735b9419f7c2f8806c82259a5464ed848c8bccb7
[openwrt/svn-archive/archive.git] / target / linux / lantiq / files / arch / mips / lantiq / svip / devices.c
1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/types.h>
4 #include <linux/string.h>
5 #include <linux/mtd/physmap.h>
6 #include <linux/kernel.h>
7 #include <linux/reboot.h>
8 #include <linux/platform_device.h>
9 #include <linux/leds.h>
10 #include <linux/etherdevice.h>
11 #include <linux/reboot.h>
12 #include <linux/time.h>
13 #include <linux/io.h>
14 #include <linux/gpio.h>
15 #include <linux/leds.h>
16 #include <linux/spi/spi.h>
17 #include <linux/mtd/nand.h>
18
19 #include <asm/bootinfo.h>
20 #include <asm/irq.h>
21
22 #include <lantiq.h>
23
24 #include <base_reg.h>
25 #include <sys1_reg.h>
26 #include <sys2_reg.h>
27 #include <ebu_reg.h>
28
29 #include "devices.h"
30
31 #include <lantiq_soc.h>
32 #include <svip_mux.h>
33 #include <svip_pms.h>
34
35 /* ASC */
36 void __init svip_register_asc(int port)
37 {
38 switch (port) {
39 case 0:
40 ltq_register_asc(0);
41 svip_sys1_clk_enable(SYS1_CLKENR_ASC0);
42 break;
43 case 1:
44 ltq_register_asc(1);
45 svip_sys1_clk_enable(SYS1_CLKENR_ASC1);
46 break;
47 default:
48 break;
49 };
50 }
51
52 /* Ethernet */
53 static unsigned char svip_ethaddr[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
54
55 static struct platform_device ltq_mii = {
56 .name = "ifxmips_mii0",
57 .dev = {
58 .platform_data = svip_ethaddr,
59 },
60 };
61
62 static int __init svip_set_ethaddr(char *str)
63 {
64 sscanf(str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
65 &svip_ethaddr[0], &svip_ethaddr[1], &svip_ethaddr[2],
66 &svip_ethaddr[3], &svip_ethaddr[4], &svip_ethaddr[5]);
67 return 0;
68 }
69 __setup("ethaddr=", svip_set_ethaddr);
70
71 void __init svip_register_eth(void)
72 {
73 if (!is_valid_ether_addr(svip_ethaddr))
74 random_ether_addr(svip_ethaddr);
75
76 platform_device_register(&ltq_mii);
77 svip_sys1_clk_enable(SYS1_CLKENR_ETHSW);
78 }
79
80 /* Virtual Ethernet */
81 static struct platform_device ltq_ve = {
82 .name = "ifxmips_svip_ve",
83 };
84
85 void __init svip_register_virtual_eth(void)
86 {
87 platform_device_register(&ltq_ve);
88 }
89
90 /* SPI */
91 static void __init ltq_register_ssc(int bus_num, unsigned long base, int irq_rx,
92 int irq_tx, int irq_err, int irq_frm)
93 {
94 struct resource res[] = {
95 {
96 .name = "regs",
97 .start = base,
98 .end = base + 0x20 - 1,
99 .flags = IORESOURCE_MEM,
100 }, {
101 .name = "rx",
102 .start = irq_rx,
103 .flags = IORESOURCE_IRQ,
104 }, {
105 .name = "tx",
106 .start = irq_tx,
107 .flags = IORESOURCE_IRQ,
108 }, {
109 .name = "err",
110 .start = irq_err,
111 .flags = IORESOURCE_IRQ,
112 }, {
113 .name = "frm",
114 .start = irq_frm,
115 .flags = IORESOURCE_IRQ,
116 },
117 };
118
119 platform_device_register_simple("ifx_ssc", bus_num, res,
120 ARRAY_SIZE(res));
121 }
122
123 static struct spi_board_info bdinfo[] __initdata = {
124 {
125 .modalias = "xt16",
126 .mode = SPI_MODE_3,
127 .irq = INT_NUM_IM5_IRL0 + 28,
128 .max_speed_hz = 1000000,
129 .bus_num = 0,
130 .chip_select = 1,
131 },
132 {
133 .modalias = "xt16",
134 .mode = SPI_MODE_3,
135 .irq = INT_NUM_IM5_IRL0 + 19,
136 .max_speed_hz = 1000000,
137 .bus_num = 0,
138 .chip_select = 2,
139 },
140 {
