add the new ath9k driver (loads successfully on an AR9160 card, but still seems to...
[openwrt/svn-archive/archive.git] / package / ath9k / src / drivers / net / wireless / ath9k / recv.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 /*
18 * Implementation of receive path.
19 */
20
21 #include "core.h"
22
23 /*
24 * Setup and link descriptors.
25 *
26 * 11N: we can no longer afford to self link the last descriptor.
27 * MAC acknowledges BA status as long as it copies frames to host
28 * buffer (or rx fifo). This can incorrectly acknowledge packets
29 * to a sender if last desc is self-linked.
30 *
31 * NOTE: Caller should hold the rxbuf lock.
32 */
33
34 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
35 {
36 struct ath_hal *ah = sc->sc_ah;
37 struct ath_desc *ds;
38 struct sk_buff *skb;
39
40 ATH_RXBUF_RESET(bf);
41
42 ds = bf->bf_desc;
43 ds->ds_link = 0; /* link to null */
44 ds->ds_data = bf->bf_buf_addr;
45
46 /* XXX For RADAR?
47 * virtual addr of the beginning of the buffer. */
48 skb = bf->bf_mpdu;
49 ASSERT(skb != NULL);
50 ds->ds_vdata = skb->data;
51
52 /* setup rx descriptors */
53 ath9k_hw_setuprxdesc(ah,
54 ds,
55 skb_tailroom(skb), /* buffer size */
56 0);
57
58 if (sc->sc_rxlink == NULL)
59 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
60 else
61 *sc->sc_rxlink = bf->bf_daddr;
62
63 sc->sc_rxlink = &ds->ds_link;
64 ath9k_hw_rxena(ah);
65 }
66
67 /* Process received BAR frame */
68
69 static int ath_bar_rx(struct ath_softc *sc,
70 struct ath_node *an,
71 struct sk_buff *skb)
72 {
73 struct ieee80211_bar *bar;
74 struct ath_arx_tid *rxtid;
75 struct sk_buff *tskb;
76 struct ath_recv_status *rx_status;
77 int tidno, index, cindex;
78 u_int16_t seqno;
79
80 /* look at BAR contents */
81
82 bar = (struct ieee80211_bar *)skb->data;
83 tidno = (bar->control & IEEE80211_BAR_CTL_TID_M)
84 >> IEEE80211_BAR_CTL_TID_S;
85 seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
86
87 /* process BAR - indicate all pending RX frames till the BAR seqno */
88
89 rxtid = &an->an_aggr.rx.tid[tidno];
90
91 spin_lock_bh(&rxtid->tidlock);
92
93 /* get relative index */
94
95 index = ATH_BA_INDEX(rxtid->seq_next, seqno);
96
97 /* drop BAR if old sequence (index is too large) */
98
99 if ((index > rxtid->baw_size) &&
100 (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
101 /* discard frame, ieee layer may not treat frame as a dup */
102 goto unlock_and_free;
103
104 /* complete receive processing for all pending frames upto BAR seqno */
105
106 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
107 while ((rxtid->baw_head != rxtid->baw_tail) &&
108 (rxtid->baw_head != cindex)) {
109 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
110 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
111 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
112
113 if (tskb != NULL)
114 ath_rx_subframe(an, tskb, rx_status);
115
116 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
117 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
118 }
119
120 /* ... and indicate rest of the frames in-order */
121
122 while (rxtid->baw_head != rxtid->baw_tail &&
123 rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
124 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
125 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
126 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
127
128 ath_rx_subframe(an, tskb, rx_status);
129
130 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
131 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
132 }
133
134 unlock_and_free:
135 spin_unlock_bh(&rxtid->tidlock);
136 /* free bar itself */
137 dev_kfree_skb(skb);
138 return IEEE80211_FTYPE_CTL;
139 }
140
141 /* Function to handle a subframe of aggregation when HT is enabled */
142
143 static int ath_ampdu_input(struct ath_softc *sc,
144 struct ath_node *an,
145 struct sk_buff *skb,
146 struct ath_recv_status *rx_status)
147 {
148 struct ieee80211_hdr *hdr;
149 struct ath_arx_tid *rxtid;
150 struct ath_rxbuf *rxbuf;
151 u_int8_t type, subtype;
152 u_int16_t rxseq;
153 int tid = 0, index, cindex, rxdiff;
154 __le16 fc;
155 u8 *qc;
156
157 hdr = (struct ieee80211_hdr *)skb->data;
158 fc = hdr->frame_control;
159
160 /* collect stats of frames with non-zero version */
161
162 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
163 dev_kfree_skb(skb);
164 return -1;
165 }
166
167 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
168 subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
169
170 if (ieee80211_is_back_req(fc))
171 return ath_bar_rx(sc, an, skb);
172
173 /* special aggregate processing only for qos unicast data frames */
174
175 if (!ieee80211_is_data(fc) ||
176 !ieee80211_is_data_qos(fc) ||
177 is_multicast_ether_addr(hdr->addr1))
178 return ath_rx_subframe(an, skb, rx_status);
179
180 /* lookup rx tid state */
181
182 if (ieee80211_is_data_qos(fc)) {
183 qc = ieee80211_get_qos_ctl(hdr);
184 tid = qc[0] & 0xf;
185 }
186
187 if (sc->sc_opmode == HAL_M_STA) {
188 /* Drop the frame not belonging to me. */
189 if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
190 dev_kfree_skb(skb);
