mm: remove the prot argument from vm_map_ram
[openwrt/staging/blogic.git] / fs / xfs / xfs_buf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19
20 static kmem_zone_t *xfs_buf_zone;
21
22 #define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25 /*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52 static inline int
53 xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55 {
56 /*
57 * Return true if the buffer is vmapped.
58 *
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
62 */
63 return bp->b_addr && bp->b_page_count > 1;
64 }
65
66 static inline int
67 xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69 {
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72
73 /*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86 static inline void
87 xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89 {
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
100 }
101
102 /*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
109 {
110 lockdep_assert_held(&bp->b_lock);
111
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116 }
117
118 static inline void
119 xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121 {
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
125 }
126
127 /*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135 void
136 xfs_buf_stale(
137 struct xfs_buf *bp)
138 {
139 ASSERT(xfs_buf_islocked(bp));
140
141 bp->b_flags |= XBF_STALE;
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
158
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
166 }
167
168 static int
169 xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172 {
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
186 }
187
188 /*
189 * Frees b_pages if it was allocated.
190 */
191 static void
192 xfs_buf_free_maps(
193 struct xfs_buf *bp)
194 {
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199 }
200
201 static int
202 _xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags,
207 struct xfs_buf **bpp)
208 {
209 struct xfs_buf *bp;
210 int error;
211 int i;
212
213 *bpp = NULL;
214 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
215 if (unlikely(!bp))
216 return -ENOMEM;
217
218 /*
219 * We don't want certain flags to appear in b_flags unless they are
220 * specifically set by later operations on the buffer.
221 */
222 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
223
224 atomic_set(&bp->b_hold, 1);
225 atomic_set(&bp->b_lru_ref, 1);
226 init_completion(&bp->b_iowait);
227 INIT_LIST_HEAD(&bp->b_lru);
228 INIT_LIST_HEAD(&bp->b_list);
229 INIT_LIST_HEAD(&bp->b_li_list);
230 sema_init(&bp->b_sema, 0); /* held, no waiters */
231 spin_lock_init(&bp->b_lock);
232 bp->b_target = target;
233 bp->b_mount = target->bt_mount;
234 bp->b_flags = flags;
235
236 /*
237 * Set length and io_length to the same value initially.
238 * I/O routines should use io_length, which will be the same in
239 * most cases but may be reset (e.g. XFS recovery).
240 */
241 error = xfs_buf_get_maps(bp, nmaps);
242 if (error) {
243 kmem_cache_free(xfs_buf_zone, bp);
244 return error;
245 }
246
247 bp->b_bn = map[0].bm_bn;
248 bp->b_length = 0;
249 for (i = 0; i < nmaps; i++) {
250 bp->b_maps[i].bm_bn = map[i].bm_bn;
251 bp->b_maps[i].bm_len = map[i].bm_len;
252 bp->b_length += map[i].bm_len;
253 }
254
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
257
258 XFS_STATS_INC(bp->b_mount, xb_create);
259 trace_xfs_buf_init(bp, _RET_IP_);
260
261 *bpp = bp;
262 return 0;
263 }
264
265 /*
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
268 */
269 STATIC int
270 _xfs_buf_get_pages(
271 xfs_buf_t *bp,
272 int page_count)
273 {
274 /* Make sure that we have a page list */
275 if (bp->b_pages == NULL) {
276 bp->b_page_count = page_count;
277 if (page_count <= XB_PAGES) {
278 bp->b_pages = bp->b_page_array;
279 } else {
280 bp->b_pages = kmem_alloc(sizeof(struct page *) *
281 page_count, KM_NOFS);
282 if (bp->b_pages == NULL)
283 return -ENOMEM;
284 }
285 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
286 }
287 return 0;
288 }
289
290 /*
291 * Frees b_pages if it was allocated.
292 */
293 STATIC void
294 _xfs_buf_free_pages(
295 xfs_buf_t *bp)
296 {
297 if (bp->b_pages != bp->b_page_array) {
298 kmem_free(bp->b_pages);
299 bp->b_pages = NULL;
300 }
301 }
302
303 /*
304 * Releases the specified buffer.
305 *
306 * The modification state of any associated pages is left unchanged.
307 * The buffer must not be on any hash - use xfs_buf_rele instead for
308 * hashed and refcounted buffers
309 */
310 static void
311 xfs_buf_free(
312 xfs_buf_t *bp)
313 {
314 trace_xfs_buf_free(bp, _RET_IP_);
315
316 ASSERT(list_empty(&bp->b_lru));
317
318 if (bp->b_flags & _XBF_PAGES) {
319 uint i;
320
321 if (xfs_buf_is_vmapped(bp))
322 vm_unmap_ram(bp->b_addr - bp->b_offset,
323 bp->b_page_count);
324
325 for (i = 0; i < bp->b_page_count; i++) {
326 struct page *page = bp->b_pages[i];
327
328 __free_page(page);
329 }
330 if (current->reclaim_state)
331 current->reclaim_state->reclaimed_slab +=
332 bp->b_page_count;
333 } else if (bp->b_flags & _XBF_KMEM)
334 kmem_free(bp->b_addr);
335 _xfs_buf_free_pages(bp);
336 xfs_buf_free_maps(bp);
337 kmem_cache_free(xfs_buf_zone, bp);
338 }
339
340 /*
341 * Allocates all the pages for buffer in question and builds it's page list.
342 */
343 STATIC int
344 xfs_buf_allocate_memory(
345 xfs_buf_t *bp,
346 uint flags)
347 {
348 size_t size;
349 size_t nbytes, offset;
350 gfp_t gfp_mask = xb_to_gfp(flags);
351 unsigned short page_count, i;
352 xfs_off_t start, end;
353 int error;
354 xfs_km_flags_t kmflag_mask = 0;
355
356 /*
357 * assure zeroed buffer for non-read cases.
358 */
359 if (!(flags & XBF_READ)) {
360 kmflag_mask |= KM_ZERO;
361 gfp_mask |= __GFP_ZERO;
362 }
363
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
372 bp->b_addr = kmem_alloc_io(size, align_mask,
373 KM_NOFS | kmflag_mask);
374 if (!bp->b_addr) {
375 /* low memory - use alloc_page loop instead */
376 goto use_alloc_page;
377 }
378
379 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
380 ((unsigned long)bp->b_addr & PAGE_MASK)) {
381 /* b_addr spans two pages - use alloc_page instead */
382 kmem_free(bp->b_addr);
383 bp->b_addr = NULL;
384 goto use_alloc_page;
385 }
386 bp->b_offset = offset_in_page(bp->b_addr);
387 bp->b_pages = bp->b_page_array;
388 bp->b_pages[0] = kmem_to_page(bp->b_addr);
389 bp->b_page_count = 1;
390 bp->b_flags |= _XBF_KMEM;
391 return 0;
392 }
393
394 use_alloc_page:
395 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
396 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
397 >> PAGE_SHIFT;
398 page_count = end - start;
399 error = _xfs_buf_get_pages(bp, page_count);
400 if (unlikely(error))
401 return error;
402
403 offset = bp->b_offset;
404 bp->b_flags |= _XBF_PAGES;
405
406 for (i = 0; i < bp->b_page_count; i++) {
407 struct page *page;
408 uint retries = 0;
409 retry:
410 page = alloc_page(gfp_mask);
411 if (unlikely(page == NULL)) {
412 if (flags & XBF_READ_AHEAD) {
413 bp->b_page_count = i;
414 error = -ENOMEM;
415 goto out_free_pages;
416 }
417
418 /*
419 * This could deadlock.
