bmips: batch process rx path
[openwrt/staging/nbd.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 struct list_head rx_list;
338 int processed = 0;
339
340 INIT_LIST_HEAD(&rx_list);
341
342 /* don't scan ring further than number of refilled
343 * descriptor */
344 if (budget > priv->rx_desc_count)
345 budget = priv->rx_desc_count;
346
347 do {
348 struct bcm6368_enetsw_desc *desc;
349 unsigned int frag_size;
350 struct sk_buff *skb;
351 unsigned char *buf;
352 int desc_idx;
353 u32 len_stat;
354 unsigned int len;
355
356 desc_idx = priv->rx_curr_desc;
357 desc = &priv->rx_desc_cpu[desc_idx];
358
359 /* make sure we actually read the descriptor status at
360 * each loop */
361 rmb();
362
363 len_stat = desc->len_stat;
364
365 /* break if dma ownership belongs to hw */
366 if (len_stat & DMADESC_OWNER_MASK)
367 break;
368
369 processed++;
370 priv->rx_curr_desc++;
371 if (priv->rx_curr_desc == priv->rx_ring_size)
372 priv->rx_curr_desc = 0;
373
374 /* if the packet does not have start of packet _and_
375 * end of packet flag set, then just recycle it */
376 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
377 dev->stats.rx_dropped++;
378 continue;
379 }
380
381 /* valid packet */
382 buf = priv->rx_buf[desc_idx];
383 len = (len_stat & DMADESC_LENGTH_MASK)
384 >> DMADESC_LENGTH_SHIFT;
385 /* don't include FCS */
386 len -= 4;
387
388 if (len < priv->copybreak) {
389 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
390 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
391
392 if (unlikely(!nbuf)) {
393 /* forget packet, just rearm desc */
394 dev->stats.rx_dropped++;
395 continue;
396 }
397
398 dma_sync_single_for_cpu(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
401 dma_sync_single_for_device(kdev, desc->address,
402 len, DMA_FROM_DEVICE);
403 buf = nbuf;
404 frag_size = nfrag_size;
405 } else {
406 dma_unmap_single(kdev, desc->address,
407 priv->rx_buf_size, DMA_FROM_DEVICE);
408 priv->rx_buf[desc_idx] = NULL;
409 frag_size = priv->rx_frag_size;
410 }
411
412 skb = napi_build_skb(buf, frag_size);
413 if (unlikely(!skb)) {
414 skb_free_frag(buf);
415 dev->stats.rx_dropped++;
416 continue;
417 }
418
419 skb_reserve(skb, NET_SKB_PAD);
420 skb_put(skb, len);
421 skb->protocol = eth_type_trans(skb, dev);
422 dev->stats.rx_packets++;
423 dev->stats.rx_bytes += len;
424 list_add_tail(&skb->list, &rx_list);
425 } while (processed < budget);
426
427 netif_receive_skb_list(&rx_list);
428 priv->rx_desc_count -= processed;
429
430 if (processed || !priv->rx_desc_count) {
431 bcm6368_enetsw_refill_rx(dev, true);
432
433 /* kick rx dma */
434 dmac_writel(priv, priv->dma_chan_en_mask,
435 DMAC_CHANCFG_REG, priv->rx_chan);
436 }
437
438 return processed;
439 }
440
441 /*
442 * try to or force reclaim of transmitted buffers
443 */
444 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
445 {
446 struct bcm6368_enetsw *priv = netdev_priv(dev);
447 int released = 0;
448
449 while (priv->tx_desc_count < priv->tx_ring_size) {
450 struct bcm6368_enetsw_desc *desc;
451 struct sk_buff *skb;
452
453 /* We run in a bh and fight against start_xmit, which
454 * is called with bh disabled */
455 spin_lock(&priv->tx_lock);
456
457 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
458
459 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
460 spin_unlock(&priv->tx_lock);
461 break;
462 }
463
464 /* ensure other field of the descriptor were not read
465 * before we checked ownership */
466 rmb();
467
468 skb = priv->tx_skb[priv->tx_dirty_desc];
469 priv->tx_skb[priv->tx_dirty_desc] = NULL;
470 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
