              // program load quad out
++              if (op->addr.buswidth == 1 && op->data.buswidth == 4)
++                      return true;
++              // standard spi
++              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++                      return true;
++      }
++      return false;
++}
++
++static bool mtk_snand_supports_op(struct spi_mem *mem,
++                                const struct spi_mem_op *op)
++{
++      if (!spi_mem_default_supports_op(mem, op))
++              return false;
++      if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
++              return false;
++      if (mtk_snand_is_page_ops(op))
++              return true;
++      return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
++              (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
++              (op->data.nbytes == 0 || op->data.buswidth == 1));
++}
++
++static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
++{
++      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++      // page ops transfer size must be exactly ((sector_size + spare_size) *
++      // nsectors). Limit the op size if the caller requests more than that.
++      // exec_op will read more than needed and discard the leftover if the
++      // caller requests less data.
++      if (mtk_snand_is_page_ops(op)) {
++              size_t l;
++              // skip adjust_op_size for page ops
++              if (ms->autofmt)
++                      return 0;
++              l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
++              l *= ms->nfi_cfg.nsectors;
++              if (op->data.nbytes > l)
++                      op->data.nbytes = l;
++      } else {
++              size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
++
++              if (hl >= SNF_GPRAM_SIZE)
++                      return -EOPNOTSUPP;
++              if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
++                      op->data.nbytes = SNF_GPRAM_SIZE - hl;
++      }
++      return 0;
++}
++
++static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
++{
++      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++
++      dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
++              op->addr.val, op->addr.buswidth, op->addr.nbytes,
++              op->data.buswidth, op->data.nbytes);
++      if (mtk_snand_is_page_ops(op)) {
++              if (op->data.dir == SPI_MEM_DATA_IN)
++                      return mtk_snand_read_page_cache(ms, op);
++              else
++                      return mtk_snand_write_page_cache(ms, op);
++      } else {
++              return mtk_snand_mac_io(ms, op);
++      }
++}
++
++static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
++      .adjust_op_size = mtk_snand_adjust_op_size,
++      .supports_op = mtk_snand_supports_op,
++      .exec_op = mtk_snand_exec_op,
++};
++
++static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
++      .ecc = true,
++};
++
++static irqreturn_t mtk_snand_irq(int irq, void *id)
++{
++      struct mtk_snand *snf = id;
++      u32 sta, ien;
++
++      sta = nfi_read32(snf, NFI_INTR_STA);
++      ien = nfi_read32(snf, NFI_INTR_EN);
++
++      if (!(sta & ien))
++              return IRQ_NONE;
++
++      nfi_write32(snf, NFI_INTR_EN, 0);
++      complete(&snf->op_done);
++      return IRQ_HANDLED;
++}
++
++static const struct of_device_id mtk_snand_ids[] = {
++      { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
++      { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
++      {},
++};
++
++MODULE_DEVICE_TABLE(of, mtk_snand_ids);
++
++static int mtk_snand_enable_clk(struct mtk_snand *ms)
++{
++      int ret;
++
++      ret = clk_prepare_enable(ms->nfi_clk);
++      if (ret) {
++              dev_err(ms->dev, "unable to enable nfi clk\n");
++              return ret;
++      }
++      ret = clk_prepare_enable(ms->pad_clk);
++      if (ret) {
++              dev_err(ms->dev, "unable to enable pad clk\n");
++              goto err1;
++      }
++      return 0;
++err1:
++      clk_disable_unprepare(ms->nfi_clk);
++      return ret;
++}
++
++static void mtk_snand_disable_clk(struct mtk_snand *ms)
++{
++      clk_disable_unprepare(ms->pad_clk);
++      clk_disable_unprepare(ms->nfi_clk);
++}
++
++static int mtk_snand_probe(struct platform_device *pdev)
++{