420 *
421 * But until all the XFS lowlevel code is revamped to
422 * handle buffer allocation failures we can't do much.
423 */
424 if (!(++retries % 100))
425 xfs_err(NULL,
426 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
427 current->comm, current->pid,
428 __func__, gfp_mask);
429
430 XFS_STATS_INC(bp->b_mount, xb_page_retries);
431 congestion_wait(BLK_RW_ASYNC, HZ/50);
432 goto retry;
433 }
434
435 XFS_STATS_INC(bp->b_mount, xb_page_found);
436
437 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
438 size -= nbytes;
439 bp->b_pages[i] = page;
440 offset = 0;
441 }
442 return 0;
443
444 out_free_pages:
445 for (i = 0; i < bp->b_page_count; i++)
446 __free_page(bp->b_pages[i]);
447 bp->b_flags &= ~_XBF_PAGES;
448 return error;
449 }
450
451 /*
452 * Map buffer into kernel address-space if necessary.
453 */
454 STATIC int
455 _xfs_buf_map_pages(
456 xfs_buf_t *bp,
457 uint flags)
458 {
459 ASSERT(bp->b_flags & _XBF_PAGES);
460 if (bp->b_page_count == 1) {
461 /* A single page buffer is always mappable */
462 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
463 } else if (flags & XBF_UNMAPPED) {
464 bp->b_addr = NULL;
465 } else {
466 int retried = 0;
467 unsigned nofs_flag;
468
469 /*
470 * vm_map_ram() will allocate auxiliary structures (e.g.
471 * pagetables) with GFP_KERNEL, yet we are likely to be under
472 * GFP_NOFS context here. Hence we need to tell memory reclaim
473 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
474 * memory reclaim re-entering the filesystem here and
475 * potentially deadlocking.
476 */
477 nofs_flag = memalloc_nofs_save();
478 do {
479 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
480 -1);
481 if (bp->b_addr)
482 break;
483 vm_unmap_aliases();
484 } while (retried++ <= 1);
485 memalloc_nofs_restore(nofs_flag);
486
487 if (!bp->b_addr)
488 return -ENOMEM;
489 bp->b_addr += bp->b_offset;
490 }
491
492 return 0;
493 }
494
495 /*
496 * Finding and Reading Buffers
497 */
498 static int
499 _xfs_buf_obj_cmp(
500 struct rhashtable_compare_arg *arg,
501 const void *obj)
502 {
503 const struct xfs_buf_map *map = arg->key;
504 const struct xfs_buf *bp = obj;
505
506 /*
507 * The key hashing in the lookup path depends on the key being the
508 * first element of the compare_arg, make sure to assert this.
509 */
510 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
511
512 if (bp->b_bn != map->bm_bn)
513 return 1;
514
515 if (unlikely(bp->b_length != map->bm_len)) {
516 /*
517 * found a block number match. If the range doesn't
518 * match, the only way this is allowed is if the buffer
519 * in the cache is stale and the transaction that made
520 * it stale has not yet committed. i.e. we are
521 * reallocating a busy extent. Skip this buffer and
522 * continue searching for an exact match.
523 */
524 ASSERT(bp->b_flags & XBF_STALE);
525 return 1;
526 }
527 return 0;
528 }
529
530 static const struct rhashtable_params xfs_buf_hash_params = {
531 .min_size = 32, /* empty AGs have minimal footprint */
532 .nelem_hint = 16,
533 .key_len = sizeof(xfs_daddr_t),
534 .key_offset = offsetof(struct xfs_buf, b_bn),
535 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
536 .automatic_shrinking = true,
537 .obj_cmpfn = _xfs_buf_obj_cmp,
538 };
539
540 int
541 xfs_buf_hash_init(
542 struct xfs_perag *pag)
543 {
544 spin_lock_init(&pag->pag_buf_lock);
545 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
546 }
547
548 void
549 xfs_buf_hash_destroy(
550 struct xfs_perag *pag)
551 {
552 rhashtable_destroy(&pag->pag_buf_hash);
553 }
554
555 /*
556 * Look up a buffer in the buffer cache and return it referenced and locked
557 * in @found_bp.
558 *
559 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
560 * cache.
561 *
562 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
563 * -EAGAIN if we fail to lock it.
564 *
565 * Return values are:
566 * -EFSCORRUPTED if have been supplied with an invalid address
567 * -EAGAIN on trylock failure
568 * -ENOENT if we fail to find a match and @new_bp was NULL
569 * 0, with @found_bp:
570 * - @new_bp if we inserted it into the cache
571 * - the buffer we found and locked.
572 */
573 static int
574 xfs_buf_find(
575 struct xfs_buftarg *btp,
576 struct xfs_buf_map *map,
577 int nmaps,
578 xfs_buf_flags_t flags,
579 struct xfs_buf *new_bp,
580 struct xfs_buf **found_bp)
581 {
582 struct xfs_perag *pag;
583 xfs_buf_t *bp;
584 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
585 xfs_daddr_t eofs;
586 int i;
587
588 *found_bp = NULL;
589
590 for (i = 0; i < nmaps; i++)
591 cmap.bm_len += map[i].bm_len;
592
593 /* Check for IOs smaller than the sector size / not sector aligned */
594 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
595 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
596
597 /*
598 * Corrupted block numbers can get through to here, unfortunately, so we
599 * have to check that the buffer falls within the filesystem bounds.
600 */
601 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
602 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
603 xfs_alert(btp->bt_mount,
604 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
605 __func__, cmap.bm_bn, eofs);
606 WARN_ON(1);
607 return -EFSCORRUPTED;
608 }
609
610 pag = xfs_perag_get(btp->bt_mount,
611 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
612
613 spin_lock(&pag->pag_buf_lock);
614 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
615 xfs_buf_hash_params);
616 if (bp) {
617 atomic_inc(&bp->b_hold);
618 goto found;
619 }
620
621 /* No match found */
622 if (!new_bp) {
623 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
624 spin_unlock(&pag->pag_buf_lock);
625 xfs_perag_put(pag);
626 return -ENOENT;
627 }
628
629 /* the buffer keeps the perag reference until it is freed */
630 new_bp->b_pag = pag;
631 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
632 xfs_buf_hash_params);
633 spin_unlock(&pag->pag_buf_lock);
634 *found_bp = new_bp;
635 return 0;
636
637 found:
638 spin_unlock(&pag->pag_buf_lock);
639 xfs_perag_put(pag);
640
641 if (!xfs_buf_trylock(bp)) {
642 if (flags & XBF_TRYLOCK) {
643 xfs_buf_rele(bp);
644 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
645 return -EAGAIN;
646 }
647 xfs_buf_lock(bp);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
649 }
650
651 /*
652 * if the buffer is stale, clear all the external state associated with
653 * it. We need to keep flags such as how we allocated the buffer memory
654 * intact here.
