7126c3ba7ef65804104fc879fbb8f9bc8d0dbf7e
[project/bcm63xx/atf.git] / plat / nvidia / tegra / soc / t186 / drivers / mce / ari.c
1 /*
2 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <delay_timer.h>
12 #include <denver.h>
13 #include <errno.h>
14 #include <mce_private.h>
15 #include <mmio.h>
16 #include <platform.h>
17 #include <t18x_ari.h>
18
19 /*******************************************************************************
20 * Register offsets for ARI request/results
21 ******************************************************************************/
22 #define ARI_REQUEST 0x0U
23 #define ARI_REQUEST_EVENT_MASK 0x4U
24 #define ARI_STATUS 0x8U
25 #define ARI_REQUEST_DATA_LO 0xCU
26 #define ARI_REQUEST_DATA_HI 0x10U
27 #define ARI_RESPONSE_DATA_LO 0x14U
28 #define ARI_RESPONSE_DATA_HI 0x18U
29
30 /* Status values for the current request */
31 #define ARI_REQ_PENDING 1U
32 #define ARI_REQ_ONGOING 3U
33 #define ARI_REQUEST_VALID_BIT (1U << 8)
34 #define ARI_EVT_MASK_STANDBYWFI_BIT (1U << 7)
35
36 /* default timeout (ms) to wait for ARI completion */
37 #define ARI_MAX_RETRY_COUNT 2000
38
39 /*******************************************************************************
40 * ARI helper functions
41 ******************************************************************************/
42 static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
43 {
44 return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
45 }
46
47 static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
48 {
49 mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
50 }
51
52 static inline uint32_t ari_get_request_low(uint32_t ari_base)
53 {
54 return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
55 }
56
57 static inline uint32_t ari_get_request_high(uint32_t ari_base)
58 {
59 return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
60 }
61
62 static inline uint32_t ari_get_response_low(uint32_t ari_base)
63 {
64 return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
65 }
66
67 static inline uint32_t ari_get_response_high(uint32_t ari_base)
68 {
69 return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
70 }
71
72 static inline void ari_clobber_response(uint32_t ari_base)
73 {
74 ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
75 ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
76 }
77
78 static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
79 uint32_t lo, uint32_t hi)
80 {
81 uint32_t retries = ARI_MAX_RETRY_COUNT;
82 uint32_t status;
83 int32_t ret = 0;
84
85 /* program the request, event_mask, hi and lo registers */
86 ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
87 ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
88 ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
89 ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
90
91 /*
92 * For commands that have an event trigger, we should bypass
93 * ARI_STATUS polling, since MCE is waiting for SW to trigger
94 * the event.
95 */
96 if (evt_mask != 0U) {
97 ret = 0;
98 } else {
99 /* For shutdown/reboot commands, we dont have to check for timeouts */
100 if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
101 ((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
102 (lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
103 ret = 0;
104 } else {
105 /*
106 * Wait for the command response for not more than the timeout
107 */
108 while (retries != 0U) {
109
110 /* read the command status */
111 status = ari_read_32(ari_base, ARI_STATUS);
112 if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
113 break;
114 }
115
116 /* delay 1 ms */
117 mdelay(1);
118
119 /* decrement the retry count */
120 retries--;
121 }
122
123 /* assert if the command timed out */
124 if (retries == 0U) {
125 ERROR("ARI request timed out: req %d on CPU %d\n",
126 req, plat_my_core_pos());
127 assert(retries != 0U);
128 }
129 }
130 }
131
132 return ret;
133 }
134
135 int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
136 {
137 int32_t ret = 0;
138
139 /* check for allowed power state */
140 if ((state != TEGRA_ARI_CORE_C0) &&
141 (state != TEGRA_ARI_CORE_C1) &&
142 (state != TEGRA_ARI_CORE_C6) &&
143 (state != TEGRA_ARI_CORE_C7)) {
144 ERROR("%s: unknown cstate (%d)\n", __func__, state);
145 ret = EINVAL;
146 } else {
147 /* clean the previous response state */
148 ari_clobber_response(ari_base);
149
150 /* Enter the cstate, to be woken up after wake_time (TSC ticks) */
151 ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
152 TEGRA_ARI_ENTER_CSTATE, state, wake_time);
153 }
154
155 return ret;
156 }
157
158 int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
159 uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
160 uint8_t update_wake_mask)
161 {
162 uint32_t val = 0U;
163
164 /* clean the previous response state */
165 ari_clobber_response(ari_base);
166
167 /* update CLUSTER_CSTATE? */
168 if (cluster != 0U) {
169 val |= (cluster & (uint32_t)CLUSTER_CSTATE_MASK) |
170 (uint32_t)CLUSTER_CSTATE_UPDATE_BIT;
171 }
172
173 /* update CCPLEX_CSTATE? */
174 if (ccplex != 0U) {
175 val |= ((ccplex & (uint32_t)CCPLEX_CSTATE_MASK) << (uint32_t)CCPLEX_CSTATE_SHIFT) |
176 (uint32_t)CCPLEX_CSTATE_UPDATE_BIT;
177 }
178
179 /* update SYSTEM_CSTATE? */
180 if (system != 0U) {
181 val |= ((system & (uint32_t)SYSTEM_CSTATE_MASK) << (uint32_t)SYSTEM_CSTATE_SHIFT) |
182 (((uint32_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