471 DMA_TO_DEVICE);
472
473 priv->tx_dirty_desc++;
474 if (priv->tx_dirty_desc == priv->tx_ring_size)
475 priv->tx_dirty_desc = 0;
476 priv->tx_desc_count++;
477
478 spin_unlock(&priv->tx_lock);
479
480 if (desc->len_stat & DMADESC_UNDER_MASK)
481 dev->stats.tx_errors++;
482
483 napi_consume_skb(skb, !force);
484 released++;
485 }
486
487 if (netif_queue_stopped(dev) && released)
488 netif_wake_queue(dev);
489
490 return released;
491 }
492
493 /*
494 * poll func, called by network core
495 */
496 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
497 {
498 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
499 struct net_device *dev = priv->net_dev;
500 int rx_work_done;
501
502 /* ack interrupts */
503 dmac_writel(priv, priv->dma_chan_int_mask,
504 DMAC_IR_REG, priv->rx_chan);
505 dmac_writel(priv, priv->dma_chan_int_mask,
506 DMAC_IR_REG, priv->tx_chan);
507
508 /* reclaim sent skb */
509 bcm6368_enetsw_tx_reclaim(dev, 0);
510
511 spin_lock(&priv->rx_lock);
512 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
513 spin_unlock(&priv->rx_lock);
514
515 if (rx_work_done >= budget) {
516 /* rx queue is not yet empty/clean */
517 return rx_work_done;
518 }
519
520 /* no more packet in rx/tx queue, remove device from poll
521 * queue */
522 napi_complete_done(napi, rx_work_done);
523
524 /* restore rx/tx interrupt */
525 dmac_writel(priv, priv->dma_chan_int_mask,
526 DMAC_IRMASK_REG, priv->rx_chan);
527 dmac_writel(priv, priv->dma_chan_int_mask,
528 DMAC_IRMASK_REG, priv->tx_chan);
529
530 return rx_work_done;
531 }
532
533 /*
534 * rx/tx dma interrupt handler
535 */
536 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
537 {
538 struct net_device *dev = dev_id;
539 struct bcm6368_enetsw *priv = netdev_priv(dev);
540
541 /* mask rx/tx interrupts */
542 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
543 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
544
545 napi_schedule(&priv->napi);
546
547 return IRQ_HANDLED;
548 }
549
550 /*
551 * tx request callback
552 */
553 static netdev_tx_t
554 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
555 {
556 struct bcm6368_enetsw *priv = netdev_priv(dev);
557 struct bcm6368_enetsw_desc *desc;
558 u32 len_stat;
559 netdev_tx_t ret;
560
561 /* lock against tx reclaim */
562 spin_lock(&priv->tx_lock);
563
564 /* make sure the tx hw queue is not full, should not happen
565 * since we stop queue before it's the case */
566 if (unlikely(!priv->tx_desc_count)) {
567 netif_stop_queue(dev);
568 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
569 "available?\n");
570 ret = NETDEV_TX_BUSY;
571 goto out_unlock;
572 }
573
574 /* pad small packets */
575 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
576 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
577 char *data;
578
579 if (unlikely(skb_tailroom(skb) < needed)) {
580 struct sk_buff *nskb;
581
582 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
583 if (!nskb) {
584 ret = NETDEV_TX_BUSY;
585 goto out_unlock;
586 }
587
588 dev_kfree_skb(skb);
589 skb = nskb;
590 }
591 data = skb_put_zero(skb, needed);
592 }
593
594 /* point to the next available desc */
595 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
596 priv->tx_skb[priv->tx_curr_desc] = skb;
597
598 /* fill descriptor */
599 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
600 DMA_TO_DEVICE);
601
602 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
603 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
604 DMADESC_OWNER_MASK;
605
606 priv->tx_curr_desc++;
607 if (priv->tx_curr_desc == priv->tx_ring_size) {
608 priv->tx_curr_desc = 0;
609 len_stat |= DMADESC_WRAP_MASK;