655 */
656 if (bp->b_flags & XBF_STALE) {
657 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
658 ASSERT(bp->b_iodone == NULL);
659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
660 bp->b_ops = NULL;
661 }
662
663 trace_xfs_buf_find(bp, flags, _RET_IP_);
664 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
665 *found_bp = bp;
666 return 0;
667 }
668
669 struct xfs_buf *
670 xfs_buf_incore(
671 struct xfs_buftarg *target,
672 xfs_daddr_t blkno,
673 size_t numblks,
674 xfs_buf_flags_t flags)
675 {
676 struct xfs_buf *bp;
677 int error;
678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
679
680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 if (error)
682 return NULL;
683 return bp;
684 }
685
686 /*
687 * Assembles a buffer covering the specified range. The code is optimised for
688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689 * more hits than misses.
690 */
691 int
692 xfs_buf_get_map(
693 struct xfs_buftarg *target,
694 struct xfs_buf_map *map,
695 int nmaps,
696 xfs_buf_flags_t flags,
697 struct xfs_buf **bpp)
698 {
699 struct xfs_buf *bp;
700 struct xfs_buf *new_bp;
701 int error = 0;
702
703 *bpp = NULL;
704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
705 if (!error)
706 goto found;
707 if (error != -ENOENT)
708 return error;
709
710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 if (error)
712 return error;
713
714 error = xfs_buf_allocate_memory(new_bp, flags);
715 if (error) {
716 xfs_buf_free(new_bp);
717 return error;
718 }
719
720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 if (error) {
722 xfs_buf_free(new_bp);
723 return error;
724 }
725
726 if (bp != new_bp)
727 xfs_buf_free(new_bp);
728
729 found:
730 if (!bp->b_addr) {
731 error = _xfs_buf_map_pages(bp, flags);
732 if (unlikely(error)) {
733 xfs_warn_ratelimited(target->bt_mount,
734 "%s: failed to map %u pages", __func__,
735 bp->b_page_count);
736 xfs_buf_relse(bp);
737 return error;
738 }
739 }
740
741 /*
742 * Clear b_error if this is a lookup from a caller that doesn't expect
743 * valid data to be found in the buffer.
744 */
745 if (!(flags & XBF_READ))
746 xfs_buf_ioerror(bp, 0);
747
748 XFS_STATS_INC(target->bt_mount, xb_get);
749 trace_xfs_buf_get(bp, flags, _RET_IP_);
750 *bpp = bp;
751 return 0;
752 }
753
754 STATIC int
755 _xfs_buf_read(
756 xfs_buf_t *bp,
757 xfs_buf_flags_t flags)
758 {
759 ASSERT(!(flags & XBF_WRITE));
760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
761
762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
764
765 return xfs_buf_submit(bp);
766 }
767
768 /*
769 * Reverify a buffer found in cache without an attached ->b_ops.
770 *
771 * If the caller passed an ops structure and the buffer doesn't have ops
772 * assigned, set the ops and use it to verify the contents. If verification
773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774 * already in XBF_DONE state on entry.
775 *
776 * Under normal operations, every in-core buffer is verified on read I/O
777 * completion. There are two scenarios that can lead to in-core buffers without
778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779 * filesystem, though these buffers are purged at the end of recovery. The
780 * other is online repair, which intentionally reads with a NULL buffer ops to
781 * run several verifiers across an in-core buffer in order to establish buffer
782 * type. If repair can't establish that, the buffer will be left in memory
783 * with NULL buffer ops.
784 */
785 int
786 xfs_buf_reverify(
787 struct xfs_buf *bp,
788 const struct xfs_buf_ops *ops)
789 {
790 ASSERT(bp->b_flags & XBF_DONE);
791 ASSERT(bp->b_error == 0);
792
793 if (!ops || bp->b_ops)
794 return 0;
795
796 bp->b_ops = ops;
797 bp->b_ops->verify_read(bp);
798 if (bp->b_error)
799 bp->b_flags &= ~XBF_DONE;
800 return bp->b_error;
801 }
802
803 int
804 xfs_buf_read_map(
805 struct xfs_buftarg *target,
806 struct xfs_buf_map *map,
807 int nmaps,
808 xfs_buf_flags_t flags,
809 struct xfs_buf **bpp,
810 const struct xfs_buf_ops *ops,
811 xfs_failaddr_t fa)
812 {
813 struct xfs_buf *bp;
814 int error;
815
816 flags |= XBF_READ;
817 *bpp = NULL;
818
819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 if (error)
821 return error;
822
823 trace_xfs_buf_read(bp, flags, _RET_IP_);
824
825 if (!(bp->b_flags & XBF_DONE)) {
826 /* Initiate the buffer read and wait. */
827 XFS_STATS_INC(target->bt_mount, xb_get_read);
828 bp->b_ops = ops;
829 error = _xfs_buf_read(bp, flags);
830
831 /* Readahead iodone already dropped the buffer, so exit. */
832 if (flags & XBF_ASYNC)
833 return 0;
834 } else {
835 /* Buffer already read; all we need to do is check it. */
836 error = xfs_buf_reverify(bp, ops);
837
838 /* Readahead already finished; drop the buffer and exit. */
839 if (flags & XBF_ASYNC) {
840 xfs_buf_relse(bp);
841 return 0;
842 }
843
844 /* We do not want read in the flags */
845 bp->b_flags &= ~XBF_READ;
846 ASSERT(bp->b_ops != NULL || ops == NULL);
847 }
848
849 /*
850 * If we've had a read error, then the contents of the buffer are
851 * invalid and should not be used. To ensure that a followup read tries
852 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 * mark the buffer stale. This ensures that anyone who has a current
854 * reference to the buffer will interpret it's contents correctly and
855 * future cache lookups will also treat it as an empty, uninitialised
856 * buffer.
857 */
858 if (error) {
859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
860 xfs_buf_ioerror_alert(bp, fa);
861
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
864 xfs_buf_relse(bp);
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
870 }
871
872 *bpp = bp;
873 return 0;
874 }
875
876 /*
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
879 */
880 void
881 xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
884 int nmaps,
885 const struct xfs_buf_ops *ops)
886 {
887 struct xfs_buf *bp;
888
889 if (bdi_read_congested(target->bt_bdev->bd_bdi))
890 return;
891
892 xfs_buf_read_map(target, map, nmaps,
893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 __this_address);
895 }
896
897 /*
898 * Read an uncached buffer from disk. Allocates and returns a locked
899 * buffer containing the disk contents or nothing.
900 */
901 int
902 xfs_buf_read_uncached(
903 struct xfs_buftarg *target,
904 xfs_daddr_t daddr,
905 size_t numblks,
906 int flags,
907 struct xfs_buf **bpp,
908 const struct xfs_buf_ops *ops)
909 {
910 struct xfs_buf *bp;
911 int error;
912
913 *bpp = NULL;
914
915 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 if (error)
917 return error;
918
919 /* set up the buffer for a read IO */
920 ASSERT(bp->b_map_count == 1);
921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
922 bp->b_maps[0].bm_bn = daddr;
923 bp->b_flags |= XBF_READ;
924 bp->b_ops = ops;
925
926 xfs_buf_submit(bp);
927 if (bp->b_error) {
928 error = bp->b_error;
929 xfs_buf_relse(bp);
930 return error;
931 }
932
933 *bpp = bp;
934 return 0;
935 }
936
937 int
938 xfs_buf_get_uncached(
939 struct xfs_buftarg *target,
940 size_t numblks,
941 int flags,
942 struct xfs_buf **bpp)
943 {
944 unsigned long page_count;
945 int error, i;
946 struct xfs_buf *bp;
947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
948
949 *bpp = NULL;
950
951 /* flags might contain irrelevant bits, pass only what we care about */
952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 if (error)
954 goto fail;
955
956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
957 error = _xfs_buf_get_pages(bp, page_count);
958 if (error)
959 goto fail_free_buf;
960
961 for (i = 0; i < page_count; i++) {
962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
963 if (!bp->b_pages[i]) {
964 error = -ENOMEM;
965 goto fail_free_mem;
966 }
967 }
968 bp->b_flags |= _XBF_PAGES;
969
970 error = _xfs_buf_map_pages(bp, 0);
971 if (unlikely(error)) {
972 xfs_warn(target->bt_mount,
973 "%s: failed to map pages", __func__);
974 goto fail_free_mem;
975 }
976
977 trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 *bpp = bp;
979 return 0;
980
981 fail_free_mem:
982 while (--i >= 0)
983 __free_page(bp->b_pages[i]);
984 _xfs_buf_free_pages(bp);
985 fail_free_buf:
986 xfs_buf_free_maps(bp);
987 kmem_cache_free(xfs_buf_zone, bp);
988 fail:
989 return error;
990 }
991
992 /*
993 * Increment reference count on buffer, to hold the buffer concurrently
994 * with another thread which may release (free) the buffer asynchronously.
