Merge pull request #924 from antonio-nino-diaz-arm/an/fix-xn-bit
[project/bcm63xx/atf.git] / lib / xlat_tables / aarch64 / xlat_tables.c
1 /*
2 * Copyright (c) 2014-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <cassert.h>
12 #include <common_def.h>
13 #include <platform_def.h>
14 #include <sys/types.h>
15 #include <utils.h>
16 #include <xlat_tables.h>
17 #include "../xlat_tables_private.h"
18
19 /*
20 * Each platform can define the size of the virtual address space, which is
21 * defined in PLAT_VIRT_ADDR_SPACE_SIZE. TCR.TxSZ is calculated as 64 minus the
22 * width of said address space. The value of TCR.TxSZ must be in the range 16
23 * to 39 [1], which means that the virtual address space width must be in the
24 * range 48 to 25 bits.
25 *
26 * Here we calculate the initial lookup level from the value of
27 * PLAT_VIRT_ADDR_SPACE_SIZE. For a 4 KB page size, level 0 supports virtual
28 * address spaces of widths 48 to 40 bits, level 1 from 39 to 31, and level 2
29 * from 30 to 25. Wider or narrower address spaces are not supported. As a
30 * result, level 3 cannot be used as initial lookup level with 4 KB
31 * granularity. [2]
32 *
33 * For example, for a 35-bit address space (i.e. PLAT_VIRT_ADDR_SPACE_SIZE ==
34 * 1 << 35), TCR.TxSZ will be programmed to (64 - 35) = 29. According to Table
35 * D4-11 in the ARM ARM, the initial lookup level for an address space like
36 * that is 1.
37 *
38 * See the ARMv8-A Architecture Reference Manual (DDI 0487A.j) for more
39 * information:
40 * [1] Page 1730: 'Input address size', 'For all translation stages'.
41 * [2] Section D4.2.5
42 */
43
44 #if PLAT_VIRT_ADDR_SPACE_SIZE > (1ULL << (64 - TCR_TxSZ_MIN))
45
46 # error "PLAT_VIRT_ADDR_SPACE_SIZE is too big."
47
48 #elif PLAT_VIRT_ADDR_SPACE_SIZE > (1ULL << L0_XLAT_ADDRESS_SHIFT)
49
50 # define XLAT_TABLE_LEVEL_BASE 0
51 # define NUM_BASE_LEVEL_ENTRIES \
52 (PLAT_VIRT_ADDR_SPACE_SIZE >> L0_XLAT_ADDRESS_SHIFT)
53
54 #elif PLAT_VIRT_ADDR_SPACE_SIZE > (1 << L1_XLAT_ADDRESS_SHIFT)
55
56 # define XLAT_TABLE_LEVEL_BASE 1
57 # define NUM_BASE_LEVEL_ENTRIES \
58 (PLAT_VIRT_ADDR_SPACE_SIZE >> L1_XLAT_ADDRESS_SHIFT)
59
60 #elif PLAT_VIRT_ADDR_SPACE_SIZE >= (1 << (64 - TCR_TxSZ_MAX))
61
62 # define XLAT_TABLE_LEVEL_BASE 2
63 # define NUM_BASE_LEVEL_ENTRIES \
64 (PLAT_VIRT_ADDR_SPACE_SIZE >> L2_XLAT_ADDRESS_SHIFT)
65
66 #else
67
68 # error "PLAT_VIRT_ADDR_SPACE_SIZE is too small."