141 .modalias = "loop",
142 .mode = SPI_MODE_0 | SPI_LOOP,
143 .irq = -1,
144 .max_speed_hz = 10000000,
145 .bus_num = 0,
146 .chip_select = 3,
147 },
148 };
149
150 void __init svip_register_spi(void)
151 {
152
153 ltq_register_ssc(0, LTQ_SSC0_BASE, INT_NUM_IM1_IRL0 + 6,
154 INT_NUM_IM1_IRL0 + 7, INT_NUM_IM1_IRL0 + 8,
155 INT_NUM_IM1_IRL0 + 9);
156
157 ltq_register_ssc(1, LTQ_SSC1_BASE, INT_NUM_IM1_IRL0 + 10,
158 INT_NUM_IM1_IRL0 + 11, INT_NUM_IM1_IRL0 + 12,
159 INT_NUM_IM1_IRL0 + 13);
160
161 spi_register_board_info(bdinfo, ARRAY_SIZE(bdinfo));
162
163 svip_sys1_clk_enable(SYS1_CLKENR_SSC0 | SYS1_CLKENR_SSC1);
164 }
165
166 void __init svip_register_spi_flash(struct spi_board_info *bdinfo)
167 {
168 spi_register_board_info(bdinfo, 1);
169 }
170
171 /* GPIO */
172 static struct platform_device ltq_gpio = {
173 .name = "ifxmips_gpio",
174 };
175
176 void __init svip_register_gpio(void)
177 {
178 platform_device_register(&ltq_gpio);
179 }
180
181 /* MUX */
182 static struct ltq_mux_settings ltq_mux_settings;
183
184 static struct platform_device ltq_mux = {
185 .name = "ltq_mux",
186 .dev = {
187 .platform_data = &ltq_mux_settings,
188 }
189 };
190
191 void __init svip_register_mux(const struct ltq_mux_pin mux_p0[LTQ_MUX_P0_PINS],
192 const struct ltq_mux_pin mux_p1[LTQ_MUX_P1_PINS],
193 const struct ltq_mux_pin mux_p2[LTQ_MUX_P2_PINS],
194 const struct ltq_mux_pin mux_p3[LTQ_MUX_P3_PINS],
195 const struct ltq_mux_pin mux_p4[LTQ_MUX_P4_PINS])
196 {
197 ltq_mux_settings.mux_p0 = mux_p0;
198 ltq_mux_settings.mux_p1 = mux_p1;
199 ltq_mux_settings.mux_p2 = mux_p2;
200 ltq_mux_settings.mux_p3 = mux_p3;
201 ltq_mux_settings.mux_p4 = mux_p4;
202
203 if (mux_p0)
204 svip_sys1_clk_enable(SYS1_CLKENR_PORT0);
205
206 if (mux_p1)
207 svip_sys1_clk_enable(SYS1_CLKENR_PORT1);
208
209 if (mux_p2)
210 svip_sys1_clk_enable(SYS1_CLKENR_PORT2);
211
212 if (mux_p3)
213 svip_sys1_clk_enable(SYS1_CLKENR_PORT3);
214
215 if (mux_p4)
216 svip_sys2_clk_enable(SYS2_CLKENR_PORT4);
217
218 platform_device_register(&ltq_mux);
219 }
220
221 /* NAND */
222 #define NAND_ADDR_REGION_BASE (LTQ_EBU_SEG1_BASE)
223 #define NAND_CLE_BIT (1 << 3)
224 #define NAND_ALE_BIT (1 << 2)
225
226 static struct svip_reg_ebu *const ebu = (struct svip_reg_ebu *)LTQ_EBU_BASE;
227
228 static int svip_nand_probe(struct platform_device *pdev)
229 {
230 ebu_w32(LTQ_EBU_ADDR_SEL_0_BASE_VAL(CPHYSADDR(NAND_ADDR_REGION_BASE)
231 >> 12)
232 | LTQ_EBU_ADDR_SEL_0_MASK_VAL(15)
233 | LTQ_EBU_ADDR_SEL_0_MRME_VAL(0)
234 | LTQ_EBU_ADDR_SEL_0_REGEN_VAL(1),
235 addr_sel_0);
236
237 ebu_w32(LTQ_EBU_CON_0_WRDIS_VAL(0)
238 | LTQ_EBU_CON_0_ADSWP_VAL(1)
239 | LTQ_EBU_CON_0_AGEN_VAL(0x00)
240 | LTQ_EBU_CON_0_SETUP_VAL(1)
241 | LTQ_EBU_CON_0_WAIT_VAL(0x00)
242 | LTQ_EBU_CON_0_WINV_VAL(0)
243 | LTQ_EBU_CON_0_PW_VAL(0x00)
244 | LTQ_EBU_CON_0_ALEC_VAL(0)
245 | LTQ_EBU_CON_0_BCGEN_VAL(0x01)
246 | LTQ_EBU_CON_0_WAITWRC_VAL(1)
247 | LTQ_EBU_CON_0_WAITRDC_VAL(1)
248 | LTQ_EBU_CON_0_HOLDC_VAL(1)
249 | LTQ_EBU_CON_0_RECOVC_VAL(0)
250 | LTQ_EBU_CON_0_CMULT_VAL(0x01),
251 con_0);
252
253 /*
254 * ECC disabled
255 * CLE, ALE and CS are pulse, all other signal are latches based
256 * CLE and ALE are active high, PRE, WP, SE and CS/CE are active low
257 * OUT_CS_S is disabled