995 * Must hold the buffer already to call this function.
996 */
997 void
998 xfs_buf_hold(
999 xfs_buf_t *bp)
1000 {
1001 trace_xfs_buf_hold(bp, _RET_IP_);
1002 atomic_inc(&bp->b_hold);
1003 }
1004
1005 /*
1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007 * placed on LRU or freed (depending on b_lru_ref).
1008 */
1009 void
1010 xfs_buf_rele(
1011 xfs_buf_t *bp)
1012 {
1013 struct xfs_perag *pag = bp->b_pag;
1014 bool release;
1015 bool freebuf = false;
1016
1017 trace_xfs_buf_rele(bp, _RET_IP_);
1018
1019 if (!pag) {
1020 ASSERT(list_empty(&bp->b_lru));
1021 if (atomic_dec_and_test(&bp->b_hold)) {
1022 xfs_buf_ioacct_dec(bp);
1023 xfs_buf_free(bp);
1024 }
1025 return;
1026 }
1027
1028 ASSERT(atomic_read(&bp->b_hold) > 0);
1029
1030 /*
1031 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 * calls. The pag_buf_lock being taken on the last reference only
1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 * to last reference we drop here is not serialised against the last
1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 * first, the last "release" reference can win the race to the lock and
1037 * free the buffer before the second-to-last reference is processed,
1038 * leading to a use-after-free scenario.
1039 */
1040 spin_lock(&bp->b_lock);
1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042 if (!release) {
1043 /*
1044 * Drop the in-flight state if the buffer is already on the LRU
1045 * and it holds the only reference. This is racy because we
1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 * ensures the decrement occurs only once per-buf.
1048 */
1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050 __xfs_buf_ioacct_dec(bp);
1051 goto out_unlock;
1052 }
1053
1054 /* the last reference has been dropped ... */
1055 __xfs_buf_ioacct_dec(bp);
1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 /*
1058 * If the buffer is added to the LRU take a new reference to the
1059 * buffer for the LRU and clear the (now stale) dispose list
1060 * state flag
1061 */
1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 atomic_inc(&bp->b_hold);
1065 }
1066 spin_unlock(&pag->pag_buf_lock);
1067 } else {
1068 /*
1069 * most of the time buffers will already be removed from the
1070 * LRU, so optimise that case by checking for the
1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 * was on was the disposal list
1073 */
1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 } else {
1077 ASSERT(list_empty(&bp->b_lru));
1078 }
1079
1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 xfs_buf_hash_params);
1083 spin_unlock(&pag->pag_buf_lock);
1084 xfs_perag_put(pag);
1085 freebuf = true;
1086 }
1087
1088 out_unlock:
1089 spin_unlock(&bp->b_lock);
1090
1091 if (freebuf)
1092 xfs_buf_free(bp);
1093 }
1094
1095
1096 /*
1097 * Lock a buffer object, if it is not already locked.
1098 *
1099 * If we come across a stale, pinned, locked buffer, we know that we are
1100 * being asked to lock a buffer that has been reallocated. Because it is
1101 * pinned, we know that the log has not been pushed to disk and hence it
1102 * will still be locked. Rather than continuing to have trylock attempts
1103 * fail until someone else pushes the log, push it ourselves before
1104 * returning. This means that the xfsaild will not get stuck trying
1105 * to push on stale inode buffers.
1106 */
1107 int
1108 xfs_buf_trylock(
1109 struct xfs_buf *bp)
1110 {
1111 int locked;
1112
1113 locked = down_trylock(&bp->b_sema) == 0;
1114 if (locked)
1115 trace_xfs_buf_trylock(bp, _RET_IP_);
1116 else
1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118 return locked;
1119 }
1120
1121 /*
1122 * Lock a buffer object.
1123 *
1124 * If we come across a stale, pinned, locked buffer, we know that we
1125 * are being asked to lock a buffer that has been reallocated. Because
1126 * it is pinned, we know that the log has not been pushed to disk and
1127 * hence it will still be locked. Rather than sleeping until someone
1128 * else pushes the log, push it ourselves before trying to get the lock.
1129 */
1130 void
1131 xfs_buf_lock(
1132 struct xfs_buf *bp)
1133 {
1134 trace_xfs_buf_lock(bp, _RET_IP_);
1135
1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137 xfs_log_force(bp->b_mount, 0);
1138 down(&bp->b_sema);
1139
1140 trace_xfs_buf_lock_done(bp, _RET_IP_);
1141 }
1142
1143 void
1144 xfs_buf_unlock(
1145 struct xfs_buf *bp)
1146 {
1147 ASSERT(xfs_buf_islocked(bp));
1148
1149 up(&bp->b_sema);
1150 trace_xfs_buf_unlock(bp, _RET_IP_);
1151 }
1152
1153 STATIC void
1154 xfs_buf_wait_unpin(
1155 xfs_buf_t *bp)
1156 {
1157 DECLARE_WAITQUEUE (wait, current);
1158
1159 if (atomic_read(&bp->b_pin_count) == 0)
1160 return;
1161
1162 add_wait_queue(&bp->b_waiters, &wait);
1163 for (;;) {
1164 set_current_state(TASK_UNINTERRUPTIBLE);
1165 if (atomic_read(&bp->b_pin_count) == 0)
1166 break;
1167 io_schedule();
1168 }
1169 remove_wait_queue(&bp->b_waiters, &wait);
1170 set_current_state(TASK_RUNNING);
1171 }
1172
1173 /*
1174 * Buffer Utility Routines
1175 */
1176
1177 void
1178 xfs_buf_ioend(
1179 struct xfs_buf *bp)
1180 {
1181 bool read = bp->b_flags & XBF_READ;
1182
1183 trace_xfs_buf_iodone(bp, _RET_IP_);
1184
1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186
1187 /*
1188 * Pull in IO completion errors now. We are guaranteed to be running
1189 * single threaded, so we don't need the lock to read b_io_error.