610 }
611 priv->tx_desc_count--;
612
613 /* dma might be already polling, make sure we update desc
614 * fields in correct order */
615 wmb();
616 desc->len_stat = len_stat;
617 wmb();
618
619 /* kick tx dma */
620 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
621 priv->tx_chan);
622
623 /* stop queue if no more desc available */
624 if (!priv->tx_desc_count)
625 netif_stop_queue(dev);
626
627 dev->stats.tx_bytes += skb->len;
628 dev->stats.tx_packets++;
629 ret = NETDEV_TX_OK;
630
631 out_unlock:
632 spin_unlock(&priv->tx_lock);
633 return ret;
634 }
635
636 /*
637 * disable dma in given channel
638 */
639 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
640 {
641 int limit = 1000;
642
643 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
644
645 do {
646 u32 val;
647
648 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
649 if (!(val & DMAC_CHANCFG_EN_MASK))
650 break;
651
652 udelay(1);
653 } while (limit--);
654 }
655
656 static int bcm6368_enetsw_open(struct net_device *dev)
657 {
658 struct bcm6368_enetsw *priv = netdev_priv(dev);
659 struct device *kdev = &priv->pdev->dev;
660 int i, ret;
661 unsigned int size;
662 void *p;
663 u32 val;
664
665 /* mask all interrupts and request them */
666 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
667 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
668
669 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
670 0, dev->name, dev);
671 if (ret)
672 goto out_freeirq;
673
674 if (priv->irq_tx != -1) {
675 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
676 0, dev->name, dev);
677 if (ret)
678 goto out_freeirq_rx;
679 }
680
681 /* allocate rx dma ring */
682 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
683 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
684 if (!p) {
685 dev_err(kdev, "cannot allocate rx ring %u\n", size);
686 ret = -ENOMEM;
687 goto out_freeirq_tx;
688 }
689
690 memset(p, 0, size);
691 priv->rx_desc_alloc_size = size;
692 priv->rx_desc_cpu = p;
693
694 /* allocate tx dma ring */
695 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
696 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
697 if (!p) {
698 dev_err(kdev, "cannot allocate tx ring\n");
699 ret = -ENOMEM;
700 goto out_free_rx_ring;
701 }
702
703 memset(p, 0, size);
704 priv->tx_desc_alloc_size = size;
705 priv->tx_desc_cpu = p;
706
707 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
708 GFP_KERNEL);
709 if (!priv->tx_skb) {
710 dev_err(kdev, "cannot allocate tx skb queue\n");
711 ret = -ENOMEM;
712 goto out_free_tx_ring;
713 }
714
715 priv->tx_desc_count = priv->tx_ring_size;
716 priv->tx_dirty_desc = 0;
717 priv->tx_curr_desc = 0;
718 spin_lock_init(&priv->tx_lock);
719
720 /* init & fill rx ring with buffers */
721 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
722 GFP_KERNEL);
723 if (!priv->rx_buf) {
724 dev_err(kdev, "cannot allocate rx buffer queue\n");
725 ret = -ENOMEM;
726 goto out_free_tx_skb;
727 }
728
729 priv->rx_desc_count = 0;
730 priv->rx_dirty_desc = 0;
731 priv->rx_curr_desc = 0;
732
733 /* initialize flow control buffer allocation */
734 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
735 DMA_BUFALLOC_REG(priv->rx_chan));
736
737 if (bcm6368_enetsw_refill_rx(dev, false)) {
738 dev_err(kdev, "cannot allocate rx buffer queue\n");
739 ret = -ENOMEM;
740 goto out;
741 }
742
743 /* write rx & tx ring addresses */
744 dmas_writel(priv, priv->rx_desc_dma,
745 DMAS_RSTART_REG, priv->rx_chan);
746 dmas_writel(priv, priv->tx_desc_dma,
747 DMAS_RSTART_REG, priv->tx_chan);
748
749 /* clear remaining state ram for rx & tx channel */
