netfilter: drop bridge nf reset from nf_reset
[openwrt/staging/blogic.git] / net / packet / af_packet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49 #include <linux/types.h>
50 #include <linux/mm.h>
51 #include <linux/capability.h>
52 #include <linux/fcntl.h>
53 #include <linux/socket.h>
54 #include <linux/in.h>
55 #include <linux/inet.h>
56 #include <linux/netdevice.h>
57 #include <linux/if_packet.h>
58 #include <linux/wireless.h>
59 #include <linux/kernel.h>
60 #include <linux/kmod.h>
61 #include <linux/slab.h>
62 #include <linux/vmalloc.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/errno.h>
69 #include <linux/timer.h>
70 #include <linux/uaccess.h>
71 #include <asm/ioctls.h>
72 #include <asm/page.h>
73 #include <asm/cacheflush.h>
74 #include <asm/io.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/poll.h>
78 #include <linux/module.h>
79 #include <linux/init.h>
80 #include <linux/mutex.h>
81 #include <linux/if_vlan.h>
82 #include <linux/virtio_net.h>
83 #include <linux/errqueue.h>
84 #include <linux/net_tstamp.h>
85 #include <linux/percpu.h>
86 #ifdef CONFIG_INET
87 #include <net/inet_common.h>
88 #endif
89 #include <linux/bpf.h>
90 #include <net/compat.h>
91
92 #include "internal.h"
93
94 /*
95 Assumptions:
96 - if device has no dev->hard_header routine, it adds and removes ll header
97 inside itself. In this case ll header is invisible outside of device,
98 but higher levels still should reserve dev->hard_header_len.
99 Some devices are enough clever to reallocate skb, when header
100 will not fit to reserved space (tunnel), another ones are silly
101 (PPP).
102 - packet socket receives packets with pulled ll header,
103 so that SOCK_RAW should push it back.
104
105 On receive:
106 -----------
107
108 Incoming, dev->hard_header!=NULL
109 mac_header -> ll header
110 data -> data
111
112 Outgoing, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> ll header
115
116 Incoming, dev->hard_header==NULL
117 mac_header -> UNKNOWN position. It is very likely, that it points to ll
118 header. PPP makes it, that is wrong, because introduce
119 assymetry between rx and tx paths.
120 data -> data
121
122 Outgoing, dev->hard_header==NULL
123 mac_header -> data. ll header is still not built!
124 data -> data
125
126 Resume
127 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
128
129
130 On transmit:
131 ------------
132
133 dev->hard_header != NULL
134 mac_header -> ll header
135 data -> ll header
136
137 dev->hard_header == NULL (ll header is added by device, we cannot control it)
138 mac_header -> data
139 data -> data
140
141 We should set nh.raw on output to correct posistion,
142 packet classifier depends on it.
143 */
144
145 /* Private packet socket structures. */
146
147 /* identical to struct packet_mreq except it has
148 * a longer address field.
149 */
150 struct packet_mreq_max {
151 int mr_ifindex;
152 unsigned short mr_type;
153 unsigned short mr_alen;
154 unsigned char mr_address[MAX_ADDR_LEN];
155 };
156
157 union tpacket_uhdr {
158 struct tpacket_hdr *h1;
159 struct tpacket2_hdr *h2;
160 struct tpacket3_hdr *h3;
161 void *raw;
162 };
163
164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
165 int closing, int tx_ring);
166
167 #define V3_ALIGNMENT (8)
168
169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
170
171 #define BLK_PLUS_PRIV(sz_of_priv) \
172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
173
174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
181
182 struct packet_sock;
183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
184 struct packet_type *pt, struct net_device *orig_dev);
185
186 static void *packet_previous_frame(struct packet_sock *po,
187 struct packet_ring_buffer *rb,
188 int status);
189 static void packet_increment_head(struct packet_ring_buffer *buff);
190 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
192 struct packet_sock *);
193 static void prb_retire_current_block(struct tpacket_kbdq_core *,
194 struct packet_sock *, unsigned int status);
195 static int prb_queue_frozen(struct tpacket_kbdq_core *);
196 static void prb_open_block(struct tpacket_kbdq_core *,
197 struct tpacket_block_desc *);
198 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
201 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
202 struct tpacket3_hdr *);
203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
204 struct tpacket3_hdr *);
205 static void packet_flush_mclist(struct sock *sk);
206 static u16 packet_pick_tx_queue(struct sk_buff *skb);
207
208 struct packet_skb_cb {
209 union {
210 struct sockaddr_pkt pkt;
211 union {
212 /* Trick: alias skb original length with
213 * ll.sll_family and ll.protocol in order
214 * to save room.
215 */
216 unsigned int origlen;
217 struct sockaddr_ll ll;
218 };
219 } sa;
220 };
221
222 #define vio_le() virtio_legacy_is_little_endian()
223
224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
225
226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
227 #define GET_PBLOCK_DESC(x, bid) \
228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
231 #define GET_NEXT_PRB_BLK_NUM(x) \
232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
233 ((x)->kactive_blk_num+1) : 0)
234
235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
236 static void __fanout_link(struct sock *sk, struct packet_sock *po);
237
238 static int packet_direct_xmit(struct sk_buff *skb)
239 {
240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
241 }
242
243 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
244 {
245 struct net_device *dev;
246
247 rcu_read_lock();
248 dev = rcu_dereference(po->cached_dev);
249 if (likely(dev))
250 dev_hold(dev);
251 rcu_read_unlock();
252
253 return dev;
254 }
255
256 static void packet_cached_dev_assign(struct packet_sock *po,
257 struct net_device *dev)
258 {
259 rcu_assign_pointer(po->cached_dev, dev);
260 }
261
262 static void packet_cached_dev_reset(struct packet_sock *po)
263 {
264 RCU_INIT_POINTER(po->cached_dev, NULL);
265 }
266
267 static bool packet_use_direct_xmit(const struct packet_sock *po)
268 {
269 return po->xmit == packet_direct_xmit;
270 }
271
272 static u16 packet_pick_tx_queue(struct sk_buff *skb)
273 {
274 struct net_device *dev = skb->dev;
275 const struct net_device_ops *ops = dev->netdev_ops;
276 int cpu = raw_smp_processor_id();
277 u16 queue_index;
278
279 #ifdef CONFIG_XPS
280 skb->sender_cpu = cpu + 1;
281 #endif
282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
283 if (ops->ndo_select_queue) {
284 queue_index = ops->ndo_select_queue(dev, skb, NULL);
285 queue_index = netdev_cap_txqueue(dev, queue_index);
286 } else {
287 queue_index = netdev_pick_tx(dev, skb, NULL);
288 }
289
290 return queue_index;
291 }
292
293 /* __register_prot_hook must be invoked through register_prot_hook
294 * or from a context in which asynchronous accesses to the packet
295 * socket is not possible (packet_create()).
296 */
297 static void __register_prot_hook(struct sock *sk)
298 {
299 struct packet_sock *po = pkt_sk(sk);
300
301 if (!po->running) {
302 if (po->fanout)
303 __fanout_link(sk, po);
304 else
305 dev_add_pack(&po->prot_hook);
306
307 sock_hold(sk);
308 po->running = 1;
309 }
310 }
311
312 static void register_prot_hook(struct sock *sk)
313 {
314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
315 __register_prot_hook(sk);
316 }
317
318 /* If the sync parameter is true, we will temporarily drop
319 * the po->bind_lock and do a synchronize_net to make sure no
320 * asynchronous packet processing paths still refer to the elements
321 * of po->prot_hook. If the sync parameter is false, it is the
322 * callers responsibility to take care of this.
323 */
324 static void __unregister_prot_hook(struct sock *sk, bool sync)
325 {
326 struct packet_sock *po = pkt_sk(sk);
327
328 lockdep_assert_held_once(&po->bind_lock);
329
330 po->running = 0;
331
332 if (po->fanout)
333 __fanout_unlink(sk, po);
334 else
335 __dev_remove_pack(&po->prot_hook);
336
337 __sock_put(sk);
338
339 if (sync) {
340 spin_unlock(&po->bind_lock);
341 synchronize_net();
342 spin_lock(&po->bind_lock);
343 }
344 }
345
346 static void unregister_prot_hook(struct sock *sk, bool sync)
347 {
348 struct packet_sock *po = pkt_sk(sk);
349
350 if (po->running)
351 __unregister_prot_hook(sk, sync);
352 }
353
354 static inline struct page * __pure pgv_to_page(void *addr)
355 {
356 if (is_vmalloc_addr(addr))
357 return vmalloc_to_page(addr);
358 return virt_to_page(addr);
359 }
360
361 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
362 {
363 union tpacket_uhdr h;
364
365 h.raw = frame;
366 switch (po->tp_version) {
367 case TPACKET_V1:
368 h.h1->tp_status = status;
369 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
370 break;
371 case TPACKET_V2:
372 h.h2->tp_status = status;
373 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
374 break;
375 case TPACKET_V3:
376 h.h3->tp_status = status;
377 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
378 break;
379 default:
380 WARN(1, "TPACKET version not supported.\n");
381 BUG();
382 }
383
384 smp_wmb();
385 }
386
387 static int __packet_get_status(const struct packet_sock *po, void *frame)
388 {
389 union tpacket_uhdr h;
390
391 smp_rmb();
392
393 h.raw = frame;
394 switch (po->tp_version) {
395 case TPACKET_V1:
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 return h.h1->tp_status;
398 case TPACKET_V2:
399 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
400 return h.h2->tp_status;
401 case TPACKET_V3:
402 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
403 return h.h3->tp_status;
404 default:
405 WARN(1, "TPACKET version not supported.\n");
406 BUG();
407 return 0;
408 }
409 }
410
411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
412 unsigned int flags)
413 {
414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
415
416 if (shhwtstamps &&
417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
418 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
419 return TP_STATUS_TS_RAW_HARDWARE;
420
421 if (ktime_to_timespec_cond(skb->tstamp, ts))
422 return TP_STATUS_TS_SOFTWARE;
423
424 return 0;
425 }
426
427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
428 struct sk_buff *skb)
429 {
430 union tpacket_uhdr h;
431 struct timespec ts;
432 __u32 ts_status;
433
434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
435 return 0;
436
437 h.raw = frame;
438 switch (po->tp_version) {
439 case TPACKET_V1:
440 h.h1->tp_sec = ts.tv_sec;
441 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
442 break;
443 case TPACKET_V2:
444 h.h2->tp_sec = ts.tv_sec;
445 h.h2->tp_nsec = ts.tv_nsec;
446 break;
447 case TPACKET_V3:
448 h.h3->tp_sec = ts.tv_sec;
449 h.h3->tp_nsec = ts.tv_nsec;
450 break;
451 default:
452 WARN(1, "TPACKET version not supported.\n");
453 BUG();
454 }
455
456 /* one flush is safe, as both fields always lie on the same cacheline */
457 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
458 smp_wmb();
459
460 return ts_status;
461 }
462
463 static void *packet_lookup_frame(const struct packet_sock *po,
464 const struct packet_ring_buffer *rb,
465 unsigned int position,
466 int status)
467 {
468 unsigned int pg_vec_pos, frame_offset;
469 union tpacket_uhdr h;
470
471 pg_vec_pos = position / rb->frames_per_block;
472 frame_offset = position % rb->frames_per_block;
473
474 h.raw = rb->pg_vec[pg_vec_pos].buffer +
475 (frame_offset * rb->frame_size);
476
477 if (status != __packet_get_status(po, h.raw))
478 return NULL;
479
480 return h.raw;
481 }
482
483 static void *packet_current_frame(struct packet_sock *po,
484 struct packet_ring_buffer *rb,
485 int status)
486 {
487 return packet_lookup_frame(po, rb, rb->head, status);
488 }
489
490 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
491 {
492 del_timer_sync(&pkc->retire_blk_timer);
493 }
494
495 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
496 struct sk_buff_head *rb_queue)
497 {
498 struct tpacket_kbdq_core *pkc;
499
500 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
501
502 spin_lock_bh(&rb_queue->lock);
503 pkc->delete_blk_timer = 1;
504 spin_unlock_bh(&rb_queue->lock);
505
506 prb_del_retire_blk_timer(pkc);
507 }
508
509 static void prb_setup_retire_blk_timer(struct packet_sock *po)
510 {
511 struct tpacket_kbdq_core *pkc;
512
513 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
514 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
515 0);
516 pkc->retire_blk_timer.expires = jiffies;
517 }
518
519 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
520 int blk_size_in_bytes)
521 {
522 struct net_device *dev;
523 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
524 struct ethtool_link_ksettings ecmd;
525 int err;
526
527 rtnl_lock();
528 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
529 if (unlikely(!dev)) {
530 rtnl_unlock();
531 return DEFAULT_PRB_RETIRE_TOV;
532 }
533 err = __ethtool_get_link_ksettings(dev, &ecmd);
534 rtnl_unlock();
535 if (!err) {
536 /*
537 * If the link speed is so slow you don't really
538 * need to worry about perf anyways
539 */
540 if (ecmd.base.speed < SPEED_1000 ||
541 ecmd.base.speed == SPEED_UNKNOWN) {
542 return DEFAULT_PRB_RETIRE_TOV;
543 } else {
544 msec = 1;
545 div = ecmd.base.speed / 1000;
546 }
547 }
548
549 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
550
551 if (div)
552 mbits /= div;
553
554 tmo = mbits * msec;
555
556 if (div)
557 return tmo+1;
558 return tmo;
559 }
560
561 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
562 union tpacket_req_u *req_u)
563 {
564 p1->feature_req_word = req_u->req3.tp_feature_req_word;
565 }
566
567 static void init_prb_bdqc(struct packet_sock *po,
568 struct packet_ring_buffer *rb,
569 struct pgv *pg_vec,
570 union tpacket_req_u *req_u)
571 {
572 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
573 struct tpacket_block_desc *pbd;
574
575 memset(p1, 0x0, sizeof(*p1));
576
577 p1->knxt_seq_num = 1;
578 p1->pkbdq = pg_vec;
579 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
580 p1->pkblk_start = pg_vec[0].buffer;
581 p1->kblk_size = req_u->req3.tp_block_size;
582 p1->knum_blocks = req_u->req3.tp_block_nr;
583 p1->hdrlen = po->tp_hdrlen;
584 p1->version = po->tp_version;
585 p1->last_kactive_blk_num = 0;
586 po->stats.stats3.tp_freeze_q_cnt = 0;
587 if (req_u->req3.tp_retire_blk_tov)
588 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
589 else
590 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
591 req_u->req3.tp_block_size);
592 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
593 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
594
595 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
596 prb_init_ft_ops(p1, req_u);
597 prb_setup_retire_blk_timer(po);
598 prb_open_block(p1, pbd);
599 }
600
601 /* Do NOT update the last_blk_num first.
602 * Assumes sk_buff_head lock is held.
603 */
604 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
605 {
606 mod_timer(&pkc->retire_blk_timer,
607 jiffies + pkc->tov_in_jiffies);
608 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
609 }
610
611 /*
612 * Timer logic:
613 * 1) We refresh the timer only when we open a block.
614 * By doing this we don't waste cycles refreshing the timer
615 * on packet-by-packet basis.
616 *
617 * With a 1MB block-size, on a 1Gbps line, it will take
618 * i) ~8 ms to fill a block + ii) memcpy etc.
619 * In this cut we are not accounting for the memcpy time.
620 *
621 * So, if the user sets the 'tmo' to 10ms then the timer
622 * will never fire while the block is still getting filled
623 * (which is what we want). However, the user could choose
624 * to close a block early and that's fine.
625 *
626 * But when the timer does fire, we check whether or not to refresh it.
627 * Since the tmo granularity is in msecs, it is not too expensive
628 * to refresh the timer, lets say every '8' msecs.
629 * Either the user can set the 'tmo' or we can derive it based on
630 * a) line-speed and b) block-size.
631 * prb_calc_retire_blk_tmo() calculates the tmo.
632 *
633 */
634 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
635 {
636 struct packet_sock *po =
637 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
638 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
639 unsigned int frozen;
640 struct tpacket_block_desc *pbd;
641
642 spin_lock(&po->sk.sk_receive_queue.lock);
643
644 frozen = prb_queue_frozen(pkc);
645 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
646
647 if (unlikely(pkc->delete_blk_timer))
648 goto out;
649
650 /* We only need to plug the race when the block is partially filled.
651 * tpacket_rcv:
652 * lock(); increment BLOCK_NUM_PKTS; unlock()
653 * copy_bits() is in progress ...
654 * timer fires on other cpu:
655 * we can't retire the current block because copy_bits
656 * is in progress.