69
70 #endif
71
72 static uint64_t base_xlation_table[NUM_BASE_LEVEL_ENTRIES]
73 __aligned(NUM_BASE_LEVEL_ENTRIES * sizeof(uint64_t));
74
75 static unsigned long long tcr_ps_bits;
76
77 static unsigned long long calc_physical_addr_size_bits(
78 unsigned long long max_addr)
79 {
80 /* Physical address can't exceed 48 bits */
81 assert((max_addr & ADDR_MASK_48_TO_63) == 0);
82
83 /* 48 bits address */
84 if (max_addr & ADDR_MASK_44_TO_47)
85 return TCR_PS_BITS_256TB;
86
87 /* 44 bits address */
88 if (max_addr & ADDR_MASK_42_TO_43)
89 return TCR_PS_BITS_16TB;
90
91 /* 42 bits address */
92 if (max_addr & ADDR_MASK_40_TO_41)
93 return TCR_PS_BITS_4TB;
94
95 /* 40 bits address */
96 if (max_addr & ADDR_MASK_36_TO_39)
97 return TCR_PS_BITS_1TB;
98
99 /* 36 bits address */
100 if (max_addr & ADDR_MASK_32_TO_35)
101 return TCR_PS_BITS_64GB;
102
103 return TCR_PS_BITS_4GB;
104 }
105
106 #if ENABLE_ASSERTIONS
107 /* Physical Address ranges supported in the AArch64 Memory Model */
108 static const unsigned int pa_range_bits_arr[] = {
109 PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
110 PARANGE_0101
111 };
112
113 static unsigned long long get_max_supported_pa(void)
114 {
115 u_register_t pa_range = read_id_aa64mmfr0_el1() &
116 ID_AA64MMFR0_EL1_PARANGE_MASK;
117
118 /* All other values are reserved */
119 assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
120
121 return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
122 }
123 #endif /* ENABLE_ASSERTIONS */
124
125 int xlat_arch_current_el(void)
126 {
127 int el = GET_EL(read_CurrentEl());
128
129 assert(el > 0);
130
131 return el;
132 }
133
134 uint64_t xlat_arch_get_xn_desc(int el)
135 {
136 if (el == 3) {
137 return UPPER_ATTRS(XN);
138 } else {
139 assert(el == 1);
140 return UPPER_ATTRS(PXN);
141 }
142 }
143
144 void init_xlat_tables(void)
145 {
146 unsigned long long max_pa;
147 uintptr_t max_va;
148 print_mmap();
149 init_xlation_table(0, base_xlation_table, XLAT_TABLE_LEVEL_BASE,
150 &max_va, &max_pa);
151
152 assert(max_va <= PLAT_VIRT_ADDR_SPACE_SIZE - 1);
153 assert(max_pa <= PLAT_PHY_ADDR_SPACE_SIZE - 1);
154 assert((PLAT_PHY_ADDR_SPACE_SIZE - 1) <= get_max_supported_pa());
155
156 tcr_ps_bits = calc_physical_addr_size_bits(max_pa);
157 }
158
159 /*******************************************************************************
160 * Macro generating the code for the function enabling the MMU in the given
161 * exception level, assuming that the pagetables have already been created.
162 *
163 * _el: Exception level at which the function will run
164 * _tcr_extra: Extra bits to set in the TCR register. This mask will
165 * be OR'ed with the default TCR value.
166 * _tlbi_fct: Function to invalidate the TLBs at the current
167 * exception level
168 ******************************************************************************/
169 #define DEFINE_ENABLE_MMU_EL(_el, _tcr_extra, _tlbi_fct) \
170 void enable_mmu_el##_el(unsigned int flags) \
171 { \
172 uint64_t mair, tcr, ttbr; \
173 uint32_t sctlr; \
174 \
175 assert(IS_IN_EL(_el)); \
176 assert((read_sctlr_el##_el() & SCTLR_M_BIT) == 0); \
177 \
178 /* Set attributes in the right indices of the MAIR */ \
179 mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX); \
180 mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, \
181 ATTR_IWBWA_OWBWA_NTR_INDEX); \
182 mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, \
183 ATTR_NON_CACHEABLE_INDEX); \
184 write_mair_el##_el(mair); \
185 \
186 /* Invalidate TLBs at the current exception level */ \
187 _tlbi_fct(); \
188 \
189 /* Set TCR bits as well. */ \
190 /* Set T0SZ to (64 - width of virtual address space) */ \
191 if (flags & XLAT_TABLE_NC) { \
192 /* Inner & outer non-cacheable non-shareable. */\
193 tcr = TCR_SH_NON_SHAREABLE | \
194 TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC | \
195 (64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE));\
196 } else { \
197 /* Inner & outer WBWA & shareable. */ \
198 tcr = TCR_SH_INNER_SHAREABLE | \
199 TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA | \
200 (64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE));\
201 } \
202 tcr |= _tcr_extra; \
203 write_tcr_el##_el(tcr); \
204 \
205 /* Set TTBR bits as well */ \
206 ttbr = (uint64_t) base_xlation_table; \
207 write_ttbr0_el##_el(ttbr); \
208 \
209 /* Ensure all translation table writes have drained */ \
210 /* into memory, the TLB invalidation is complete, */ \
211 /* and translation register writes are committed */ \
212 /* before enabling the MMU */ \
213 dsbish(); \
214 isb(); \
215 \
216 sctlr = read_sctlr_el##_el(); \
217 sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT; \
218 \
219 if (flags & DISABLE_DCACHE) \
220 sctlr &= ~SCTLR_C_BIT; \
221 else \
222 sctlr |= SCTLR_C_BIT; \
223 \
224 write_sctlr_el##_el(sctlr); \
225 \
226 /* Ensure the MMU enable takes effect immediately */ \
227 isb(); \
228 }
229
230 /* Define EL1 and EL3 variants of the function enabling the MMU */
231 DEFINE_ENABLE_MMU_EL(1,
232 (tcr_ps_bits << TCR_EL1_IPS_SHIFT),
233 tlbivmalle1)
234 DEFINE_ENABLE_MMU_EL(3,
235 TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT),
236 tlbialle3)