191 return -1;
192 }
193 }
194
195 rxtid = &an->an_aggr.rx.tid[tid];
196
197 spin_lock(&rxtid->tidlock);
198
199 rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
200 (ATH_TID_MAX_BUFS - 1);
201
202 /*
203 * If the ADDBA exchange has not been completed by the source,
204 * process via legacy path (i.e. no reordering buffer is needed)
205 */
206 if (!rxtid->addba_exchangecomplete) {
207 spin_unlock(&rxtid->tidlock);
208 return ath_rx_subframe(an, skb, rx_status);
209 }
210
211 /* extract sequence number from recvd frame */
212
213 rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
214
215 if (rxtid->seq_reset) {
216 rxtid->seq_reset = 0;
217 rxtid->seq_next = rxseq;
218 }
219
220 index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
221
222 /* drop frame if old sequence (index is too large) */
223
224 if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
225 /* discard frame, ieee layer may not treat frame as a dup */
226 spin_unlock(&rxtid->tidlock);
227 dev_kfree_skb(skb);
228 return IEEE80211_FTYPE_DATA;
229 }
230
231 /* sequence number is beyond block-ack window */
232
233 if (index >= rxtid->baw_size) {
234
235 /* complete receive processing for all pending frames */
236
237 while (index >= rxtid->baw_size) {
238
239 rxbuf = rxtid->rxbuf + rxtid->baw_head;
240
241 if (rxbuf->rx_wbuf != NULL) {
242 ath_rx_subframe(an, rxbuf->rx_wbuf,
243 &rxbuf->rx_status);
244 rxbuf->rx_wbuf = NULL;
245 }
246
247 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
248 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
249
250 index--;
251 }
252 }
253
254 /* add buffer to the recv ba window */
255
256 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
257 rxbuf = rxtid->rxbuf + cindex;
258
259 if (rxbuf->rx_wbuf != NULL) {
260 spin_unlock(&rxtid->tidlock);
261 /* duplicate frame */
262 dev_kfree_skb(skb);
263 return IEEE80211_FTYPE_DATA;
264 }
265
266 rxbuf->rx_wbuf = skb;
267 rxbuf->rx_time = get_timestamp();
268 rxbuf->rx_status = *rx_status;
269
270 /* advance tail if sequence received is newer
271 * than any received so far */
272
273 if (index >= rxdiff) {
274 rxtid->baw_tail = cindex;
275 INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
276 }
277
278 /* indicate all in-order received frames */
279
280 while (rxtid->baw_head != rxtid->baw_tail) {
281 rxbuf = rxtid->rxbuf + rxtid->baw_head;
282 if (!rxbuf->rx_wbuf)
283 break;
284
285 ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
286 rxbuf->rx_wbuf = NULL;
287
288 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
289 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
290 }
291
292 /*
293 * start a timer to flush all received frames if there are pending
294 * receive frames
295 */
296 if (rxtid->baw_head != rxtid->baw_tail)
297 mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
298 else
299 del_timer_sync(&rxtid->timer);
300
301 spin_unlock(&rxtid->tidlock);
302 return IEEE80211_FTYPE_DATA;
303 }
304
305 /* Timer to flush all received sub-frames */
306
307 static void ath_rx_timer(unsigned long data)
308 {
309 struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
310 struct ath_node *an = rxtid->an;
311 struct ath_rxbuf *rxbuf;
312 int nosched;
313
314 spin_lock_bh(&rxtid->tidlock);
315 while (rxtid->baw_head != rxtid->baw_tail) {
316 rxbuf = rxtid->rxbuf + rxtid->baw_head;
317 if (!rxbuf->rx_wbuf) {
318 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
319 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
320 continue;
321 }
322
323 /*
324 * Stop if the next one is a very recent frame.
325 *
326 * Call get_timestamp in every iteration to protect against the
327 * case in which a new frame is received while we are executing
328 * this function. Using a timestamp obtained before entering
329 * the loop could lead to a very large time interval
330 * (a negative value typecast to unsigned), breaking the
331 * function's logic.
332 */
333 if ((get_timestamp() - rxbuf->rx_time) <
334 (ATH_RX_TIMEOUT * HZ / 1000))
335 break;
336
337 ath_rx_subframe(an, rxbuf->rx_wbuf,
338 &rxbuf->rx_status);
339 rxbuf->rx_wbuf = NULL;
340
341 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
342 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
343 }
344
345 /*
346 * start a timer to flush all received frames if there are pending
347 * receive frames
348 */
349 if (rxtid->baw_head != rxtid->baw_tail)
350 nosched = 0;
351 else
352 nosched = 1; /* no need to re-arm the timer again */
353
354 spin_unlock_bh(&rxtid->tidlock);
355 }
356
357 /* Free all pending sub-frames in the re-ordering buffer */
358
359 static void ath_rx_flush_tid(struct ath_softc *sc,
360 struct ath_arx_tid *rxtid, int drop)
361 {
362 struct ath_rxbuf *rxbuf;
363
364 spin_lock_bh(&rxtid->tidlock);
365 while (rxtid->baw_head != rxtid->baw_tail) {
366 rxbuf = rxtid->rxbuf + rxtid->baw_head;
367 if (!rxbuf->rx_wbuf) {
368 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
369 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
370 continue;
371 }
372
373 if (drop)
374 dev_kfree_skb(rxbuf->rx_wbuf);
375 else
376 ath_rx_subframe(rxtid->an,
377 rxbuf->rx_wbuf,