657 *
658 */
659 if (BLOCK_NUM_PKTS(pbd)) {
660 while (atomic_read(&pkc->blk_fill_in_prog)) {
661 /* Waiting for skb_copy_bits to finish... */
662 cpu_relax();
663 }
664 }
665
666 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
667 if (!frozen) {
668 if (!BLOCK_NUM_PKTS(pbd)) {
669 /* An empty block. Just refresh the timer. */
670 goto refresh_timer;
671 }
672 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
673 if (!prb_dispatch_next_block(pkc, po))
674 goto refresh_timer;
675 else
676 goto out;
677 } else {
678 /* Case 1. Queue was frozen because user-space was
679 * lagging behind.
680 */
681 if (prb_curr_blk_in_use(pbd)) {
682 /*
683 * Ok, user-space is still behind.
684 * So just refresh the timer.
685 */
686 goto refresh_timer;
687 } else {
688 /* Case 2. queue was frozen,user-space caught up,
689 * now the link went idle && the timer fired.
690 * We don't have a block to close.So we open this
691 * block and restart the timer.
692 * opening a block thaws the queue,restarts timer
693 * Thawing/timer-refresh is a side effect.
694 */
695 prb_open_block(pkc, pbd);
696 goto out;
697 }
698 }
699 }
700
701 refresh_timer:
702 _prb_refresh_rx_retire_blk_timer(pkc);
703
704 out:
705 spin_unlock(&po->sk.sk_receive_queue.lock);
706 }
707
708 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
709 struct tpacket_block_desc *pbd1, __u32 status)
710 {
711 /* Flush everything minus the block header */
712
713 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
714 u8 *start, *end;
715
716 start = (u8 *)pbd1;
717
718 /* Skip the block header(we know header WILL fit in 4K) */
719 start += PAGE_SIZE;
720
721 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
722 for (; start < end; start += PAGE_SIZE)
723 flush_dcache_page(pgv_to_page(start));
724
725 smp_wmb();
726 #endif
727
728 /* Now update the block status. */
729
730 BLOCK_STATUS(pbd1) = status;
731
732 /* Flush the block header */
733
734 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
735 start = (u8 *)pbd1;
736 flush_dcache_page(pgv_to_page(start));
737
738 smp_wmb();
739 #endif
740 }
741
742 /*
743 * Side effect:
744 *
745 * 1) flush the block
746 * 2) Increment active_blk_num
747 *
748 * Note:We DONT refresh the timer on purpose.
749 * Because almost always the next block will be opened.
750 */
751 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
752 struct tpacket_block_desc *pbd1,
753 struct packet_sock *po, unsigned int stat)
754 {
755 __u32 status = TP_STATUS_USER | stat;
756
757 struct tpacket3_hdr *last_pkt;
758 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
759 struct sock *sk = &po->sk;
760
761 if (atomic_read(&po->tp_drops))
762 status |= TP_STATUS_LOSING;
763
764 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
765 last_pkt->tp_next_offset = 0;
766
767 /* Get the ts of the last pkt */
768 if (BLOCK_NUM_PKTS(pbd1)) {
769 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
770 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
771 } else {
772 /* Ok, we tmo'd - so get the current time.
773 *
774 * It shouldn't really happen as we don't close empty
775 * blocks. See prb_retire_rx_blk_timer_expired().
776 */
777 struct timespec ts;
778 getnstimeofday(&ts);
779 h1->ts_last_pkt.ts_sec = ts.tv_sec;
780 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
781 }
782
783 smp_wmb();
784
785 /* Flush the block */
786 prb_flush_block(pkc1, pbd1, status);
787
788 sk->sk_data_ready(sk);
789
790 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
791 }
792
793 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
794 {
795 pkc->reset_pending_on_curr_blk = 0;
796 }
797
798 /*
799 * Side effect of opening a block:
800 *
801 * 1) prb_queue is thawed.
802 * 2) retire_blk_timer is refreshed.
803 *
804 */
805 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
806 struct tpacket_block_desc *pbd1)
807 {
808 struct timespec ts;
809 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
810
811 smp_rmb();
812
813 /* We could have just memset this but we will lose the
814 * flexibility of making the priv area sticky
815 */
816
817 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
818 BLOCK_NUM_PKTS(pbd1) = 0;
819 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
820
821 getnstimeofday(&ts);
822
823 h1->ts_first_pkt.ts_sec = ts.tv_sec;
824 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
825
826 pkc1->pkblk_start = (char *)pbd1;
827 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
828
829 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
830 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
831
832 pbd1->version = pkc1->version;
833 pkc1->prev = pkc1->nxt_offset;
834 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
835
836 prb_thaw_queue(pkc1);
837 _prb_refresh_rx_retire_blk_timer(pkc1);
838
839 smp_wmb();
840 }
841
842 /*
843 * Queue freeze logic:
844 * 1) Assume tp_block_nr = 8 blocks.
845 * 2) At time 't0', user opens Rx ring.
846 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
847 * 4) user-space is either sleeping or processing block '0'.
848 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
849 * it will close block-7,loop around and try to fill block '0'.
850 * call-flow:
851 * __packet_lookup_frame_in_block
852 * prb_retire_current_block()
853 * prb_dispatch_next_block()
854 * |->(BLOCK_STATUS == USER) evaluates to true
855 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
856 * 6) Now there are two cases:
857 * 6.1) Link goes idle right after the queue is frozen.
858 * But remember, the last open_block() refreshed the timer.
859 * When this timer expires,it will refresh itself so that we can
860 * re-open block-0 in near future.
861 * 6.2) Link is busy and keeps on receiving packets. This is a simple
862 * case and __packet_lookup_frame_in_block will check if block-0
863 * is free and can now be re-used.
864 */
865 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
866 struct packet_sock *po)
867 {
868 pkc->reset_pending_on_curr_blk = 1;
869 po->stats.stats3.tp_freeze_q_cnt++;
870 }
871
872 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
873
874 /*
875 * If the next block is free then we will dispatch it
876 * and return a good offset.
877 * Else, we will freeze the queue.
878 * So, caller must check the return value.
879 */
880 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
881 struct packet_sock *po)
882 {
883 struct tpacket_block_desc *pbd;
884
885 smp_rmb();
886
887 /* 1. Get current block num */
888 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
889
890 /* 2. If this block is currently in_use then freeze the queue */
891 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
892 prb_freeze_queue(pkc, po);
893 return NULL;
894 }
895
896 /*
897 * 3.
898 * open this block and return the offset where the first packet
899 * needs to get stored.
900 */
901 prb_open_block(pkc, pbd);
902 return (void *)pkc->nxt_offset;
903 }
904
905 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
906 struct packet_sock *po, unsigned int status)
907 {
908 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
909
910 /* retire/close the current block */
911 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
912 /*
913 * Plug the case where copy_bits() is in progress on
914 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
915 * have space to copy the pkt in the current block and
916 * called prb_retire_current_block()
917 *
918 * We don't need to worry about the TMO case because
919 * the timer-handler already handled this case.
920 */
921 if (!(status & TP_STATUS_BLK_TMO)) {
922 while (atomic_read(&pkc->blk_fill_in_prog)) {
923 /* Waiting for skb_copy_bits to finish... */
924 cpu_relax();
925 }
926 }
927 prb_close_block(pkc, pbd, po, status);
928 return;
929 }
930 }
931
932 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
933 {
934 return TP_STATUS_USER & BLOCK_STATUS(pbd);
935 }
936
937 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
938 {
939 return pkc->reset_pending_on_curr_blk;
940 }
941
942 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
943 {
944 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
945 atomic_dec(&pkc->blk_fill_in_prog);
946 }
947
948 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
949 struct tpacket3_hdr *ppd)
950 {
951 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
952 }
953
954 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
955 struct tpacket3_hdr *ppd)
956 {
957 ppd->hv1.tp_rxhash = 0;
958 }
959
960 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
961 struct tpacket3_hdr *ppd)
962 {
963 if (skb_vlan_tag_present(pkc->skb)) {
964 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
965 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
966 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
967 } else {
968 ppd->hv1.tp_vlan_tci = 0;
969 ppd->hv1.tp_vlan_tpid = 0;
970 ppd->tp_status = TP_STATUS_AVAILABLE;
971 }
972 }
973
974 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
975 struct tpacket3_hdr *ppd)
976 {
977 ppd->hv1.tp_padding = 0;
978 prb_fill_vlan_info(pkc, ppd);
979
980 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
981 prb_fill_rxhash(pkc, ppd);
982 else
983 prb_clear_rxhash(pkc, ppd);
984 }
985
986 static void prb_fill_curr_block(char *curr,
987 struct tpacket_kbdq_core *pkc,
988 struct tpacket_block_desc *pbd,
989 unsigned int len)
990 {
991 struct tpacket3_hdr *ppd;
992
993 ppd = (struct tpacket3_hdr *)curr;
994 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
995 pkc->prev = curr;
996 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
997 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
998 BLOCK_NUM_PKTS(pbd) += 1;
999 atomic_inc(&pkc->blk_fill_in_prog);
1000 prb_run_all_ft_ops(pkc, ppd);
1001 }
1002
1003 /* Assumes caller has the sk->rx_queue.lock */
1004 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1005 struct sk_buff *skb,
1006 unsigned int len
1007 )
1008 {
1009 struct tpacket_kbdq_core *pkc;
1010 struct tpacket_block_desc *pbd;
1011 char *curr, *end;
1012
1013 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1014 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1015
1016 /* Queue is frozen when user space is lagging behind */
1017 if (prb_queue_frozen(pkc)) {
1018 /*
1019 * Check if that last block which caused the queue to freeze,
1020 * is still in_use by user-space.
1021 */
1022 if (prb_curr_blk_in_use(pbd)) {
1023 /* Can't record this packet */
1024 return NULL;
1025 } else {
1026 /*
1027 * Ok, the block was released by user-space.
1028 * Now let's open that block.
1029 * opening a block also thaws the queue.
1030 * Thawing is a side effect.
1031 */
1032 prb_open_block(pkc, pbd);
1033 }
1034 }
1035
1036 smp_mb();
1037 curr = pkc->nxt_offset;
1038 pkc->skb = skb;
1039 end = (char *)pbd + pkc->kblk_size;
1040
1041 /* first try the current block */
1042 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1043 prb_fill_curr_block(curr, pkc, pbd, len);
1044 return (void *)curr;
1045 }
1046
1047 /* Ok, close the current block */
1048 prb_retire_current_block(pkc, po, 0);
1049
1050 /* Now, try to dispatch the next block */
1051 curr = (char *)prb_dispatch_next_block(pkc, po);
1052 if (curr) {
1053 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1054 prb_fill_curr_block(curr, pkc, pbd, len);
1055 return (void *)curr;
1056 }
1057
1058 /*
1059 * No free blocks are available.user_space hasn't caught up yet.
1060 * Queue was just frozen and now this packet will get dropped.
1061 */
1062 return NULL;
1063 }
1064
1065 static void *packet_current_rx_frame(struct packet_sock *po,
1066 struct sk_buff *skb,
1067 int status, unsigned int len)
1068 {
1069 char *curr = NULL;
1070 switch (po->tp_version) {
1071 case TPACKET_V1:
1072 case TPACKET_V2:
1073 curr = packet_lookup_frame(po, &po->rx_ring,
1074 po->rx_ring.head, status);
1075 return curr;
1076 case TPACKET_V3:
1077 return __packet_lookup_frame_in_block(po, skb, len);
1078 default:
1079 WARN(1, "TPACKET version not supported\n");
1080 BUG();
1081 return NULL;
1082 }
1083 }
1084
1085 static void *prb_lookup_block(const struct packet_sock *po,
1086 const struct packet_ring_buffer *rb,
1087 unsigned int idx,
1088 int status)
1089 {
1090 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1091 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1092
1093 if (status != BLOCK_STATUS(pbd))
1094 return NULL;
1095 return pbd;
1096 }
1097
1098 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1099 {
1100 unsigned int prev;
1101 if (rb->prb_bdqc.kactive_blk_num)
1102 prev = rb->prb_bdqc.kactive_blk_num-1;
1103 else
1104 prev = rb->prb_bdqc.knum_blocks-1;
1105 return prev;
1106 }
1107
1108 /* Assumes caller has held the rx_queue.lock */
1109 static void *__prb_previous_block(struct packet_sock *po,
1110 struct packet_ring_buffer *rb,
1111 int status)
1112 {
1113 unsigned int previous = prb_previous_blk_num(rb);
1114 return prb_lookup_block(po, rb, previous, status);
1115 }
1116
1117 static void *packet_previous_rx_frame(struct packet_sock *po,
1118 struct packet_ring_buffer *rb,
1119 int status)
1120 {
1121 if (po->tp_version <= TPACKET_V2)
1122 return packet_previous_frame(po, rb, status);
1123
1124 return __prb_previous_block(po, rb, status);
1125 }
1126
1127 static void packet_increment_rx_head(struct packet_sock *po,
1128 struct packet_ring_buffer *rb)
1129 {
1130 switch (po->tp_version) {
1131 case TPACKET_V1:
1132 case TPACKET_V2:
1133 return packet_increment_head(rb);
1134 case TPACKET_V3:
1135 default:
1136 WARN(1, "TPACKET version not supported.\n");
1137 BUG();
1138 return;
1139 }
1140 }
1141
1142 static void *packet_previous_frame(struct packet_sock *po,
1143 struct packet_ring_buffer *rb,
1144 int status)
1145 {
1146 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1147 return packet_lookup_frame(po, rb, previous, status);
1148 }
1149
1150 static void packet_increment_head(struct packet_ring_buffer *buff)
1151 {
1152 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1153 }
1154
1155 static void packet_inc_pending(struct packet_ring_buffer *rb)
1156 {
1157 this_cpu_inc(*rb->pending_refcnt);
1158 }
1159
1160 static void packet_dec_pending(struct packet_ring_buffer *rb)
1161 {
1162 this_cpu_dec(*rb->pending_refcnt);
1163 }
1164
1165 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1166 {
1167 unsigned int refcnt = 0;
1168 int cpu;
1169
1170 /* We don't use pending refcount in rx_ring. */
1171 if (rb->pending_refcnt == NULL)
1172 return 0;
1173
1174 for_each_possible_cpu(cpu)
1175 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1176
1177 return refcnt;
1178 }
1179
1180 static int packet_alloc_pending(struct packet_sock *po)
1181 {
1182 po->rx_ring.pending_refcnt = NULL;
1183
1184 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1185 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1186 return -ENOBUFS;
1187
1188 return 0;
1189 }
1190
1191 static void packet_free_pending(struct packet_sock *po)
1192 {
1193 free_percpu(po->tx_ring.pending_refcnt);
1194 }
1195
1196 #define ROOM_POW_OFF 2
1197 #define ROOM_NONE 0x0
1198 #define ROOM_LOW 0x1
1199 #define ROOM_NORMAL 0x2
1200
1201 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1202 {
1203 int idx, len;
1204
1205 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1206 idx = READ_ONCE(po->rx_ring.head);
1207 if (pow_off)
1208 idx += len >> pow_off;
1209 if (idx >= len)
1210 idx -= len;
1211 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1212 }
1213
1214 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1215 {
1216 int idx, len;
1217
1218 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1219 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1220 if (pow_off)
1221 idx += len >> pow_off;
1222 if (idx >= len)
1223 idx -= len;
1224 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1225 }
1226
1227 static int __packet_rcv_has_room(const struct packet_sock *po,
1228 const struct sk_buff *skb)
1229 {
1230 const struct sock *sk = &po->sk;
1231 int ret = ROOM_NONE;
1232
1233 if (po->prot_hook.func != tpacket_rcv) {
1234 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1235 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1236 - (skb ? skb->truesize : 0);
1237
1238 if (avail > (rcvbuf >> ROOM_POW_OFF))
1239 return ROOM_NORMAL;
1240 else if (avail > 0)
1241 return ROOM_LOW;
1242 else
