update atheros 2.6 port - add support for the older chip generation
[openwrt/openwrt.git] / target / linux / atheros-2.6 / files / drivers / mtd / devices / spiflash.c
diff --git a/target/linux/atheros-2.6/files/drivers/mtd/devices/spiflash.c b/target/linux/atheros-2.6/files/drivers/mtd/devices/spiflash.c
new file mode 100644 (file)
index 0000000..6e6734d
--- /dev/null
@@ -0,0 +1,596 @@
+
+/*
+ * MTD driver for the SPI Flash Memory support.
+ *
+ * Copyright (c) 2005-2006 Atheros Communications Inc.
+ * Copyright (C) 2006 FON Technology, SL.
+ * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
+ * Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
+ *
+ * This code is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/*===========================================================================
+** !!!!  VERY IMPORTANT NOTICE !!!!  FLASH DATA STORED IN LITTLE ENDIAN FORMAT
+**
+** This module contains the Serial Flash access routines for the Atheros SOC.
+** The Atheros SOC integrates a SPI flash controller that is used to access
+** serial flash parts. The SPI flash controller executes in "Little Endian"
+** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
+** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
+** ONLY byteswapping when accessed via the SPI Flash Alias memory region
+** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
+** flash sectors is stored in "Little Endian" format.
+**
+** The spiflash_write() routine performs byteswapping on all write
+** operations.
+**===========================================================================*/
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/version.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/platform_device.h>
+#include <linux/squashfs_fs.h>
+#include <linux/root_dev.h>
+#include <asm/delay.h>
+#include <asm/io.h>
+#include "spiflash.h"
+
+/* debugging */
+/* #define SPIFLASH_DEBUG */
+
+#ifndef __BIG_ENDIAN
+#error This driver currently only works with big endian CPU.
+#endif
+
+#define MAX_PARTS 32
+
+static char module_name[] = "spiflash";
+
+#define MIN(a,b)        ((a) < (b) ? (a) : (b))
+#define FALSE  0
+#define TRUE   1
+
+#define ROOTFS_NAME    "rootfs"
+
+static __u32 spiflash_regread32(int reg);
+static void spiflash_regwrite32(int reg, __u32 data);
+static __u32 spiflash_sendcmd (int op);
+
+int __init spiflash_init (void);
+void __exit spiflash_exit (void);
+static int spiflash_probe_chip (void);
+static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
+static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
+static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
+
+/* Flash configuration table */
+struct flashconfig {
+    __u32 byte_cnt;
+    __u32 sector_cnt;
+    __u32 sector_size;
+    __u32 cs_addrmask;
+} flashconfig_tbl[MAX_FLASH] =
+    {
+        { 0, 0, 0, 0},
+        { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
+        { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
+        { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
+        { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0}
+    };
+
+/* Mapping of generic opcodes to STM serial flash opcodes */
+struct opcodes {
+    __u16 code;
+    __s8 tx_cnt;
+    __s8 rx_cnt;
+} stm_opcodes[] = {
+        {STM_OP_WR_ENABLE, 1, 0},
+        {STM_OP_WR_DISABLE, 1, 0},
+        {STM_OP_RD_STATUS, 1, 1},
+        {STM_OP_WR_STATUS, 1, 0},
+        {STM_OP_RD_DATA, 4, 4},
+        {STM_OP_FAST_RD_DATA, 1, 0},
+        {STM_OP_PAGE_PGRM, 8, 0},
+        {STM_OP_SECTOR_ERASE, 4, 0},
+        {STM_OP_BULK_ERASE, 1, 0},
+        {STM_OP_DEEP_PWRDOWN, 1, 0},
+        {STM_OP_RD_SIG, 4, 1}
+};
+
+/* Driver private data structure */
+struct spiflash_data {
+       struct  mtd_info       *mtd;    
+       struct  mtd_partition  *parsed_parts;     /* parsed partitions */
+       void    *spiflash_readaddr; /* memory mapped data for read  */
+       void    *spiflash_mmraddr;  /* memory mapped register space */
+       spinlock_t mutex;
+};
+
+static struct spiflash_data *spidata;
+
+extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
+
+/***************************************************************************************************/
+
+static __u32
+spiflash_regread32(int reg)
+{
+       volatile __u32 *data = (__u32 *)(spidata->spiflash_mmraddr + reg);
+
+       return (*data);
+}
+
+static void 
+spiflash_regwrite32(int reg, __u32 data)
+{
+       volatile __u32 *addr = (__u32 *)(spidata->spiflash_mmraddr + reg);
+
+       *addr = data;
+       return;
+}
+
+static __u32 
+spiflash_sendcmd (int op)
+{
+        __u32 reg;
+        __u32 mask;
+       struct opcodes *ptr_opcode;
+
+       ptr_opcode = &stm_opcodes[op];
+
+       do {
+               reg = spiflash_regread32(SPI_FLASH_CTL);
+       } while (reg & SPI_CTL_BUSY);
+