750 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
751 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
752 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
753 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
754 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
755 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
756
757 /* set dma maximum burst len */
758 dmac_writel(priv, priv->dma_maxburst,
759 DMAC_MAXBURST_REG, priv->rx_chan);
760 dmac_writel(priv, priv->dma_maxburst,
761 DMAC_MAXBURST_REG, priv->tx_chan);
762
763 /* set flow control low/high threshold to 1/3 / 2/3 */
764 val = priv->rx_ring_size / 3;
765 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
766 val = (priv->rx_ring_size * 2) / 3;
767 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
768
769 /* all set, enable mac and interrupts, start dma engine and
770 * kick rx dma channel
771 */
772 wmb();
773 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
774 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
775 DMAC_CHANCFG_REG, priv->rx_chan);
776
777 /* watch "packet transferred" interrupt in rx and tx */
778 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
779 DMAC_IR_REG, priv->rx_chan);
780 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
781 DMAC_IR_REG, priv->tx_chan);
782
783 /* make sure we enable napi before rx interrupt */
784 napi_enable(&priv->napi);
785
786 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
787 DMAC_IRMASK_REG, priv->rx_chan);
788 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
789 DMAC_IRMASK_REG, priv->tx_chan);
790
791 netif_carrier_on(dev);
792 netif_start_queue(dev);
793
794 return 0;
795
796 out:
797 for (i = 0; i < priv->rx_ring_size; i++) {
798 struct bcm6368_enetsw_desc *desc;
799
800 if (!priv->rx_buf[i])
801 continue;
802
803 desc = &priv->rx_desc_cpu[i];
804 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
805 DMA_FROM_DEVICE);
806 skb_free_frag(priv->rx_buf[i]);
807 }
808 kfree(priv->rx_buf);
809
810 out_free_tx_skb:
811 kfree(priv->tx_skb);
812
813 out_free_tx_ring:
814 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
815 priv->tx_desc_cpu, priv->tx_desc_dma);
816
817 out_free_rx_ring:
818 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
819 priv->rx_desc_cpu, priv->rx_desc_dma);
820
821 out_freeirq_tx:
822 if (priv->irq_tx != -1)
823 free_irq(priv->irq_tx, dev);
824
825 out_freeirq_rx:
826 free_irq(priv->irq_rx, dev);
827
828 out_freeirq:
829 return ret;
830 }
831
832 static int bcm6368_enetsw_stop(struct net_device *dev)
833 {
834 struct bcm6368_enetsw *priv = netdev_priv(dev);
835 struct device *kdev = &priv->pdev->dev;
836 int i;
837
838 netif_stop_queue(dev);
839 napi_disable(&priv->napi);
840 del_timer_sync(&priv->rx_timeout);
841
842 /* mask all interrupts */
843 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
844 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
845
846 /* disable dma & mac */
847 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
848 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
849
850 /* force reclaim of all tx buffers */
851 bcm6368_enetsw_tx_reclaim(dev, 1);
852
853 /* free the rx buffer ring */
854 for (i = 0; i < priv->rx_ring_size; i++) {
855 struct bcm6368_enetsw_desc *desc;
856
857 if (!priv->rx_buf[i])
858 continue;
859
860 desc = &priv->rx_desc_cpu[i];
861 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
862 DMA_FROM_DEVICE,
863 DMA_ATTR_SKIP_CPU_SYNC);
864 skb_free_frag(priv->rx_buf[i]);
865 }
866
867 /* free remaining allocated memory */
868 kfree(priv->rx_buf);
869 kfree(priv->tx_skb);
