add the new ath9k driver (loads successfully on an AR9160 card, but still seems to...
[openwrt/svn-archive/archive.git] / package / ath9k / src / drivers / net / wireless / ath9k / phy.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "hw.h"
19 #include "reg.h"
20 #include "phy.h"
21
22 void
23 ath9k_hw_write_regs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
24 int regWrites)
25 {
26 struct ath_hal_5416 *ahp = AH5416(ah);
27
28 REG_WRITE_ARRAY(&ahp->ah_iniBB_RfGain, freqIndex, regWrites);
29 }
30
31 enum hal_bool
32 ath9k_hw_set_channel(struct ath_hal *ah, struct hal_channel_internal *chan)
33 {
34 u_int32_t channelSel = 0;
35 u_int32_t bModeSynth = 0;
36 u_int32_t aModeRefSel = 0;
37 u_int32_t reg32 = 0;
38 u_int16_t freq;
39 struct chan_centers centers;
40
41 ath9k_hw_get_channel_centers(ah, chan, &centers);
42 freq = centers.synth_center;
43
44 if (freq < 4800) {
45 u_int32_t txctl;
46
47 if (((freq - 2192) % 5) == 0) {
48 channelSel = ((freq - 672) * 2 - 3040) / 10;
49 bModeSynth = 0;
50 } else if (((freq - 2224) % 5) == 0) {
51 channelSel = ((freq - 704) * 2 - 3040) / 10;
52 bModeSynth = 1;
53 } else {
54 HDPRINTF(ah, HAL_DBG_CHANNEL,
55 "%s: invalid channel %u MHz\n", __func__,
56 freq);
57 return AH_FALSE;
58 }
59
60 channelSel = (channelSel << 2) & 0xff;
61 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
62
63 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
64 if (freq == 2484) {
65
66 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
67 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
68 } else {
69 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
70 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
71 }
72
73 } else if ((freq % 20) == 0 && freq >= 5120) {
74 channelSel =
75 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
76 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
77 } else if ((freq % 10) == 0) {
78 channelSel =
79 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
80 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
81 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
82 else
83 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
84 } else if ((freq % 5) == 0) {
85 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
86 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
87 } else {
88 HDPRINTF(ah, HAL_DBG_CHANNEL,
89 "%s: invalid channel %u MHz\n", __func__, freq);
90 return AH_FALSE;
91 }
92
93 reg32 =
94 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
95 (1 << 5) | 0x1;
96
97 REG_WRITE(ah, AR_PHY(0x37), reg32);
98
99 ah->ah_curchan = chan;
100
101 AH5416(ah)->ah_curchanRadIndex = -1;
102
103 return AH_TRUE;
104 }
105
106 enum hal_bool
107 ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
108 struct hal_channel_internal *chan)
109 {
110 u_int16_t bMode, fracMode, aModeRefSel = 0;
111 u_int32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
112 struct chan_centers centers;
113 u_int32_t refDivA = 24;
114
115 ath9k_hw_get_channel_centers(ah, chan, &centers);
116 freq = centers.synth_center;
117
118 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
119 reg32 &= 0xc0000000;
120
121 if (freq < 4800) {
122 u_int32_t txctl;
123
124 bMode = 1;
125 fracMode = 1;
126 aModeRefSel = 0;
127 channelSel = (freq * 0x10000) / 15;
128
129 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
130 if (freq == 2484) {
131
132 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
133 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
134 } else {
135 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
136 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
137 }
138 } else {
139 bMode = 0;
140 fracMode = 0;
141
142 if ((freq % 20) == 0) {
143 aModeRefSel = 3;
144 } else if ((freq % 10) == 0) {
145 aModeRefSel = 2;
146 } else {
147 aModeRefSel = 0;
148
149 fracMode = 1;
150 refDivA = 1;
151 channelSel = (freq * 0x8000) / 15;
152
153 OS_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
154 AR_AN_SYNTH9_REFDIVA, refDivA);
155 }
156 if (!fracMode) {
157 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
158 channelSel = ndiv & 0x1ff;
159 channelFrac = (ndiv & 0xfffffe00) * 2;
160 channelSel = (channelSel << 17) | channelFrac;
161 }
162 }
163
164 reg32 = reg32 |
165 (bMode << 29) |
166 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
167
168 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
169
170 ah->ah_curchan = chan;
171
172 AH5416(ah)->ah_curchanRadIndex = -1;
173
174 return AH_TRUE;
175 }
176
177 static void
178 ath9k_phy_modify_rx_buffer(u_int32_t *rfBuf, u_int32_t reg32,
179 u_int32_t numBits, u_int32_t firstBit,
180 u_int32_t column)
181 {
182 u_int32_t tmp32, mask, arrayEntry, lastBit;
183 int32_t bitPosition, bitsLeft;
184
185 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
186 arrayEntry = (firstBit - 1) / 8;
187 bitPosition = (firstBit - 1) % 8;
188 bitsLeft = numBits;
189 while (bitsLeft > 0) {
190 lastBit = (bitPosition + bitsLeft > 8) ?
