7c116a2e0d21e0ebe8ef95a6600e7f017611bea4
[project/bcm63xx/atf.git] / bl31 / aarch64 / bl31_entrypoint.S
1 /*
2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <bl_common.h>
9 #include <el3_common_macros.S>
10 #include <platform_def.h>
11 #include <pmf_asm_macros.S>
12 #include <runtime_instr.h>
13 #include <xlat_mmu_helpers.h>
14
15 .globl bl31_entrypoint
16 .globl bl31_warm_entrypoint
17
18 /* -----------------------------------------------------
19 * bl31_entrypoint() is the cold boot entrypoint,
20 * executed only by the primary cpu.
21 * -----------------------------------------------------
22 */
23
24 func bl31_entrypoint
25 #if !RESET_TO_BL31
26 /* ---------------------------------------------------------------
27 * Stash the previous bootloader arguments x0 - x3 for later use.
28 * ---------------------------------------------------------------
29 */
30 mov x20, x0
31 mov x21, x1
32 mov x22, x2
33 mov x23, x3
34
35 /* ---------------------------------------------------------------------
36 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
37 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
38 * and primary/secondary CPU logic should not be executed in this case.
39 *
40 * Also, assume that the previous bootloader has already initialised the
41 * SCTLR_EL3, including the endianness, and has initialised the memory.
42 * ---------------------------------------------------------------------
43 */
44 el3_entrypoint_common \
45 _init_sctlr=0 \
46 _warm_boot_mailbox=0 \
47 _secondary_cold_boot=0 \
48 _init_memory=0 \
49 _init_c_runtime=1 \
50 _exception_vectors=runtime_exceptions
51 #else
52 /* ---------------------------------------------------------------------
53 * For RESET_TO_BL31 systems which have a programmable reset address,
54 * bl31_entrypoint() is executed only on the cold boot path so we can
55 * skip the warm boot mailbox mechanism.
56 * ---------------------------------------------------------------------
57 */
58 el3_entrypoint_common \
59 _init_sctlr=1 \
60 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
61 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
62 _init_memory=1 \
63 _init_c_runtime=1 \
64 _exception_vectors=runtime_exceptions
65
66 /* ---------------------------------------------------------------------
67 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
68 * there's no argument to relay from a previous bootloader. Zero the
69 * arguments passed to the platform layer to reflect that.
70 * ---------------------------------------------------------------------
71 */
72 mov x20, 0
73 mov x21, 0
74 mov x22, 0
75 mov x23, 0
76 #endif /* RESET_TO_BL31 */
77
78 /* --------------------------------------------------------------------
79 * If PIE is enabled, fixup the Global descriptor Table and dynamic
80 * relocations
81 * --------------------------------------------------------------------
82 */
83 #if ENABLE_PIE
84 mov_imm x0, BL31_BASE
85 mov_imm x1, BL31_LIMIT
86 bl fixup_gdt_reloc
87 #endif /* ENABLE_PIE */
88
89 /* ---------------------------------------------
90 * Perform platform specific early arch. setup
91 * ---------------------------------------------
92 */
93 mov x0, x20
94 mov x1, x21
95 mov x2, x22
96 mov x3, x23
97 bl bl31_early_platform_setup2
98 bl bl31_plat_arch_setup
99
100 /* ---------------------------------------------
101 * Jump to main function.
102 * ---------------------------------------------
103 */
104 bl bl31_main
105
106 /* -------------------------------------------------------------
107 * Clean the .data & .bss sections to main memory. This ensures
108 * that any global data which was initialised by the primary CPU
109 * is visible to secondary CPUs before they enable their data
110 * caches and participate in coherency.
111 * -------------------------------------------------------------
112 */
113 adr x0, __DATA_START__
114 adr x1, __DATA_END__
115 sub x1, x1, x0
116 bl clean_dcache_range
117
118 adr x0, __BSS_START__
119 adr x1, __BSS_END__
120 sub x1, x1, x0
121 bl clean_dcache_range
122
123 b el3_exit
124 endfunc bl31_entrypoint
125
126 /* --------------------------------------------------------------------
127 * This CPU has been physically powered up. It is either resuming from
128 * suspend or has simply been turned on. In both cases, call the BL31
129 * warmboot entrypoint
130 * --------------------------------------------------------------------
131 */
132 func bl31_warm_entrypoint
133 #if ENABLE_RUNTIME_INSTRUMENTATION
134
135 /*
136 * This timestamp update happens with cache off. The next
137 * timestamp collection will need to do cache maintenance prior
138 * to timestamp update.
139 */
140 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
141 mrs x1, cntpct_el0
142 str x1, [x0]
143 #endif
144
145 /*
146 * On the warm boot path, most of the EL3 initialisations performed by
147 * 'el3_entrypoint_common' must be skipped:
148 *
149 * - Only when the platform bypasses the BL1/BL31 entrypoint by
150 * programming the reset address do we need to initialise SCTLR_EL3.
151 * In other cases, we assume this has been taken care by the
152 * entrypoint code.
153 *
154 * - No need to determine the type of boot, we know it is a warm boot.
155 *
156 * - Do not try to distinguish between primary and secondary CPUs, this
157 * notion only exists for a cold boot.
158 *
159 * - No need to initialise the memory or the C runtime environment,
160 * it has been done once and for all on the cold boot path.
161 */
162 el3_entrypoint_common \
163 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
164 _warm_boot_mailbox=0 \
165 _secondary_cold_boot=0 \
166 _init_memory=0 \
167 _init_c_runtime=0 \
168 _exception_vectors=runtime_exceptions
169
170 /*
171 * We're about to enable MMU and participate in PSCI state coordination.
172 *
173 * The PSCI implementation invokes platform routines that enable CPUs to
174 * participate in coherency. On a system where CPUs are not
175 * cache-coherent without appropriate platform specific programming,
176 * having caches enabled until such time might lead to coherency issues
177 * (resulting from stale data getting speculatively fetched, among
178 * others). Therefore we keep data caches disabled even after enabling
179 * the MMU for such platforms.
180 *
181 * On systems with hardware-assisted coherency, or on single cluster
182 * platforms, such platform specific programming is not required to
183 * enter coherency (as CPUs already are); and there's no reason to have
184 * caches disabled either.
185 */
186 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
187 mov x0, xzr
188 #else
189 mov x0, #DISABLE_DCACHE
190 #endif
191 bl bl31_plat_enable_mmu
192
193 bl psci_warmboot_entrypoint
194
195 #if ENABLE_RUNTIME_INSTRUMENTATION
196 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
197 mov x19, x0
198
199 /*
200 * Invalidate before updating timestamp to ensure previous timestamp
201 * updates on the same cache line with caches disabled are properly
202 * seen by the same core. Without the cache invalidate, the core might
203 * write into a stale cache line.
204 */
205 mov x1, #PMF_TS_SIZE
206 mov x20, x30
207 bl inv_dcache_range
208 mov x30, x20
209
210 mrs x0, cntpct_el0
211 str x0, [x19]
212 #endif
213 b el3_exit
214 endfunc bl31_warm_entrypoint