+       spiflash_regwrite32(SPI_FLASH_OPCODE, ptr_opcode->code);
+
+       reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
+               (ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
+
+       spiflash_regwrite32(SPI_FLASH_CTL, reg);
+       if (ptr_opcode->rx_cnt > 0) {
+               do {
+                       reg = spiflash_regread32(SPI_FLASH_CTL);
+               } while (reg & SPI_CTL_BUSY);
+
+               reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
+
+               switch (ptr_opcode->rx_cnt) {
+               case 1:
+                       mask = 0x000000ff;
+                       break;
+               case 2:
+                       mask = 0x0000ffff;
+                       break;
+               case 3:
+                       mask = 0x00ffffff;
+                       break;
+               default:
+                       mask = 0xffffffff;
+                       break;
+               }
+
+               reg &= mask;
+       }
+       else {
+                       reg = 0;
+       }
+
+       return reg;
+}
+
+/* Probe SPI flash device
+ * Function returns 0 for failure.
+ * and flashconfig_tbl array index for success.
+ */
+static int 
+spiflash_probe_chip (void)
+{
+       __u32 sig;
+       int flash_size;
+       
+       /* Read the signature on the flash device */
+       sig = spiflash_sendcmd(SPI_RD_SIG);
+
+       switch (sig) {
+       case STM_8MBIT_SIGNATURE:
+               flash_size = FLASH_1MB;
+               break;
+        case STM_16MBIT_SIGNATURE:
+               flash_size = FLASH_2MB;
+               break;
+        case STM_32MBIT_SIGNATURE:
+               flash_size = FLASH_4MB;
+               break;
+        case STM_64MBIT_SIGNATURE:
+               flash_size = FLASH_8MB;
+               break;
+        default:
+               printk (KERN_WARNING "%s: Read of flash device signature failed!\n", module_name);
+               return (0);
+       }
+
+       return (flash_size);
+}
+
+
+static int 
+spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
+{
+       struct opcodes *ptr_opcode;
+       __u32 temp, reg;
+       int finished = FALSE;
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
+#endif
+
+       /* sanity checks */
+       if (instr->addr + instr->len > mtd->size) return (-EINVAL);
+
+       ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
+
+       temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
+       spin_lock(&spidata->mutex);
+       spiflash_sendcmd(SPI_WRITE_ENABLE);
+       do {
+               schedule();
+               reg = spiflash_regread32(SPI_FLASH_CTL);
+       } while (reg & SPI_CTL_BUSY);
+
+       spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
+
+       reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
+       spiflash_regwrite32(SPI_FLASH_CTL, reg);
+
+       do {
+               schedule();
+               reg = spiflash_sendcmd(SPI_RD_STATUS);
+               if (!(reg & SPI_STATUS_WIP)) {
+                       finished = TRUE;
+               }
+       } while (!finished);
+       spin_unlock(&spidata->mutex);
+
+       instr->state = MTD_ERASE_DONE;
+       if (instr->callback) instr->callback (instr);
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG "%s return\n",__FUNCTION__);
+#endif
+       return (0);
+}
+
+static int 
+spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
+{
+       u_char  *read_addr;
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,(int)len);  
+#endif
+
+       /* sanity checks */
+       if (!len) return (0);
+       if (from + len > mtd->size) return (-EINVAL);
+       
+
+       /* we always read len bytes */
+       *retlen = len;
+
+       read_addr = (u_char *)(spidata->spiflash_readaddr + from);
+       spin_lock(&spidata->mutex);
+       memcpy(buf, read_addr, len);
+       spin_unlock(&spidata->mutex);
+
+       return (0);
+}
+
+static int 
+spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
+{
+       int done = FALSE, page_offset, bytes_left, finished;
+       __u32 xact_len, spi_data = 0, opcode, reg;
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len); 
+#endif
+
+       *retlen = 0;
+       
+       /* sanity checks */
+       if (!len) return (0);
+       if (to + len > mtd->size) return (-EINVAL);
+       
+       opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
+       bytes_left = len;
+       
+       while (done == FALSE) {
+               xact_len = MIN(bytes_left, sizeof(__u32));
+
+               /* 32-bit writes cannot span across a page boundary
+                * (256 bytes). This types of writes require two page
+                * program operations to handle it correctly. The STM part
+                * will write the overflow data to the beginning of the
+                * current page as opposed to the subsequent page.