++      struct device_node *np = pdev->dev.of_node;
++      const struct of_device_id *dev_id;
++      struct spi_controller *ctlr;
++      struct mtk_snand *ms;
++      int ret;
++
++      dev_id = of_match_node(mtk_snand_ids, np);
++      if (!dev_id)
++              return -EINVAL;
++
++      ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
++      if (!ctlr)
++              return -ENOMEM;
++      platform_set_drvdata(pdev, ctlr);
++
++      ms = spi_controller_get_devdata(ctlr);
++
++      ms->ctlr = ctlr;
++      ms->caps = dev_id->data;
++
++      ms->ecc = of_mtk_ecc_get(np);
++      if (IS_ERR(ms->ecc))
++              return PTR_ERR(ms->ecc);
++      else if (!ms->ecc)
++              return -ENODEV;
++
++      ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
++      if (IS_ERR(ms->nfi_base)) {
++              ret = PTR_ERR(ms->nfi_base);
++              goto release_ecc;
++      }
++
++      ms->dev = &pdev->dev;
++
++      ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
++      if (IS_ERR(ms->nfi_clk)) {
++              ret = PTR_ERR(ms->nfi_clk);
++              dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
++              goto release_ecc;
++      }
++
++      ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
++      if (IS_ERR(ms->pad_clk)) {
++              ret = PTR_ERR(ms->pad_clk);
++              dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
++              goto release_ecc;
++      }
++
++      ret = mtk_snand_enable_clk(ms);
++      if (ret)
++              goto release_ecc;
++
++      init_completion(&ms->op_done);
++
++      ms->irq = platform_get_irq(pdev, 0);
++      if (ms->irq < 0) {
++              ret = ms->irq;
++              goto disable_clk;
++      }
++      ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
++                             "mtk-snand", ms);
++      if (ret) {
++              dev_err(ms->dev, "failed to request snfi irq\n");
++              goto disable_clk;
++      }
++
++      ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
++      if (ret) {
++              dev_err(ms->dev, "failed to set dma mask\n");
++              goto disable_clk;
++      }
++
++      // setup an initial page format for ops matching page_cache_op template
++      // before ECC is called.
++      ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
++                                    ms->caps->spare_sizes[0]);
++      if (ret) {
++              dev_err(ms->dev, "failed to set initial page format\n");
++              goto disable_clk;
++      }
++
++      // setup ECC engine
++      ms->ecc_eng.dev = &pdev->dev;
++      ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
++      ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
++      ms->ecc_eng.priv = ms;
++
++      ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
++      if (ret) {
++              dev_err(&pdev->dev, "failed to register ecc engine.\n");
++              goto disable_clk;
++      }
++
++      ctlr->num_chipselect = 1;
++      ctlr->mem_ops = &mtk_snand_mem_ops;
++      ctlr->mem_caps = &mtk_snand_mem_caps;
++      ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
++      ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
++      ctlr->dev.of_node = pdev->dev.of_node;
++      ret = spi_register_controller(ctlr);
++      if (ret) {
++              dev_err(&pdev->dev, "spi_register_controller failed.\n");
++              goto disable_clk;
++      }
++
++      return 0;
++disable_clk:
++      mtk_snand_disable_clk(ms);
++release_ecc:
++      mtk_ecc_release(ms->ecc);
++      return ret;
++}
++
++static int mtk_snand_remove(struct platform_device *pdev)
++{
++      struct spi_controller *ctlr = platform_get_drvdata(pdev);
++      struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
++
++      spi_unregister_controller(ctlr);
++      mtk_snand_disable_clk(ms);
++      mtk_ecc_release(ms->ecc);
++      kfree(ms->buf);
++      return 0;
++}
++
++static struct platform_driver mtk_snand_driver = {
++      .probe = mtk_snand_probe,
++      .remove = mtk_snand_remove,
++      .driver = {
++              .name = "mtk-snand",
++              .of_match_table = mtk_snand_ids,
++      },
++};
++
++module_platform_driver(mtk_snand_driver);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
++MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
+-- 
+2.35.1
+