1243 return ROOM_NONE;
1244 }
1245
1246 if (po->tp_version == TPACKET_V3) {
1247 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1248 ret = ROOM_NORMAL;
1249 else if (__tpacket_v3_has_room(po, 0))
1250 ret = ROOM_LOW;
1251 } else {
1252 if (__tpacket_has_room(po, ROOM_POW_OFF))
1253 ret = ROOM_NORMAL;
1254 else if (__tpacket_has_room(po, 0))
1255 ret = ROOM_LOW;
1256 }
1257
1258 return ret;
1259 }
1260
1261 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1262 {
1263 int pressure, ret;
1264
1265 ret = __packet_rcv_has_room(po, skb);
1266 pressure = ret != ROOM_NORMAL;
1267
1268 if (READ_ONCE(po->pressure) != pressure)
1269 WRITE_ONCE(po->pressure, pressure);
1270
1271 return ret;
1272 }
1273
1274 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1275 {
1276 if (READ_ONCE(po->pressure) &&
1277 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1278 WRITE_ONCE(po->pressure, 0);
1279 }
1280
1281 static void packet_sock_destruct(struct sock *sk)
1282 {
1283 skb_queue_purge(&sk->sk_error_queue);
1284
1285 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1286 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1287
1288 if (!sock_flag(sk, SOCK_DEAD)) {
1289 pr_err("Attempt to release alive packet socket: %p\n", sk);
1290 return;
1291 }
1292
1293 sk_refcnt_debug_dec(sk);
1294 }
1295
1296 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1297 {
1298 u32 rxhash;
1299 int i, count = 0;
1300
1301 rxhash = skb_get_hash(skb);
1302 for (i = 0; i < ROLLOVER_HLEN; i++)
1303 if (po->rollover->history[i] == rxhash)
1304 count++;
1305
1306 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1307 return count > (ROLLOVER_HLEN >> 1);
1308 }
1309
1310 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1311 struct sk_buff *skb,
1312 unsigned int num)
1313 {
1314 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1315 }
1316
1317 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1318 struct sk_buff *skb,
1319 unsigned int num)
1320 {
1321 unsigned int val = atomic_inc_return(&f->rr_cur);
1322
1323 return val % num;
1324 }
1325
1326 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1327 struct sk_buff *skb,
1328 unsigned int num)
1329 {
1330 return smp_processor_id() % num;
1331 }
1332
1333 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1334 struct sk_buff *skb,
1335 unsigned int num)
1336 {
1337 return prandom_u32_max(num);
1338 }
1339
1340 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1341 struct sk_buff *skb,
1342 unsigned int idx, bool try_self,
1343 unsigned int num)
1344 {
1345 struct packet_sock *po, *po_next, *po_skip = NULL;
1346 unsigned int i, j, room = ROOM_NONE;
1347
1348 po = pkt_sk(f->arr[idx]);
1349
1350 if (try_self) {
1351 room = packet_rcv_has_room(po, skb);
1352 if (room == ROOM_NORMAL ||
1353 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1354 return idx;
1355 po_skip = po;
1356 }
1357
1358 i = j = min_t(int, po->rollover->sock, num - 1);
1359 do {
1360 po_next = pkt_sk(f->arr[i]);
1361 if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1362 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1363 if (i != j)
1364 po->rollover->sock = i;
1365 atomic_long_inc(&po->rollover->num);
1366 if (room == ROOM_LOW)
1367 atomic_long_inc(&po->rollover->num_huge);
1368 return i;
1369 }
1370
1371 if (++i == num)
1372 i = 0;
1373 } while (i != j);
1374
1375 atomic_long_inc(&po->rollover->num_failed);
1376 return idx;
1377 }
1378
1379 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1380 struct sk_buff *skb,
1381 unsigned int num)
1382 {
1383 return skb_get_queue_mapping(skb) % num;
1384 }
1385
1386 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1387 struct sk_buff *skb,
1388 unsigned int num)
1389 {
1390 struct bpf_prog *prog;
1391 unsigned int ret = 0;
1392
1393 rcu_read_lock();
1394 prog = rcu_dereference(f->bpf_prog);
1395 if (prog)
1396 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1397 rcu_read_unlock();
1398
1399 return ret;
1400 }
1401
1402 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1403 {
1404 return f->flags & (flag >> 8);
1405 }
1406
1407 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1408 struct packet_type *pt, struct net_device *orig_dev)
1409 {
1410 struct packet_fanout *f = pt->af_packet_priv;
1411 unsigned int num = READ_ONCE(f->num_members);
1412 struct net *net = read_pnet(&f->net);
1413 struct packet_sock *po;
1414 unsigned int idx;
1415
1416 if (!net_eq(dev_net(dev), net) || !num) {
1417 kfree_skb(skb);
1418 return 0;
1419 }
1420
1421 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1422 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1423 if (!skb)
1424 return 0;
1425 }
1426 switch (f->type) {
1427 case PACKET_FANOUT_HASH:
1428 default:
1429 idx = fanout_demux_hash(f, skb, num);
1430 break;
1431 case PACKET_FANOUT_LB:
1432 idx = fanout_demux_lb(f, skb, num);
1433 break;
1434 case PACKET_FANOUT_CPU:
1435 idx = fanout_demux_cpu(f, skb, num);
1436 break;
1437 case PACKET_FANOUT_RND:
1438 idx = fanout_demux_rnd(f, skb, num);
1439 break;
1440 case PACKET_FANOUT_QM:
1441 idx = fanout_demux_qm(f, skb, num);
1442 break;
1443 case PACKET_FANOUT_ROLLOVER:
1444 idx = fanout_demux_rollover(f, skb, 0, false, num);
1445 break;
1446 case PACKET_FANOUT_CBPF:
1447 case PACKET_FANOUT_EBPF:
1448 idx = fanout_demux_bpf(f, skb, num);
1449 break;
1450 }
1451
1452 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1453 idx = fanout_demux_rollover(f, skb, idx, true, num);
1454
1455 po = pkt_sk(f->arr[idx]);
1456 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1457 }
1458
1459 DEFINE_MUTEX(fanout_mutex);
1460 EXPORT_SYMBOL_GPL(fanout_mutex);
1461 static LIST_HEAD(fanout_list);
1462 static u16 fanout_next_id;
1463
1464 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1465 {
1466 struct packet_fanout *f = po->fanout;
1467
1468 spin_lock(&f->lock);
1469 f->arr[f->num_members] = sk;
1470 smp_wmb();
1471 f->num_members++;
1472 if (f->num_members == 1)
1473 dev_add_pack(&f->prot_hook);
1474 spin_unlock(&f->lock);
1475 }
1476
1477 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1478 {
1479 struct packet_fanout *f = po->fanout;
1480 int i;
1481
1482 spin_lock(&f->lock);
1483 for (i = 0; i < f->num_members; i++) {
1484 if (f->arr[i] == sk)
1485 break;
1486 }
1487 BUG_ON(i >= f->num_members);
1488 f->arr[i] = f->arr[f->num_members - 1];
1489 f->num_members--;
1490 if (f->num_members == 0)
1491 __dev_remove_pack(&f->prot_hook);
1492 spin_unlock(&f->lock);
1493 }
1494
1495 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1496 {
1497 if (sk->sk_family != PF_PACKET)
1498 return false;
1499
1500 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1501 }
1502
1503 static void fanout_init_data(struct packet_fanout *f)
1504 {
1505 switch (f->type) {
1506 case PACKET_FANOUT_LB:
1507 atomic_set(&f->rr_cur, 0);
1508 break;
1509 case PACKET_FANOUT_CBPF:
1510 case PACKET_FANOUT_EBPF:
1511 RCU_INIT_POINTER(f->bpf_prog, NULL);
1512 break;
1513 }
1514 }
1515
1516 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1517 {
1518 struct bpf_prog *old;
1519
1520 spin_lock(&f->lock);
1521 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1522 rcu_assign_pointer(f->bpf_prog, new);
1523 spin_unlock(&f->lock);
1524
1525 if (old) {
1526 synchronize_net();
1527 bpf_prog_destroy(old);
1528 }
1529 }
1530
1531 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1532 unsigned int len)
1533 {
1534 struct bpf_prog *new;
1535 struct sock_fprog fprog;
1536 int ret;
1537
1538 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1539 return -EPERM;
1540 if (len != sizeof(fprog))
1541 return -EINVAL;
1542 if (copy_from_user(&fprog, data, len))
1543 return -EFAULT;
1544
1545 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1546 if (ret)
1547 return ret;
1548
1549 __fanout_set_data_bpf(po->fanout, new);
1550 return 0;
1551 }
1552
1553 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1554 unsigned int len)
1555 {
1556 struct bpf_prog *new;
1557 u32 fd;
1558
1559 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1560 return -EPERM;
1561 if (len != sizeof(fd))
1562 return -EINVAL;
1563 if (copy_from_user(&fd, data, len))
1564 return -EFAULT;
1565
1566 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 if (IS_ERR(new))
1568 return PTR_ERR(new);
1569
1570 __fanout_set_data_bpf(po->fanout, new);
1571 return 0;
1572 }
1573
1574 static int fanout_set_data(struct packet_sock *po, char __user *data,
1575 unsigned int len)
1576 {
1577 switch (po->fanout->type) {
1578 case PACKET_FANOUT_CBPF:
1579 return fanout_set_data_cbpf(po, data, len);
1580 case PACKET_FANOUT_EBPF:
1581 return fanout_set_data_ebpf(po, data, len);
1582 default:
1583 return -EINVAL;
1584 }
1585 }
1586
1587 static void fanout_release_data(struct packet_fanout *f)
1588 {
1589 switch (f->type) {
1590 case PACKET_FANOUT_CBPF:
1591 case PACKET_FANOUT_EBPF:
1592 __fanout_set_data_bpf(f, NULL);
1593 }
1594 }
1595
1596 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1597 {
1598 struct packet_fanout *f;
1599
1600 list_for_each_entry(f, &fanout_list, list) {
1601 if (f->id == candidate_id &&
1602 read_pnet(&f->net) == sock_net(sk)) {
1603 return false;
1604 }
1605 }
1606 return true;
1607 }
1608
1609 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1610 {
1611 u16 id = fanout_next_id;
1612
1613 do {
1614 if (__fanout_id_is_free(sk, id)) {
1615 *new_id = id;
1616 fanout_next_id = id + 1;
1617 return true;
1618 }
1619
1620 id++;
1621 } while (id != fanout_next_id);
1622
1623 return false;
1624 }
1625
1626 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1627 {
1628 struct packet_rollover *rollover = NULL;
1629 struct packet_sock *po = pkt_sk(sk);
1630 struct packet_fanout *f, *match;
1631 u8 type = type_flags & 0xff;
1632 u8 flags = type_flags >> 8;
1633 int err;
1634
1635 switch (type) {
1636 case PACKET_FANOUT_ROLLOVER:
1637 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1638 return -EINVAL;
1639 case PACKET_FANOUT_HASH:
1640 case PACKET_FANOUT_LB:
1641 case PACKET_FANOUT_CPU:
1642 case PACKET_FANOUT_RND:
1643 case PACKET_FANOUT_QM:
1644 case PACKET_FANOUT_CBPF:
1645 case PACKET_FANOUT_EBPF:
1646 break;
1647 default:
1648 return -EINVAL;
1649 }
1650
1651 mutex_lock(&fanout_mutex);
1652
1653 err = -EALREADY;
1654 if (po->fanout)
1655 goto out;
1656
1657 if (type == PACKET_FANOUT_ROLLOVER ||
1658 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1659 err = -ENOMEM;
1660 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1661 if (!rollover)
1662 goto out;
1663 atomic_long_set(&rollover->num, 0);
1664 atomic_long_set(&rollover->num_huge, 0);
1665 atomic_long_set(&rollover->num_failed, 0);
1666 }
1667
1668 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1669 if (id != 0) {
1670 err = -EINVAL;
1671 goto out;
1672 }
1673 if (!fanout_find_new_id(sk, &id)) {
1674 err = -ENOMEM;
1675 goto out;
1676 }
1677 /* ephemeral flag for the first socket in the group: drop it */
1678 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1679 }
1680
1681 match = NULL;
1682 list_for_each_entry(f, &fanout_list, list) {
1683 if (f->id == id &&
1684 read_pnet(&f->net) == sock_net(sk)) {
1685 match = f;
1686 break;
1687 }
1688 }
1689 err = -EINVAL;
1690 if (match && match->flags != flags)
1691 goto out;
1692 if (!match) {
1693 err = -ENOMEM;
1694 match = kzalloc(sizeof(*match), GFP_KERNEL);
1695 if (!match)
1696 goto out;
1697 write_pnet(&match->net, sock_net(sk));
1698 match->id = id;
1699 match->type = type;
1700 match->flags = flags;
1701 INIT_LIST_HEAD(&match->list);
1702 spin_lock_init(&match->lock);
1703 refcount_set(&match->sk_ref, 0);
1704 fanout_init_data(match);
1705 match->prot_hook.type = po->prot_hook.type;
1706 match->prot_hook.dev = po->prot_hook.dev;
1707 match->prot_hook.func = packet_rcv_fanout;
1708 match->prot_hook.af_packet_priv = match;
1709 match->prot_hook.id_match = match_fanout_group;
1710 list_add(&match->list, &fanout_list);
1711 }
1712 err = -EINVAL;
1713
1714 spin_lock(&po->bind_lock);
1715 if (po->running &&
1716 match->type == type &&
1717 match->prot_hook.type == po->prot_hook.type &&
1718 match->prot_hook.dev == po->prot_hook.dev) {
1719 err = -ENOSPC;
1720 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1721 __dev_remove_pack(&po->prot_hook);
1722 po->fanout = match;
1723 po->rollover = rollover;
1724 rollover = NULL;
1725 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1726 __fanout_link(sk, po);
1727 err = 0;
1728 }
1729 }
1730 spin_unlock(&po->bind_lock);
1731
1732 if (err && !refcount_read(&match->sk_ref)) {
1733 list_del(&match->list);
1734 kfree(match);
1735 }
1736
1737 out:
1738 kfree(rollover);
1739 mutex_unlock(&fanout_mutex);
1740 return err;
1741 }
1742
1743 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1744 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1745 * It is the responsibility of the caller to call fanout_release_data() and
1746 * free the returned packet_fanout (after synchronize_net())
1747 */
1748 static struct packet_fanout *fanout_release(struct sock *sk)
1749 {
1750 struct packet_sock *po = pkt_sk(sk);
1751 struct packet_fanout *f;
1752
1753 mutex_lock(&fanout_mutex);
1754 f = po->fanout;
1755 if (f) {
1756 po->fanout = NULL;
1757
1758 if (refcount_dec_and_test(&f->sk_ref))
1759 list_del(&f->list);
1760 else
1761 f = NULL;
1762 }
1763 mutex_unlock(&fanout_mutex);
1764
1765 return f;
1766 }
1767
1768 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1769 struct sk_buff *skb)
1770 {
1771 /* Earlier code assumed this would be a VLAN pkt, double-check
1772 * this now that we have the actual packet in hand. We can only
1773 * do this check on Ethernet devices.
1774 */
1775 if (unlikely(dev->type != ARPHRD_ETHER))
1776 return false;
1777
1778 skb_reset_mac_header(skb);
1779 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1780 }
1781
1782 static const struct proto_ops packet_ops;
1783
1784 static const struct proto_ops packet_ops_spkt;
1785
1786 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1787 struct packet_type *pt, struct net_device *orig_dev)
1788 {
1789 struct sock *sk;
1790 struct sockaddr_pkt *spkt;
1791
1792 /*
1793 * When we registered the protocol we saved the socket in the data
1794 * field for just this event.
1795 */
1796
1797 sk = pt->af_packet_priv;
1798
1799 /*
1800 * Yank back the headers [hope the device set this
1801 * right or kerboom...]
1802 *
1803 * Incoming packets have ll header pulled,
1804 * push it back.
1805 *
1806 * For outgoing ones skb->data == skb_mac_header(skb)
1807 * so that this procedure is noop.
1808 */
1809
1810 if (skb->pkt_type == PACKET_LOOPBACK)
1811 goto out;
1812
1813 if (!net_eq(dev_net(dev), sock_net(sk)))
1814 goto out;
1815
1816 skb = skb_share_check(skb, GFP_ATOMIC);
1817 if (skb == NULL)
1818 goto oom;
1819
1820 /* drop any routing info */
1821 skb_dst_drop(skb);
1822
1823 /* drop conntrack reference */
1824 nf_reset_ct(skb);
1825
1826 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1827
1828 skb_push(skb, skb->data - skb_mac_header(skb));
1829
1830 /*
1831 * The SOCK_PACKET socket receives _all_ frames.
1832 */
1833
1834 spkt->spkt_family = dev->type;
1835 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1836 spkt->spkt_protocol = skb->protocol;
1837
1838 /*
1839 * Charge the memory to the socket. This is done specifically
1840 * to prevent sockets using all the memory up.
1841 */
1842
1843 if (sock_queue_rcv_skb(sk, skb) == 0)
1844 return 0;
1845
1846 out:
1847 kfree_skb(skb);
1848 oom:
1849 return 0;
1850 }
1851
1852 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1853 {
1854 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1855 sock->type == SOCK_RAW) {
1856 skb_reset_mac_header(skb);
1857 skb->protocol = dev_parse_header_protocol(skb);
1858 }
1859
1860 skb_probe_transport_header(skb);
1861 }
1862
1863 /*
1864 * Output a raw packet to a device layer. This bypasses all the other
1865 * protocol layers and you must therefore supply it with a complete frame
1866 */
1867
1868 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1869 size_t len)
1870 {
1871 struct sock *sk = sock->sk;
1872 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1873 struct sk_buff *skb = NULL;
1874 struct net_device *dev;
1875 struct sockcm_cookie sockc;
1876 __be16 proto = 0;
1877 int err;
1878 int extra_len = 0;
1879
1880 /*
1881 * Get and verify the address.