+                */
+               page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
+
+               if (page_offset > STM_PAGE_SIZE) {
+                       xact_len -= (page_offset - STM_PAGE_SIZE);
+               }
+
+               spin_lock(&spidata->mutex);
+               spiflash_sendcmd(SPI_WRITE_ENABLE);
+
+               do {
+                       schedule();
+                       reg = spiflash_regread32(SPI_FLASH_CTL);
+               } while (reg & SPI_CTL_BUSY);
+       
+               switch (xact_len) {
+                       case 1:
+                               spi_data = (u32) ((u8) *buf);
+                               break;
+                       case 2:
+                               spi_data = (buf[1] << 8) | buf[0];
+                               break;
+                       case 3:
+                               spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
+                               break;
+                       case 4:
+                               spi_data = (buf[3] << 24) | (buf[2] << 16) | 
+                                                       (buf[1] << 8) | buf[0];
+                               break;
+                       default:
+                               printk("spiflash_write: default case\n");
+                               break;
+               }
+
+               spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
+               opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
+               spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
+
+               reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
+               spiflash_regwrite32(SPI_FLASH_CTL, reg);
+               finished = FALSE;
+               
+               do {
+                       schedule();
+                       reg = spiflash_sendcmd(SPI_RD_STATUS);
+                       if (!(reg & SPI_STATUS_WIP)) {
+                               finished = TRUE;
+                       }
+               } while (!finished);
+               spin_unlock(&spidata->mutex);
+
+               bytes_left -= xact_len;
+               to += xact_len;
+               buf += xact_len;
+
+               *retlen += xact_len;
+
+               if (bytes_left == 0) {
+                       done = TRUE;
+               }
+       }
+
+       return (0);
+}
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL };
+#endif
+
+
+static int spiflash_probe(struct platform_device *pdev)
+{
+       int result = -1, i, j;
+       u32 len;
+       int index, num_parts;
+       struct mtd_info *mtd;
+       struct  mtd_partition  *mtd_parts;
+       char *buf;
+       struct mtd_partition *part;
+       struct squashfs_super_block *sb;
+       u32 config_start;
+
+       spidata->spiflash_mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
+       
+       if (!spidata->spiflash_mmraddr) {
+               printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
+               kfree(spidata);
+               spidata = NULL;
+       }
+
+       mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
+       if (!mtd) {
+               kfree(spidata);
+               return (-ENXIO);
+       }
+       
+       printk ("MTD driver for SPI flash.\n");
+       printk ("%s: Probing for Serial flash ...\n", module_name);
+       if (!(index = spiflash_probe_chip())) {
+       printk (KERN_WARNING "%s: Found no serial flash device\n", module_name);
+               kfree(mtd);
+               kfree(spidata);
+       return (-ENXIO);
+       }
+
+       printk ("%s: Found SPI serial Flash.\n", module_name);
+
+       spidata->spiflash_readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
+       if (!spidata->spiflash_readaddr) {
+                       printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
+               kfree(mtd);
+               kfree(spidata);
+                       return (-ENXIO);
+       }
+
+       mtd->name = module_name;
+       mtd->type = MTD_NORFLASH;
+       mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
+       mtd->size = flashconfig_tbl[index].byte_cnt;
+       mtd->erasesize = flashconfig_tbl[index].sector_size;
+       mtd->writesize = 1;
+       mtd->numeraseregions = 0;
+       mtd->eraseregions = NULL;
+       mtd->erase = spiflash_erase;
+       mtd->read = spiflash_read;
+       mtd->write = spiflash_write;
+       mtd->owner = THIS_MODULE;
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG
+                  "mtd->name = %s\n"
+                  "mtd->size = 0x%.8x (%uM)\n"
+                  "mtd->erasesize = 0x%.8x (%uK)\n"
+                  "mtd->numeraseregions = %d\n",
+                  mtd->name,
+                  mtd->size, mtd->size / (1024*1024),
+                  mtd->erasesize, mtd->erasesize / 1024,
+                  mtd->numeraseregions);
+