1190 */
1191 if (!bp->b_error && bp->b_io_error)
1192 xfs_buf_ioerror(bp, bp->b_io_error);
1193
1194 /* Only validate buffers that were read without errors */
1195 if (read && !bp->b_error && bp->b_ops) {
1196 ASSERT(!bp->b_iodone);
1197 bp->b_ops->verify_read(bp);
1198 }
1199
1200 if (!bp->b_error)
1201 bp->b_flags |= XBF_DONE;
1202
1203 if (bp->b_iodone)
1204 (*(bp->b_iodone))(bp);
1205 else if (bp->b_flags & XBF_ASYNC)
1206 xfs_buf_relse(bp);
1207 else
1208 complete(&bp->b_iowait);
1209 }
1210
1211 static void
1212 xfs_buf_ioend_work(
1213 struct work_struct *work)
1214 {
1215 struct xfs_buf *bp =
1216 container_of(work, xfs_buf_t, b_ioend_work);
1217
1218 xfs_buf_ioend(bp);
1219 }
1220
1221 static void
1222 xfs_buf_ioend_async(
1223 struct xfs_buf *bp)
1224 {
1225 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1226 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1227 }
1228
1229 void
1230 __xfs_buf_ioerror(
1231 xfs_buf_t *bp,
1232 int error,
1233 xfs_failaddr_t failaddr)
1234 {
1235 ASSERT(error <= 0 && error >= -1000);
1236 bp->b_error = error;
1237 trace_xfs_buf_ioerror(bp, error, failaddr);
1238 }
1239
1240 void
1241 xfs_buf_ioerror_alert(
1242 struct xfs_buf *bp,
1243 xfs_failaddr_t func)
1244 {
1245 xfs_alert_ratelimited(bp->b_mount,
1246 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1247 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1248 -bp->b_error);
1249 }
1250
1251 int
1252 xfs_bwrite(
1253 struct xfs_buf *bp)
1254 {
1255 int error;
1256
1257 ASSERT(xfs_buf_islocked(bp));
1258
1259 bp->b_flags |= XBF_WRITE;
1260 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1261 XBF_WRITE_FAIL | XBF_DONE);
1262
1263 error = xfs_buf_submit(bp);
1264 if (error)
1265 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1266 return error;
1267 }
1268
1269 static void
1270 xfs_buf_bio_end_io(
1271 struct bio *bio)
1272 {
1273 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1274
1275 /*
1276 * don't overwrite existing errors - otherwise we can lose errors on
1277 * buffers that require multiple bios to complete.
1278 */
1279 if (bio->bi_status) {
1280 int error = blk_status_to_errno(bio->bi_status);
1281
1282 cmpxchg(&bp->b_io_error, 0, error);
1283 }
1284
1285 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1286 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1287
1288 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1289 xfs_buf_ioend_async(bp);
1290 bio_put(bio);
1291 }
1292
1293 static void
1294 xfs_buf_ioapply_map(
1295 struct xfs_buf *bp,
1296 int map,
1297 int *buf_offset,
1298 int *count,
1299 int op)
1300 {
1301 int page_index;
1302 int total_nr_pages = bp->b_page_count;
1303 int nr_pages;
1304 struct bio *bio;
1305 sector_t sector = bp->b_maps[map].bm_bn;
1306 int size;
1307 int offset;
1308
1309 /* skip the pages in the buffer before the start offset */
1310 page_index = 0;
1311 offset = *buf_offset;
1312 while (offset >= PAGE_SIZE) {
1313 page_index++;
1314 offset -= PAGE_SIZE;
1315 }
1316
1317 /*
1318 * Limit the IO size to the length of the current vector, and update the
1319 * remaining IO count for the next time around.
1320 */
1321 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1322 *count -= size;
1323 *buf_offset += size;
1324
1325 next_chunk:
1326 atomic_inc(&bp->b_io_remaining);
1327 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1328
1329 bio = bio_alloc(GFP_NOIO, nr_pages);
1330 bio_set_dev(bio, bp->b_target->bt_bdev);
1331 bio->bi_iter.bi_sector = sector;
1332 bio->bi_end_io = xfs_buf_bio_end_io;
1333 bio->bi_private = bp;
1334 bio->bi_opf = op;
1335
1336 for (; size && nr_pages; nr_pages--, page_index++) {
1337 int rbytes, nbytes = PAGE_SIZE - offset;
1338
1339 if (nbytes > size)
1340 nbytes = size;
1341
1342 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1343 offset);
1344 if (rbytes < nbytes)
1345 break;
1346
1347 offset = 0;
1348 sector += BTOBB(nbytes);
1349 size -= nbytes;
1350 total_nr_pages--;
1351 }
1352
1353 if (likely(bio->bi_iter.bi_size)) {
1354 if (xfs_buf_is_vmapped(bp)) {
1355 flush_kernel_vmap_range(bp->b_addr,
1356 xfs_buf_vmap_len(bp));
1357 }
1358 submit_bio(bio);
1359 if (size)
1360 goto next_chunk;
1361 } else {
1362 /*
1363 * This is guaranteed not to be the last io reference count
1364 * because the caller (xfs_buf_submit) holds a count itself.
1365 */
1366 atomic_dec(&bp->b_io_remaining);
1367 xfs_buf_ioerror(bp, -EIO);
1368 bio_put(bio);
1369 }
1370
1371 }
1372
1373 STATIC void
1374 _xfs_buf_ioapply(
1375 struct xfs_buf *bp)
1376 {
1377 struct blk_plug plug;
1378 int op;
1379 int offset;
1380 int size;
1381 int i;
1382
1383 /*
1384 * Make sure we capture only current IO errors rather than stale errors
1385 * left over from previous use of the buffer (e.g. failed readahead).
1386 */
1387 bp->b_error = 0;
1388
1389 if (bp->b_flags & XBF_WRITE) {
1390 op = REQ_OP_WRITE;
1391
1392 /*
1393 * Run the write verifier callback function if it exists. If
1394 * this function fails it will mark the buffer with an error and
1395 * the IO should not be dispatched.
1396 */
1397 if (bp->b_ops) {
1398 bp->b_ops->verify_write(bp);
1399 if (bp->b_error) {
1400 xfs_force_shutdown(bp->b_mount,
1401 SHUTDOWN_CORRUPT_INCORE);
1402 return;
1403 }
1404 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1405 struct xfs_mount *mp = bp->b_mount;
1406
1407 /*
1408 * non-crc filesystems don't attach verifiers during
1409 * log recovery, so don't warn for such filesystems.
1410 */
1411 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1412 xfs_warn(mp,
1413 "%s: no buf ops on daddr 0x%llx len %d",
1414 __func__, bp->b_bn, bp->b_length);
1415 xfs_hex_dump(bp->b_addr,
1416 XFS_CORRUPTION_DUMP_LEN);
1417 dump_stack();
1418 }
1419 }
1420 } else {
1421 op = REQ_OP_READ;
1422 if (bp->b_flags & XBF_READ_AHEAD)
1423 op |= REQ_RAHEAD;
1424 }
1425
1426 /* we only use the buffer cache for meta-data */
1427 op |= REQ_META;
1428
1429 /*
1430 * Walk all the vectors issuing IO on them. Set up the initial offset
1431 * into the buffer and the desired IO size before we start -
1432 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1433 * subsequent call.
1434 */
1435 offset = bp->b_offset;
1436 size = BBTOB(bp->b_length);
1437 blk_start_plug(&plug);
1438 for (i = 0; i < bp->b_map_count; i++) {
1439 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1440 if (bp->b_error)
1441 break;
1442 if (size <= 0)
1443 break; /* all done */
1444 }
1445 blk_finish_plug(&plug);
1446 }
1447
1448 /*
1449 * Wait for I/O completion of a sync buffer and return the I/O error code.