378 &rxbuf->rx_status);
379
380 rxbuf->rx_wbuf = NULL;
381
382 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
383 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
384 }
385 spin_unlock_bh(&rxtid->tidlock);
386 }
387
388 static u_int8_t ath_rx_detect_antenna(struct ath_softc *sc,
389 struct ath_rx_status *rxstat)
390 {
391 #define ATH_RX_CHAINMASK_CLR(_chainmask, _chain) \
392 ((_chainmask) &= ~(1 << (_chain)))
393 u_int8_t rx_chainmask = sc->sc_rx_chainmask;
394 int rssiRef, detectThresh, detectDelta;
395
396 if (IS_CHAN_5GHZ(&sc->sc_curchan)) {
397 detectThresh = sc->sc_rxchaindetect_thresh5GHz;
398 detectDelta = sc->sc_rxchaindetect_delta5GHz;
399 } else {
400 detectThresh = sc->sc_rxchaindetect_thresh2GHz;
401 detectDelta = sc->sc_rxchaindetect_delta2GHz;
402 }
403
404 switch (sc->sc_rxchaindetect_ref) {
405 case 0:
406 rssiRef = rxstat->rs_rssi;
407 if (rssiRef < detectThresh)
408 return 0;
409
410 if (rssiRef - rxstat->rs_rssi_ctl1 > detectDelta)
411 ATH_RX_CHAINMASK_CLR(rx_chainmask, 1);
412
413 if (rssiRef - rxstat->rs_rssi_ctl2 > detectDelta)
414 ATH_RX_CHAINMASK_CLR(rx_chainmask, 2);
415
416 break;
417 case 1:
418 rssiRef = rxstat->rs_rssi_ctl1;
419 if (rssiRef < detectThresh)
420 return 0;
421
422 if (rssiRef - rxstat->rs_rssi_ctl2 > detectDelta)
423 ATH_RX_CHAINMASK_CLR(rx_chainmask, 2);
424
425 break;
426 case 2:
427 rssiRef = rxstat->rs_rssi_ctl2;
428 if (rssiRef < detectThresh)
429 return 0;
430
431 if (rssiRef - rxstat->rs_rssi_ctl1 > detectDelta)
432 ATH_RX_CHAINMASK_CLR(rx_chainmask, 1);
433
434 break;
435 }
436
437 return rx_chainmask;
438 #undef IS_CHAN_5GHZ
439 #undef ATH_RX_CHAINMASK_CLR
440 }
441
442 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
443 u_int32_t len)
444 {
445 struct sk_buff *skb;
446 u_int off;
447
448 /*
449 * Cache-line-align. This is important (for the
450 * 5210 at least) as not doing so causes bogus data
451 * in rx'd frames.
452 */
453
454 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
455 if (skb != NULL) {
456 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
457 if (off != 0)
458 skb_reserve(skb, sc->sc_cachelsz - off);
459 } else {
460 DPRINTF(sc, ATH_DEBUG_FATAL,
461 "%s: skbuff alloc of size %u failed\n",
462 __func__, len);
463 return NULL;
464 }
465
466 return skb;
467 }
468
469 static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
470 {
471 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
472
473 ASSERT(bf != NULL);
474
475 spin_lock_bh(&sc->sc_rxbuflock);
476 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
477 /*
478 * This buffer is still held for hw acess.
479 * Mark it as free to be re-queued it later.
480 */
481 bf->bf_status |= ATH_BUFSTATUS_FREE;
482 } else {
483 /* XXX: we probably never enter here, remove after
484 * verification */
485 list_add_tail(&bf->list, &sc->sc_rxbuf);
486 ath_rx_buf_link(sc, bf);
487 }
488 spin_unlock_bh(&sc->sc_rxbuflock);
489 }
490
491 /*
492 * The skb indicated to upper stack won't be returned to us.
493 * So we have to allocate a new one and queue it by ourselves.
494 */
495 static int ath_rx_indicate(struct ath_softc *sc,
496 struct sk_buff *skb,
497 struct ath_recv_status *status,
498 u_int16_t keyix)
499 {
500 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
501 struct sk_buff *nskb;
502 int type;
503
504 /* indicate frame to the stack, which will free the old skb. */
505 type = ath__rx_indicate(sc, skb, status, keyix);
506
507 /* allocate a new skb and queue it to for H/W processing */
508 nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
509 if (nskb != NULL) {
510 bf->bf_mpdu = nskb;
511 bf->bf_buf_addr = ath_skb_map_single(sc,
512 nskb,
513 PCI_DMA_FROMDEVICE,
514 /* XXX: Remove get_dma_mem_context() */
515 get_dma_mem_context(bf, bf_dmacontext));
516 ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
517
518 /* queue the new wbuf to H/W */
519 ath_rx_requeue(sc, nskb);
520 }
521
522 return type;
523 }
524
525 static void ath_opmode_init(struct ath_softc *sc)
526 {
527 struct ath_hal *ah = sc->sc_ah;
528 u_int32_t rfilt, mfilt[2];
529
530 /* configure rx filter */
531 rfilt = ath_calcrxfilter(sc);
532 ath9k_hw_setrxfilter(ah, rfilt);
533
534 /* configure bssid mask */
535 if (sc->sc_hasbmask)
536 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
537
538 /* configure operational mode */
539 ath9k_hw_setopmode(ah);
540
541 /* Handle any link-level address change. */
542 ath9k_hw_setmac(ah, sc->sc_myaddr);
543
544 /* calculate and install multicast filter */
545 mfilt[0] = mfilt[1] = ~0;
546
547 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
548 DPRINTF(sc, ATH_DEBUG_RECV ,
549 "%s: RX filter 0x%x, MC filter %08x:%08x\n",
550 __func__, rfilt, mfilt[0], mfilt[1]);
551 }
552
553 int ath_rx_init(struct ath_softc *sc, int nbufs)
554 {
555 struct sk_buff *skb;
556 struct ath_buf *bf;
557 int error = 0;
558
559 do {
560 spin_lock_init(&sc->sc_rxflushlock);
561 sc->sc_rxflush = 0;
562 spin_lock_init(&sc->sc_rxbuflock);
563
564 /*
565 * Cisco's VPN software requires that drivers be able to
566 * receive encapsulated frames that are larger than the MTU.