1882 */
1883
1884 if (saddr) {
1885 if (msg->msg_namelen < sizeof(struct sockaddr))
1886 return -EINVAL;
1887 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1888 proto = saddr->spkt_protocol;
1889 } else
1890 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1891
1892 /*
1893 * Find the device first to size check it
1894 */
1895
1896 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1897 retry:
1898 rcu_read_lock();
1899 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1900 err = -ENODEV;
1901 if (dev == NULL)
1902 goto out_unlock;
1903
1904 err = -ENETDOWN;
1905 if (!(dev->flags & IFF_UP))
1906 goto out_unlock;
1907
1908 /*
1909 * You may not queue a frame bigger than the mtu. This is the lowest level
1910 * raw protocol and you must do your own fragmentation at this level.
1911 */
1912
1913 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1914 if (!netif_supports_nofcs(dev)) {
1915 err = -EPROTONOSUPPORT;
1916 goto out_unlock;
1917 }
1918 extra_len = 4; /* We're doing our own CRC */
1919 }
1920
1921 err = -EMSGSIZE;
1922 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1923 goto out_unlock;
1924
1925 if (!skb) {
1926 size_t reserved = LL_RESERVED_SPACE(dev);
1927 int tlen = dev->needed_tailroom;
1928 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1929
1930 rcu_read_unlock();
1931 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1932 if (skb == NULL)
1933 return -ENOBUFS;
1934 /* FIXME: Save some space for broken drivers that write a hard
1935 * header at transmission time by themselves. PPP is the notable
1936 * one here. This should really be fixed at the driver level.
1937 */
1938 skb_reserve(skb, reserved);
1939 skb_reset_network_header(skb);
1940
1941 /* Try to align data part correctly */
1942 if (hhlen) {
1943 skb->data -= hhlen;
1944 skb->tail -= hhlen;
1945 if (len < hhlen)
1946 skb_reset_network_header(skb);
1947 }
1948 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1949 if (err)
1950 goto out_free;
1951 goto retry;
1952 }
1953
1954 if (!dev_validate_header(dev, skb->data, len)) {
1955 err = -EINVAL;
1956 goto out_unlock;
1957 }
1958 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1959 !packet_extra_vlan_len_allowed(dev, skb)) {
1960 err = -EMSGSIZE;
1961 goto out_unlock;
1962 }
1963
1964 sockcm_init(&sockc, sk);
1965 if (msg->msg_controllen) {
1966 err = sock_cmsg_send(sk, msg, &sockc);
1967 if (unlikely(err))
1968 goto out_unlock;
1969 }
1970
1971 skb->protocol = proto;
1972 skb->dev = dev;
1973 skb->priority = sk->sk_priority;
1974 skb->mark = sk->sk_mark;
1975 skb->tstamp = sockc.transmit_time;
1976
1977 skb_setup_tx_timestamp(skb, sockc.tsflags);
1978
1979 if (unlikely(extra_len == 4))
1980 skb->no_fcs = 1;
1981
1982 packet_parse_headers(skb, sock);
1983
1984 dev_queue_xmit(skb);
1985 rcu_read_unlock();
1986 return len;
1987
1988 out_unlock:
1989 rcu_read_unlock();
1990 out_free:
1991 kfree_skb(skb);
1992 return err;
1993 }
1994
1995 static unsigned int run_filter(struct sk_buff *skb,
1996 const struct sock *sk,
1997 unsigned int res)
1998 {
1999 struct sk_filter *filter;
2000
2001 rcu_read_lock();
2002 filter = rcu_dereference(sk->sk_filter);
2003 if (filter != NULL)
2004 res = bpf_prog_run_clear_cb(filter->prog, skb);
2005 rcu_read_unlock();
2006
2007 return res;
2008 }
2009
2010 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2011 size_t *len)
2012 {
2013 struct virtio_net_hdr vnet_hdr;
2014
2015 if (*len < sizeof(vnet_hdr))
2016 return -EINVAL;
2017 *len -= sizeof(vnet_hdr);
2018
2019 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2020 return -EINVAL;
2021
2022 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2023 }
2024
2025 /*
2026 * This function makes lazy skb cloning in hope that most of packets
2027 * are discarded by BPF.
2028 *
2029 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2030 * and skb->cb are mangled. It works because (and until) packets
2031 * falling here are owned by current CPU. Output packets are cloned
2032 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2033 * sequencially, so that if we return skb to original state on exit,
2034 * we will not harm anyone.
2035 */
2036
2037 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2038 struct packet_type *pt, struct net_device *orig_dev)
2039 {
2040 struct sock *sk;
2041 struct sockaddr_ll *sll;
2042 struct packet_sock *po;
2043 u8 *skb_head = skb->data;
2044 int skb_len = skb->len;
2045 unsigned int snaplen, res;
2046 bool is_drop_n_account = false;
2047
2048 if (skb->pkt_type == PACKET_LOOPBACK)
2049 goto drop;
2050
2051 sk = pt->af_packet_priv;
2052 po = pkt_sk(sk);
2053
2054 if (!net_eq(dev_net(dev), sock_net(sk)))
2055 goto drop;
2056
2057 skb->dev = dev;
2058
2059 if (dev->header_ops) {
2060 /* The device has an explicit notion of ll header,
2061 * exported to higher levels.
2062 *
2063 * Otherwise, the device hides details of its frame
2064 * structure, so that corresponding packet head is
2065 * never delivered to user.
2066 */
2067 if (sk->sk_type != SOCK_DGRAM)
2068 skb_push(skb, skb->data - skb_mac_header(skb));
2069 else if (skb->pkt_type == PACKET_OUTGOING) {
2070 /* Special case: outgoing packets have ll header at head */
2071 skb_pull(skb, skb_network_offset(skb));
2072 }
2073 }
2074
2075 snaplen = skb->len;
2076
2077 res = run_filter(skb, sk, snaplen);
2078 if (!res)
2079 goto drop_n_restore;
2080 if (snaplen > res)
2081 snaplen = res;
2082
2083 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2084 goto drop_n_acct;
2085
2086 if (skb_shared(skb)) {
2087 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2088 if (nskb == NULL)
2089 goto drop_n_acct;
2090
2091 if (skb_head != skb->data) {
2092 skb->data = skb_head;
2093 skb->len = skb_len;
2094 }
2095 consume_skb(skb);
2096 skb = nskb;
2097 }
2098
2099 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2100
2101 sll = &PACKET_SKB_CB(skb)->sa.ll;
2102 sll->sll_hatype = dev->type;
2103 sll->sll_pkttype = skb->pkt_type;
2104 if (unlikely(po->origdev))
2105 sll->sll_ifindex = orig_dev->ifindex;
2106 else
2107 sll->sll_ifindex = dev->ifindex;
2108
2109 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2110
2111 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2112 * Use their space for storing the original skb length.
2113 */
2114 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2115
2116 if (pskb_trim(skb, snaplen))
2117 goto drop_n_acct;
2118
2119 skb_set_owner_r(skb, sk);
2120 skb->dev = NULL;
2121 skb_dst_drop(skb);
2122
2123 /* drop conntrack reference */
2124 nf_reset_ct(skb);
2125
2126 spin_lock(&sk->sk_receive_queue.lock);
2127 po->stats.stats1.tp_packets++;
2128 sock_skb_set_dropcount(sk, skb);
2129 __skb_queue_tail(&sk->sk_receive_queue, skb);
2130 spin_unlock(&sk->sk_receive_queue.lock);
2131 sk->sk_data_ready(sk);
2132 return 0;
2133
2134 drop_n_acct:
2135 is_drop_n_account = true;
2136 atomic_inc(&po->tp_drops);
2137 atomic_inc(&sk->sk_drops);
2138
2139 drop_n_restore:
2140 if (skb_head != skb->data && skb_shared(skb)) {
2141 skb->data = skb_head;
2142 skb->len = skb_len;
2143 }
2144 drop:
2145 if (!is_drop_n_account)
2146 consume_skb(skb);
2147 else
2148 kfree_skb(skb);
2149 return 0;
2150 }
2151
2152 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2153 struct packet_type *pt, struct net_device *orig_dev)
2154 {
2155 struct sock *sk;
2156 struct packet_sock *po;
2157 struct sockaddr_ll *sll;
2158 union tpacket_uhdr h;
2159 u8 *skb_head = skb->data;
2160 int skb_len = skb->len;
2161 unsigned int snaplen, res;
2162 unsigned long status = TP_STATUS_USER;
2163 unsigned short macoff, netoff, hdrlen;
2164 struct sk_buff *copy_skb = NULL;
2165 struct timespec ts;
2166 __u32 ts_status;
2167 bool is_drop_n_account = false;
2168 bool do_vnet = false;
2169
2170 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2171 * We may add members to them until current aligned size without forcing
2172 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2173 */
2174 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2175 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2176
2177 if (skb->pkt_type == PACKET_LOOPBACK)
2178 goto drop;
2179
2180 sk = pt->af_packet_priv;
2181 po = pkt_sk(sk);
2182
2183 if (!net_eq(dev_net(dev), sock_net(sk)))
2184 goto drop;
2185
2186 if (dev->header_ops) {
2187 if (sk->sk_type != SOCK_DGRAM)
2188 skb_push(skb, skb->data - skb_mac_header(skb));
2189 else if (skb->pkt_type == PACKET_OUTGOING) {
2190 /* Special case: outgoing packets have ll header at head */
2191 skb_pull(skb, skb_network_offset(skb));
2192 }
2193 }
2194
2195 snaplen = skb->len;
2196
2197 res = run_filter(skb, sk, snaplen);
2198 if (!res)
2199 goto drop_n_restore;
2200
2201 /* If we are flooded, just give up */
2202 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2203 atomic_inc(&po->tp_drops);
2204 goto drop_n_restore;
2205 }
2206
2207 if (skb->ip_summed == CHECKSUM_PARTIAL)
2208 status |= TP_STATUS_CSUMNOTREADY;
2209 else if (skb->pkt_type != PACKET_OUTGOING &&
2210 (skb->ip_summed == CHECKSUM_COMPLETE ||
2211 skb_csum_unnecessary(skb)))
2212 status |= TP_STATUS_CSUM_VALID;
2213
2214 if (snaplen > res)
2215 snaplen = res;
2216
2217 if (sk->sk_type == SOCK_DGRAM) {
2218 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2219 po->tp_reserve;
2220 } else {
2221 unsigned int maclen = skb_network_offset(skb);
2222 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2223 (maclen < 16 ? 16 : maclen)) +
2224 po->tp_reserve;
2225 if (po->has_vnet_hdr) {
2226 netoff += sizeof(struct virtio_net_hdr);
2227 do_vnet = true;
2228 }
2229 macoff = netoff - maclen;
2230 }
2231 if (po->tp_version <= TPACKET_V2) {
2232 if (macoff + snaplen > po->rx_ring.frame_size) {
2233 if (po->copy_thresh &&
2234 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2235 if (skb_shared(skb)) {
2236 copy_skb = skb_clone(skb, GFP_ATOMIC);
2237 } else {
2238 copy_skb = skb_get(skb);
2239 skb_head = skb->data;
2240 }
2241 if (copy_skb)
2242 skb_set_owner_r(copy_skb, sk);
2243 }
2244 snaplen = po->rx_ring.frame_size - macoff;
2245 if ((int)snaplen < 0) {
2246 snaplen = 0;
2247 do_vnet = false;
2248 }
2249 }
2250 } else if (unlikely(macoff + snaplen >
2251 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2252 u32 nval;
2253
2254 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2255 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2256 snaplen, nval, macoff);
2257 snaplen = nval;
2258 if (unlikely((int)snaplen < 0)) {
2259 snaplen = 0;
2260 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2261 do_vnet = false;
2262 }
2263 }
2264 spin_lock(&sk->sk_receive_queue.lock);
2265 h.raw = packet_current_rx_frame(po, skb,
2266 TP_STATUS_KERNEL, (macoff+snaplen));
2267 if (!h.raw)
2268 goto drop_n_account;
2269 if (po->tp_version <= TPACKET_V2) {
2270 packet_increment_rx_head(po, &po->rx_ring);
2271 /*
2272 * LOSING will be reported till you read the stats,
2273 * because it's COR - Clear On Read.
2274 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2275 * at packet level.
2276 */
2277 if (atomic_read(&po->tp_drops))
2278 status |= TP_STATUS_LOSING;
2279 }
2280
2281 if (do_vnet &&
2282 virtio_net_hdr_from_skb(skb, h.raw + macoff -
2283 sizeof(struct virtio_net_hdr),
2284 vio_le(), true, 0))
2285 goto drop_n_account;
2286
2287 po->stats.stats1.tp_packets++;
2288 if (copy_skb) {
2289 status |= TP_STATUS_COPY;
2290 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2291 }
2292 spin_unlock(&sk->sk_receive_queue.lock);
2293
2294 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2295
2296 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2297 getnstimeofday(&ts);
2298
2299 status |= ts_status;
2300
2301 switch (po->tp_version) {
2302 case TPACKET_V1:
2303 h.h1->tp_len = skb->len;
2304 h.h1->tp_snaplen = snaplen;
2305 h.h1->tp_mac = macoff;
2306 h.h1->tp_net = netoff;
2307 h.h1->tp_sec = ts.tv_sec;
2308 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2309 hdrlen = sizeof(*h.h1);
2310 break;
2311 case TPACKET_V2:
2312 h.h2->tp_len = skb->len;
2313 h.h2->tp_snaplen = snaplen;
2314 h.h2->tp_mac = macoff;
2315 h.h2->tp_net = netoff;
2316 h.h2->tp_sec = ts.tv_sec;
2317 h.h2->tp_nsec = ts.tv_nsec;
2318 if (skb_vlan_tag_present(skb)) {
2319 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2320 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2321 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2322 } else {
2323 h.h2->tp_vlan_tci = 0;
2324 h.h2->tp_vlan_tpid = 0;
2325 }
2326 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2327 hdrlen = sizeof(*h.h2);
2328 break;
2329 case TPACKET_V3:
2330 /* tp_nxt_offset,vlan are already populated above.
