bf3ae1e7de090c15a86e9ec1d1e6b79858726476
[project/bcm63xx/atf.git] / lib / xlat_tables_v2 / xlat_tables_context.c
1 /*
2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8
9 #include <platform_def.h>
10
11 #include <common/debug.h>
12 #include <lib/xlat_tables/xlat_tables_defs.h>
13 #include <lib/xlat_tables/xlat_tables_v2.h>
14
15 #include "xlat_tables_private.h"
16
17 /*
18 * MMU configuration register values for the active translation context. Used
19 * from the MMU assembly helpers.
20 */
21 uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
22
23 /*
24 * Allocate and initialise the default translation context for the BL image
25 * currently executing.
26 */
27 REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
28 PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
29
30 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
31 unsigned int attr)
32 {
33 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
34
35 mmap_add_region_ctx(&tf_xlat_ctx, &mm);
36 }
37
38 void mmap_add(const mmap_region_t *mm)
39 {
40 mmap_add_ctx(&tf_xlat_ctx, mm);
41 }
42
43 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
44 size_t size, unsigned int attr)
45 {
46 mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
47
48 mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
49
50 *base_va = mm.base_va;
51 }
52
53 void mmap_add_alloc_va(mmap_region_t *mm)
54 {
55 while (mm->granularity != 0U) {
56 assert(mm->base_va == 0U);
57 mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm);
58 mm++;
59 }
60 }
61
62 #if PLAT_XLAT_TABLES_DYNAMIC
63
64 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
65 size_t size, unsigned int attr)
66 {
67 mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
68
69 return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
70 }
71
72 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
73 uintptr_t *base_va, size_t size,
74 unsigned int attr)
75 {
76 mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
77
78 int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
79
80 *base_va = mm.base_va;
81
82 return rc;
83 }
84
85
86 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
87 {
88 return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
89 base_va, size);
90 }
91
92 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
93
94 void __init init_xlat_tables(void)
95 {
96 assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);
97
98 unsigned int current_el = xlat_arch_current_el();
99
100 if (current_el == 1U) {
101 tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
102 } else if (current_el == 2U) {
103 tf_xlat_ctx.xlat_regime = EL2_REGIME;
104 } else {
105 assert(current_el == 3U);
106 tf_xlat_ctx.xlat_regime = EL3_REGIME;
107 }
108
109 init_xlat_tables_ctx(&tf_xlat_ctx);
110 }
111
112 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr)
113 {
114 return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr);
115 }
116
117 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr)
118 {
119 return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr);
120 }
121
122 /*
123 * If dynamic allocation of new regions is disabled then by the time we call the
124 * function enabling the MMU, we'll have registered all the memory regions to
125 * map for the system's lifetime. Therefore, at this point we know the maximum
126 * physical address that will ever be mapped.
127 *
128 * If dynamic allocation is enabled then we can't make any such assumption
129 * because the maximum physical address could get pushed while adding a new
130 * region. Therefore, in this case we have to assume that the whole address
131 * space size might be mapped.
132 */
133 #ifdef PLAT_XLAT_TABLES_DYNAMIC
134 #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address
135 #else
136 #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa
137 #endif
138
139 #ifdef AARCH32
140
141 void enable_mmu_svc_mon(unsigned int flags)
142 {
143 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
144 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
145 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
146 enable_mmu_direct_svc_mon(flags);
147 }
148
149 void enable_mmu_hyp(unsigned int flags)
150 {
151 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
152 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
153 tf_xlat_ctx.va_max_address, EL2_REGIME);
154 enable_mmu_direct_hyp(flags);
155 }
156
157 #else
158
159 void enable_mmu_el1(unsigned int flags)
160 {
161 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
162 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
163 tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
164 enable_mmu_direct_el1(flags);
165 }
166
167 void enable_mmu_el2(unsigned int flags)
168 {
169 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
170 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
171 tf_xlat_ctx.va_max_address, EL2_REGIME);
172 enable_mmu_direct_el2(flags);
173 }
174
175 void enable_mmu_el3(unsigned int flags)
176 {
177 setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
178 tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
179 tf_xlat_ctx.va_max_address, EL3_REGIME);
180 enable_mmu_direct_el3(flags);
181 }
182
183 #endif /* AARCH32 */