1450 */
1451 static int
1452 xfs_buf_iowait(
1453 struct xfs_buf *bp)
1454 {
1455 ASSERT(!(bp->b_flags & XBF_ASYNC));
1456
1457 trace_xfs_buf_iowait(bp, _RET_IP_);
1458 wait_for_completion(&bp->b_iowait);
1459 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1460
1461 return bp->b_error;
1462 }
1463
1464 /*
1465 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1466 * the buffer lock ownership and the current reference to the IO. It is not
1467 * safe to reference the buffer after a call to this function unless the caller
1468 * holds an additional reference itself.
1469 */
1470 int
1471 __xfs_buf_submit(
1472 struct xfs_buf *bp,
1473 bool wait)
1474 {
1475 int error = 0;
1476
1477 trace_xfs_buf_submit(bp, _RET_IP_);
1478
1479 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1480
1481 /* on shutdown we stale and complete the buffer immediately */
1482 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1483 xfs_buf_ioerror(bp, -EIO);
1484 bp->b_flags &= ~XBF_DONE;
1485 xfs_buf_stale(bp);
1486 xfs_buf_ioend(bp);
1487 return -EIO;
1488 }
1489
1490 /*
1491 * Grab a reference so the buffer does not go away underneath us. For
1492 * async buffers, I/O completion drops the callers reference, which
1493 * could occur before submission returns.
1494 */
1495 xfs_buf_hold(bp);
1496
1497 if (bp->b_flags & XBF_WRITE)
1498 xfs_buf_wait_unpin(bp);
1499
1500 /* clear the internal error state to avoid spurious errors */
1501 bp->b_io_error = 0;
1502
1503 /*
1504 * Set the count to 1 initially, this will stop an I/O completion
1505 * callout which happens before we have started all the I/O from calling
1506 * xfs_buf_ioend too early.
1507 */
1508 atomic_set(&bp->b_io_remaining, 1);
1509 if (bp->b_flags & XBF_ASYNC)
1510 xfs_buf_ioacct_inc(bp);
1511 _xfs_buf_ioapply(bp);
1512
1513 /*
1514 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1515 * reference we took above. If we drop it to zero, run completion so
1516 * that we don't return to the caller with completion still pending.
1517 */
1518 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1519 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1520 xfs_buf_ioend(bp);
1521 else
1522 xfs_buf_ioend_async(bp);
1523 }
1524
1525 if (wait)
1526 error = xfs_buf_iowait(bp);
1527
1528 /*
1529 * Release the hold that keeps the buffer referenced for the entire
1530 * I/O. Note that if the buffer is async, it is not safe to reference
1531 * after this release.
1532 */
1533 xfs_buf_rele(bp);
1534 return error;
1535 }
1536
1537 void *
1538 xfs_buf_offset(
1539 struct xfs_buf *bp,
1540 size_t offset)
1541 {
1542 struct page *page;
1543
1544 if (bp->b_addr)
1545 return bp->b_addr + offset;
1546
1547 offset += bp->b_offset;
1548 page = bp->b_pages[offset >> PAGE_SHIFT];
1549 return page_address(page) + (offset & (PAGE_SIZE-1));
1550 }
1551
1552 void
1553 xfs_buf_zero(
1554 struct xfs_buf *bp,
1555 size_t boff,
1556 size_t bsize)
1557 {
1558 size_t bend;
1559
1560 bend = boff + bsize;
1561 while (boff < bend) {
1562 struct page *page;
1563 int page_index, page_offset, csize;
1564
1565 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1566 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1567 page = bp->b_pages[page_index];
1568 csize = min_t(size_t, PAGE_SIZE - page_offset,
1569 BBTOB(bp->b_length) - boff);
1570
1571 ASSERT((csize + page_offset) <= PAGE_SIZE);
1572
1573 memset(page_address(page) + page_offset, 0, csize);
1574
1575 boff += csize;
1576 }
1577 }
1578
1579 /*
1580 * Log a message about and stale a buffer that a caller has decided is corrupt.
1581 *
1582 * This function should be called for the kinds of metadata corruption that
1583 * cannot be detect from a verifier, such as incorrect inter-block relationship
1584 * data. Do /not/ call this function from a verifier function.
1585 *
1586 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1587 * be marked stale, but b_error will not be set. The caller is responsible for
1588 * releasing the buffer or fixing it.
1589 */
1590 void
1591 __xfs_buf_mark_corrupt(
1592 struct xfs_buf *bp,
1593 xfs_failaddr_t fa)
1594 {
1595 ASSERT(bp->b_flags & XBF_DONE);
1596
1597 xfs_buf_corruption_error(bp, fa);
1598 xfs_buf_stale(bp);
1599 }
1600
1601 /*
1602 * Handling of buffer targets (buftargs).
1603 */
1604
1605 /*
1606 * Wait for any bufs with callbacks that have been submitted but have not yet
1607 * returned. These buffers will have an elevated hold count, so wait on those
1608 * while freeing all the buffers only held by the LRU.
1609 */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 struct list_head *item,
1613 struct list_lru_one *lru,
1614 spinlock_t *lru_lock,
1615 void *arg)
1616
1617 {
1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1619 struct list_head *dispose = arg;
1620
1621 if (atomic_read(&bp->b_hold) > 1) {
1622 /* need to wait, so skip it this pass */
1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 return LRU_SKIP;
1625 }
1626 if (!spin_trylock(&bp->b_lock))
1627 return LRU_SKIP;
1628
1629 /*
1630 * clear the LRU reference count so the buffer doesn't get
1631 * ignored in xfs_buf_rele().
1632 */
1633 atomic_set(&bp->b_lru_ref, 0);
1634 bp->b_state |= XFS_BSTATE_DISPOSE;
1635 list_lru_isolate_move(lru, item, dispose);
1636 spin_unlock(&bp->b_lock);
1637 return LRU_REMOVED;
1638 }
1639
1640 void
1641 xfs_wait_buftarg(
1642 struct xfs_buftarg *btp)
1643 {
1644 LIST_HEAD(dispose);
1645 int loop = 0;
1646
1647 /*
1648 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 * released. This is critical as new buffers do not make the LRU until
1650 * they are released.
1651 *
1652 * Next, flush the buffer workqueue to ensure all completion processing
1653 * has finished. Just waiting on buffer locks is not sufficient for
1654 * async IO as the reference count held over IO is not released until
1655 * after the buffer lock is dropped. Hence we need to ensure here that
1656 * all reference counts have been dropped before we start walking the
1657 * LRU list.
1658 */
1659 while (percpu_counter_sum(&btp->bt_io_count))
1660 delay(100);
1661 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662
1663 /* loop until there is nothing left on the lru list. */
1664 while (list_lru_count(&btp->bt_lru)) {
1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 &dispose, LONG_MAX);
1667
1668 while (!list_empty(&dispose)) {
1669 struct xfs_buf *bp;
1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 list_del_init(&bp->b_lru);
1672 if (bp->b_flags & XBF_WRITE_FAIL) {
1673 xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1675 (long long)bp->b_bn);
1676 xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 }
1679 xfs_buf_rele(bp);
1680 }
1681 if (loop++ != 0)
1682 delay(100);
1683 }
1684 }
1685
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 struct list_head *item,
1689 struct list_lru_one *lru,
1690 spinlock_t *lru_lock,
1691 void *arg)
1692 {
1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1694 struct list_head *dispose = arg;
1695
1696 /*
1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 * If we fail to get the lock, just skip it.
