c12a4b6517a458304676e4ff145180edc5e937b3
[project/bcm63xx/atf.git] / drivers / arm / gic / v3 / gicv3_helpers.c
1 /*
2 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <interrupt_props.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv3_private.h"
15
16 /*
17 * Accessor to read the GIC Distributor IGRPMODR corresponding to the
18 * interrupt `id`, 32 interrupt IDs at a time.
19 */
20 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
21 {
22 unsigned int n = id >> IGRPMODR_SHIFT;
23
24 return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
25 }
26
27 /*
28 * Accessor to write the GIC Distributor IGRPMODR corresponding to the
29 * interrupt `id`, 32 interrupt IDs at a time.
30 */
31 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
32 {
33 unsigned int n = id >> IGRPMODR_SHIFT;
34
35 mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
36 }
37
38 /*
39 * Accessor to get the bit corresponding to interrupt ID
40 * in GIC Distributor IGRPMODR.
41 */
42 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
43 {
44 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
45 unsigned int reg_val = gicd_read_igrpmodr(base, id);
46
47 return (reg_val >> bit_num) & 0x1U;
48 }
49
50 /*
51 * Accessor to set the bit corresponding to interrupt ID
52 * in GIC Distributor IGRPMODR.
53 */
54 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
55 {
56 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
57 unsigned int reg_val = gicd_read_igrpmodr(base, id);
58
59 gicd_write_igrpmodr(base, id, reg_val | (1U << bit_num));
60 }
61
62 /*
63 * Accessor to clear the bit corresponding to interrupt ID
64 * in GIC Distributor IGRPMODR.
65 */
66 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
67 {
68 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
69 unsigned int reg_val = gicd_read_igrpmodr(base, id);
70
71 gicd_write_igrpmodr(base, id, reg_val & ~(1U << bit_num));
72 }
73
74 /*
75 * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
76 * interrupt `id`, 4 interrupts IDs at a time.
77 */
78 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
79 {
80 unsigned int n = id >> IPRIORITYR_SHIFT;
81
82 return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
83 }
84
85 /*
86 * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
87 * interrupt `id`, 4 interrupts IDs at a time.
88 */
89 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
90 {
91 unsigned int n = id >> IPRIORITYR_SHIFT;
92
93 mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
94 }
95
96 /*
97 * Accessor to get the bit corresponding to interrupt ID
98 * from GIC Re-distributor IGROUPR0.
99 */
100 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
101 {
102 unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
103 unsigned int reg_val = gicr_read_igroupr0(base);
104
105 return (reg_val >> bit_num) & 0x1U;
106 }
107
108 /*
109 * Accessor to set the bit corresponding to interrupt ID
110 * in GIC Re-distributor IGROUPR0.
111 */
112 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
113 {
114 unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
115 unsigned int reg_val = gicr_read_igroupr0(base);
116
117 gicr_write_igroupr0(base, reg_val | (1U << bit_num));
118 }
119
120 /*
121 * Accessor to clear the bit corresponding to interrupt ID
122 * in GIC Re-distributor IGROUPR0.
123 */
124 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
125 {
126 unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
127 unsigned int reg_val = gicr_read_igroupr0(base);
128
129 gicr_write_igroupr0(base, reg_val & ~(1U << bit_num));
130 }
131
132 /*
133 * Accessor to get the bit corresponding to interrupt ID
134 * from GIC Re-distributor IGRPMODR0.
135 */
136 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
137 {
138 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
139 unsigned int reg_val = gicr_read_igrpmodr0(base);
140
141 return (reg_val >> bit_num) & 0x1U;
142 }
143
144 /*
145 * Accessor to set the bit corresponding to interrupt ID
146 * in GIC Re-distributor IGRPMODR0.
147 */
148 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
149 {
150 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
151 unsigned int reg_val = gicr_read_igrpmodr0(base);
152
153 gicr_write_igrpmodr0(base, reg_val | (1U << bit_num));
154 }
155
156 /*
157 * Accessor to clear the bit corresponding to interrupt ID
158 * in GIC Re-distributor IGRPMODR0.
159 */
160 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
161 {
162 unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
163 unsigned int reg_val = gicr_read_igrpmodr0(base);
164
165 gicr_write_igrpmodr0(base, reg_val & ~(1U << bit_num));
166 }
167
168 /*
169 * Accessor to set the bit corresponding to interrupt ID
170 * in GIC Re-distributor ISENABLER0.
171 */
172 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
173 {
174 unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U);
175
176 gicr_write_isenabler0(base, (1U << bit_num));
177 }
178
179 /*
180 * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
181 * ICENABLER0.
182 */
183 void gicr_set_icenabler0(uintptr_t base, unsigned int id)
184 {
185 unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U);
186
187 gicr_write_icenabler0(base, (1U << bit_num));
188 }
189
190 /*
191 * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
192 * ISACTIVER0.
193 */
194 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
195 {
196 unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U);
197 unsigned int reg_val = gicr_read_isactiver0(base);
198
199 return (reg_val >> bit_num) & 0x1U;
200 }
201
202 /*
203 * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
204 * ICPENDRR0.
