libopkg: introduce SF_NEED_DETAIL flag
[project/opkg-lede.git] / libopkg / md5.c
1 /* Functions to compute MD5 message digest of files or memory blocks.
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995,1996,1997,1999,2000,2001,2005,2006,2008
4 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
22
23 #include <config.h>
24
25 #include "md5.h"
26
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
31
32 #if USE_UNLOCKED_IO
33 #include "unlocked-io.h"
34 #endif
35
36 #ifdef _LIBC
37 #include <endian.h>
38 #if __BYTE_ORDER == __BIG_ENDIAN
39 #define WORDS_BIGENDIAN 1
40 #endif
41 /* We need to keep the namespace clean so define the MD5 function
42 protected using leading __ . */
43 #define md5_init_ctx __md5_init_ctx
44 #define md5_process_block __md5_process_block
45 #define md5_process_bytes __md5_process_bytes
46 #define md5_finish_ctx __md5_finish_ctx
47 #define md5_read_ctx __md5_read_ctx
48 #define md5_stream __md5_stream
49 #define md5_buffer __md5_buffer
50 #endif
51
52 #ifdef WORDS_BIGENDIAN
53 #define SWAP(n) \
54 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
55 #else
56 #define SWAP(n) (n)
57 #endif
58
59 #define BLOCKSIZE 4096
60 #if BLOCKSIZE % 64 != 0
61 #error "invalid BLOCKSIZE"
62 #endif
63
64 /* This array contains the bytes used to pad the buffer to the next
65 64-byte boundary. (RFC 1321, 3.1: Step 1) */
66 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
67
68 /* Initialize structure containing state of computation.
69 (RFC 1321, 3.3: Step 3) */
70 void md5_init_ctx(struct md5_ctx *ctx)
71 {
72 ctx->A = 0x67452301;
73 ctx->B = 0xefcdab89;
74 ctx->C = 0x98badcfe;
75 ctx->D = 0x10325476;
76
77 ctx->total[0] = ctx->total[1] = 0;
78 ctx->buflen = 0;
79 }
80
81 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
82 If your architecture allows unaligned access this is equivalent to
83 * (uint32_t *) cp = v */
84 static inline void set_uint32(char *cp, uint32_t v)
85 {
86 memcpy(cp, &v, sizeof v);
87 }
88
89 /* Put result from CTX in first 16 bytes following RESBUF. The result
90 must be in little endian byte order. */
91 void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
92 {
93 char *r = resbuf;
94 set_uint32(r + 0 * sizeof ctx->A, SWAP(ctx->A));
95 set_uint32(r + 1 * sizeof ctx->B, SWAP(ctx->B));
96 set_uint32(r + 2 * sizeof ctx->C, SWAP(ctx->C));
97 set_uint32(r + 3 * sizeof ctx->D, SWAP(ctx->D));
98
99 return resbuf;
100 }
101
102 /* Process the remaining bytes in the internal buffer and the usual
103 prolog according to the standard and write the result to RESBUF. */
104 void *md5_finish_ctx(struct md5_ctx *ctx, void *resbuf)
105 {
106 /* Take yet unprocessed bytes into account. */
107 uint32_t bytes = ctx->buflen;
108 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
109
110 /* Now count remaining bytes. */
111 ctx->total[0] += bytes;
112 if (ctx->total[0] < bytes)
113 ++ctx->total[1];
114
115 /* Put the 64-bit file length in *bits* at the end of the buffer. */
116 ctx->buffer[size - 2] = SWAP(ctx->total[0] << 3);
117 ctx->buffer[size - 1] =
118 SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
119
120 memcpy(&((char *)ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
121
122 /* Process last bytes. */
123 md5_process_block(ctx->buffer, size * 4, ctx);
124
125 return md5_read_ctx(ctx, resbuf);
126 }
127
128 /* Compute MD5 message digest for bytes read from STREAM. The
129 resulting message digest number will be written into the 16 bytes
130 beginning at RESBLOCK. */
131 int md5_stream(FILE * stream, void *resblock)
132 {
133 struct md5_ctx ctx;
134 char buffer[BLOCKSIZE + 72];
135 size_t sum;
136
137 /* Initialize the computation context. */
138 md5_init_ctx(&ctx);
139
140 /* Iterate over full file contents. */
141 while (1) {
142 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
143 computation function processes the whole buffer so that with the
144 next round of the loop another block can be read. */
145 size_t n;
146 sum = 0;
147
148 /* Read block. Take care for partial reads. */
149 while (1) {
150 n = fread(buffer + sum, 1, BLOCKSIZE - sum, stream);
151
152 sum += n;
153
154 if (sum == BLOCKSIZE)
155 break;
156
157 if (n == 0) {
158 /* Check for the error flag IFF N == 0, so that we don't
159 exit the loop after a partial read due to e.g., EAGAIN
160 or EWOULDBLOCK. */
161 if (ferror(stream))
162 return 1;
163 goto process_partial_block;
164 }
165
166 /* We've read at least one byte, so ignore errors. But always
167 check for EOF, since feof may be true even though N > 0.