2331 * So DONT clear those fields here
2332 */
2333 h.h3->tp_status |= status;
2334 h.h3->tp_len = skb->len;
2335 h.h3->tp_snaplen = snaplen;
2336 h.h3->tp_mac = macoff;
2337 h.h3->tp_net = netoff;
2338 h.h3->tp_sec = ts.tv_sec;
2339 h.h3->tp_nsec = ts.tv_nsec;
2340 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2341 hdrlen = sizeof(*h.h3);
2342 break;
2343 default:
2344 BUG();
2345 }
2346
2347 sll = h.raw + TPACKET_ALIGN(hdrlen);
2348 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2349 sll->sll_family = AF_PACKET;
2350 sll->sll_hatype = dev->type;
2351 sll->sll_protocol = skb->protocol;
2352 sll->sll_pkttype = skb->pkt_type;
2353 if (unlikely(po->origdev))
2354 sll->sll_ifindex = orig_dev->ifindex;
2355 else
2356 sll->sll_ifindex = dev->ifindex;
2357
2358 smp_mb();
2359
2360 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2361 if (po->tp_version <= TPACKET_V2) {
2362 u8 *start, *end;
2363
2364 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2365 macoff + snaplen);
2366
2367 for (start = h.raw; start < end; start += PAGE_SIZE)
2368 flush_dcache_page(pgv_to_page(start));
2369 }
2370 smp_wmb();
2371 #endif
2372
2373 if (po->tp_version <= TPACKET_V2) {
2374 __packet_set_status(po, h.raw, status);
2375 sk->sk_data_ready(sk);
2376 } else {
2377 prb_clear_blk_fill_status(&po->rx_ring);
2378 }
2379
2380 drop_n_restore:
2381 if (skb_head != skb->data && skb_shared(skb)) {
2382 skb->data = skb_head;
2383 skb->len = skb_len;
2384 }
2385 drop:
2386 if (!is_drop_n_account)
2387 consume_skb(skb);
2388 else
2389 kfree_skb(skb);
2390 return 0;
2391
2392 drop_n_account:
2393 spin_unlock(&sk->sk_receive_queue.lock);
2394 atomic_inc(&po->tp_drops);
2395 is_drop_n_account = true;
2396
2397 sk->sk_data_ready(sk);
2398 kfree_skb(copy_skb);
2399 goto drop_n_restore;
2400 }
2401
2402 static void tpacket_destruct_skb(struct sk_buff *skb)
2403 {
2404 struct packet_sock *po = pkt_sk(skb->sk);
2405
2406 if (likely(po->tx_ring.pg_vec)) {
2407 void *ph;
2408 __u32 ts;
2409
2410 ph = skb_zcopy_get_nouarg(skb);
2411 packet_dec_pending(&po->tx_ring);
2412
2413 ts = __packet_set_timestamp(po, ph, skb);
2414 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2415
2416 if (!packet_read_pending(&po->tx_ring))
2417 complete(&po->skb_completion);
2418 }
2419
2420 sock_wfree(skb);
2421 }
2422
2423 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2424 {
2425 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2426 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2427 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2428 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2429 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2430 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2431 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2432
2433 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2434 return -EINVAL;
2435
2436 return 0;
2437 }
2438
2439 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2440 struct virtio_net_hdr *vnet_hdr)
2441 {
2442 if (*len < sizeof(*vnet_hdr))
2443 return -EINVAL;
2444 *len -= sizeof(*vnet_hdr);
2445
2446 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2447 return -EFAULT;
2448
2449 return __packet_snd_vnet_parse(vnet_hdr, *len);
2450 }
2451
2452 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2453 void *frame, struct net_device *dev, void *data, int tp_len,
2454 __be16 proto, unsigned char *addr, int hlen, int copylen,
2455 const struct sockcm_cookie *sockc)
2456 {
2457 union tpacket_uhdr ph;
2458 int to_write, offset, len, nr_frags, len_max;
2459 struct socket *sock = po->sk.sk_socket;
2460 struct page *page;
2461 int err;
2462
2463 ph.raw = frame;
2464
2465 skb->protocol = proto;
2466 skb->dev = dev;
2467 skb->priority = po->sk.sk_priority;
2468 skb->mark = po->sk.sk_mark;
2469 skb->tstamp = sockc->transmit_time;
2470 skb_setup_tx_timestamp(skb, sockc->tsflags);
2471 skb_zcopy_set_nouarg(skb, ph.raw);
2472
2473 skb_reserve(skb, hlen);
2474 skb_reset_network_header(skb);
2475
2476 to_write = tp_len;
2477
2478 if (sock->type == SOCK_DGRAM) {
2479 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2480 NULL, tp_len);
2481 if (unlikely(err < 0))
2482 return -EINVAL;
2483 } else if (copylen) {
2484 int hdrlen = min_t(int, copylen, tp_len);
2485
2486 skb_push(skb, dev->hard_header_len);
2487 skb_put(skb, copylen - dev->hard_header_len);
2488 err = skb_store_bits(skb, 0, data, hdrlen);
2489 if (unlikely(err))
2490 return err;
2491 if (!dev_validate_header(dev, skb->data, hdrlen))
2492 return -EINVAL;
2493
2494 data += hdrlen;
2495 to_write -= hdrlen;
2496 }
2497
2498 offset = offset_in_page(data);
2499 len_max = PAGE_SIZE - offset;
2500 len = ((to_write > len_max) ? len_max : to_write);
2501
2502 skb->data_len = to_write;
2503 skb->len += to_write;
2504 skb->truesize += to_write;
2505 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2506
2507 while (likely(to_write)) {
2508 nr_frags = skb_shinfo(skb)->nr_frags;
2509
2510 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2511 pr_err("Packet exceed the number of skb frags(%lu)\n",
2512 MAX_SKB_FRAGS);
2513 return -EFAULT;
2514 }
2515
2516 page = pgv_to_page(data);
2517 data += len;
2518 flush_dcache_page(page);
2519 get_page(page);
2520 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2521 to_write -= len;
2522 offset = 0;
2523 len_max = PAGE_SIZE;
2524 len = ((to_write > len_max) ? len_max : to_write);
2525 }
2526
2527 packet_parse_headers(skb, sock);
2528
2529 return tp_len;
2530 }
2531
2532 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2533 int size_max, void **data)
2534 {
2535 union tpacket_uhdr ph;
2536 int tp_len, off;
2537
2538 ph.raw = frame;
2539
2540 switch (po->tp_version) {
2541 case TPACKET_V3:
2542 if (ph.h3->tp_next_offset != 0) {
2543 pr_warn_once("variable sized slot not supported");
2544 return -EINVAL;
2545 }
2546 tp_len = ph.h3->tp_len;
2547 break;
2548 case TPACKET_V2:
2549 tp_len = ph.h2->tp_len;
2550 break;
2551 default:
2552 tp_len = ph.h1->tp_len;
2553 break;
2554 }
2555 if (unlikely(tp_len > size_max)) {
2556 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2557 return -EMSGSIZE;
2558 }
2559
2560 if (unlikely(po->tp_tx_has_off)) {
2561 int off_min, off_max;
2562
2563 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2564 off_max = po->tx_ring.frame_size - tp_len;
2565 if (po->sk.sk_type == SOCK_DGRAM) {
2566 switch (po->tp_version) {
2567 case TPACKET_V3:
2568 off = ph.h3->tp_net;
2569 break;
2570 case TPACKET_V2:
2571 off = ph.h2->tp_net;
2572 break;
2573 default:
2574 off = ph.h1->tp_net;
2575 break;
2576 }
2577 } else {
2578 switch (po->tp_version) {
2579 case TPACKET_V3:
2580 off = ph.h3->tp_mac;
2581 break;
2582 case TPACKET_V2:
2583 off = ph.h2->tp_mac;
2584 break;
2585 default:
2586 off = ph.h1->tp_mac;
2587 break;
2588 }
2589 }
2590 if (unlikely((off < off_min) || (off_max < off)))
2591 return -EINVAL;
2592 } else {
2593 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2594 }
2595
2596 *data = frame + off;
2597 return tp_len;
2598 }
2599
2600 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2601 {
2602 struct sk_buff *skb = NULL;
2603 struct net_device *dev;
2604 struct virtio_net_hdr *vnet_hdr = NULL;
2605 struct sockcm_cookie sockc;
2606 __be16 proto;
2607 int err, reserve = 0;
2608 void *ph;
2609 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2610 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2611 unsigned char *addr = NULL;
2612 int tp_len, size_max;
2613 void *data;
2614 int len_sum = 0;
2615 int status = TP_STATUS_AVAILABLE;
2616 int hlen, tlen, copylen = 0;
2617 long timeo = 0;
2618
2619 mutex_lock(&po->pg_vec_lock);
2620
2621 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2622 * we need to confirm it under protection of pg_vec_lock.
2623 */
2624 if (unlikely(!po->tx_ring.pg_vec)) {
2625 err = -EBUSY;
2626 goto out;
2627 }
2628 if (likely(saddr == NULL)) {
2629 dev = packet_cached_dev_get(po);
2630 proto = po->num;
2631 } else {
2632 err = -EINVAL;
2633 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2634 goto out;
2635 if (msg->msg_namelen < (saddr->sll_halen
2636 + offsetof(struct sockaddr_ll,
2637 sll_addr)))
2638 goto out;
2639 proto = saddr->sll_protocol;
2640 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2641 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2642 if (dev && msg->msg_namelen < dev->addr_len +
2643 offsetof(struct sockaddr_ll, sll_addr))
2644 goto out_put;
2645 addr = saddr->sll_addr;
2646 }
2647 }
2648
2649 err = -ENXIO;
2650 if (unlikely(dev == NULL))
2651 goto out;
2652 err = -ENETDOWN;
2653 if (unlikely(!(dev->flags & IFF_UP)))
2654 goto out_put;
2655
2656 sockcm_init(&sockc, &po->sk);
2657 if (msg->msg_controllen) {
2658 err = sock_cmsg_send(&po->sk, msg, &sockc);
2659 if (unlikely(err))
2660 goto out_put;
2661 }
2662
2663 if (po->sk.sk_socket->type == SOCK_RAW)
2664 reserve = dev->hard_header_len;
2665 size_max = po->tx_ring.frame_size
2666 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2667
2668 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2669 size_max = dev->mtu + reserve + VLAN_HLEN;
2670
2671 reinit_completion(&po->skb_completion);
2672
2673 do {
2674 ph = packet_current_frame(po, &po->tx_ring,
2675 TP_STATUS_SEND_REQUEST);
2676 if (unlikely(ph == NULL)) {
2677 if (need_wait && skb) {
2678 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2679 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2680 if (timeo <= 0) {
2681 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2682 goto out_put;
2683 }
2684 }
2685 /* check for additional frames */
2686 continue;
2687 }
2688
2689 skb = NULL;
2690 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2691 if (tp_len < 0)
2692 goto tpacket_error;
2693
2694 status = TP_STATUS_SEND_REQUEST;
2695 hlen = LL_RESERVED_SPACE(dev);
2696 tlen = dev->needed_tailroom;
2697 if (po->has_vnet_hdr) {
2698 vnet_hdr = data;
2699 data += sizeof(*vnet_hdr);
2700 tp_len -= sizeof(*vnet_hdr);
2701 if (tp_len < 0 ||
2702 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2703 tp_len = -EINVAL;
2704 goto tpacket_error;
2705 }
2706 copylen = __virtio16_to_cpu(vio_le(),
2707 vnet_hdr->hdr_len);
2708 }
2709 copylen = max_t(int, copylen, dev->hard_header_len);
2710 skb = sock_alloc_send_skb(&po->sk,
2711 hlen + tlen + sizeof(struct sockaddr_ll) +
2712 (copylen - dev->hard_header_len),
2713 !need_wait, &err);
2714
2715 if (unlikely(skb == NULL)) {
2716 /* we assume the socket was initially writeable ... */
2717 if (likely(len_sum > 0))
2718 err = len_sum;
2719 goto out_status;
2720 }
2721 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2722 addr, hlen, copylen, &sockc);
2723 if (likely(tp_len >= 0) &&
2724 tp_len > dev->mtu + reserve &&
2725 !po->has_vnet_hdr &&
2726 !packet_extra_vlan_len_allowed(dev, skb))
2727 tp_len = -EMSGSIZE;
2728
2729 if (unlikely(tp_len < 0)) {
2730 tpacket_error:
2731 if (po->tp_loss) {
2732 __packet_set_status(po, ph,
2733 TP_STATUS_AVAILABLE);
2734 packet_increment_head(&po->tx_ring);
2735 kfree_skb(skb);
2736 continue;
2737 } else {
2738 status = TP_STATUS_WRONG_FORMAT;
2739 err = tp_len;
2740 goto out_status;
2741 }
2742 }
2743
2744 if (po->has_vnet_hdr) {
2745 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2746 tp_len = -EINVAL;
2747 goto tpacket_error;
2748 }
2749 virtio_net_hdr_set_proto(skb, vnet_hdr);
2750 }
2751
2752 skb->destructor = tpacket_destruct_skb;
2753 __packet_set_status(po, ph, TP_STATUS_SENDING);
2754 packet_inc_pending(&po->tx_ring);
2755
2756 status = TP_STATUS_SEND_REQUEST;
2757 err = po->xmit(skb);
2758 if (unlikely(err > 0)) {
2759 err = net_xmit_errno(err);
2760 if (err && __packet_get_status(po, ph) ==
2761 TP_STATUS_AVAILABLE) {
2762 /* skb was destructed already */
2763 skb = NULL;
2764 goto out_status;
2765 }
2766 /*
2767 * skb was dropped but not destructed yet;
2768 * let's treat it like congestion or err < 0
2769 */
2770 err = 0;
2771 }
2772 packet_increment_head(&po->tx_ring);
2773 len_sum += tp_len;
2774 } while (likely((ph != NULL) ||
2775 /* Note: packet_read_pending() might be slow if we have
2776 * to call it as it's per_cpu variable, but in fast-path
2777 * we already short-circuit the loop with the first
2778 * condition, and luckily don't have to go that path
2779 * anyway.
2780 */
2781 (need_wait && packet_read_pending(&po->tx_ring))));
2782
2783 err = len_sum;
2784 goto out_put;
2785
2786 out_status:
2787 __packet_set_status(po, ph, status);
2788 kfree_skb(skb);
2789 out_put:
2790 dev_put(dev);
2791 out:
2792 mutex_unlock(&po->pg_vec_lock);
2793 return err;
2794 }
2795
2796 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2797 size_t reserve, size_t len,
2798 size_t linear, int noblock,
2799 int *err)
2800 {
2801 struct sk_buff *skb;
2802
2803 /* Under a page? Don't bother with paged skb. */
2804 if (prepad + len < PAGE_SIZE || !linear)
2805 linear = len;
2806
2807 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2808 err, 0);
2809 if (!skb)
2810 return NULL;
2811
2812 skb_reserve(skb, reserve);
2813 skb_put(skb, linear);
2814 skb->data_len = len - linear;
2815 skb->len += len - linear;
2816
2817 return skb;
2818 }
2819
2820 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2821 {
2822 struct sock *sk = sock->sk;
2823 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2824 struct sk_buff *skb;
2825 struct net_device *dev;
2826 __be16 proto;
2827 unsigned char *addr = NULL;
2828 int err, reserve = 0;
2829 struct sockcm_cookie sockc;
2830 struct virtio_net_hdr vnet_hdr = { 0 };
2831 int offset = 0;
2832 struct packet_sock *po = pkt_sk(sk);
2833 bool has_vnet_hdr = false;
2834 int hlen, tlen, linear;
2835 int extra_len = 0;
2836
2837 /*
2838 * Get and verify the address.
2839 */
2840
2841 if (likely(saddr == NULL)) {
2842 dev = packet_cached_dev_get(po);
2843 proto = po->num;
2844 } else {
2845 err = -EINVAL;
2846 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2847 goto out;
2848 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2849 goto out;
2850 proto = saddr->sll_protocol;
2851 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2852 if (sock->type == SOCK_DGRAM) {
2853 if (dev && msg->msg_namelen < dev->addr_len +
2854 offsetof(struct sockaddr_ll, sll_addr))
2855 goto out_unlock;
2856 addr = saddr->sll_addr;
2857 }
2858 }
2859
2860 err = -ENXIO;
2861 if (unlikely(dev == NULL))
2862 goto out_unlock;
2863 err = -ENETDOWN;
2864 if (unlikely(!(dev->flags & IFF_UP)))
2865 goto out_unlock;
2866
2867 sockcm_init(&sockc, sk);
2868 sockc.mark = sk->sk_mark;
2869 if (msg->msg_controllen) {
2870 err = sock_cmsg_send(sk, msg, &sockc);
2871 if (unlikely(err))
2872 goto out_unlock;
2873 }
2874
2875 if (sock->type == SOCK_RAW)
2876 reserve = dev->hard_header_len;
2877 if (po->has_vnet_hdr) {
2878 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2879 if (err)
2880 goto out_unlock;
2881 has_vnet_hdr = true;
2882 }
2883
2884 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2885 if (!netif_supports_nofcs(dev)) {
2886 err = -EPROTONOSUPPORT;
2887 goto out_unlock;
2888 }
2889 extra_len = 4; /* We're doing our own CRC */
2890 }
2891
2892 err = -EMSGSIZE;
2893 if (!vnet_hdr.gso_type &&
2894 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2895 goto out_unlock;
2896
2897 err = -ENOBUFS;
2898 hlen = LL_RESERVED_SPACE(dev);
2899 tlen = dev->needed_tailroom;
2900 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2901 linear = max(linear, min_t(int, len, dev->hard_header_len));
2902 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2903 msg->msg_flags & MSG_DONTWAIT, &err);
2904 if (skb == NULL)
2905 goto out_unlock;
2906
2907 skb_reset_network_header(skb);
2908
2909 err = -EINVAL;
2910 if (sock->type == SOCK_DGRAM) {
2911 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2912 if (unlikely(offset < 0))
2913 goto out_free;
2914 } else if (reserve) {
2915 skb_reserve(skb, -reserve);
2916 if (len < reserve + sizeof(struct ipv6hdr) &&
2917 dev->min_header_len != dev->hard_header_len)
2918 skb_reset_network_header(skb);
2919 }
2920
2921 /* Returns -EFAULT on error */
2922 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2923 if (err)
2924 goto out_free;
2925
2926 if (sock->type == SOCK_RAW &&
2927 !dev_validate_header(dev, skb->data, len)) {
2928 err = -EINVAL;
2929 goto out_free;
2930 }
2931
2932 skb_setup_tx_timestamp(skb, sockc.tsflags);
2933
2934 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2935 !packet_extra_vlan_len_allowed(dev, skb)) {
2936 err = -EMSGSIZE;
2937 goto out_free;
2938 }
2939
2940 skb->protocol = proto;
2941 skb->dev = dev;
2942 skb->priority = sk->sk_priority;
2943 skb->mark = sockc.mark;
2944 skb->tstamp = sockc.transmit_time;
2945
2946 if (has_vnet_hdr) {
2947 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2948 if (err)
2949 goto out_free;
2950 len += sizeof(vnet_hdr);
2951 virtio_net_hdr_set_proto(skb, &vnet_hdr);
2952 }
2953
2954 packet_parse_headers(skb, sock);
2955
2956 if (unlikely(extra_len == 4))
2957 skb->no_fcs = 1;
2958
2959 err = po->xmit(skb);
2960 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2961 goto out_unlock;
2962
2963 dev_put(dev);
2964
2965 return len;
2966
2967 out_free:
2968 kfree_skb(skb);
2969 out_unlock:
2970 if (dev)
2971 dev_put(dev);
2972 out:
2973 return err;
2974 }
2975
2976 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2977 {
2978 struct sock *sk = sock->sk;
2979 struct packet_sock *po = pkt_sk(sk);
2980
2981 if (po->tx_ring.pg_vec)
2982 return tpacket_snd(po, msg);
2983 else
2984 return packet_snd(sock, msg, len);
2985 }
2986
2987 /*
2988 * Close a PACKET socket. This is fairly simple. We immediately go
2989 * to 'closed' state and remove our protocol entry in the device list.