191 8 : bitPosition + bitsLeft;
192 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
193 (column * 8);
194 rfBuf[arrayEntry] &= ~mask;
195 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
196 (column * 8)) & mask;
197 bitsLeft -= 8 - bitPosition;
198 tmp32 = tmp32 >> (8 - bitPosition);
199 bitPosition = 0;
200 arrayEntry++;
201 }
202 }
203
204 enum hal_bool
205 ath9k_hw_set_rf_regs(struct ath_hal *ah, struct hal_channel_internal *chan,
206 u_int16_t modesIndex)
207 {
208 struct ath_hal_5416 *ahp = AH5416(ah);
209
210 u_int32_t eepMinorRev;
211 u_int32_t ob5GHz = 0, db5GHz = 0;
212 u_int32_t ob2GHz = 0, db2GHz = 0;
213 int regWrites = 0;
214
215 if (AR_SREV_9280_10_OR_LATER(ah))
216 return AH_TRUE;
217
218 eepMinorRev = ath9k_hw_get_eeprom(ahp, EEP_MINOR_REV);
219
220 RF_BANK_SETUP(ahp->ah_analogBank0Data, &ahp->ah_iniBank0, 1);
221
222 RF_BANK_SETUP(ahp->ah_analogBank1Data, &ahp->ah_iniBank1, 1);
223
224 RF_BANK_SETUP(ahp->ah_analogBank2Data, &ahp->ah_iniBank2, 1);
225
226 RF_BANK_SETUP(ahp->ah_analogBank3Data, &ahp->ah_iniBank3,
227 modesIndex);
228 {
229 int i;
230 for (i = 0; i < ahp->ah_iniBank6TPC.ia_rows; i++) {
231 ahp->ah_analogBank6Data[i] =
232 INI_RA(&ahp->ah_iniBank6TPC, i, modesIndex);
233 }
234 }
235
236 if (eepMinorRev >= 2) {
237 if (IS_CHAN_2GHZ(chan)) {
238 ob2GHz = ath9k_hw_get_eeprom(ahp, EEP_OB_2);
239 db2GHz = ath9k_hw_get_eeprom(ahp, EEP_DB_2);
240 ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
241 ob2GHz, 3, 197, 0);
242 ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
243 db2GHz, 3, 194, 0);
244 } else {
245 ob5GHz = ath9k_hw_get_eeprom(ahp, EEP_OB_5);
246 db5GHz = ath9k_hw_get_eeprom(ahp, EEP_DB_5);
247 ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
248 ob5GHz, 3, 203, 0);
249 ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
250 db5GHz, 3, 200, 0);
251 }
252 }
253
254 RF_BANK_SETUP(ahp->ah_analogBank7Data, &ahp->ah_iniBank7, 1);
255
256 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank0, ahp->ah_analogBank0Data,
257 regWrites);
258 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank1, ahp->ah_analogBank1Data,
259 regWrites);
260 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank2, ahp->ah_analogBank2Data,
261 regWrites);
262 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank3, ahp->ah_analogBank3Data,
263 regWrites);
264 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6TPC, ahp->ah_analogBank6Data,
265 regWrites);
266 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank7, ahp->ah_analogBank7Data,
267 regWrites);
268
269 return AH_TRUE;
270 }
271
272 void
273 ath9k_hw_rfdetach(struct ath_hal *ah)
274 {
275 struct ath_hal_5416 *ahp = AH5416(ah);
276
277 if (ahp->ah_analogBank0Data != NULL) {
278 kfree(ahp->ah_analogBank0Data);
279 ahp->ah_analogBank0Data = NULL;
280 }
281 if (ahp->ah_analogBank1Data != NULL) {
282 kfree(ahp->ah_analogBank1Data);
283 ahp->ah_analogBank1Data = NULL;
284 }
285 if (ahp->ah_analogBank2Data != NULL) {
286 kfree(ahp->ah_analogBank2Data);
287 ahp->ah_analogBank2Data = NULL;
288 }
289 if (ahp->ah_analogBank3Data != NULL) {
290 kfree(ahp->ah_analogBank3Data);
291 ahp->ah_analogBank3Data = NULL;
292 }
293 if (ahp->ah_analogBank6Data != NULL) {
294 kfree(ahp->ah_analogBank6Data);
295 ahp->ah_analogBank6Data = NULL;
296 }
297 if (ahp->ah_analogBank6TPCData != NULL) {
298 kfree(ahp->ah_analogBank6TPCData);
299 ahp->ah_analogBank6TPCData = NULL;
300 }
301 if (ahp->ah_analogBank7Data != NULL) {
302 kfree(ahp->ah_analogBank7Data);
303 ahp->ah_analogBank7Data = NULL;
304 }
305 if (ahp->ah_addac5416_21 != NULL) {
306 kfree(ahp->ah_addac5416_21);
307 ahp->ah_addac5416_21 = NULL;
308 }
309 if (ahp->ah_bank6Temp != NULL) {
310 kfree(ahp->ah_bank6Temp);
311 ahp->ah_bank6Temp = NULL;
312 }
313 }
314
315 enum hal_bool
316 ath9k_hw_get_chip_power_limits(struct ath_hal *ah,
317 struct hal_channel *chans, u_int32_t nchans)
318 {
319 enum hal_bool retVal = AH_TRUE;
320 int i;