168 Otherwise, we could end up calling fread after EOF. */
169 if (feof(stream))
170 goto process_partial_block;
171 }
172
173 /* Process buffer with BLOCKSIZE bytes. Note that
174 BLOCKSIZE % 64 == 0
175 */
176 md5_process_block(buffer, BLOCKSIZE, &ctx);
177 }
178
179 process_partial_block:
180
181 /* Process any remaining bytes. */
182 if (sum > 0)
183 md5_process_bytes(buffer, sum, &ctx);
184
185 /* Construct result in desired memory. */
186 md5_finish_ctx(&ctx, resblock);
187 return 0;
188 }
189
190 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
191 result is always in little endian byte order, so that a byte-wise
192 output yields to the wanted ASCII representation of the message
193 digest. */
194 void *md5_buffer(const char *buffer, size_t len, void *resblock)
195 {
196 struct md5_ctx ctx;
197
198 /* Initialize the computation context. */
199 md5_init_ctx(&ctx);
200
201 /* Process whole buffer but last len % 64 bytes. */
202 md5_process_bytes(buffer, len, &ctx);
203
204 /* Put result in desired memory area. */
205 return md5_finish_ctx(&ctx, resblock);
206 }
207
208 void md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx)
209 {
210 /* When we already have some bits in our internal buffer concatenate
211 both inputs first. */
212 if (ctx->buflen != 0) {
213 size_t left_over = ctx->buflen;
214 size_t add = 128 - left_over > len ? len : 128 - left_over;
215
216 memcpy(&((char *)ctx->buffer)[left_over], buffer, add);
217 ctx->buflen += add;
218
219 if (ctx->buflen > 64) {
220 md5_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
221
222 ctx->buflen &= 63;
223 /* The regions in the following copy operation cannot overlap. */
224 memcpy(ctx->buffer,
225 &((char *)ctx->buffer)[(left_over + add) & ~63],
226 ctx->buflen);
227 }
228
229 buffer = (const char *)buffer + add;
230 len -= add;
231 }
232
233 /* Process available complete blocks. */
234 if (len >= 64) {
235 #if !_STRING_ARCH_unaligned
236 #define alignof(type) offsetof (struct { char c; type x; }, x)
237 #define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
238 if (UNALIGNED_P(buffer))
239 while (len > 64) {
240 md5_process_block(memcpy
241 (ctx->buffer, buffer, 64), 64,
242 ctx);
243 buffer = (const char *)buffer + 64;
244 len -= 64;
245 } else
246 #endif
247 {
248 md5_process_block(buffer, len & ~63, ctx);
249 buffer = (const char *)buffer + (len & ~63);
250 len &= 63;
251 }
252 }
253
254 /* Move remaining bytes in internal buffer. */
255 if (len > 0) {
256 size_t left_over = ctx->buflen;
257
258 memcpy(&((char *)ctx->buffer)[left_over], buffer, len);
259 left_over += len;
260 if (left_over >= 64) {
261 md5_process_block(ctx->buffer, 64, ctx);
262 left_over -= 64;
263 memcpy(ctx->buffer, &ctx->buffer[16], left_over);
264 }
265 ctx->buflen = left_over;
266 }
267 }
268
269 /* These are the four functions used in the four steps of the MD5 algorithm
270 and defined in the RFC 1321. The first function is a little bit optimized
271 (as found in Colin Plumbs public domain implementation). */
272 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
273 #define FF(b, c, d) (d ^ (b & (c ^ d)))
274 #define FG(b, c, d) FF (d, b, c)
275 #define FH(b, c, d) (b ^ c ^ d)
276 #define FI(b, c, d) (c ^ (b | ~d))
277
278 /* Process LEN bytes of BUFFER, accumulating context into CTX.