870 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
871 priv->rx_desc_cpu, priv->rx_desc_dma);
872 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
873 priv->tx_desc_cpu, priv->tx_desc_dma);
874 if (priv->irq_tx != -1)
875 free_irq(priv->irq_tx, dev);
876 free_irq(priv->irq_rx, dev);
877
878 return 0;
879 }
880
881 static const struct net_device_ops bcm6368_enetsw_ops = {
882 .ndo_open = bcm6368_enetsw_open,
883 .ndo_stop = bcm6368_enetsw_stop,
884 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
885 };
886
887 static int bcm6368_enetsw_probe(struct platform_device *pdev)
888 {
889 struct bcm6368_enetsw *priv;
890 struct device *dev = &pdev->dev;
891 struct device_node *node = dev->of_node;
892 struct net_device *ndev;
893 struct resource *res;
894 unsigned i;
895 int ret;
896
897 ndev = alloc_etherdev(sizeof(*priv));
898 if (!ndev)
899 return -ENOMEM;
900
901 priv = netdev_priv(ndev);
902
903 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
904 "#power-domain-cells");
905 if (priv->num_pms > 1) {
906 priv->pm = devm_kcalloc(dev, priv->num_pms,
907 sizeof(struct device *), GFP_KERNEL);
908 if (!priv->pm)
909 return -ENOMEM;
910
911 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
912 sizeof(struct device_link *),
913 GFP_KERNEL);
914 if (!priv->link_pm)
915 return -ENOMEM;
916
917 for (i = 0; i < priv->num_pms; i++) {
918 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
919 if (IS_ERR(priv->pm[i])) {
920 dev_err(dev, "error getting pm %d\n", i);
921 return -EINVAL;
922 }
923
924 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
925 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
926 DL_FLAG_RPM_ACTIVE);
927 }
928 }
929
930 pm_runtime_enable(dev);
931 pm_runtime_no_callbacks(dev);
932 ret = pm_runtime_get_sync(dev);
933 if (ret < 0) {
934 pm_runtime_disable(dev);
935 dev_info(dev, "PM prober defer: ret=%d\n", ret);
936 return -EPROBE_DEFER;
937 }
938
939 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
940 priv->dma_base = devm_ioremap_resource(dev, res);
941 if (IS_ERR(priv->dma_base))
942 return PTR_ERR(priv->dma_base);
943
944 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
945 "dma-channels");
946 priv->dma_chan = devm_ioremap_resource(dev, res);
947 if (IS_ERR(priv->dma_chan))
948 return PTR_ERR(priv->dma_chan);
949
950 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
951 priv->dma_sram = devm_ioremap_resource(dev, res);
952 if (IS_ERR(priv->dma_sram))
953 return PTR_ERR(priv->dma_sram);
954
955 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
956 if (!priv->irq_rx)
957 return -ENODEV;
958
959 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
960 if (!priv->irq_tx)
961 return -ENODEV;
962 else if (priv->irq_tx < 0)
963 priv->irq_tx = -1;
964
965 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
966 return -ENODEV;
967
968 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
969 return -ENODEV;
970
971 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
972 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
973
974 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
975
976 priv->copybreak = ENETSW_DEF_CPY_BREAK;
977
978 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
979 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
980 priv->dma_chan_width = DMA_CHAN_WIDTH;
981
982 of_get_mac_address(node, ndev->dev_addr);
983 if (is_valid_ether_addr(ndev->dev_addr)) {
984 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
985 } else {
986 random_ether_addr(ndev->dev_addr);
987 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
988 }
989
990 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