567 * Since we can't be sure how large a frame we'll get, setup
568 * to handle the larges on possible.
569 */
570 sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
571 min(sc->sc_cachelsz,
572 (u_int16_t)64));
573
574 DPRINTF(sc, ATH_DEBUG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
575 __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
576
577 /* Initialize rx descriptors */
578
579 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
580 "rx", nbufs, 1);
581 if (error != 0) {
582 DPRINTF(sc, ATH_DEBUG_FATAL,
583 "%s: failed to allocate rx descriptors: %d\n",
584 __func__, error);
585 break;
586 }
587
588 /* Pre-allocate a wbuf for each rx buffer */
589
590 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
591 skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
592 if (skb == NULL) {
593 error = -ENOMEM;
594 break;
595 }
596
597 bf->bf_mpdu = skb;
598 bf->bf_buf_addr =
599 ath_skb_map_single(sc, skb, PCI_DMA_FROMDEVICE,
600 get_dma_mem_context(bf, bf_dmacontext));
601 ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
602 }
603 sc->sc_rxlink = NULL;
604
605 } while (0);
606
607 if (error)
608 ath_rx_cleanup(sc);
609
610 return error;
611 }
612
613 /* Reclaim all rx queue resources */
614
615 void ath_rx_cleanup(struct ath_softc *sc)
616 {
617 struct sk_buff *skb;
618 struct ath_buf *bf;
619
620 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
621 skb = bf->bf_mpdu;
622 if (skb)
623 dev_kfree_skb(skb);
624 }
625
626 /* cleanup rx descriptors */
627
628 if (sc->sc_rxdma.dd_desc_len != 0)
629 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
630 }
631
632 /*
633 * Calculate the receive filter according to the
634 * operating mode and state:
635 *
636 * o always accept unicast, broadcast, and multicast traffic
637 * o maintain current state of phy error reception (the hal
638 * may enable phy error frames for noise immunity work)
639 * o probe request frames are accepted only when operating in
640 * hostap, adhoc, or monitor modes
641 * o enable promiscuous mode according to the interface state
642 * o accept beacons:
643 * - when operating in adhoc mode so the 802.11 layer creates
644 * node table entries for peers,
645 * - when operating in station mode for collecting rssi data when
646 * the station is otherwise quiet, or
647 * - when operating as a repeater so we see repeater-sta beacons
648 * - when scanning
649 */
650
651 u_int32_t ath_calcrxfilter(struct ath_softc *sc)
652 {
653 #define RX_FILTER_PRESERVE (HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
654 u_int32_t rfilt;
655
656 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
657 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST
658 | HAL_RX_FILTER_MCAST;
659
660 /* If not a STA, enable processing of Probe Requests */
661 if (sc->sc_opmode != HAL_M_STA)
662 rfilt |= HAL_RX_FILTER_PROBEREQ;
663
664 /* Can't set HOSTAP into promiscous mode */
665 if (sc->sc_opmode == HAL_M_MONITOR) {
666 rfilt |= HAL_RX_FILTER_PROM;
667 /* ??? To prevent from sending ACK */
668 rfilt &= ~HAL_RX_FILTER_UCAST;
669 }
670
671 if (sc->sc_opmode == HAL_M_STA || sc->sc_opmode == HAL_M_IBSS ||
672 sc->sc_nostabeacons || sc->sc_scanning)
673 rfilt |= HAL_RX_FILTER_BEACON;
674
675 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
676 & beacon frames */
677 if (sc->sc_opmode == HAL_M_HOSTAP)
678 rfilt |= (HAL_RX_FILTER_BEACON | HAL_RX_FILTER_PSPOLL);
679 return rfilt;
680 #undef RX_FILTER_PRESERVE
681 }
682
683 /* Enable the receive h/w following a reset. */
684
685 int ath_startrecv(struct ath_softc *sc)
686 {
687 struct ath_hal *ah = sc->sc_ah;
688 struct ath_buf *bf, *tbf;
689
690 spin_lock_bh(&sc->sc_rxbuflock);
691 if (list_empty(&sc->sc_rxbuf))
692 goto start_recv;
693
694 sc->sc_rxlink = NULL;
695 list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
696 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
697 /* restarting h/w, no need for holding descriptors */
698 bf->bf_status &= ~ATH_BUFSTATUS_STALE;
699 /*
700 * Upper layer may not be done with the frame yet so
701 * we can't just re-queue it to hardware. Remove it
702 * from h/w queue. It'll be re-queued when upper layer
703 * returns the frame and ath_rx_requeue_mpdu is called.
704 */
705 if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
706 list_del(&bf->list);
707 continue;
708 }
709 }
710 /* chain descriptors */
711 ath_rx_buf_link(sc, bf);
712 }
713
714 /* We could have deleted elements so the list may be empty now */
715 if (list_empty(&sc->sc_rxbuf))
716 goto start_recv;
717
718 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
719 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
720 ath9k_hw_rxena(ah); /* enable recv descriptors */
721
722 start_recv:
723 spin_unlock_bh(&sc->sc_rxbuflock);
724 ath_opmode_init(sc); /* set filters, etc. */
725 ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
726 return 0;
727 }
728
729 /* Disable the receive h/w in preparation for a reset. */
730
731 enum hal_bool ath_stoprecv(struct ath_softc *sc)
732 {
733 struct ath_hal *ah = sc->sc_ah;
734 u_int64_t tsf;
735 enum hal_bool stopped;
736
737 ath9k_hw_stoppcurecv(ah); /* disable PCU */
738 ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
739 stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
740 udelay(3000); /* 3ms is long enough for 1 frame */
741 tsf = ath9k_hw_gettsf64(ah);
742 sc->sc_rxlink = NULL; /* just in case */
743 return stopped;
744 }
745
746 /* Flush receive queue */
747
748 void ath_flushrecv(struct ath_softc *sc)
749 {
750 /*
751 * ath_rx_tasklet may be used to handle rx interrupt and flush receive
752 * queue at the same time. Use a lock to serialize the access of rx
753 * queue.