183 (uint32_t)SYSTEM_CSTATE_UPDATE_BIT);
184 }
185
186 /* update wake mask value? */
187 if (update_wake_mask != 0U) {
188 val |= (uint32_t)CSTATE_WAKE_MASK_UPDATE_BIT;
189 }
190
191 /* set the updated cstate info */
192 return ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
193 wake_mask);
194 }
195
196 int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
197 {
198 int32_t ret = 0;
199
200 /* sanity check crossover type */
201 if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
202 (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
203 ret = EINVAL;
204 } else {
205 /* clean the previous response state */
206 ari_clobber_response(ari_base);
207
208 /* update crossover threshold time */
209 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CROSSOVER,
210 type, time);
211 }
212
213 return ret;
214 }
215
216 uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
217 {
218 int32_t ret;
219 uint64_t result;
220
221 /* sanity check crossover type */
222 if (state == 0U) {
223 result = EINVAL;
224 } else {
225 /* clean the previous response state */
226 ari_clobber_response(ari_base);
227
228 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_CSTATE_STATS, state, 0U);
229 if (ret != 0) {
230 result = EINVAL;
231 } else {
232 result = (uint64_t)ari_get_response_low(ari_base);
233 }
234 }
235 return result;
236 }
237
238 int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
239 {
240 /* clean the previous response state */
241 ari_clobber_response(ari_base);
242
243 /* write the cstate stats */
244 return ari_request_wait(ari_base, 0U, TEGRA_ARI_WRITE_CSTATE_STATS, state,
245 stats);
246 }
247
248 uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
249 {
250 uint64_t resp;
251 int32_t ret;
252 uint32_t local_data = data;
253
254 /* clean the previous response state */
255 ari_clobber_response(ari_base);
256
257 /* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
258 if (cmd != TEGRA_ARI_MISC_ECHO) {
259 local_data = 0U;
260 }
261
262 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC, cmd, local_data);
263 if (ret != 0) {
264 resp = (uint64_t)ret;
265 } else {
266 /* get the command response */
267 resp = ari_get_response_low(ari_base);
268 resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
269 }
270
271 return resp;
272 }
273
274 int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
275 {
276 int32_t ret;
277 uint32_t result;
278
279 /* clean the previous response state */
280 ari_clobber_response(ari_base);
281
282 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U,
283 wake_time);
284 if (ret != 0) {
285 ERROR("%s: failed (%d)\n", __func__, ret);
286 result = 0U;
287 } else {
288 result = ari_get_response_low(ari_base) & 0x1U;
289 }
290
291 /* 1 = CCx allowed, 0 = CCx not allowed */
292 return (int32_t)result;
293 }
294
295 int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
296 {
297 int32_t ret, result;
298
299 /* check for allowed power state */
300 if ((state != TEGRA_ARI_CORE_C0) &&
301 (state != TEGRA_ARI_CORE_C1) &&
302 (state != TEGRA_ARI_CORE_C6) &&
303 (state != TEGRA_ARI_CORE_C7)) {
304 ERROR("%s: unknown cstate (%d)\n", __func__, state);
305 result = EINVAL;
306 } else {
307 /* clean the previous response state */
308 ari_clobber_response(ari_base);
309
310 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_SC7_ALLOWED, state,
311 wake_time);
312 if (ret != 0) {
313 ERROR("%s: failed (%d)\n", __func__, ret);
314 result = 0;
315 } else {
316 /* 1 = SC7 allowed, 0 = SC7 not allowed */
317 result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
318 }
319 }
320
321 return result;
322 }
323
324 int32_t ari_online_core(uint32_t ari_base, uint32_t core)
325 {
326 uint64_t cpu = read_mpidr() & (uint64_t)(MPIDR_CPU_MASK);
327 uint64_t cluster = (read_mpidr() & (uint64_t)(MPIDR_CLUSTER_MASK)) >>
328 (uint64_t)(MPIDR_AFFINITY_BITS);
329 uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
330 int32_t ret;
331
332 /* construct the current CPU # */
333 cpu |= (cluster << 2);
334
335 /* sanity check target core id */
336 if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
337 ERROR("%s: unsupported core id (%d)\n", __func__, core);
338 ret = EINVAL;
339 } else {
340 /*
341 * The Denver cluster has 2 CPUs only - 0, 1.
342 */
343 if ((impl == (uint32_t)DENVER_IMPL) &&
344 ((core == 2U) || (core == 3U))) {
345 ERROR("%s: unknown core id (%d)\n", __func__, core);
346 ret = EINVAL;
347 } else {
348 /* clean the previous response state */
349 ari_clobber_response(ari_base);
350 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_ONLINE_CORE, core, 0U);
351 }
352 }
353
354 return ret;
355 }
356
357 int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
358 {
359 uint32_t val;
360
361 /* clean the previous response state */
362 ari_clobber_response(ari_base);
363
364 /*
365 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
366 * the SW visible voltage/frequency request registers for all non
367 * floorswept cores valid independent of StandbyWFI and disabling
368 * the IDLE voltage/frequency request register. If set, Auto-CC3
369 * will be enabled by setting the ARM SW visible voltage/frequency
370 * request registers for all non floorswept cores to be enabled by
371 * StandbyWFI or the equivalent signal, and always keeping the IDLE
372 * voltage/frequency request register enabled.