321
322 for (i = 0; i < nchans; i++) {
323 chans[i].maxTxPower = AR5416_MAX_RATE_POWER;
324 chans[i].minTxPower = AR5416_MAX_RATE_POWER;
325 }
326 return retVal;
327 }
328
329
330 enum hal_bool ath9k_hw_init_rf(struct ath_hal *ah, enum hal_status *status)
331 {
332 struct ath_hal_5416 *ahp = AH5416(ah);
333
334 if (!AR_SREV_9280_10_OR_LATER(ah)) {
335
336 ahp->ah_analogBank0Data =
337 kzalloc((sizeof(u_int32_t) *
338 ahp->ah_iniBank0.ia_rows), GFP_KERNEL);
339 ahp->ah_analogBank1Data =
340 kzalloc((sizeof(u_int32_t) *
341 ahp->ah_iniBank1.ia_rows), GFP_KERNEL);
342 ahp->ah_analogBank2Data =
343 kzalloc((sizeof(u_int32_t) *
344 ahp->ah_iniBank2.ia_rows), GFP_KERNEL);
345 ahp->ah_analogBank3Data =
346 kzalloc((sizeof(u_int32_t) *
347 ahp->ah_iniBank3.ia_rows), GFP_KERNEL);
348 ahp->ah_analogBank6Data =
349 kzalloc((sizeof(u_int32_t) *
350 ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
351 ahp->ah_analogBank6TPCData =
352 kzalloc((sizeof(u_int32_t) *
353 ahp->ah_iniBank6TPC.ia_rows), GFP_KERNEL);
354 ahp->ah_analogBank7Data =
355 kzalloc((sizeof(u_int32_t) *
356 ahp->ah_iniBank7.ia_rows), GFP_KERNEL);
357
358 if (ahp->ah_analogBank0Data == NULL
359 || ahp->ah_analogBank1Data == NULL
360 || ahp->ah_analogBank2Data == NULL
361 || ahp->ah_analogBank3Data == NULL
362 || ahp->ah_analogBank6Data == NULL
363 || ahp->ah_analogBank6TPCData == NULL
364 || ahp->ah_analogBank7Data == NULL) {
365 HDPRINTF(ah, HAL_DBG_MALLOC,
366 "%s: cannot allocate RF banks\n",
367 __func__);
368 *status = HAL_ENOMEM;
369 return AH_FALSE;
370 }
371
372 ahp->ah_addac5416_21 =
373 kzalloc((sizeof(u_int32_t) *
374 ahp->ah_iniAddac.ia_rows *
375 ahp->ah_iniAddac.ia_columns), GFP_KERNEL);
376 if (ahp->ah_addac5416_21 == NULL) {
377 HDPRINTF(ah, HAL_DBG_MALLOC,
378 "%s: cannot allocate ah_addac5416_21\n",
379 __func__);
380 *status = HAL_ENOMEM;
381 return AH_FALSE;
382 }
383
384 ahp->ah_bank6Temp =
385 kzalloc((sizeof(u_int32_t) *
386 ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
387 if (ahp->ah_bank6Temp == NULL) {
388 HDPRINTF(ah, HAL_DBG_MALLOC,
389 "%s: cannot allocate ah_bank6Temp\n",
390 __func__);
391 *status = HAL_ENOMEM;
392 return AH_FALSE;
393 }
394 }
395
396 return AH_TRUE;
397 }
398
399 void
400 ath9k_hw_decrease_chain_power(struct ath_hal *ah, struct hal_channel *chan)
401 {
402 int i, regWrites = 0;
403 struct ath_hal_5416 *ahp = AH5416(ah);
404 u_int32_t bank6SelMask;
405 u_int32_t *bank6Temp = ahp->ah_bank6Temp;
406
407 switch (ahp->ah_diversityControl) {
408 case HAL_ANT_FIXED_A:
409 bank6SelMask =
410 (ahp->
411 ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
412 REDUCE_CHAIN_1;
413 break;
414 case HAL_ANT_FIXED_B:
415 bank6SelMask =
416 (ahp->
417 ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
418 REDUCE_CHAIN_0;
419 break;
420 case HAL_ANT_VARIABLE:
421 return;
422 break;
423 default:
424 return;
425 break;
426 }
427
428 for (i = 0; i < ahp->ah_iniBank6.ia_rows; i++)
429 bank6Temp[i] = ahp->ah_analogBank6Data[i];
430
431 REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
432
433 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
434 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
435 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
436 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
437 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
438 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
439 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
440 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
441 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
442
443 REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6, bank6Temp, regWrites);
444
445 REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
446 #ifdef ALTER_SWITCH
447 REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
448 (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
449 | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
450 #endif
451 }