2990 */
2991
2992 static int packet_release(struct socket *sock)
2993 {
2994 struct sock *sk = sock->sk;
2995 struct packet_sock *po;
2996 struct packet_fanout *f;
2997 struct net *net;
2998 union tpacket_req_u req_u;
2999
3000 if (!sk)
3001 return 0;
3002
3003 net = sock_net(sk);
3004 po = pkt_sk(sk);
3005
3006 mutex_lock(&net->packet.sklist_lock);
3007 sk_del_node_init_rcu(sk);
3008 mutex_unlock(&net->packet.sklist_lock);
3009
3010 preempt_disable();
3011 sock_prot_inuse_add(net, sk->sk_prot, -1);
3012 preempt_enable();
3013
3014 spin_lock(&po->bind_lock);
3015 unregister_prot_hook(sk, false);
3016 packet_cached_dev_reset(po);
3017
3018 if (po->prot_hook.dev) {
3019 dev_put(po->prot_hook.dev);
3020 po->prot_hook.dev = NULL;
3021 }
3022 spin_unlock(&po->bind_lock);
3023
3024 packet_flush_mclist(sk);
3025
3026 lock_sock(sk);
3027 if (po->rx_ring.pg_vec) {
3028 memset(&req_u, 0, sizeof(req_u));
3029 packet_set_ring(sk, &req_u, 1, 0);
3030 }
3031
3032 if (po->tx_ring.pg_vec) {
3033 memset(&req_u, 0, sizeof(req_u));
3034 packet_set_ring(sk, &req_u, 1, 1);
3035 }
3036 release_sock(sk);
3037
3038 f = fanout_release(sk);
3039
3040 synchronize_net();
3041
3042 kfree(po->rollover);
3043 if (f) {
3044 fanout_release_data(f);
3045 kfree(f);
3046 }
3047 /*
3048 * Now the socket is dead. No more input will appear.
3049 */
3050 sock_orphan(sk);
3051 sock->sk = NULL;
3052
3053 /* Purge queues */
3054
3055 skb_queue_purge(&sk->sk_receive_queue);
3056 packet_free_pending(po);
3057 sk_refcnt_debug_release(sk);
3058
3059 sock_put(sk);
3060 return 0;
3061 }
3062
3063 /*
3064 * Attach a packet hook.
3065 */
3066
3067 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3068 __be16 proto)
3069 {
3070 struct packet_sock *po = pkt_sk(sk);
3071 struct net_device *dev_curr;
3072 __be16 proto_curr;
3073 bool need_rehook;
3074 struct net_device *dev = NULL;
3075 int ret = 0;
3076 bool unlisted = false;
3077
3078 lock_sock(sk);
3079 spin_lock(&po->bind_lock);
3080 rcu_read_lock();
3081
3082 if (po->fanout) {
3083 ret = -EINVAL;
3084 goto out_unlock;
3085 }
3086
3087 if (name) {
3088 dev = dev_get_by_name_rcu(sock_net(sk), name);
3089 if (!dev) {
3090 ret = -ENODEV;
3091 goto out_unlock;
3092 }
3093 } else if (ifindex) {
3094 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3095 if (!dev) {
3096 ret = -ENODEV;
3097 goto out_unlock;
3098 }
3099 }
3100
3101 if (dev)
3102 dev_hold(dev);
3103
3104 proto_curr = po->prot_hook.type;
3105 dev_curr = po->prot_hook.dev;
3106
3107 need_rehook = proto_curr != proto || dev_curr != dev;
3108
3109 if (need_rehook) {
3110 if (po->running) {
3111 rcu_read_unlock();
3112 /* prevents packet_notifier() from calling
3113 * register_prot_hook()
3114 */
3115 po->num = 0;
3116 __unregister_prot_hook(sk, true);
3117 rcu_read_lock();
3118 dev_curr = po->prot_hook.dev;
3119 if (dev)
3120 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3121 dev->ifindex);
3122 }
3123
3124 BUG_ON(po->running);
3125 po->num = proto;
3126 po->prot_hook.type = proto;
3127
3128 if (unlikely(unlisted)) {
3129 dev_put(dev);
3130 po->prot_hook.dev = NULL;
3131 po->ifindex = -1;
3132 packet_cached_dev_reset(po);
3133 } else {
3134 po->prot_hook.dev = dev;
3135 po->ifindex = dev ? dev->ifindex : 0;
3136 packet_cached_dev_assign(po, dev);
3137 }
3138 }
3139 if (dev_curr)
3140 dev_put(dev_curr);
3141
3142 if (proto == 0 || !need_rehook)
3143 goto out_unlock;
3144
3145 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3146 register_prot_hook(sk);
3147 } else {
3148 sk->sk_err = ENETDOWN;
3149 if (!sock_flag(sk, SOCK_DEAD))
3150 sk->sk_error_report(sk);
3151 }
3152
3153 out_unlock:
3154 rcu_read_unlock();
3155 spin_unlock(&po->bind_lock);
3156 release_sock(sk);
3157 return ret;
3158 }
3159
3160 /*
3161 * Bind a packet socket to a device
3162 */
3163
3164 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3165 int addr_len)
3166 {
3167 struct sock *sk = sock->sk;
3168 char name[sizeof(uaddr->sa_data) + 1];
3169
3170 /*
3171 * Check legality
3172 */
3173
3174 if (addr_len != sizeof(struct sockaddr))
3175 return -EINVAL;
3176 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3177 * zero-terminated.
3178 */
3179 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3180 name[sizeof(uaddr->sa_data)] = 0;
3181
3182 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3183 }
3184
3185 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3186 {
3187 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3188 struct sock *sk = sock->sk;
3189
3190 /*
3191 * Check legality
3192 */
3193
3194 if (addr_len < sizeof(struct sockaddr_ll))
3195 return -EINVAL;
3196 if (sll->sll_family != AF_PACKET)
3197 return -EINVAL;
3198
3199 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3200 sll->sll_protocol ? : pkt_sk(sk)->num);
3201 }
3202
3203 static struct proto packet_proto = {
3204 .name = "PACKET",
3205 .owner = THIS_MODULE,
3206 .obj_size = sizeof(struct packet_sock),
3207 };
3208
3209 /*
3210 * Create a packet of type SOCK_PACKET.
3211 */
3212
3213 static int packet_create(struct net *net, struct socket *sock, int protocol,
3214 int kern)
3215 {
3216 struct sock *sk;
3217 struct packet_sock *po;
3218 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3219 int err;
3220
3221 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3222 return -EPERM;
3223 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3224 sock->type != SOCK_PACKET)
3225 return -ESOCKTNOSUPPORT;
3226
3227 sock->state = SS_UNCONNECTED;
3228
3229 err = -ENOBUFS;
3230 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3231 if (sk == NULL)
3232 goto out;
3233
3234 sock->ops = &packet_ops;
3235 if (sock->type == SOCK_PACKET)
3236 sock->ops = &packet_ops_spkt;
3237
3238 sock_init_data(sock, sk);
3239
3240 po = pkt_sk(sk);
3241 init_completion(&po->skb_completion);
3242 sk->sk_family = PF_PACKET;
3243 po->num = proto;
3244 po->xmit = dev_queue_xmit;
3245
3246 err = packet_alloc_pending(po);
3247 if (err)
3248 goto out2;
3249
3250 packet_cached_dev_reset(po);
3251
3252 sk->sk_destruct = packet_sock_destruct;
3253 sk_refcnt_debug_inc(sk);
3254
3255 /*
3256 * Attach a protocol block
3257 */
3258
3259 spin_lock_init(&po->bind_lock);
3260 mutex_init(&po->pg_vec_lock);
3261 po->rollover = NULL;
3262 po->prot_hook.func = packet_rcv;
3263
3264 if (sock->type == SOCK_PACKET)
3265 po->prot_hook.func = packet_rcv_spkt;
3266
3267 po->prot_hook.af_packet_priv = sk;
3268
3269 if (proto) {
3270 po->prot_hook.type = proto;
3271 __register_prot_hook(sk);
3272 }
3273
3274 mutex_lock(&net->packet.sklist_lock);
3275 sk_add_node_tail_rcu(sk, &net->packet.sklist);
3276 mutex_unlock(&net->packet.sklist_lock);
3277
3278 preempt_disable();
3279 sock_prot_inuse_add(net, &packet_proto, 1);
3280 preempt_enable();
3281
3282 return 0;
3283 out2:
3284 sk_free(sk);
3285 out:
3286 return err;
3287 }
3288
3289 /*
3290 * Pull a packet from our receive queue and hand it to the user.
3291 * If necessary we block.
3292 */
3293
3294 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3295 int flags)
3296 {
3297 struct sock *sk = sock->sk;
3298 struct sk_buff *skb;
3299 int copied, err;
3300 int vnet_hdr_len = 0;
3301 unsigned int origlen = 0;
3302
3303 err = -EINVAL;
3304 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3305 goto out;
3306
3307 #if 0
3308 /* What error should we return now? EUNATTACH? */
3309 if (pkt_sk(sk)->ifindex < 0)
3310 return -ENODEV;
3311 #endif
3312
3313 if (flags & MSG_ERRQUEUE) {
3314 err = sock_recv_errqueue(sk, msg, len,
3315 SOL_PACKET, PACKET_TX_TIMESTAMP);
3316 goto out;
3317 }
3318
3319 /*
3320 * Call the generic datagram receiver. This handles all sorts
3321 * of horrible races and re-entrancy so we can forget about it
3322 * in the protocol layers.
3323 *
3324 * Now it will return ENETDOWN, if device have just gone down,
3325 * but then it will block.
3326 */
3327
3328 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3329
3330 /*
3331 * An error occurred so return it. Because skb_recv_datagram()
3332 * handles the blocking we don't see and worry about blocking
3333 * retries.
3334 */
3335
3336 if (skb == NULL)
3337 goto out;
3338
3339 packet_rcv_try_clear_pressure(pkt_sk(sk));
3340
3341 if (pkt_sk(sk)->has_vnet_hdr) {
3342 err = packet_rcv_vnet(msg, skb, &len);
3343 if (err)
3344 goto out_free;
3345 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3346 }
3347
3348 /* You lose any data beyond the buffer you gave. If it worries
3349 * a user program they can ask the device for its MTU
3350 * anyway.
3351 */
3352 copied = skb->len;
3353 if (copied > len) {
3354 copied = len;
3355 msg->msg_flags |= MSG_TRUNC;
3356 }
3357
3358 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3359 if (err)
3360 goto out_free;
3361
3362 if (sock->type != SOCK_PACKET) {
3363 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3364
3365 /* Original length was stored in sockaddr_ll fields */
3366 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3367 sll->sll_family = AF_PACKET;
3368 sll->sll_protocol = skb->protocol;
3369 }
3370
3371 sock_recv_ts_and_drops(msg, sk, skb);
3372
3373 if (msg->msg_name) {
3374 int copy_len;
3375
3376 /* If the address length field is there to be filled
3377 * in, we fill it in now.
3378 */
3379 if (sock->type == SOCK_PACKET) {
3380 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3381 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3382 copy_len = msg->msg_namelen;
3383 } else {
3384 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3385
3386 msg->msg_namelen = sll->sll_halen +
3387 offsetof(struct sockaddr_ll, sll_addr);
3388 copy_len = msg->msg_namelen;
3389 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3390 memset(msg->msg_name +
3391 offsetof(struct sockaddr_ll, sll_addr),
3392 0, sizeof(sll->sll_addr));
3393 msg->msg_namelen = sizeof(struct sockaddr_ll);
3394 }
3395 }
3396 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3397 }
3398
3399 if (pkt_sk(sk)->auxdata) {
3400 struct tpacket_auxdata aux;
3401
3402 aux.tp_status = TP_STATUS_USER;
3403 if (skb->ip_summed == CHECKSUM_PARTIAL)
3404 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3405 else if (skb->pkt_type != PACKET_OUTGOING &&
3406 (skb->ip_summed == CHECKSUM_COMPLETE ||
3407 skb_csum_unnecessary(skb)))
3408 aux.tp_status |= TP_STATUS_CSUM_VALID;
3409
3410 aux.tp_len = origlen;
3411 aux.tp_snaplen = skb->len;
3412 aux.tp_mac = 0;
3413 aux.tp_net = skb_network_offset(skb);
3414 if (skb_vlan_tag_present(skb)) {
3415 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3416 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3417 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3418 } else {
3419 aux.tp_vlan_tci = 0;
3420 aux.tp_vlan_tpid = 0;
3421 }
3422 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3423 }
3424
3425 /*
3426 * Free or return the buffer as appropriate. Again this
3427 * hides all the races and re-entrancy issues from us.