258 * NAND mode is disabled
259 */
260 ebu_w32(LTQ_EBU_NAND_CON_ECC_ON_VAL(0)
261 | LTQ_EBU_NAND_CON_LAT_EN_VAL(0x38)
262 | LTQ_EBU_NAND_CON_OUT_CS_S_VAL(0)
263 | LTQ_EBU_NAND_CON_IN_CS_S_VAL(0)
264 | LTQ_EBU_NAND_CON_PRE_P_VAL(1)
265 | LTQ_EBU_NAND_CON_WP_P_VAL(1)
266 | LTQ_EBU_NAND_CON_SE_P_VAL(1)
267 | LTQ_EBU_NAND_CON_CS_P_VAL(1)
268 | LTQ_EBU_NAND_CON_CLE_P_VAL(0)
269 | LTQ_EBU_NAND_CON_ALE_P_VAL(0)
270 | LTQ_EBU_NAND_CON_CSMUX_E_VAL(0)
271 | LTQ_EBU_NAND_CON_NANDMODE_VAL(0),
272 nand_con);
273
274 return 0;
275 }
276
277 static void svip_nand_hwcontrol(struct mtd_info *mtd, int cmd,
278 unsigned int ctrl)
279 {
280 struct nand_chip *this = mtd->priv;
281
282 if (ctrl & NAND_CTRL_CHANGE) {
283 unsigned long adr;
284 /* Coming here means to change either the enable state or
285 * the address for controlling ALE or CLE */
286
287 /* NAND_NCE: Select the chip by setting nCE to low.
288 * This is done in CON register */
289 if (ctrl & NAND_NCE)
290 ebu_w32_mask(0, LTQ_EBU_NAND_CON_NANDMODE_VAL(1),
291 nand_con);
292 else
293 ebu_w32_mask(LTQ_EBU_NAND_CON_NANDMODE_VAL(1),
294 0, nand_con);
295
296 /* The addressing of CLE or ALE is done via different addresses.
297 We are now changing the address depending on the given action
298 SVIPs NAND_CLE_BIT = (1 << 3), NAND_CLE = 0x02
299 NAND_ALE_BIT = (1 << 2) = NAND_ALE (0x04) */
300 adr = (unsigned long)this->IO_ADDR_W;
301 adr &= ~(NAND_CLE_BIT | NAND_ALE_BIT);
302 adr |= (ctrl & NAND_CLE) << 2 | (ctrl & NAND_ALE);
303 this->IO_ADDR_W = (void __iomem *)adr;
304 }
305
306 if (cmd != NAND_CMD_NONE)
307 writeb(cmd, this->IO_ADDR_W);
308 }
309
310 static int svip_nand_ready(struct mtd_info *mtd)
311 {
312 return (ebu_r32(nand_wait) & 0x01) == 0x01;
313 }
314
315 static inline void svip_nand_wait(void)
316 {
317 static const int nops = 150;
318 int i;
319
320 for (i = 0; i < nops; i++)
321 asm("nop");
322 }
323
324 static void svip_nand_write_buf(struct mtd_info *mtd,
325 const u_char *buf, int len)
326 {
327 int i;
328 struct nand_chip *this = mtd->priv;
329
330 for (i = 0; i < len; i++) {
331 writeb(buf[i], this->IO_ADDR_W);
332 svip_nand_wait();
333 }
334 }
335
336 static void svip_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
337 {
338 int i;
339 struct nand_chip *this = mtd->priv;
340
341 for (i = 0; i < len; i++) {
342 buf[i] = readb(this->IO_ADDR_R);
343 svip_nand_wait();
344 }
345 }
346
347 static const char *part_probes[] = { "cmdlinepart", NULL };
348
349 static struct platform_nand_data svip_flash_nand_data = {
350 .chip = {
351 .nr_chips = 1,
352 .part_probe_types = part_probes,
353 },
354 .ctrl = {
355 .probe = svip_nand_probe,
356 .cmd_ctrl = svip_nand_hwcontrol,
357 .dev_ready = svip_nand_ready,
358 .write_buf = svip_nand_write_buf,
359 .read_buf = svip_nand_read_buf,
360 }
361 };
362
363 static struct resource svip_nand_resources[] = {
364 MEM_RES("nand", LTQ_FLASH_START, LTQ_FLASH_MAX),
365 };
366
367 static struct platform_device svip_flash_nand = {
368 .name = "gen_nand",
369 .id = -1,
370 .num_resources = ARRAY_SIZE(svip_nand_resources),
371 .resource = svip_nand_resources,
372 .dev = {
373 .platform_data = &svip_flash_nand_data,
374 },
375 };
376
377 void __init svip_register_nand(void)
378 {
379 platform_device_register(&svip_flash_nand);
380 }