+       if (mtd->numeraseregions) {
+               for (result = 0; result < mtd->numeraseregions; result++) {
+                       printk (KERN_DEBUG
+                          "\n\n"
+                          "mtd->eraseregions[%d].offset = 0x%.8x\n"
+                          "mtd->eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
+                          "mtd->eraseregions[%d].numblocks = %d\n",
+                          result,mtd->eraseregions[result].offset,
+                          result,mtd->eraseregions[result].erasesize,mtd->eraseregions[result].erasesize / 1024,
+                          result,mtd->eraseregions[result].numblocks);
+               }
+       }
+#endif
+
+       /* parse redboot partitions */
+       num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
+
+       mtd_parts = kzalloc(sizeof(struct mtd_partition) * MAX_PARTS, GFP_KERNEL);
+       buf = kmalloc(mtd->erasesize, GFP_KERNEL);
+       sb = (struct squashfs_super_block *) buf;
+       for (i = j = 0; i < num_parts; i++, j++) {
+               part = &mtd_parts[j];
+               memcpy(part, &spidata->parsed_parts[i], sizeof(struct mtd_partition));
+               
+               if (!strcmp(part->name, ROOTFS_NAME)) {
+                       /* create the root device */
+                       ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, i);
+
+                       part->size -= mtd->erasesize;
+                       config_start = part->offset + part->size;
+
+                       while ((mtd->read(mtd, part->offset, mtd->erasesize, &len, buf) == 0) &&
+                                       (len == mtd->erasesize) &&
+                                       (*((u32 *) buf) == SQUASHFS_MAGIC) &&
+                                       (sb->bytes_used > 0)) {
+                                       
+                               /* this is squashfs, allocate another partition starting from the end of filesystem data */
+                               memcpy(&mtd_parts[j + 1], part, sizeof(struct mtd_partition));
+                       
+                               len = (u32) sb->bytes_used;
+                               len += (part->offset & 0x000fffff);
+                               len +=  (mtd->erasesize - 1);
+                               len &= ~(mtd->erasesize - 1);
+                               len -= (part->offset & 0x000fffff);
+
+                               if (len + mtd->erasesize > part->size)
+                                       break;
+
+                               part = &mtd_parts[++j];
+                               
+                               part->offset += len;
+                               part->size -= len;
+
+                               part->name = kmalloc(10, GFP_KERNEL);
+                               sprintf(part->name, "rootfs%d", j - i);
+                       }
+               }
+               if (!strcmp(part->name, "RedBoot config")) {
+                       /* add anoterh partition for the board config data */
+                       memcpy(&mtd_parts[j + 1], part, sizeof(struct mtd_partition));
+                       j++;
+                       part = &mtd_parts[j];
+                       part->offset += part->size;
+                       part->size = mtd->erasesize;
+                       
+                       part->name = kmalloc(16, GFP_KERNEL);
+                       sprintf(part->name, "board_config");
+               }
+       }
+       num_parts += j - i;
+       kfree(buf);
+
+#ifdef SPIFLASH_DEBUG
+       printk (KERN_DEBUG "Found %d redboot partitions\n", num_parts);
+#endif
+       if (num_parts) {
+               result = add_mtd_partitions(mtd, mtd_parts, num_parts);
+       } else {
+#ifdef SPIFLASH_DEBUG
+               printk (KERN_DEBUG "Did not find any redboot partitions\n");
+#endif
+               kfree(mtd);
+               kfree(spidata);
+                       return (-ENXIO);
+       }
+
+       spidata->mtd = mtd;
+
+       return (result);
+}
+
+static int spiflash_remove (struct platform_device *pdev)
+{
+       del_mtd_partitions (spidata->mtd);
+       kfree(spidata->mtd);
+
+       return 0;
+}
+
+struct platform_driver spiflash_driver = {
+       .driver.name = "spiflash",
+       .probe = spiflash_probe,
+       .remove = spiflash_remove,
+};
+
+int __init 
+spiflash_init (void)
+{
+       spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
+       if (!spidata)
+               return (-ENXIO);
+
+       spin_lock_init(&spidata->mutex);
+       platform_driver_register(&spiflash_driver);
+
+       return 0;
+}
+
+void __exit 
+spiflash_exit (void)
+{
+       kfree(spidata);
+}
+
+module_init (spiflash_init);
+module_exit (spiflash_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Atheros Communications Inc");
+MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");
+