3428 */
3429 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3430
3431 out_free:
3432 skb_free_datagram(sk, skb);
3433 out:
3434 return err;
3435 }
3436
3437 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3438 int peer)
3439 {
3440 struct net_device *dev;
3441 struct sock *sk = sock->sk;
3442
3443 if (peer)
3444 return -EOPNOTSUPP;
3445
3446 uaddr->sa_family = AF_PACKET;
3447 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3448 rcu_read_lock();
3449 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3450 if (dev)
3451 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3452 rcu_read_unlock();
3453
3454 return sizeof(*uaddr);
3455 }
3456
3457 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3458 int peer)
3459 {
3460 struct net_device *dev;
3461 struct sock *sk = sock->sk;
3462 struct packet_sock *po = pkt_sk(sk);
3463 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3464
3465 if (peer)
3466 return -EOPNOTSUPP;
3467
3468 sll->sll_family = AF_PACKET;
3469 sll->sll_ifindex = po->ifindex;
3470 sll->sll_protocol = po->num;
3471 sll->sll_pkttype = 0;
3472 rcu_read_lock();
3473 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3474 if (dev) {
3475 sll->sll_hatype = dev->type;
3476 sll->sll_halen = dev->addr_len;
3477 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3478 } else {
3479 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3480 sll->sll_halen = 0;
3481 }
3482 rcu_read_unlock();
3483
3484 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3485 }
3486
3487 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3488 int what)
3489 {
3490 switch (i->type) {
3491 case PACKET_MR_MULTICAST:
3492 if (i->alen != dev->addr_len)
3493 return -EINVAL;
3494 if (what > 0)
3495 return dev_mc_add(dev, i->addr);
3496 else
3497 return dev_mc_del(dev, i->addr);
3498 break;
3499 case PACKET_MR_PROMISC:
3500 return dev_set_promiscuity(dev, what);
3501 case PACKET_MR_ALLMULTI:
3502 return dev_set_allmulti(dev, what);
3503 case PACKET_MR_UNICAST:
3504 if (i->alen != dev->addr_len)
3505 return -EINVAL;
3506 if (what > 0)
3507 return dev_uc_add(dev, i->addr);
3508 else
3509 return dev_uc_del(dev, i->addr);
3510 break;
3511 default:
3512 break;
3513 }
3514 return 0;
3515 }
3516
3517 static void packet_dev_mclist_delete(struct net_device *dev,
3518 struct packet_mclist **mlp)
3519 {
3520 struct packet_mclist *ml;
3521
3522 while ((ml = *mlp) != NULL) {
3523 if (ml->ifindex == dev->ifindex) {
3524 packet_dev_mc(dev, ml, -1);
3525 *mlp = ml->next;
3526 kfree(ml);
3527 } else
3528 mlp = &ml->next;
3529 }
3530 }
3531
3532 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3533 {
3534 struct packet_sock *po = pkt_sk(sk);
3535 struct packet_mclist *ml, *i;
3536 struct net_device *dev;
3537 int err;
3538
3539 rtnl_lock();
3540
3541 err = -ENODEV;
3542 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3543 if (!dev)
3544 goto done;
3545
3546 err = -EINVAL;
3547 if (mreq->mr_alen > dev->addr_len)
3548 goto done;
3549
3550 err = -ENOBUFS;
3551 i = kmalloc(sizeof(*i), GFP_KERNEL);
3552 if (i == NULL)
3553 goto done;
3554
3555 err = 0;
3556 for (ml = po->mclist; ml; ml = ml->next) {
3557 if (ml->ifindex == mreq->mr_ifindex &&
3558 ml->type == mreq->mr_type &&
3559 ml->alen == mreq->mr_alen &&
3560 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3561 ml->count++;
3562 /* Free the new element ... */
3563 kfree(i);
3564 goto done;
3565 }
3566 }
3567
3568 i->type = mreq->mr_type;
3569 i->ifindex = mreq->mr_ifindex;
3570 i->alen = mreq->mr_alen;
3571 memcpy(i->addr, mreq->mr_address, i->alen);
3572 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3573 i->count = 1;
3574 i->next = po->mclist;
3575 po->mclist = i;
3576 err = packet_dev_mc(dev, i, 1);
3577 if (err) {
3578 po->mclist = i->next;
3579 kfree(i);
3580 }
3581
3582 done:
3583 rtnl_unlock();
3584 return err;
3585 }
3586
3587 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3588 {
3589 struct packet_mclist *ml, **mlp;
3590
3591 rtnl_lock();
3592
3593 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3594 if (ml->ifindex == mreq->mr_ifindex &&
3595 ml->type == mreq->mr_type &&
3596 ml->alen == mreq->mr_alen &&
3597 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3598 if (--ml->count == 0) {
3599 struct net_device *dev;
3600 *mlp = ml->next;
3601 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3602 if (dev)
3603 packet_dev_mc(dev, ml, -1);
3604 kfree(ml);
3605 }
3606 break;
3607 }
3608 }
3609 rtnl_unlock();
3610 return 0;
3611 }
3612
3613 static void packet_flush_mclist(struct sock *sk)
3614 {
3615 struct packet_sock *po = pkt_sk(sk);
3616 struct packet_mclist *ml;
3617
3618 if (!po->mclist)
3619 return;
3620
3621 rtnl_lock();
3622 while ((ml = po->mclist) != NULL) {
3623 struct net_device *dev;
3624
3625 po->mclist = ml->next;
3626 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3627 if (dev != NULL)
3628 packet_dev_mc(dev, ml, -1);
3629 kfree(ml);
3630 }
3631 rtnl_unlock();
3632 }
3633
3634 static int
3635 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3636 {
3637 struct sock *sk = sock->sk;
3638 struct packet_sock *po = pkt_sk(sk);
3639 int ret;
3640
3641 if (level != SOL_PACKET)
3642 return -ENOPROTOOPT;
3643
3644 switch (optname) {
3645 case PACKET_ADD_MEMBERSHIP:
3646 case PACKET_DROP_MEMBERSHIP:
3647 {
3648 struct packet_mreq_max mreq;
3649 int len = optlen;
3650 memset(&mreq, 0, sizeof(mreq));
3651 if (len < sizeof(struct packet_mreq))
3652 return -EINVAL;
3653 if (len > sizeof(mreq))
3654 len = sizeof(mreq);
3655 if (copy_from_user(&mreq, optval, len))
3656 return -EFAULT;
3657 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3658 return -EINVAL;
3659 if (optname == PACKET_ADD_MEMBERSHIP)
3660 ret = packet_mc_add(sk, &mreq);
3661 else
3662 ret = packet_mc_drop(sk, &mreq);
3663 return ret;
3664 }
3665
3666 case PACKET_RX_RING:
3667 case PACKET_TX_RING:
3668 {
3669 union tpacket_req_u req_u;
3670 int len;
3671
3672 lock_sock(sk);
3673 switch (po->tp_version) {
3674 case TPACKET_V1:
3675 case TPACKET_V2:
3676 len = sizeof(req_u.req);
3677 break;
3678 case TPACKET_V3:
3679 default:
3680 len = sizeof(req_u.req3);
3681 break;
3682 }
3683 if (optlen < len) {
3684 ret = -EINVAL;
3685 } else {
3686 if (copy_from_user(&req_u.req, optval, len))
3687 ret = -EFAULT;
3688 else
3689 ret = packet_set_ring(sk, &req_u, 0,
3690 optname == PACKET_TX_RING);
3691 }
3692 release_sock(sk);
3693 return ret;
3694 }
3695 case PACKET_COPY_THRESH:
3696 {
3697 int val;
3698
3699 if (optlen != sizeof(val))
3700 return -EINVAL;
3701 if (copy_from_user(&val, optval, sizeof(val)))
3702 return -EFAULT;
3703
3704 pkt_sk(sk)->copy_thresh = val;
3705 return 0;
3706 }
3707 case PACKET_VERSION:
3708 {
3709 int val;
3710
3711 if (optlen != sizeof(val))
3712 return -EINVAL;
3713 if (copy_from_user(&val, optval, sizeof(val)))
3714 return -EFAULT;
3715 switch (val) {
3716 case TPACKET_V1:
3717 case TPACKET_V2:
3718 case TPACKET_V3:
3719 break;
3720 default:
3721 return -EINVAL;
3722 }
3723 lock_sock(sk);
3724 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3725 ret = -EBUSY;
3726 } else {
3727 po->tp_version = val;
3728 ret = 0;
3729 }
3730 release_sock(sk);
3731 return ret;
3732 }
3733 case PACKET_RESERVE:
3734 {
3735 unsigned int val;
3736
3737 if (optlen != sizeof(val))
3738 return -EINVAL;
3739 if (copy_from_user(&val, optval, sizeof(val)))
3740 return -EFAULT;
3741 if (val > INT_MAX)
3742 return -EINVAL;
3743 lock_sock(sk);
3744 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3745 ret = -EBUSY;
3746 } else {
3747 po->tp_reserve = val;
3748 ret = 0;
3749 }
3750 release_sock(sk);
3751 return ret;
3752 }
3753 case PACKET_LOSS:
3754 {
3755 unsigned int val;
3756
3757 if (optlen != sizeof(val))
3758 return -EINVAL;
3759 if (copy_from_user(&val, optval, sizeof(val)))
3760 return -EFAULT;
3761
3762 lock_sock(sk);
3763 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3764 ret = -EBUSY;
3765 } else {
3766 po->tp_loss = !!val;
3767 ret = 0;
3768 }
3769 release_sock(sk);
3770 return ret;
3771 }
3772 case PACKET_AUXDATA:
3773 {
3774 int val;
3775
3776 if (optlen < sizeof(val))
3777 return -EINVAL;
3778 if (copy_from_user(&val, optval, sizeof(val)))
3779 return -EFAULT;
3780
3781 lock_sock(sk);
3782 po->auxdata = !!val;
3783 release_sock(sk);
3784 return 0;
3785 }
3786 case PACKET_ORIGDEV:
3787 {
3788 int val;
3789
3790 if (optlen < sizeof(val))
3791 return -EINVAL;
3792 if (copy_from_user(&val, optval, sizeof(val)))
3793 return -EFAULT;
3794
3795 lock_sock(sk);
3796 po->origdev = !!val;
3797 release_sock(sk);
3798 return 0;
3799 }
3800 case PACKET_VNET_HDR:
3801 {
3802 int val;
3803
3804 if (sock->type != SOCK_RAW)
3805 return -EINVAL;
3806 if (optlen < sizeof(val))
3807 return -EINVAL;
3808 if (copy_from_user(&val, optval, sizeof(val)))
3809 return -EFAULT;
3810
3811 lock_sock(sk);
3812 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3813 ret = -EBUSY;
3814 } else {
3815 po->has_vnet_hdr = !!val;
3816 ret = 0;
3817 }
3818 release_sock(sk);
3819 return ret;
3820 }
3821 case PACKET_TIMESTAMP:
3822 {
3823 int val;
3824
3825 if (optlen != sizeof(val))
3826 return -EINVAL;
3827 if (copy_from_user(&val, optval, sizeof(val)))
3828 return -EFAULT;
3829
3830 po->tp_tstamp = val;
3831 return 0;
3832 }
3833 case PACKET_FANOUT:
3834 {
3835 int val;
3836
3837 if (optlen != sizeof(val))
3838 return -EINVAL;
3839 if (copy_from_user(&val, optval, sizeof(val)))
3840 return -EFAULT;
3841
3842 return fanout_add(sk, val & 0xffff, val >> 16);
3843 }
3844 case PACKET_FANOUT_DATA:
3845 {
3846 if (!po->fanout)
3847 return -EINVAL;
3848
3849 return fanout_set_data(po, optval, optlen);
3850 }
3851 case PACKET_IGNORE_OUTGOING:
3852 {
3853 int val;
3854
3855 if (optlen != sizeof(val))
3856 return -EINVAL;
3857 if (copy_from_user(&val, optval, sizeof(val)))
3858 return -EFAULT;
3859 if (val < 0 || val > 1)
3860 return -EINVAL;
3861
3862 po->prot_hook.ignore_outgoing = !!val;
3863 return 0;
3864 }
3865 case PACKET_TX_HAS_OFF:
3866 {
3867 unsigned int val;
3868
3869 if (optlen != sizeof(val))
3870 return -EINVAL;
3871 if (copy_from_user(&val, optval, sizeof(val)))
3872 return -EFAULT;
3873
3874 lock_sock(sk);
3875 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3876 ret = -EBUSY;
3877 } else {
3878 po->tp_tx_has_off = !!val;
3879 ret = 0;
3880 }
3881 release_sock(sk);
3882 return 0;
3883 }
3884 case PACKET_QDISC_BYPASS:
3885 {
3886 int val;
3887
3888 if (optlen != sizeof(val))
3889 return -EINVAL;
3890 if (copy_from_user(&val, optval, sizeof(val)))
3891 return -EFAULT;
3892
3893 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3894 return 0;
3895 }
3896 default:
3897 return -ENOPROTOOPT;
3898 }
3899 }
3900
3901 static int packet_getsockopt(struct socket *sock, int level, int optname,
3902 char __user *optval, int __user *optlen)
3903 {
3904 int len;
3905 int val, lv = sizeof(val);
3906 struct sock *sk = sock->sk;
3907 struct packet_sock *po = pkt_sk(sk);
3908 void *data = &val;
3909 union tpacket_stats_u st;
3910 struct tpacket_rollover_stats rstats;
3911 int drops;
3912
3913 if (level != SOL_PACKET)
3914 return -ENOPROTOOPT;
3915
3916 if (get_user(len, optlen))
3917 return -EFAULT;
3918
3919 if (len < 0)
3920 return -EINVAL;
3921
3922 switch (optname) {
3923 case PACKET_STATISTICS:
3924 spin_lock_bh(&sk->sk_receive_queue.lock);
3925 memcpy(&st, &po->stats, sizeof(st));
3926 memset(&po->stats, 0, sizeof(po->stats));
3927 spin_unlock_bh(&sk->sk_receive_queue.lock);
3928 drops = atomic_xchg(&po->tp_drops, 0);
3929
3930 if (po->tp_version == TPACKET_V3) {
3931 lv = sizeof(struct tpacket_stats_v3);
3932 st.stats3.tp_drops = drops;
3933 st.stats3.tp_packets += drops;
3934 data = &st.stats3;
3935 } else {
3936 lv = sizeof(struct tpacket_stats);
3937 st.stats1.tp_drops = drops;
3938 st.stats1.tp_packets += drops;
3939 data = &st.stats1;
3940 }
3941
3942 break;
3943 case PACKET_AUXDATA:
3944 val = po->auxdata;
3945 break;
3946 case PACKET_ORIGDEV:
3947 val = po->origdev;
3948 break;
3949 case PACKET_VNET_HDR:
3950 val = po->has_vnet_hdr;
3951 break;
3952 case PACKET_VERSION:
3953 val = po->tp_version;
3954 break;
3955 case PACKET_HDRLEN:
3956 if (len > sizeof(int))
3957 len = sizeof(int);
3958 if (len < sizeof(int))
3959 return -EINVAL;
3960 if (copy_from_user(&val, optval, len))
3961 return -EFAULT;
3962 switch (val) {
3963 case TPACKET_V1:
3964 val = sizeof(struct tpacket_hdr);
3965 break;
3966 case TPACKET_V2:
3967 val = sizeof(struct tpacket2_hdr);
3968 break;
3969 case TPACKET_V3:
3970 val = sizeof(struct tpacket3_hdr);
3971 break;
3972 default:
3973 return -EINVAL;
3974 }
3975 break;
3976 case PACKET_RESERVE:
3977 val = po->tp_reserve;
3978 break;
3979 case PACKET_LOSS:
3980 val = po->tp_loss;
3981 break;
3982 case PACKET_TIMESTAMP:
3983 val = po->tp_tstamp;
3984 break;
3985 case PACKET_FANOUT:
3986 val = (po->fanout ?
3987 ((u32)po->fanout->id |
3988 ((u32)po->fanout->type << 16) |
3989 ((u32)po->fanout->flags << 24)) :
3990 0);
3991 break;
3992 case PACKET_IGNORE_OUTGOING:
3993 val = po->prot_hook.ignore_outgoing;
3994 break;
3995 case PACKET_ROLLOVER_STATS:
3996 if (!po->rollover)
3997 return -EINVAL;
3998 rstats.tp_all = atomic_long_read(&po->rollover->num);
3999 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4000 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4001 data = &rstats;
4002 lv = sizeof(rstats);
4003 break;
4004 case PACKET_TX_HAS_OFF:
4005 val = po->tp_tx_has_off;
4006 break;
4007 case PACKET_QDISC_BYPASS:
4008 val = packet_use_direct_xmit(po);
4009 break;
4010 default:
4011 return -ENOPROTOOPT;
4012 }
4013
4014 if (len > lv)
4015 len = lv;
4016 if (put_user(len, optlen))
4017 return -EFAULT;
4018 if (copy_to_user(optval, data, len))
4019 return -EFAULT;
4020 return 0;
4021 }
4022
4023
4024 #ifdef CONFIG_COMPAT
4025 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
4026 char __user *optval, unsigned int optlen)
4027 {
4028 struct packet_sock *po = pkt_sk(sock->sk);
4029
4030 if (level != SOL_PACKET)
4031 return -ENOPROTOOPT;
4032
4033 if (optname == PACKET_FANOUT_DATA &&
4034 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
4035 optval = (char __user *)get_compat_bpf_fprog(optval);
4036 if (!optval)
4037 return -EFAULT;
4038 optlen = sizeof(struct sock_fprog);
4039 }
4040
4041 return packet_setsockopt(sock, level, optname, optval, optlen);
4042 }
4043 #endif
4044
4045 static int packet_notifier(struct notifier_block *this,
4046 unsigned long msg, void *ptr)
4047 {
4048 struct sock *sk;
4049 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4050 struct net *net = dev_net(dev);
4051
4052 rcu_read_lock();
4053 sk_for_each_rcu(sk, &net->packet.sklist) {
4054 struct packet_sock *po = pkt_sk(sk);
4055
4056 switch (msg) {
4057 case NETDEV_UNREGISTER:
4058 if (po->mclist)
4059 packet_dev_mclist_delete(dev, &po->mclist);
4060 /* fallthrough */
4061
4062 case NETDEV_DOWN:
4063 if (dev->ifindex == po->ifindex) {
4064 spin_lock(&po->bind_lock);
4065 if (po->running) {
4066 __unregister_prot_hook(sk, false);
4067 sk->sk_err = ENETDOWN;
4068 if (!sock_flag(sk, SOCK_DEAD))
4069 sk->sk_error_report(sk);
4070 }
4071 if (msg == NETDEV_UNREGISTER) {
4072 packet_cached_dev_reset(po);
4073 po->ifindex = -1;
4074 if (po->prot_hook.dev)
4075 dev_put(po->prot_hook.dev);
4076 po->prot_hook.dev = NULL;
4077 }
4078 spin_unlock(&po->bind_lock);
4079 }
4080 break;
4081 case NETDEV_UP:
4082 if (dev->ifindex == po->ifindex) {
4083 spin_lock(&po->bind_lock);
4084 if (po->num)
4085 register_prot_hook(sk);
4086 spin_unlock(&po->bind_lock);
4087 }
4088 break;
4089 }
4090 }
4091 rcu_read_unlock();
4092 return NOTIFY_DONE;
4093 }
4094
4095
4096 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4097 unsigned long arg)
4098 {
4099 struct sock *sk = sock->sk;
4100
4101 switch (cmd) {
4102 case SIOCOUTQ:
4103 {
4104 int amount = sk_wmem_alloc_get(sk);
4105
4106 return put_user(amount, (int __user *)arg);
4107 }
4108 case SIOCINQ:
4109 {
4110 struct sk_buff *skb;
4111 int amount = 0;
4112
4113 spin_lock_bh(&sk->sk_receive_queue.lock);
4114 skb = skb_peek(&sk->sk_receive_queue);
4115 if (skb)
4116 amount = skb->len;
4117 spin_unlock_bh(&sk->sk_receive_queue.lock);
4118 return put_user(amount, (int __user *)arg);
4119 }
4120 #ifdef CONFIG_INET
4121 case SIOCADDRT:
4122 case SIOCDELRT:
4123 case SIOCDARP:
4124 case SIOCGARP:
4125 case SIOCSARP:
4126 case SIOCGIFADDR:
4127 case SIOCSIFADDR:
4128 case SIOCGIFBRDADDR:
4129 case SIOCSIFBRDADDR:
4130 case SIOCGIFNETMASK:
4131 case SIOCSIFNETMASK:
4132 case SIOCGIFDSTADDR:
4133 case SIOCSIFDSTADDR:
4134 case SIOCSIFFLAGS:
4135 return inet_dgram_ops.ioctl(sock, cmd, arg);
4136 #endif
4137
4138 default:
4139 return -ENOIOCTLCMD;
4140 }
4141 return 0;
4142 }
4143
4144 static __poll_t packet_poll(struct file *file, struct socket *sock,
4145 poll_table *wait)
4146 {
4147 struct sock *sk = sock->sk;
4148 struct packet_sock *po = pkt_sk(sk);
4149 __poll_t mask = datagram_poll(file, sock, wait);
4150
4151 spin_lock_bh(&sk->sk_receive_queue.lock);
4152 if (po->rx_ring.pg_vec) {
4153 if (!packet_previous_rx_frame(po, &po->rx_ring,
4154 TP_STATUS_KERNEL))
4155 mask |= EPOLLIN | EPOLLRDNORM;
4156 }
4157 packet_rcv_try_clear_pressure(po);
4158 spin_unlock_bh(&sk->sk_receive_queue.lock);
4159 spin_lock_bh(&sk->sk_write_queue.lock);
4160 if (po->tx_ring.pg_vec) {
4161 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4162 mask |= EPOLLOUT | EPOLLWRNORM;
4163 }
4164 spin_unlock_bh(&sk->sk_write_queue.lock);
4165 return mask;
4166 }
4167
4168
4169 /* Dirty? Well, I still did not learn better way to account
4170 * for user mmaps.