205 */
206 void gicr_set_icpendr0(uintptr_t base, unsigned int id)
207 {
208 unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U);
209
210 gicr_write_icpendr0(base, (1U << bit_num));
211 }
212
213 /*
214 * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
215 * ISPENDR0.
216 */
217 void gicr_set_ispendr0(uintptr_t base, unsigned int id)
218 {
219 unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U);
220
221 gicr_write_ispendr0(base, (1U << bit_num));
222 }
223
224 /*
225 * Accessor to set the byte corresponding to interrupt ID
226 * in GIC Re-distributor IPRIORITYR.
227 */
228 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
229 {
230 uint8_t val = pri & GIC_PRI_MASK;
231
232 mmio_write_8(base + GICR_IPRIORITYR + id, val);
233 }
234
235 /*
236 * Accessor to set the bit fields corresponding to interrupt ID
237 * in GIC Re-distributor ICFGR0.
238 */
239 void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
240 {
241 /* Interrupt configuration is a 2-bit field */
242 unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
243 unsigned int bit_shift = bit_num << 1U;
244
245 uint32_t reg_val = gicr_read_icfgr0(base);
246
247 /* Clear the field, and insert required configuration */
248 reg_val &= ~(GIC_CFG_MASK << bit_shift);
249 reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
250
251 gicr_write_icfgr0(base, reg_val);
252 }
253
254 /*
255 * Accessor to set the bit fields corresponding to interrupt ID
256 * in GIC Re-distributor ICFGR1.
257 */
258 void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
259 {
260 /* Interrupt configuration is a 2-bit field */
261 unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
262 unsigned int bit_shift = bit_num << 1U;
263
264 uint32_t reg_val = gicr_read_icfgr1(base);
265
266 /* Clear the field, and insert required configuration */
267 reg_val &= ~(GIC_CFG_MASK << bit_shift);
268 reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
269
270 gicr_write_icfgr1(base, reg_val);
271 }
272
273 /******************************************************************************
274 * This function marks the core as awake in the re-distributor and
275 * ensures that the interface is active.
276 *****************************************************************************/
277 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
278 {
279 /*
280 * The WAKER_PS_BIT should be changed to 0
281 * only when WAKER_CA_BIT is 1.
282 */
283 assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
284
285 /* Mark the connected core as awake */
286 gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
287
288 /* Wait till the WAKER_CA_BIT changes to 0 */
289 while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U)
290 ;
291 }
292
293
294 /******************************************************************************
295 * This function marks the core as asleep in the re-distributor and ensures
296 * that the interface is quiescent.
297 *****************************************************************************/
298 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
299 {
300 /* Mark the connected core as asleep */
301 gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
302
303 /* Wait till the WAKER_CA_BIT changes to 1 */
304 while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U)
305 ;
306 }
307
308
309 /*******************************************************************************
310 * This function probes the Redistributor frames when the driver is initialised
311 * and saves their base addresses. These base addresses are used later to
312 * initialise each Redistributor interface.
313 ******************************************************************************/
314 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
315 unsigned int rdistif_num,
316 uintptr_t gicr_base,
317 mpidr_hash_fn mpidr_to_core_pos)
318 {
319 u_register_t mpidr;
320 unsigned int proc_num;
321 uint64_t typer_val;
322 uintptr_t rdistif_base = gicr_base;
323
324 assert(rdistif_base_addrs != NULL);
325
326 /*
327 * Iterate over the Redistributor frames. Store the base address of each
328 * frame in the platform provided array. Use the "Processor Number"
329 * field to index into the array if the platform has not provided a hash
330 * function to convert an MPIDR (obtained from the "Affinity Value"
331 * field into a linear index.
332 */
333 do {
334 typer_val = gicr_read_typer(rdistif_base);
335 if (mpidr_to_core_pos != NULL) {
336 mpidr = mpidr_from_gicr_typer(typer_val);
337 proc_num = mpidr_to_core_pos(mpidr);
338 } else {
339 proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
340 TYPER_PROC_NUM_MASK;
341 }
342 assert(proc_num < rdistif_num);
343 rdistif_base_addrs[proc_num] = rdistif_base;
344 rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
345 } while ((typer_val & TYPER_LAST_BIT) == 0U);
346 }
347
348 /*******************************************************************************
349 * Helper function to configure the default attributes of SPIs.