754 * ath_rx_tasklet cannot hold the spinlock while indicating packets.
755 * Instead, do not claim the spinlock but check for a flush in
756 * progress (see references to sc_rxflush)
757 */
758 spin_lock_bh(&sc->sc_rxflushlock);
759 sc->sc_rxflush = 1;
760
761 ath_rx_tasklet(sc, 1);
762
763 sc->sc_rxflush = 0;
764 spin_unlock_bh(&sc->sc_rxflushlock);
765 }
766
767 /* Process an individual frame */
768
769 int ath_rx_input(struct ath_softc *sc,
770 struct ath_node *an,
771 int is_ampdu,
772 struct sk_buff *skb,
773 struct ath_recv_status *rx_status,
774 enum ATH_RX_TYPE *status)
775 {
776 if (is_ampdu && sc->sc_rxaggr) {
777 *status = ATH_RX_CONSUMED;
778 return ath_ampdu_input(sc, an, skb, rx_status);
779 } else {
780 *status = ATH_RX_NON_CONSUMED;
781 return -1;
782 }
783 }
784
785 /* Process receive queue, as well as LED, etc. */
786
787 int ath_rx_tasklet(struct ath_softc *sc, int flush)
788 {
789 #define PA2DESC(_sc, _pa) \
790 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
791 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
792
793 struct ath_buf *bf, *bf_held = NULL;
794 struct ath_desc *ds;
795 struct ieee80211_hdr *hdr;
796 struct sk_buff *skb = NULL;
797 struct ath_recv_status rx_status;
798 struct ath_hal *ah = sc->sc_ah;
799 int type, rx_processed = 0;
800 u_int phyerr;
801 u_int8_t rxchainmask, chainreset = 0;
802 enum hal_status retval;
803 __le16 fc;
804
805 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s\n", __func__);
806
807 do {
808 /* If handling rx interrupt and flush is in progress => exit */
809 if (sc->sc_rxflush && (flush == 0))
810 break;
811
812 spin_lock_bh(&sc->sc_rxbuflock);
813 if (list_empty(&sc->sc_rxbuf)) {
814 sc->sc_rxlink = NULL;
815 spin_unlock_bh(&sc->sc_rxbuflock);
816 break;
817 }
818
819 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
820
821 /*
822 * There is a race condition that BH gets scheduled after sw
823 * writes RxE and before hw re-load the last descriptor to get
824 * the newly chained one. Software must keep the last DONE
825 * descriptor as a holding descriptor - software does so by
826 * marking it with the STALE flag.
827 */
828 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
829 bf_held = bf;
830 if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
831 /*
832 * The holding descriptor is the last
833 * descriptor in queue. It's safe to
834 * remove the last holding descriptor
835 * in BH context.
836 */
837 list_del(&bf_held->list);
838 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
839 sc->sc_rxlink = NULL;
840
841 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
842 list_add_tail(&bf_held->list,
843 &sc->sc_rxbuf);
844 ath_rx_buf_link(sc, bf_held);
845 }
846 spin_unlock_bh(&sc->sc_rxbuflock);
847 break;
848 }
849 bf = list_entry(bf->list.next, struct ath_buf, list);
850 }
851
852 ds = bf->bf_desc;
853 ++rx_processed;
854
855 /*
856 * Must provide the virtual address of the current
857 * descriptor, the physical address, and the virtual
858 * address of the next descriptor in the h/w chain.
859 * This allows the HAL to look ahead to see if the
860 * hardware is done with a descriptor by checking the
861 * done bit in the following descriptor and the address
862 * of the current descriptor the DMA engine is working
863 * on. All this is necessary because of our use of
864 * a self-linked list to avoid rx overruns.
865 */
866 retval = ath9k_hw_rxprocdesc(ah,
867 ds,
868 bf->bf_daddr,
869 PA2DESC(sc, ds->ds_link),
870 0);
871 if (HAL_EINPROGRESS == retval) {
872 struct ath_buf *tbf;
873 struct ath_desc *tds;
874
875 if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
876 spin_unlock_bh(&sc->sc_rxbuflock);
877 break;
878 }
879
880 tbf = list_entry(bf->list.next, struct ath_buf, list);
881
882 /*
883 * On some hardware the descriptor status words could
884 * get corrupted, including the done bit. Because of
885 * this, check if the next descriptor's done bit is
886 * set or not.
887 *
888 * If the next descriptor's done bit is set, the current
889 * descriptor has been corrupted. Force s/w to discard
890 * this descriptor and continue...
891 */
892
893 tds = tbf->bf_desc;
894 retval = ath9k_hw_rxprocdesc(ah,
895 tds, tbf->bf_daddr,
896 PA2DESC(sc, tds->ds_link), 0);
897 if (HAL_EINPROGRESS == retval) {
898 spin_unlock_bh(&sc->sc_rxbuflock);
899 break;
900 }
901 }
902
903 /* XXX: we do not support frames spanning
904 * multiple descriptors */
905 bf->bf_status |= ATH_BUFSTATUS_DONE;
906
907 skb = bf->bf_mpdu;
908 if (skb == NULL) { /* XXX ??? can this happen */
909 spin_unlock_bh(&sc->sc_rxbuflock);
910 continue;
911 }
912 /*
913 * Now we know it's a completed frame, we can indicate the
914 * frame. Remove the previous holding descriptor and leave
915 * this one in the queue as the new holding descriptor.