4171 */
4172
4173 static void packet_mm_open(struct vm_area_struct *vma)
4174 {
4175 struct file *file = vma->vm_file;
4176 struct socket *sock = file->private_data;
4177 struct sock *sk = sock->sk;
4178
4179 if (sk)
4180 atomic_inc(&pkt_sk(sk)->mapped);
4181 }
4182
4183 static void packet_mm_close(struct vm_area_struct *vma)
4184 {
4185 struct file *file = vma->vm_file;
4186 struct socket *sock = file->private_data;
4187 struct sock *sk = sock->sk;
4188
4189 if (sk)
4190 atomic_dec(&pkt_sk(sk)->mapped);
4191 }
4192
4193 static const struct vm_operations_struct packet_mmap_ops = {
4194 .open = packet_mm_open,
4195 .close = packet_mm_close,
4196 };
4197
4198 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4199 unsigned int len)
4200 {
4201 int i;
4202
4203 for (i = 0; i < len; i++) {
4204 if (likely(pg_vec[i].buffer)) {
4205 if (is_vmalloc_addr(pg_vec[i].buffer))
4206 vfree(pg_vec[i].buffer);
4207 else
4208 free_pages((unsigned long)pg_vec[i].buffer,
4209 order);
4210 pg_vec[i].buffer = NULL;
4211 }
4212 }
4213 kfree(pg_vec);
4214 }
4215
4216 static char *alloc_one_pg_vec_page(unsigned long order)
4217 {
4218 char *buffer;
4219 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4220 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4221
4222 buffer = (char *) __get_free_pages(gfp_flags, order);
4223 if (buffer)
4224 return buffer;
4225
4226 /* __get_free_pages failed, fall back to vmalloc */
4227 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4228 if (buffer)
4229 return buffer;
4230
4231 /* vmalloc failed, lets dig into swap here */
4232 gfp_flags &= ~__GFP_NORETRY;
4233 buffer = (char *) __get_free_pages(gfp_flags, order);
4234 if (buffer)
4235 return buffer;
4236
4237 /* complete and utter failure */
4238 return NULL;
4239 }
4240
4241 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4242 {
4243 unsigned int block_nr = req->tp_block_nr;
4244 struct pgv *pg_vec;
4245 int i;
4246
4247 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4248 if (unlikely(!pg_vec))
4249 goto out;
4250
4251 for (i = 0; i < block_nr; i++) {
4252 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4253 if (unlikely(!pg_vec[i].buffer))
4254 goto out_free_pgvec;
4255 }
4256
4257 out:
4258 return pg_vec;
4259
4260 out_free_pgvec:
4261 free_pg_vec(pg_vec, order, block_nr);
4262 pg_vec = NULL;
4263 goto out;
4264 }
4265
4266 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4267 int closing, int tx_ring)
4268 {
4269 struct pgv *pg_vec = NULL;
4270 struct packet_sock *po = pkt_sk(sk);
4271 int was_running, order = 0;
4272 struct packet_ring_buffer *rb;
4273 struct sk_buff_head *rb_queue;
4274 __be16 num;
4275 int err = -EINVAL;
4276 /* Added to avoid minimal code churn */
4277 struct tpacket_req *req = &req_u->req;
4278
4279 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4280 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4281
4282 err = -EBUSY;
4283 if (!closing) {
4284 if (atomic_read(&po->mapped))
4285 goto out;
4286 if (packet_read_pending(rb))
4287 goto out;
4288 }
4289
4290 if (req->tp_block_nr) {
4291 unsigned int min_frame_size;
4292
4293 /* Sanity tests and some calculations */
4294 err = -EBUSY;
4295 if (unlikely(rb->pg_vec))
4296 goto out;
4297
4298 switch (po->tp_version) {
4299 case TPACKET_V1:
4300 po->tp_hdrlen = TPACKET_HDRLEN;
4301 break;
4302 case TPACKET_V2:
4303 po->tp_hdrlen = TPACKET2_HDRLEN;
4304 break;
4305 case TPACKET_V3:
4306 po->tp_hdrlen = TPACKET3_HDRLEN;
4307 break;
4308 }
4309
4310 err = -EINVAL;
4311 if (unlikely((int)req->tp_block_size <= 0))
4312 goto out;
4313 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4314 goto out;
4315 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4316 if (po->tp_version >= TPACKET_V3 &&
4317 req->tp_block_size <
4318 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4319 goto out;
4320 if (unlikely(req->tp_frame_size < min_frame_size))
4321 goto out;
4322 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4323 goto out;
4324
4325 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4326 if (unlikely(rb->frames_per_block == 0))
4327 goto out;
4328 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4329 goto out;
4330 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4331 req->tp_frame_nr))
4332 goto out;
4333
4334 err = -ENOMEM;
4335 order = get_order(req->tp_block_size);
4336 pg_vec = alloc_pg_vec(req, order);
4337 if (unlikely(!pg_vec))
4338 goto out;
4339 switch (po->tp_version) {
4340 case TPACKET_V3:
4341 /* Block transmit is not supported yet */
4342 if (!tx_ring) {
4343 init_prb_bdqc(po, rb, pg_vec, req_u);
4344 } else {
4345 struct tpacket_req3 *req3 = &req_u->req3;
4346
4347 if (req3->tp_retire_blk_tov ||
4348 req3->tp_sizeof_priv ||
4349 req3->tp_feature_req_word) {
4350 err = -EINVAL;
4351 goto out_free_pg_vec;
4352 }
4353 }
4354 break;
4355 default:
4356 break;
4357 }
4358 }
4359 /* Done */
4360 else {
4361 err = -EINVAL;
4362 if (unlikely(req->tp_frame_nr))
4363 goto out;
4364 }
4365
4366
4367 /* Detach socket from network */
4368 spin_lock(&po->bind_lock);
4369 was_running = po->running;
4370 num = po->num;
4371 if (was_running) {
4372 po->num = 0;
4373 __unregister_prot_hook(sk, false);
4374 }
4375 spin_unlock(&po->bind_lock);
4376
4377 synchronize_net();
4378
4379 err = -EBUSY;
4380 mutex_lock(&po->pg_vec_lock);
4381 if (closing || atomic_read(&po->mapped) == 0) {
4382 err = 0;
4383 spin_lock_bh(&rb_queue->lock);
4384 swap(rb->pg_vec, pg_vec);
4385 rb->frame_max = (req->tp_frame_nr - 1);
4386 rb->head = 0;
4387 rb->frame_size = req->tp_frame_size;
4388 spin_unlock_bh(&rb_queue->lock);
4389
4390 swap(rb->pg_vec_order, order);
4391 swap(rb->pg_vec_len, req->tp_block_nr);
4392
4393 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4394 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4395 tpacket_rcv : packet_rcv;
4396 skb_queue_purge(rb_queue);
4397 if (atomic_read(&po->mapped))
4398 pr_err("packet_mmap: vma is busy: %d\n",
4399 atomic_read(&po->mapped));
4400 }
4401 mutex_unlock(&po->pg_vec_lock);
4402
4403 spin_lock(&po->bind_lock);
4404 if (was_running) {
4405 po->num = num;
4406 register_prot_hook(sk);
4407 }
4408 spin_unlock(&po->bind_lock);
4409 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4410 /* Because we don't support block-based V3 on tx-ring */
4411 if (!tx_ring)
4412 prb_shutdown_retire_blk_timer(po, rb_queue);
4413 }
4414
4415 out_free_pg_vec:
4416 if (pg_vec)
4417 free_pg_vec(pg_vec, order, req->tp_block_nr);
4418 out:
4419 return err;
4420 }
4421
4422 static int packet_mmap(struct file *file, struct socket *sock,
4423 struct vm_area_struct *vma)
4424 {
4425 struct sock *sk = sock->sk;
4426 struct packet_sock *po = pkt_sk(sk);
4427 unsigned long size, expected_size;
4428 struct packet_ring_buffer *rb;
4429 unsigned long start;
4430 int err = -EINVAL;
4431 int i;
4432
4433 if (vma->vm_pgoff)
4434 return -EINVAL;
4435
4436 mutex_lock(&po->pg_vec_lock);
4437
4438 expected_size = 0;
4439 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4440 if (rb->pg_vec) {
4441 expected_size += rb->pg_vec_len
4442 * rb->pg_vec_pages
4443 * PAGE_SIZE;
4444 }
4445 }
4446
4447 if (expected_size == 0)
4448 goto out;
4449
4450 size = vma->vm_end - vma->vm_start;
4451 if (size != expected_size)
4452 goto out;
4453
4454 start = vma->vm_start;
4455 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4456 if (rb->pg_vec == NULL)
4457 continue;
4458
4459 for (i = 0; i < rb->pg_vec_len; i++) {
4460 struct page *page;
4461 void *kaddr = rb->pg_vec[i].buffer;
4462 int pg_num;
4463
4464 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4465 page = pgv_to_page(kaddr);
4466 err = vm_insert_page(vma, start, page);
4467 if (unlikely(err))
4468 goto out;
4469 start += PAGE_SIZE;
4470 kaddr += PAGE_SIZE;
4471 }
4472 }
4473 }
4474
4475 atomic_inc(&po->mapped);
4476 vma->vm_ops = &packet_mmap_ops;
4477 err = 0;
4478
4479 out:
4480 mutex_unlock(&po->pg_vec_lock);
4481 return err;
4482 }
4483
4484 static const struct proto_ops packet_ops_spkt = {
4485 .family = PF_PACKET,
4486 .owner = THIS_MODULE,
4487 .release = packet_release,
4488 .bind = packet_bind_spkt,
4489 .connect = sock_no_connect,
4490 .socketpair = sock_no_socketpair,
4491 .accept = sock_no_accept,
4492 .getname = packet_getname_spkt,
4493 .poll = datagram_poll,
4494 .ioctl = packet_ioctl,
4495 .gettstamp = sock_gettstamp,
4496 .listen = sock_no_listen,
4497 .shutdown = sock_no_shutdown,
4498 .setsockopt = sock_no_setsockopt,
4499 .getsockopt = sock_no_getsockopt,
4500 .sendmsg = packet_sendmsg_spkt,
4501 .recvmsg = packet_recvmsg,
4502 .mmap = sock_no_mmap,
4503 .sendpage = sock_no_sendpage,
4504 };
4505
4506 static const struct proto_ops packet_ops = {
4507 .family = PF_PACKET,
4508 .owner = THIS_MODULE,
4509 .release = packet_release,
4510 .bind = packet_bind,
4511 .connect = sock_no_connect,
4512 .socketpair = sock_no_socketpair,
4513 .accept = sock_no_accept,
4514 .getname = packet_getname,
4515 .poll = packet_poll,
4516 .ioctl = packet_ioctl,
4517 .gettstamp = sock_gettstamp,
4518 .listen = sock_no_listen,
4519 .shutdown = sock_no_shutdown,
4520 .setsockopt = packet_setsockopt,
4521 .getsockopt = packet_getsockopt,
4522 #ifdef CONFIG_COMPAT
4523 .compat_setsockopt = compat_packet_setsockopt,
4524 #endif
4525 .sendmsg = packet_sendmsg,
4526 .recvmsg = packet_recvmsg,
4527 .mmap = packet_mmap,
4528 .sendpage = sock_no_sendpage,
4529 };
4530
4531 static const struct net_proto_family packet_family_ops = {
4532 .family = PF_PACKET,
4533 .create = packet_create,
4534 .owner = THIS_MODULE,
4535 };
4536
4537 static struct notifier_block packet_netdev_notifier = {
4538 .notifier_call = packet_notifier,
4539 };
4540
4541 #ifdef CONFIG_PROC_FS
4542
4543 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4544 __acquires(RCU)
4545 {
4546 struct net *net = seq_file_net(seq);
4547
4548 rcu_read_lock();
4549 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4550 }
4551
4552 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4553 {
4554 struct net *net = seq_file_net(seq);
4555 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4556 }
4557
4558 static void packet_seq_stop(struct seq_file *seq, void *v)
4559 __releases(RCU)
4560 {
4561 rcu_read_unlock();
4562 }
4563
4564 static int packet_seq_show(struct seq_file *seq, void *v)
4565 {
4566 if (v == SEQ_START_TOKEN)
4567 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4568 else {
4569 struct sock *s = sk_entry(v);
4570 const struct packet_sock *po = pkt_sk(s);
4571
4572 seq_printf(seq,
4573 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4574 s,
4575 refcount_read(&s->sk_refcnt),
4576 s->sk_type,
4577 ntohs(po->num),
4578 po->ifindex,
4579 po->running,
4580 atomic_read(&s->sk_rmem_alloc),
4581 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4582 sock_i_ino(s));
4583 }
4584
4585 return 0;
4586 }
4587
4588 static const struct seq_operations packet_seq_ops = {
4589 .start = packet_seq_start,
4590 .next = packet_seq_next,
4591 .stop = packet_seq_stop,
4592 .show = packet_seq_show,
4593 };
4594 #endif
4595
4596 static int __net_init packet_net_init(struct net *net)
4597 {
4598 mutex_init(&net->packet.sklist_lock);
4599 INIT_HLIST_HEAD(&net->packet.sklist);
4600
4601 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4602 sizeof(struct seq_net_private)))
4603 return -ENOMEM;
4604
4605 return 0;
4606 }
4607
4608 static void __net_exit packet_net_exit(struct net *net)
4609 {
4610 remove_proc_entry("packet", net->proc_net);
4611 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4612 }
4613
4614 static struct pernet_operations packet_net_ops = {
4615 .init = packet_net_init,
4616 .exit = packet_net_exit,
4617 };
4618
4619
4620 static void __exit packet_exit(void)
4621 {
4622 unregister_netdevice_notifier(&packet_netdev_notifier);
4623 unregister_pernet_subsys(&packet_net_ops);
4624 sock_unregister(PF_PACKET);
4625 proto_unregister(&packet_proto);
4626 }
4627
4628 static int __init packet_init(void)
4629 {
4630 int rc;
4631
4632 rc = proto_register(&packet_proto, 0);
4633 if (rc)
4634 goto out;
4635 rc = sock_register(&packet_family_ops);
4636 if (rc)
4637 goto out_proto;
4638 rc = register_pernet_subsys(&packet_net_ops);
4639 if (rc)
4640 goto out_sock;
4641 rc = register_netdevice_notifier(&packet_netdev_notifier);
4642 if (rc)
4643 goto out_pernet;
4644
4645 return 0;
4646
4647 out_pernet:
4648 unregister_pernet_subsys(&packet_net_ops);
4649 out_sock:
4650 sock_unregister(PF_PACKET);
4651 out_proto:
4652 proto_unregister(&packet_proto);
4653 out:
4654 return rc;
4655 }
4656
4657 module_init(packet_init);
4658 module_exit(packet_exit);
4659 MODULE_LICENSE("GPL");
4660 MODULE_ALIAS_NETPROTO(PF_PACKET);