350 ******************************************************************************/
351 void gicv3_spis_config_defaults(uintptr_t gicd_base)
352 {
353 unsigned int index, num_ints;
354
355 num_ints = gicd_read_typer(gicd_base);
356 num_ints &= TYPER_IT_LINES_NO_MASK;
357 num_ints = (num_ints + 1U) << 5;
358
359 /*
360 * Treat all SPIs as G1NS by default. The number of interrupts is
361 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
362 */
363 for (index = MIN_SPI_ID; index < num_ints; index += 32U)
364 gicd_write_igroupr(gicd_base, index, ~0U);
365
366 /* Setup the default SPI priorities doing four at a time */
367 for (index = MIN_SPI_ID; index < num_ints; index += 4U)
368 gicd_write_ipriorityr(gicd_base,
369 index,
370 GICD_IPRIORITYR_DEF_VAL);
371
372 /*
373 * Treat all SPIs as level triggered by default, write 16 at
374 * a time
375 */
376 for (index = MIN_SPI_ID; index < num_ints; index += 16U)
377 gicd_write_icfgr(gicd_base, index, 0U);
378 }
379
380 /*******************************************************************************
381 * Helper function to configure properties of secure SPIs
382 ******************************************************************************/
383 unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
384 const interrupt_prop_t *interrupt_props,
385 unsigned int interrupt_props_num)
386 {
387 unsigned int i;
388 const interrupt_prop_t *current_prop;
389 unsigned long long gic_affinity_val;
390 unsigned int ctlr_enable = 0U;
391
392 /* Make sure there's a valid property array */
393 if (interrupt_props_num > 0U)
394 assert(interrupt_props != NULL);
395
396 for (i = 0U; i < interrupt_props_num; i++) {
397 current_prop = &interrupt_props[i];
398
399 if (current_prop->intr_num < MIN_SPI_ID)
400 continue;
401
402 /* Configure this interrupt as a secure interrupt */
403 gicd_clr_igroupr(gicd_base, current_prop->intr_num);
404
405 /* Configure this interrupt as G0 or a G1S interrupt */
406 assert((current_prop->intr_grp == INTR_GROUP0) ||
407 (current_prop->intr_grp == INTR_GROUP1S));
408 if (current_prop->intr_grp == INTR_GROUP1S) {
409 gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
410 ctlr_enable |= CTLR_ENABLE_G1S_BIT;
411 } else {
412 gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
413 ctlr_enable |= CTLR_ENABLE_G0_BIT;
414 }
415
416 /* Set interrupt configuration */
417 gicd_set_icfgr(gicd_base, current_prop->intr_num,
418 current_prop->intr_cfg);
419
420 /* Set the priority of this interrupt */
421 gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
422 current_prop->intr_pri);
423
424 /* Target SPIs to the primary CPU */
425 gic_affinity_val =
426 gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
427 gicd_write_irouter(gicd_base, current_prop->intr_num,
428 gic_affinity_val);
429
430 /* Enable this interrupt */
431 gicd_set_isenabler(gicd_base, current_prop->intr_num);
432 }
433
434 return ctlr_enable;
435 }
436
437 /*******************************************************************************
438 * Helper function to configure the default attributes of SPIs.
439 ******************************************************************************/
440 void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
441 {
442 unsigned int index;
443
444 /*
445 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
446 * more scalable approach as it avoids clearing the enable bits in the
447 * GICD_CTLR
448 */
449 gicr_write_icenabler0(gicr_base, ~0U);
450 gicr_wait_for_pending_write(gicr_base);
451
452 /* Treat all SGIs/PPIs as G1NS by default. */
453 gicr_write_igroupr0(gicr_base, ~0U);
454
455 /* Setup the default PPI/SGI priorities doing four at a time */
456 for (index = 0U; index < MIN_SPI_ID; index += 4U)
457 gicr_write_ipriorityr(gicr_base,
458 index,
459 GICD_IPRIORITYR_DEF_VAL);
460
461 /* Configure all PPIs as level triggered by default */
462 gicr_write_icfgr1(gicr_base, 0U);
463 }
464
465 /*******************************************************************************
466 * Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
467 ******************************************************************************/
468 unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
469 const interrupt_prop_t *interrupt_props,
470 unsigned int interrupt_props_num)
471 {
472 unsigned int i;
473 const interrupt_prop_t *current_prop;
474 unsigned int ctlr_enable = 0U;
475
476 /* Make sure there's a valid property array */
477 if (interrupt_props_num > 0U)
478 assert(interrupt_props != NULL);
479
480 for (i = 0U; i < interrupt_props_num; i++) {
481 current_prop = &interrupt_props[i];
482
483 if (current_prop->intr_num >= MIN_SPI_ID)
484 continue;
485
486 /* Configure this interrupt as a secure interrupt */
487 gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
488
489 /* Configure this interrupt as G0 or a G1S interrupt */
490 assert((current_prop->intr_grp == INTR_GROUP0) ||
491 (current_prop->intr_grp == INTR_GROUP1S));
492 if (current_prop->intr_grp == INTR_GROUP1S) {
493 gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
494 ctlr_enable |= CTLR_ENABLE_G1S_BIT;
495 } else {
496 gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
497 ctlr_enable |= CTLR_ENABLE_G0_BIT;
498 }
499
500 /* Set the priority of this interrupt */
501 gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
502 current_prop->intr_pri);
503
504 /*
505 * Set interrupt configuration for PPIs. Configuration for SGIs
506 * are ignored.
507 */
508 if ((current_prop->intr_num >= MIN_PPI_ID) &&
509 (current_prop->intr_num < MIN_SPI_ID)) {
510 gicr_set_icfgr1(gicr_base, current_prop->intr_num,
511 current_prop->intr_cfg);
512 }
513
514 /* Enable this interrupt */
515 gicr_set_isenabler0(gicr_base, current_prop->intr_num);
516 }
517
518 return ctlr_enable;
519 }