916 */
917 if (bf_held) {
918 list_del(&bf_held->list);
919 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
920 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
921 list_add_tail(&bf_held->list, &sc->sc_rxbuf);
922 /* try to requeue this descriptor */
923 ath_rx_buf_link(sc, bf_held);
924 }
925 }
926
927 bf->bf_status |= ATH_BUFSTATUS_STALE;
928 bf_held = bf;
929 /*
930 * Release the lock here in case ieee80211_input() return
931 * the frame immediately by calling ath_rx_mpdu_requeue().
932 */
933 spin_unlock_bh(&sc->sc_rxbuflock);
934
935 if (flush) {
936 /*
937 * If we're asked to flush receive queue, directly
938 * chain it back at the queue without processing it.
939 */
940 goto rx_next;
941 }
942
943 hdr = (struct ieee80211_hdr *)skb->data;
944 fc = hdr->frame_control;
945 memzero(&rx_status, sizeof(struct ath_recv_status));
946
947 if (ds->ds_rxstat.rs_more) {
948 /*
949 * Frame spans multiple descriptors; this
950 * cannot happen yet as we don't support
951 * jumbograms. If not in monitor mode,
952 * discard the frame.
953 */
954 #ifndef ERROR_FRAMES
955 /*
956 * Enable this if you want to see
957 * error frames in Monitor mode.
958 */
959 if (sc->sc_opmode != HAL_M_MONITOR)
960 goto rx_next;
961 #endif
962 /* fall thru for monitor mode handling... */
963 } else if (ds->ds_rxstat.rs_status != 0) {
964 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
965 rx_status.flags |= ATH_RX_FCS_ERROR;
966 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
967 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
968 goto rx_next;
969 }
970
971 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
972 /*
973 * Decrypt error. We only mark packet status
974 * here and always push up the frame up to let
975 * mac80211 handle the actual error case, be
976 * it no decryption key or real decryption
977 * error. This let us keep statistics there.
978 */
979 rx_status.flags |= ATH_RX_DECRYPT_ERROR;
980 } else if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
981 /*
982 * Demic error. We only mark frame status here
983 * and always push up the frame up to let
984 * mac80211 handle the actual error case. This
985 * let us keep statistics there. Hardware may
986 * post a false-positive MIC error.
987 */
988 if (ieee80211_is_ctl(fc))
989 /*
990 * Sometimes, we get invalid
991 * MIC failures on valid control frames.
992 * Remove these mic errors.
993 */
994 ds->ds_rxstat.rs_status &=
995 ~HAL_RXERR_MIC;
996 else
997 rx_status.flags |= ATH_RX_MIC_ERROR;
998 }
999 /*
1000 * Reject error frames with the exception of
1001 * decryption and MIC failures. For monitor mode,
1002 * we also ignore the CRC error.
1003 */
1004 if (sc->sc_opmode == HAL_M_MONITOR) {
1005 if (ds->ds_rxstat.rs_status &
1006 ~(HAL_RXERR_DECRYPT | HAL_RXERR_MIC |
1007 HAL_RXERR_CRC))
1008 goto rx_next;
1009 } else {
1010 if (ds->ds_rxstat.rs_status &
1011 ~(HAL_RXERR_DECRYPT | HAL_RXERR_MIC)) {
1012 goto rx_next;
1013 }
1014 }
1015 }
1016 /*
1017 * The status portion of the descriptor could get corrupted.
1018 */
1019 if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
1020 goto rx_next;
1021 /*
1022 * Sync and unmap the frame. At this point we're
1023 * committed to passing the sk_buff somewhere so
1024 * clear buf_skb; this means a new sk_buff must be
1025 * allocated when the rx descriptor is setup again
1026 * to receive another frame.
1027 */
1028 skb_put(skb, ds->ds_rxstat.rs_datalen);
1029 skb->protocol = ETH_P_CONTROL;
1030 rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
1031 rx_status.rateieee =
1032 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
1033 rx_status.rateKbps =
1034 sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
1035 rx_status.ratecode = ds->ds_rxstat.rs_rate;
1036
1037 /* HT rate */
1038 if (rx_status.ratecode & 0x80) {
1039 /* TODO - add table to avoid division */
1040 if (ds->ds_rxstat.rs_flags & HAL_RX_2040) {
1041 rx_status.flags |= ATH_RX_40MHZ;
1042 rx_status.rateKbps =
1043 (rx_status.rateKbps * 27) / 13;
1044 }
1045 if (ds->ds_rxstat.rs_flags & HAL_RX_GI)
1046 rx_status.rateKbps =
1047 (rx_status.rateKbps * 10) / 9;
1048 else
1049 rx_status.flags |= ATH_RX_SHORT_GI;
1050 }
1051
1052 /* sc->sc_noise_floor is only available when the station
1053 attaches to an AP, so we use a default value
1054 if we are not yet attached. */
1055
1056 /* XXX we should use either sc->sc_noise_floor or
1057 * ath_hal_getChanNoise(ah, &sc->sc_curchan)
1058 * to calculate the noise floor.
1059 * However, the value returned by ath_hal_getChanNoise
1060 * seems to be incorrect (-31dBm on the last test),
1061 * so we will use a hard-coded value until we
1062 * figure out what is going on.