279 It is assumed that LEN % 64 == 0. */
280
281 void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)
282 {
283 uint32_t correct_words[16];
284 const uint32_t *words = buffer;
285 size_t nwords = len / sizeof(uint32_t);
286 const uint32_t *endp = words + nwords;
287 uint32_t A = ctx->A;
288 uint32_t B = ctx->B;
289 uint32_t C = ctx->C;
290 uint32_t D = ctx->D;
291
292 /* First increment the byte count. RFC 1321 specifies the possible
293 length of the file up to 2^64 bits. Here we only compute the
294 number of bytes. Do a double word increment. */
295 ctx->total[0] += len;
296 if (ctx->total[0] < len)
297 ++ctx->total[1];
298
299 /* Process all bytes in the buffer with 64 bytes in each round of
300 the loop. */
301 while (words < endp) {
302 uint32_t *cwp = correct_words;
303 uint32_t A_save = A;
304 uint32_t B_save = B;
305 uint32_t C_save = C;
306 uint32_t D_save = D;
307
308 /* First round: using the given function, the context and a constant
309 the next context is computed. Because the algorithms processing
310 unit is a 32-bit word and it is determined to work on words in
311 little endian byte order we perhaps have to change the byte order
312 before the computation. To reduce the work for the next steps
313 we store the swapped words in the array CORRECT_WORDS. */
314
315 #define OP(a, b, c, d, s, T) \
316 do \
317 { \
318 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
319 ++words; \
320 CYCLIC (a, s); \
321 a += b; \
322 } \
323 while (0)
324
325 /* It is unfortunate that C does not provide an operator for
326 cyclic rotation. Hope the C compiler is smart enough. */
327 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
328
329 /* Before we start, one word to the strange constants.
330 They are defined in RFC 1321 as
331
332 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
333
334 Here is an equivalent invocation using Perl:
335
336 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
337 */
338
339 /* Round 1. */
340 OP(A, B, C, D, 7, 0xd76aa478);
341 OP(D, A, B, C, 12, 0xe8c7b756);
342 OP(C, D, A, B, 17, 0x242070db);
343 OP(B, C, D, A, 22, 0xc1bdceee);
344 OP(A, B, C, D, 7, 0xf57c0faf);
345 OP(D, A, B, C, 12, 0x4787c62a);
346 OP(C, D, A, B, 17, 0xa8304613);
347 OP(B, C, D, A, 22, 0xfd469501);
348 OP(A, B, C, D, 7, 0x698098d8);
349 OP(D, A, B, C, 12, 0x8b44f7af);
350 OP(C, D, A, B, 17, 0xffff5bb1);
351 OP(B, C, D, A, 22, 0x895cd7be);
352 OP(A, B, C, D, 7, 0x6b901122);
353 OP(D, A, B, C, 12, 0xfd987193);
354 OP(C, D, A, B, 17, 0xa679438e);
355 OP(B, C, D, A, 22, 0x49b40821);
356
357 /* For the second to fourth round we have the possibly swapped words
358 in CORRECT_WORDS. Redefine the macro to take an additional first
359 argument specifying the function to use. */
360 #undef OP
361 #define OP(f, a, b, c, d, k, s, T) \
362 do \
363 { \
364 a += f (b, c, d) + correct_words[k] + T; \
365 CYCLIC (a, s); \
366 a += b; \
367 } \
368 while (0)
369
370 /* Round 2. */
371 OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
372 OP(FG, D, A, B, C, 6, 9, 0xc040b340);
373 OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
374 OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
375 OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
376 OP(FG, D, A, B, C, 10, 9, 0x02441453);
377 OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
378 OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
379 OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
380 OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
381 OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
382 OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
383 OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
384 OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
385 OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
386 OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
387
388 /* Round 3. */
389 OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
390 OP(FH, D, A, B, C, 8, 11, 0x8771f681);
391 OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
392 OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
393 OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
394 OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
395 OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
396 OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
397 OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
398 OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
399 OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
400 OP(FH, B, C, D, A, 6, 23, 0x04881d05);
401 OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
402 OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
403 OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
404 OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
405
406 /* Round 4. */
407 OP(FI, A, B, C, D, 0, 6, 0xf4292244);
408 OP(FI, D, A, B, C, 7, 10, 0x432aff97);
409 OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
410 OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
411 OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
412 OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
413 OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
414 OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
415 OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
416 OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
417 OP(FI, C, D, A, B, 6, 15, 0xa3014314);
418 OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
419 OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
420 OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
421 OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
422 OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
423
424 /* Add the starting values of the context. */
425 A += A_save;
426 B += B_save;
427 C += C_save;
428 D += D_save;
429 }
430
431 /* Put checksum in context given as argument. */
432 ctx->A = A;
433 ctx->B = B;
434 ctx->C = C;
435 ctx->D = D;
436 }