b887427a2e2ce564664ab823b750ecd40f15e356
[project/bcm63xx/atf.git] / lib / xlat_tables_v2 / xlat_tables_context.c
1 /*
2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <debug.h>
9 #include <platform_def.h>
10 #include <xlat_tables_defs.h>
11 #include <xlat_tables_v2.h>
12
13 #include "xlat_tables_private.h"
14
15 /*
16 * MMU configuration register values for the active translation context. Used
17 * from the MMU assembly helpers.
18 */
19 uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
20
21 /*
22 * Allocate and initialise the default translation context for the BL image
23 * currently executing.
24 */
25 REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
26 PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
27
28 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
29 unsigned int attr)
30 {
31 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
32
33 mmap_add_region_ctx(&tf_xlat_ctx, &mm);
34 }
35
36 void mmap_add(const mmap_region_t *mm)
37 {
38 mmap_add_ctx(&tf_xlat_ctx, mm);
39 }
40
41 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
42 size_t size, unsigned int attr)
43 {
44 mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
45
46 mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
47
48 *base_va = mm.base_va;
49 }
50
51 void mmap_add_alloc_va(mmap_region_t *mm)
52 {
53 while (mm->granularity != 0U) {
54 assert(mm->base_va == 0U);
55 mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm);
56 mm++;
57 }
58 }
59
60 #if PLAT_XLAT_TABLES_DYNAMIC
61
62 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
63 size_t size, unsigned int attr)
64 {
65 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
66
67 return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
68 }
69
70 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
71 uintptr_t *base_va, size_t size,
72 unsigned int attr)
73 {
74 mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
75
76 int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
77
78 *base_va = mm.base_va;
79
80 return rc;
81 }
82
83
84 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
85 {
86 return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
87 base_va, size);
88 }
89
90 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
91
92 void __init init_xlat_tables(void)
93 {
94 assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);
95
96 unsigned int current_el = xlat_arch_current_el();
97
98 if (current_el == 1U) {
99 tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
100 } else if (current_el == 2U) {
101 tf_xlat_ctx.xlat_regime = EL2_REGIME;
102 } else {
103 assert(current_el == 3U);
104 tf_xlat_ctx.xlat_regime = EL3_REGIME;
105 }
106
107 init_xlat_tables_ctx(&tf_xlat_ctx);
108 }
109
110 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr)
111 {
112 return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr);
113 }
114
115 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr)
116 {
117 return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr);
118 }
119
120 /*
121 * If dynamic allocation of new regions is disabled then by the time we call the
122 * function enabling the MMU, we'll have registered all the memory regions to
123 * map for the system's lifetime. Therefore, at this point we know the maximum
124 * physical address that will ever be mapped.
125 *
126 * If dynamic allocation is enabled then we can't make any such assumption
127 * because the maximum physical address could get pushed while adding a new
128 * region. Therefore, in this case we have to assume that the whole address
129 * space size might be mapped.
130 */
131 #ifdef PLAT_XLAT_TABLES_DYNAMIC
132 #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address
133 #else
134 #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa
135 #endif
136
137 #ifdef AARCH32
138
139 void enable_mmu_svc_mon(unsigned int flags)
140 {
141 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
142 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
143 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
144 enable_mmu_direct_svc_mon(flags);
145 }
146
147 void enable_mmu_hyp(unsigned int flags)
148 {
149 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
150 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
151 tf_xlat_ctx.va_max_address, EL2_REGIME);
152 enable_mmu_direct_hyp(flags);
153 }
154
155 #else
156
157 void enable_mmu_el1(unsigned int flags)
158 {
159 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
160 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
161 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
162 enable_mmu_direct_el1(flags);
163 }
164
165 void enable_mmu_el2(unsigned int flags)
166 {
167 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
168 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
169 tf_xlat_ctx.va_max_address, EL2_REGIME);
170 enable_mmu_direct_el2(flags);
171 }
172
173 void enable_mmu_el3(unsigned int flags)
174 {
175 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
176 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
177 tf_xlat_ctx.va_max_address, EL3_REGIME);
178 enable_mmu_direct_el3(flags);
179 }
180
181 #endif /* AARCH32 */