1063 */
1064 rx_status.abs_rssi =
1065 ds->ds_rxstat.rs_rssi + ATH_DEFAULT_NOISE_FLOOR;
1066
1067 pci_dma_sync_single_for_cpu(sc->pdev,
1068 bf->bf_buf_addr,
1069 skb_tailroom(skb),
1070 PCI_DMA_FROMDEVICE);
1071 pci_unmap_single(sc->pdev,
1072 bf->bf_buf_addr,
1073 sc->sc_rxbufsize,
1074 PCI_DMA_FROMDEVICE);
1075
1076 /* XXX: Ah! make me more readable, use a helper */
1077 if (sc->sc_hashtsupport) {
1078 if (ds->ds_rxstat.rs_moreaggr == 0) {
1079 rx_status.rssictl[0] =
1080 ds->ds_rxstat.rs_rssi_ctl0;
1081 rx_status.rssictl[1] =
1082 ds->ds_rxstat.rs_rssi_ctl1;
1083 rx_status.rssictl[2] =
1084 ds->ds_rxstat.rs_rssi_ctl2;
1085 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1086 if (ds->ds_rxstat.rs_flags & HAL_RX_2040) {
1087 rx_status.rssiextn[0] =
1088 ds->ds_rxstat.rs_rssi_ext0;
1089 rx_status.rssiextn[1] =
1090 ds->ds_rxstat.rs_rssi_ext1;
1091 rx_status.rssiextn[2] =
1092 ds->ds_rxstat.rs_rssi_ext2;
1093 rx_status.flags |=
1094 ATH_RX_RSSI_EXTN_VALID;
1095 }
1096 rx_status.flags |= ATH_RX_RSSI_VALID |
1097 ATH_RX_CHAIN_RSSI_VALID;
1098 }
1099 } else {
1100 /*
1101 * Need to insert the "combined" rssi into the
1102 * status structure for upper layer processing
1103 */
1104 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1105 rx_status.flags |= ATH_RX_RSSI_VALID;
1106 }
1107
1108 /* Pass frames up to the stack. */
1109
1110 type = ath_rx_indicate(sc, skb,
1111 &rx_status, ds->ds_rxstat.rs_keyix);
1112
1113 if (sc->sc_diversity) {
1114 /*
1115 * When using hardware fast diversity, change the
1116 * default rx antenna if rx diversity chooses the
1117 * other antenna 3 times in a row.
1118 */
1119 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
1120 if (++sc->sc_rxotherant >= 3)
1121 ath_setdefantenna(sc,
1122 ds->ds_rxstat.rs_antenna);
1123 } else {
1124 sc->sc_rxotherant = 0;
1125 }
1126 }
1127 /*
1128 * redo antenna detection for Lenovo devices
1129 */
1130 if (sc->sc_rx_chainmask_detect && sc->sc_rx_chainmask_start) {
1131 rxchainmask = ath_rx_detect_antenna(sc, &ds->ds_rxstat);
1132 if (rxchainmask) {
1133 sc->sc_rx_chainmask_detect = 0;
1134 sc->sc_rx_chainmask_start = 0;
1135 if (sc->sc_rx_chainmask != rxchainmask) {
1136 sc->sc_rx_chainmask = rxchainmask;
1137
1138 /* we have to do an reset to
1139 * change chain mask */
1140 chainreset = 1;
1141 }
1142 }
1143 }
1144
1145 #ifdef CONFIG_SLOW_ANT_DIV
1146 if (sc->sc_slowAntDiv &&
1147 (rx_status.flags & ATH_RX_RSSI_VALID) &&
1148 ieee80211_is_beacon(fc)) {
1149 ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
1150 }
1151 #endif
1152 /*
1153 * For frames successfully indicated, the buffer will be
1154 * returned to us by upper layers by calling
1155 * ath_rx_mpdu_requeue, either synchronusly or asynchronously.
1156 * So we don't want to do it here in this loop.
1157 */
1158 continue;
1159
1160 rx_next:
1161 bf->bf_status |= ATH_BUFSTATUS_FREE;
1162 } while (TRUE);
1163
1164 if (chainreset) {
1165 DPRINTF(sc, ATH_DEBUG_CONFIG,
1166 "%s: Reset rx chain mask. "
1167 "Do internal reset\n", __func__);
1168 ASSERT(flush == 0);
1169 ath_internal_reset(sc);
1170 }
1171
1172 return 0;
1173 #undef PA2DESC
1174 }
1175
1176 /* Process ADDBA request in per-TID data structure */
1177
1178 int ath_rx_aggr_start(struct ath_softc *sc,
1179 const u8 *addr,
1180 u16 tid,
1181 u16 *ssn)
1182 {
1183 struct ath_arx_tid *rxtid;
1184 struct ath_node *an;
1185 struct ieee80211_hw *hw = sc->hw;
1186 struct ieee80211_supported_band *sband;
1187 u16 buffersize = 0;
1188
1189 spin_lock_bh(&sc->node_lock);
1190 an = ath_node_find(sc, (u8 *) addr);
1191 spin_unlock_bh(&sc->node_lock);
1192
1193 if (!an) {
1194 DPRINTF(sc, ATH_DEBUG_AGGR,
1195 "%s: Node not found to initialize RX aggregation\n",
1196 __func__);
1197 return -1;
1198 }
1199
1200 sband = hw->wiphy->bands[hw->conf.channel->band];
1201 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1202 sband->ht_info.ampdu_factor; /* FIXME */
1203
1204 rxtid = &an->an_aggr.rx.tid[tid];
1205
1206 spin_lock_bh(&rxtid->tidlock);
1207 if (sc->sc_rxaggr) {
1208 /* Allow aggregation reception
1209 * Adjust rx BA window size. Peer might indicate a
1210 * zero buffer size for a _dont_care_ condition.
1211 */
1212 if (buffersize)
1213 rxtid->baw_size = min(buffersize, rxtid->baw_size);
1214
1215 /* set rx sequence number */
1216 rxtid->seq_next = *ssn;
1217
1218 /* Allocate the receive buffers for this TID */
1219 DPRINTF(sc, ATH_DEBUG_AGGR,
1220 "%s: Allcating rxbuffer for TID %d\n", __func__, tid);
1221
1222 if (rxtid->rxbuf == NULL) {
1223 /*
1224 * If the rxbuff is not NULL at this point, we *probably*
1225 * already allocated the buffer on a previous ADDBA,
1226 * and this is a subsequent ADDBA that got through.