1699 */
1700 if (!spin_trylock(&bp->b_lock))
1701 return LRU_SKIP;
1702 /*
1703 * Decrement the b_lru_ref count unless the value is already
1704 * zero. If the value is already zero, we need to reclaim the
1705 * buffer, otherwise it gets another trip through the LRU.
1706 */
1707 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 spin_unlock(&bp->b_lock);
1709 return LRU_ROTATE;
1710 }
1711
1712 bp->b_state |= XFS_BSTATE_DISPOSE;
1713 list_lru_isolate_move(lru, item, dispose);
1714 spin_unlock(&bp->b_lock);
1715 return LRU_REMOVED;
1716 }
1717
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 struct shrinker *shrink,
1721 struct shrink_control *sc)
1722 {
1723 struct xfs_buftarg *btp = container_of(shrink,
1724 struct xfs_buftarg, bt_shrinker);
1725 LIST_HEAD(dispose);
1726 unsigned long freed;
1727
1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 xfs_buftarg_isolate, &dispose);
1730
1731 while (!list_empty(&dispose)) {
1732 struct xfs_buf *bp;
1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 list_del_init(&bp->b_lru);
1735 xfs_buf_rele(bp);
1736 }
1737
1738 return freed;
1739 }
1740
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 struct shrinker *shrink,
1744 struct shrink_control *sc)
1745 {
1746 struct xfs_buftarg *btp = container_of(shrink,
1747 struct xfs_buftarg, bt_shrinker);
1748 return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750
1751 void
1752 xfs_free_buftarg(
1753 struct xfs_buftarg *btp)
1754 {
1755 unregister_shrinker(&btp->bt_shrinker);
1756 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1757 percpu_counter_destroy(&btp->bt_io_count);
1758 list_lru_destroy(&btp->bt_lru);
1759
1760 xfs_blkdev_issue_flush(btp);
1761
1762 kmem_free(btp);
1763 }
1764
1765 int
1766 xfs_setsize_buftarg(
1767 xfs_buftarg_t *btp,
1768 unsigned int sectorsize)
1769 {
1770 /* Set up metadata sector size info */
1771 btp->bt_meta_sectorsize = sectorsize;
1772 btp->bt_meta_sectormask = sectorsize - 1;
1773
1774 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1775 xfs_warn(btp->bt_mount,
1776 "Cannot set_blocksize to %u on device %pg",
1777 sectorsize, btp->bt_bdev);
1778 return -EINVAL;
1779 }
1780
1781 /* Set up device logical sector size mask */
1782 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1783 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1784
1785 return 0;
1786 }
1787
1788 /*
1789 * When allocating the initial buffer target we have not yet
1790 * read in the superblock, so don't know what sized sectors
1791 * are being used at this early stage. Play safe.
1792 */
1793 STATIC int
1794 xfs_setsize_buftarg_early(
1795 xfs_buftarg_t *btp,
1796 struct block_device *bdev)
1797 {
1798 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1799 }
1800
1801 xfs_buftarg_t *
1802 xfs_alloc_buftarg(
1803 struct xfs_mount *mp,
1804 struct block_device *bdev,
1805 struct dax_device *dax_dev)
1806 {
1807 xfs_buftarg_t *btp;
1808
1809 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1810
1811 btp->bt_mount = mp;
1812 btp->bt_dev = bdev->bd_dev;
1813 btp->bt_bdev = bdev;
1814 btp->bt_daxdev = dax_dev;
1815
1816 if (xfs_setsize_buftarg_early(btp, bdev))
1817 goto error_free;
1818
1819 if (list_lru_init(&btp->bt_lru))
1820 goto error_free;
1821
1822 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1823 goto error_lru;
1824
1825 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1826 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1827 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1828 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1829 if (register_shrinker(&btp->bt_shrinker))
1830 goto error_pcpu;
1831 return btp;
1832
1833 error_pcpu:
1834 percpu_counter_destroy(&btp->bt_io_count);
1835 error_lru:
1836 list_lru_destroy(&btp->bt_lru);
1837 error_free:
1838 kmem_free(btp);
1839 return NULL;
1840 }
1841
1842 /*
1843 * Cancel a delayed write list.
1844 *
1845 * Remove each buffer from the list, clear the delwri queue flag and drop the
1846 * associated buffer reference.
1847 */
1848 void
1849 xfs_buf_delwri_cancel(
1850 struct list_head *list)
1851 {
1852 struct xfs_buf *bp;
1853
1854 while (!list_empty(list)) {
1855 bp = list_first_entry(list, struct xfs_buf, b_list);
1856
1857 xfs_buf_lock(bp);
1858 bp->b_flags &= ~_XBF_DELWRI_Q;
1859 list_del_init(&bp->b_list);
1860 xfs_buf_relse(bp);
1861 }
1862 }
1863
1864 /*
1865 * Add a buffer to the delayed write list.
1866 *
1867 * This queues a buffer for writeout if it hasn't already been. Note that
1868 * neither this routine nor the buffer list submission functions perform
1869 * any internal synchronization. It is expected that the lists are thread-local
1870 * to the callers.
1871 *
1872 * Returns true if we queued up the buffer, or false if it already had
1873 * been on the buffer list.
1874 */
1875 bool
1876 xfs_buf_delwri_queue(
1877 struct xfs_buf *bp,
1878 struct list_head *list)
1879 {
1880 ASSERT(xfs_buf_islocked(bp));
1881 ASSERT(!(bp->b_flags & XBF_READ));
1882
1883 /*
1884 * If the buffer is already marked delwri it already is queued up
1885 * by someone else for imediate writeout. Just ignore it in that
1886 * case.
1887 */
1888 if (bp->b_flags & _XBF_DELWRI_Q) {
1889 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1890 return false;
1891 }
1892
1893 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1894
1895 /*
1896 * If a buffer gets written out synchronously or marked stale while it
1897 * is on a delwri list we lazily remove it. To do this, the other party
1898 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1899 * It remains referenced and on the list. In a rare corner case it
1900 * might get readded to a delwri list after the synchronous writeout, in
1901 * which case we need just need to re-add the flag here.
1902 */
1903 bp->b_flags |= _XBF_DELWRI_Q;
1904 if (list_empty(&bp->b_list)) {
1905 atomic_inc(&bp->b_hold);
1906 list_add_tail(&bp->b_list, list);
1907 }
1908
1909 return true;
1910 }
1911
1912 /*
1913 * Compare function is more complex than it needs to be because
1914 * the return value is only 32 bits and we are doing comparisons
1915 * on 64 bit values
1916 */
1917 static int
1918 xfs_buf_cmp(
1919 void *priv,
1920 struct list_head *a,
1921 struct list_head *b)
1922 {
1923 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1924 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1925 xfs_daddr_t diff;
1926
1927 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1928 if (diff < 0)
1929 return -1;
1930 if (diff > 0)
1931 return 1;
1932 return 0;
1933 }
1934
1935 /*
1936 * Submit buffers for write. If wait_list is specified, the buffers are
1937 * submitted using sync I/O and placed on the wait list such that the caller can
1938 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1939 * at I/O completion time. In either case, buffers remain locked until I/O
1940 * completes and the buffer is released from the queue.