373 */
374 val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
375 ((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
376 ((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
377
378 return ari_request_wait(ari_base, 0U, TEGRA_ARI_CC3_CTRL, val, 0U);
379 }
380
381 int32_t ari_reset_vector_update(uint32_t ari_base)
382 {
383 /* clean the previous response state */
384 ari_clobber_response(ari_base);
385
386 /*
387 * Need to program the CPU reset vector one time during cold boot
388 * and SC7 exit
389 */
390 (void)ari_request_wait(ari_base, 0U, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
391
392 return 0;
393 }
394
395 int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
396 {
397 /* clean the previous response state */
398 ari_clobber_response(ari_base);
399
400 return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
401 0U, 0U);
402 }
403
404 int32_t ari_roc_flush_cache(uint32_t ari_base)
405 {
406 /* clean the previous response state */
407 ari_clobber_response(ari_base);
408
409 return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
410 0U, 0U);
411 }
412
413 int32_t ari_roc_clean_cache(uint32_t ari_base)
414 {
415 /* clean the previous response state */
416 ari_clobber_response(ari_base);
417
418 return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
419 0U, 0U);
420 }
421
422 uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
423 {
424 uint64_t mca_arg_data, result = 0;
425 uint32_t resp_lo, resp_hi;
426 uint32_t mca_arg_err, mca_arg_finish;
427 int32_t ret;
428
429 /* Set data (write) */
430 mca_arg_data = (data != NULL) ? *data : 0ULL;
431
432 /* Set command */
433 ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
434 ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
435
436 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MCA,
437 (uint32_t)mca_arg_data,
438 (uint32_t)(mca_arg_data >> 32U));
439 if (ret == 0) {
440 resp_lo = ari_get_response_low(ari_base);
441 resp_hi = ari_get_response_high(ari_base);
442
443 mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
444 mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
445 MCA_ARG_FINISH_MASK;
446
447 if (mca_arg_finish == 0U) {
448 result = (uint64_t)mca_arg_err;
449 } else {
450 if (data != NULL) {
451 resp_lo = ari_get_request_low(ari_base);
452 resp_hi = ari_get_request_high(ari_base);
453 *data = ((uint64_t)resp_hi << 32U) |
454 (uint64_t)resp_lo;
455 }
456 }
457 }
458
459 return result;
460 }
461
462 int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
463 {
464 int32_t ret = 0;
465 /* sanity check GSC ID */
466 if (gsc_idx > (uint32_t)TEGRA_ARI_GSC_VPR_IDX) {
467 ret = EINVAL;
468 } else {
469 /* clean the previous response state */
470 ari_clobber_response(ari_base);
471
472 /*
473 * The MCE code will read the GSC carveout value, corrseponding to
474 * the ID, from the MC registers and update the internal GSC registers
475 * of the CCPLEX.
476 */
477 (void)ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
478 }
479
480 return ret;
481 }
482
483 void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
484 {
485 /* clean the previous response state */
486 ari_clobber_response(ari_base);
487
488 /*
489 * The MCE will shutdown or restart the entire system
490 */
491 (void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
492 }
493
494 int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
495 uint64_t *data)
496 {
497 int32_t ret, result;
498 uint32_t val;
499 uint8_t req_cmd, req_status;
500
501 req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT);
502
503 /* clean the previous response state */
504 ari_clobber_response(ari_base);
505
506 /* sanity check input parameters */
507 if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
508 ERROR("invalid parameters\n");
509 result = EINVAL;
510 } else {
511 /*
512 * For "write" commands get the value that has to be written
513 * to the uncore perfmon registers
514 */
515 val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
516 (uint32_t)*data : 0U;
517
518 ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_PERFMON, val,
519 (uint32_t)req);
520 if (ret != 0) {
521 result = ret;
522 } else {
523 /* read the command status value */
524 req_status = (uint8_t)ari_get_response_high(ari_base) &
525 UNCORE_PERFMON_RESP_STATUS_MASK;
526
527 /*
528 * For "read" commands get the data from the uncore
529 * perfmon registers
530 */
531 req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT;
532 if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
533 *data = ari_get_response_low(ari_base);
534 }
535 result = (int32_t)req_status;
536 }
537 }
538
539 return result;
540 }
541
542 void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
543 {
544 /*
545 * This invokes the ARI_MISC_CCPLEX commands. This can be
546 * used to enable/disable coresight clock gating.
547 */
548
549 if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
550 ((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
551 (value > 1U))) {
552 ERROR("%s: invalid parameters \n", __func__);
553 } else {
554 /* clean the previous response state */
555 ari_clobber_response(ari_base);
556 (void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, index, value);
557 }
558 }