1227 * Don't allocate, but use the value in the pointer,
1228 * we zero it out when we de-allocate.
1229 */
1230 rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
1231 sizeof(struct ath_rxbuf), GFP_ATOMIC);
1232 }
1233 if (rxtid->rxbuf == NULL) {
1234 DPRINTF(sc, ATH_DEBUG_AGGR,
1235 "%s: Unable to allocate RX buffer, "
1236 "refusing ADDBA\n", __func__);
1237 } else {
1238 /* Ensure the memory is zeroed out (all internal
1239 * pointers are null) */
1240 memzero(rxtid->rxbuf, ATH_TID_MAX_BUFS *
1241 sizeof(struct ath_rxbuf));
1242 DPRINTF(sc, ATH_DEBUG_AGGR,
1243 "%s: Allocated @%p\n", __func__, rxtid->rxbuf);
1244
1245 /* Allow aggregation reception */
1246 rxtid->addba_exchangecomplete = 1;
1247 }
1248 }
1249 spin_unlock_bh(&rxtid->tidlock);
1250
1251 return 0;
1252 }
1253
1254 /* Process DELBA */
1255
1256 int ath_rx_aggr_stop(struct ath_softc *sc,
1257 const u8 *addr,
1258 u16 tid)
1259 {
1260 struct ath_node *an;
1261
1262 spin_lock_bh(&sc->node_lock);
1263 an = ath_node_find(sc, (u8 *) addr);
1264 spin_unlock_bh(&sc->node_lock);
1265
1266 if (!an) {
1267 DPRINTF(sc, ATH_DEBUG_AGGR,
1268 "%s: RX aggr stop for non-existent node\n", __func__);
1269 return -1;
1270 }
1271
1272 ath_rx_aggr_teardown(sc, an, tid);
1273 return 0;
1274 }
1275
1276 /* Rx aggregation tear down */
1277
1278 void ath_rx_aggr_teardown(struct ath_softc *sc,
1279 struct ath_node *an, u_int8_t tid)
1280 {
1281 struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
1282
1283 if (!rxtid->addba_exchangecomplete)
1284 return;
1285
1286 del_timer_sync(&rxtid->timer);
1287 ath_rx_flush_tid(sc, rxtid, 0);
1288 rxtid->addba_exchangecomplete = 0;
1289
1290 /* De-allocate the receive buffer array allocated when addba started */
1291
1292 if (rxtid->rxbuf) {
1293 DPRINTF(sc, ATH_DEBUG_AGGR,
1294 "%s: Deallocating TID %d rxbuff @%p\n",
1295 __func__, tid, rxtid->rxbuf);
1296 kfree(rxtid->rxbuf);
1297
1298 /* Set pointer to null to avoid reuse*/
1299 rxtid->rxbuf = NULL;
1300 }
1301 }
1302
1303 /* Initialize per-node receive state */
1304
1305 void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
1306 {
1307 if (sc->sc_rxaggr) {
1308 struct ath_arx_tid *rxtid;
1309 int tidno;
1310
1311 /* Init per tid rx state */
1312 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1313 tidno < WME_NUM_TID;
1314 tidno++, rxtid++) {
1315 rxtid->an = an;
1316 rxtid->seq_reset = 1;
1317 rxtid->seq_next = 0;
1318 rxtid->baw_size = WME_MAX_BA;
1319 rxtid->baw_head = rxtid->baw_tail = 0;
1320
1321 /*
1322 * Ensure the buffer pointer is null at this point
1323 * (needs to be allocated when addba is received)
1324 */
1325
1326 rxtid->rxbuf = NULL;
1327 setup_timer(&rxtid->timer, ath_rx_timer,
1328 (unsigned long)rxtid);
1329 spin_lock_init(&rxtid->tidlock);
1330
1331 /* ADDBA state */
1332 rxtid->addba_exchangecomplete = 0;
1333 }
1334 }
1335 }
1336
1337 void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
1338 {
1339 if (sc->sc_rxaggr) {
1340 struct ath_arx_tid *rxtid;
1341 int tidno, i;
1342
1343 /* Init per tid rx state */
1344 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1345 tidno < WME_NUM_TID;
1346 tidno++, rxtid++) {
1347
1348 if (!rxtid->addba_exchangecomplete)
1349 continue;
1350
1351 /* must cancel timer first */
1352 del_timer_sync(&rxtid->timer);
1353
1354 /* drop any pending sub-frames */
1355 ath_rx_flush_tid(sc, rxtid, 1);
1356
1357 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
1358 ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
1359
1360 rxtid->addba_exchangecomplete = 0;
1361 }
1362 }
1363
1364 }
1365
1366 /* Cleanup per-node receive state */
1367
1368 void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
1369 {
1370 ath_rx_node_cleanup(sc, an);
1371 }
1372
1373 dma_addr_t ath_skb_map_single(struct ath_softc *sc,
1374 struct sk_buff *skb,
1375 int direction,
1376 dma_addr_t *pa)
1377 {
1378 /*
1379 * NB: do NOT use skb->len, which is 0 on initialization.
1380 * Use skb's entire data area instead.
1381 */
1382 *pa = pci_map_single(sc->pdev, skb->data,
1383 skb->end - skb->head, direction);
1384 return *pa;
1385 }
1386
1387 void ath_skb_unmap_single(struct ath_softc *sc,
1388 struct sk_buff *skb,
1389 int direction,
1390 dma_addr_t *pa)
1391 {
1392 /* Unmap skb's entire data area */
1393 pci_unmap_single(sc->pdev, *pa, skb->end - skb->head, direction);
1394 }