1941 */
1942 static int
1943 xfs_buf_delwri_submit_buffers(
1944 struct list_head *buffer_list,
1945 struct list_head *wait_list)
1946 {
1947 struct xfs_buf *bp, *n;
1948 int pinned = 0;
1949 struct blk_plug plug;
1950
1951 list_sort(NULL, buffer_list, xfs_buf_cmp);
1952
1953 blk_start_plug(&plug);
1954 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1955 if (!wait_list) {
1956 if (xfs_buf_ispinned(bp)) {
1957 pinned++;
1958 continue;
1959 }
1960 if (!xfs_buf_trylock(bp))
1961 continue;
1962 } else {
1963 xfs_buf_lock(bp);
1964 }
1965
1966 /*
1967 * Someone else might have written the buffer synchronously or
1968 * marked it stale in the meantime. In that case only the
1969 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1970 * reference and remove it from the list here.
1971 */
1972 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1973 list_del_init(&bp->b_list);
1974 xfs_buf_relse(bp);
1975 continue;
1976 }
1977
1978 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1979
1980 /*
1981 * If we have a wait list, each buffer (and associated delwri
1982 * queue reference) transfers to it and is submitted
1983 * synchronously. Otherwise, drop the buffer from the delwri
1984 * queue and submit async.
1985 */
1986 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1987 bp->b_flags |= XBF_WRITE;
1988 if (wait_list) {
1989 bp->b_flags &= ~XBF_ASYNC;
1990 list_move_tail(&bp->b_list, wait_list);
1991 } else {
1992 bp->b_flags |= XBF_ASYNC;
1993 list_del_init(&bp->b_list);
1994 }
1995 __xfs_buf_submit(bp, false);
1996 }
1997 blk_finish_plug(&plug);
1998
1999 return pinned;
2000 }
2001
2002 /*
2003 * Write out a buffer list asynchronously.
2004 *
2005 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2006 * out and not wait for I/O completion on any of the buffers. This interface
2007 * is only safely useable for callers that can track I/O completion by higher
2008 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2009 * function.
2010 *
2011 * Note: this function will skip buffers it would block on, and in doing so
2012 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2013 * it is up to the caller to ensure that the buffer list is fully submitted or
2014 * cancelled appropriately when they are finished with the list. Failure to
2015 * cancel or resubmit the list until it is empty will result in leaked buffers
2016 * at unmount time.
2017 */
2018 int
2019 xfs_buf_delwri_submit_nowait(
2020 struct list_head *buffer_list)
2021 {
2022 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2023 }
2024
2025 /*
2026 * Write out a buffer list synchronously.
2027 *
2028 * This will take the @buffer_list, write all buffers out and wait for I/O
2029 * completion on all of the buffers. @buffer_list is consumed by the function,
2030 * so callers must have some other way of tracking buffers if they require such
2031 * functionality.
2032 */
2033 int
2034 xfs_buf_delwri_submit(
2035 struct list_head *buffer_list)
2036 {
2037 LIST_HEAD (wait_list);
2038 int error = 0, error2;
2039 struct xfs_buf *bp;
2040
2041 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2042
2043 /* Wait for IO to complete. */
2044 while (!list_empty(&wait_list)) {
2045 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2046
2047 list_del_init(&bp->b_list);
2048
2049 /*
2050 * Wait on the locked buffer, check for errors and unlock and
2051 * release the delwri queue reference.
2052 */
2053 error2 = xfs_buf_iowait(bp);
2054 xfs_buf_relse(bp);
2055 if (!error)
2056 error = error2;
2057 }
2058
2059 return error;
2060 }
2061
2062 /*
2063 * Push a single buffer on a delwri queue.
2064 *
2065 * The purpose of this function is to submit a single buffer of a delwri queue
2066 * and return with the buffer still on the original queue. The waiting delwri
2067 * buffer submission infrastructure guarantees transfer of the delwri queue
2068 * buffer reference to a temporary wait list. We reuse this infrastructure to
2069 * transfer the buffer back to the original queue.
2070 *
2071 * Note the buffer transitions from the queued state, to the submitted and wait
2072 * listed state and back to the queued state during this call. The buffer
2073 * locking and queue management logic between _delwri_pushbuf() and
2074 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2075 * before returning.
2076 */
2077 int
2078 xfs_buf_delwri_pushbuf(
2079 struct xfs_buf *bp,
2080 struct list_head *buffer_list)
2081 {
2082 LIST_HEAD (submit_list);
2083 int error;
2084
2085 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2086
2087 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2088
2089 /*
2090 * Isolate the buffer to a new local list so we can submit it for I/O
2091 * independently from the rest of the original list.
2092 */
2093 xfs_buf_lock(bp);
2094 list_move(&bp->b_list, &submit_list);
2095 xfs_buf_unlock(bp);
2096
2097 /*
2098 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2099 * the buffer on the wait list with the original reference. Rather than
2100 * bounce the buffer from a local wait list back to the original list
2101 * after I/O completion, reuse the original list as the wait list.
2102 */
2103 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2104
2105 /*
2106 * The buffer is now locked, under I/O and wait listed on the original
2107 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2108 * return with the buffer unlocked and on the original queue.
2109 */
2110 error = xfs_buf_iowait(bp);
2111 bp->b_flags |= _XBF_DELWRI_Q;
2112 xfs_buf_unlock(bp);
2113
2114 return error;
2115 }
2116
2117 int __init
2118 xfs_buf_init(void)
2119 {
2120 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2121 SLAB_HWCACHE_ALIGN |
2122 SLAB_RECLAIM_ACCOUNT |
2123 SLAB_MEM_SPREAD,
2124 NULL);
2125 if (!xfs_buf_zone)
2126 goto out;
2127
2128 return 0;
2129
2130 out:
2131 return -ENOMEM;
2132 }
2133
2134 void
2135 xfs_buf_terminate(void)
2136 {
2137 kmem_cache_destroy(xfs_buf_zone);
2138 }
2139
2140 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2141 {
2142 /*
2143 * Set the lru reference count to 0 based on the error injection tag.
2144 * This allows userspace to disrupt buffer caching for debug/testing
2145 * purposes.
2146 */
2147 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2148 lru_ref = 0;
2149
2150 atomic_set(&bp->b_lru_ref, lru_ref);
2151 }
2152
2153 /*
2154 * Verify an on-disk magic value against the magic value specified in the
2155 * verifier structure. The verifier magic is in disk byte order so the caller is
2156 * expected to pass the value directly from disk.
2157 */
2158 bool
2159 xfs_verify_magic(
2160 struct xfs_buf *bp,
2161 __be32 dmagic)
2162 {
2163 struct xfs_mount *mp = bp->b_mount;
2164 int idx;
2165
2166 idx = xfs_sb_version_hascrc(&mp->m_sb);
2167 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2168 return false;
2169 return dmagic == bp->b_ops->magic[idx];
2170 }
2171 /*
2172 * Verify an on-disk magic value against the magic value specified in the
2173 * verifier structure. The verifier magic is in disk byte order so the caller is
2174 * expected to pass the value directly from disk.
2175 */
2176 bool
2177 xfs_verify_magic16(
2178 struct xfs_buf *bp,
2179 __be16 dmagic)
2180 {
2181 struct xfs_mount *mp = bp->b_mount;
2182 int idx;
2183
2184 idx = xfs_sb_version_hascrc(&mp->m_sb);
2185 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2186 return false;
2187 return dmagic == bp->b_ops->magic16[idx];
2188 }