991 priv->dma_maxburst * 4);
992
993 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
994
995 priv->num_clocks = of_clk_get_parent_count(node);
996 if (priv->num_clocks) {
997 priv->clock = devm_kcalloc(dev, priv->num_clocks,
998 sizeof(struct clk *), GFP_KERNEL);
999 if (!priv->clock)
1000 return -ENOMEM;
1001 }
1002 for (i = 0; i < priv->num_clocks; i++) {
1003 priv->clock[i] = of_clk_get(node, i);
1004 if (IS_ERR(priv->clock[i])) {
1005 dev_err(dev, "error getting clock %d\n", i);
1006 return -EINVAL;
1007 }
1008
1009 ret = clk_prepare_enable(priv->clock[i]);
1010 if (ret) {
1011 dev_err(dev, "error enabling clock %d\n", i);
1012 return ret;
1013 }
1014 }
1015
1016 priv->num_resets = of_count_phandle_with_args(node, "resets",
1017 "#reset-cells");
1018 if (priv->num_resets) {
1019 priv->reset = devm_kcalloc(dev, priv->num_resets,
1020 sizeof(struct reset_control *),
1021 GFP_KERNEL);
1022 if (!priv->reset)
1023 return -ENOMEM;
1024 }
1025 for (i = 0; i < priv->num_resets; i++) {
1026 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1027 if (IS_ERR(priv->reset[i])) {
1028 dev_err(dev, "error getting reset %d\n", i);
1029 return -EINVAL;
1030 }
1031
1032 ret = reset_control_reset(priv->reset[i]);
1033 if (ret) {
1034 dev_err(dev, "error performing reset %d\n", i);
1035 return ret;
1036 }
1037 }
1038
1039 spin_lock_init(&priv->rx_lock);
1040
1041 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1042
1043 /* register netdevice */
1044 ndev->netdev_ops = &bcm6368_enetsw_ops;
1045 ndev->min_mtu = ETH_ZLEN;
1046 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1047 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1048 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1049 SET_NETDEV_DEV(ndev, dev);
1050
1051 ret = register_netdev(ndev);
1052 if (ret)
1053 goto out_disable_clk;
1054
1055 netif_carrier_off(ndev);
1056 platform_set_drvdata(pdev, ndev);
1057 priv->pdev = pdev;
1058 priv->net_dev = ndev;
1059
1060 return 0;
1061
1062 out_disable_clk:
1063 for (i = 0; i < priv->num_resets; i++)
1064 reset_control_assert(priv->reset[i]);
1065
1066 for (i = 0; i < priv->num_clocks; i++)
1067 clk_disable_unprepare(priv->clock[i]);
1068
1069 return ret;
1070 }
1071
1072 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1073 {
1074 struct device *dev = &pdev->dev;
1075 struct net_device *ndev = platform_get_drvdata(pdev);
1076 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1077 unsigned int i;
1078
1079 unregister_netdev(ndev);
1080
1081 pm_runtime_put_sync(dev);
1082 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1083 dev_pm_domain_detach(priv->pm[i], true);
1084 device_link_del(priv->link_pm[i]);
1085 }
1086
1087 for (i = 0; i < priv->num_resets; i++)
1088 reset_control_assert(priv->reset[i]);
1089
1090 for (i = 0; i < priv->num_clocks; i++)
1091 clk_disable_unprepare(priv->clock[i]);
1092
1093 free_netdev(ndev);
1094
1095 return 0;
1096 }
1097
1098 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1099 { .compatible = "brcm,bcm6318-enetsw", },
1100 { .compatible = "brcm,bcm6328-enetsw", },
1101 { .compatible = "brcm,bcm6362-enetsw", },
1102 { .compatible = "brcm,bcm6368-enetsw", },
1103 { .compatible = "brcm,bcm63268-enetsw", },
1104 { /* sentinel */ }
1105 };
1106 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1107
1108 static struct platform_driver bcm6368_enetsw_driver = {
1109 .driver = {
1110 .name = "bcm6368-enetsw",
1111 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1112 },
1113 .probe = bcm6368_enetsw_probe,
1114 .remove = bcm6368_enetsw_remove,
1115 };
1116 module_platform_driver(bcm6368_enetsw_driver);