realtek: Add Link Aggregation (aka trunking) support
[openwrt/staging/jow.git] / target / linux / realtek / files-5.10 / drivers / net / dsa / rtl83xx / rtl838x.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <asm/mach-rtl838x/mach-rtl83xx.h>
4 #include <net/nexthop.h>
5
6 #include "rtl83xx.h"
7
8 extern struct mutex smi_lock;
9
10 // see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
11 /* Definition of the RTL838X-specific template field IDs as used in the PIE */
12 enum template_field_id {
13 TEMPLATE_FIELD_SPMMASK = 0,
14 TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
15 TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-28
16 TEMPLATE_FIELD_RANGE_CHK = 3,
17 TEMPLATE_FIELD_DMAC0 = 4, // Destination MAC [15:0]
18 TEMPLATE_FIELD_DMAC1 = 5, // Destination MAC [31:16]
19 TEMPLATE_FIELD_DMAC2 = 6, // Destination MAC [47:32]
20 TEMPLATE_FIELD_SMAC0 = 7, // Source MAC [15:0]
21 TEMPLATE_FIELD_SMAC1 = 8, // Source MAC [31:16]
22 TEMPLATE_FIELD_SMAC2 = 9, // Source MAC [47:32]
23 TEMPLATE_FIELD_ETHERTYPE = 10, // Ethernet typ
24 TEMPLATE_FIELD_OTAG = 11, // Outer VLAN tag
25 TEMPLATE_FIELD_ITAG = 12, // Inner VLAN tag
26 TEMPLATE_FIELD_SIP0 = 13, // IPv4 or IPv6 source IP[15:0] or ARP/RARP
27 // source protocol address in header
28 TEMPLATE_FIELD_SIP1 = 14, // IPv4 or IPv6 source IP[31:16] or ARP/RARP
29 TEMPLATE_FIELD_DIP0 = 15, // IPv4 or IPv6 destination IP[15:0]
30 TEMPLATE_FIELD_DIP1 = 16, // IPv4 or IPv6 destination IP[31:16]
31 TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
32 // IPv4 proto/IPv6 next header fields
33 TEMPLATE_FIELD_L34_HEADER = 18, // packet with extra tag and IPv6 with auth, dest,
34 // frag, route, hop-by-hop option header,
35 // IGMP type, TCP flag
36 TEMPLATE_FIELD_L4_SPORT = 19, // TCP/UDP source port
37 TEMPLATE_FIELD_L4_DPORT = 20, // TCP/UDP destination port
38 TEMPLATE_FIELD_ICMP_IGMP = 21,
39 TEMPLATE_FIELD_IP_RANGE = 22,
40 TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
41 TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
42 TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
43 TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
44 TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
45 TEMPLATE_FIELD_SIP2 = 28, // IPv6 source IP[47:32]
46 TEMPLATE_FIELD_SIP3 = 29, // IPv6 source IP[63:48]
47 TEMPLATE_FIELD_SIP4 = 30, // IPv6 source IP[79:64]
48 TEMPLATE_FIELD_SIP5 = 31, // IPv6 source IP[95:80]
49 TEMPLATE_FIELD_SIP6 = 32, // IPv6 source IP[111:96]
50 TEMPLATE_FIELD_SIP7 = 33, // IPv6 source IP[127:112]
51 TEMPLATE_FIELD_DIP2 = 34, // IPv6 destination IP[47:32]
52 TEMPLATE_FIELD_DIP3 = 35, // IPv6 destination IP[63:48]
53 TEMPLATE_FIELD_DIP4 = 36, // IPv6 destination IP[79:64]
54 TEMPLATE_FIELD_DIP5 = 37, // IPv6 destination IP[95:80]
55 TEMPLATE_FIELD_DIP6 = 38, // IPv6 destination IP[111:96]
56 TEMPLATE_FIELD_DIP7 = 39, // IPv6 destination IP[127:112]
57 TEMPLATE_FIELD_FWD_VID = 40, // Forwarding VLAN-ID
58 TEMPLATE_FIELD_FLOW_LABEL = 41,
59 };
60
61 /*
62 * The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
63 * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
64 * Inspection Engine's buffer. The following defines the field contents for each of the fixed
65 * templates. Additionally, 3 user-definable templates can be set up via the definitions
66 * in RTL838X_ACL_TMPLTE_CTRL control registers.
67 * TODO: See all src/app/diag_v2/src/diag_pie.c
68 */
69 #define N_FIXED_TEMPLATES 5
70 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
71 {
72 {
73 TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
74 TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
75 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
76 TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
77 }, {
78 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
79 TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
80 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
81 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
82 }, {
83 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
84 TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
85 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
86 TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
87 }, {
88 TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
89 TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
90 TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
91 TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
92 }, {
93 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
94 TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
95 TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
96 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
97 },
98 };
99
100 void rtl838x_print_matrix(void)
101 {
102 unsigned volatile int *ptr8;
103 int i;
104
105 ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
106 for (i = 0; i < 28; i += 8)
107 pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
108 ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
109 ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
110 pr_debug("CPU_PORT> %8x\n", ptr8[28]);
111 }
112
113 static inline int rtl838x_port_iso_ctrl(int p)
114 {
115 return RTL838X_PORT_ISO_CTRL(p);
116 }
117
118 static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
119 {
120 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
121 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
122 }
123
124 static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
125 {
126 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
127 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
128 }
129
130 static inline int rtl838x_tbl_access_data_0(int i)
131 {
132 return RTL838X_TBL_ACCESS_DATA_0(i);
133 }
134
135 static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
136 {
137 u32 v;
138 // Read VLAN table (0) via register 0
139 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
140
141 rtl_table_read(r, vlan);
142 info->tagged_ports = sw_r32(rtl_table_data(r, 0));
143 v = sw_r32(rtl_table_data(r, 1));
144 pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
145 rtl_table_release(r);
146
147 info->profile_id = v & 0x7;
148 info->hash_mc_fid = !!(v & 0x8);
149 info->hash_uc_fid = !!(v & 0x10);
150 info->fid = (v >> 5) & 0x3f;
151
152 // Read UNTAG table (0) via table register 1
153 r = rtl_table_get(RTL8380_TBL_1, 0);
154 rtl_table_read(r, vlan);
155 info->untagged_ports = sw_r32(rtl_table_data(r, 0));
156 rtl_table_release(r);
157 }
158
159 static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
160 {
161 u32 v;
162 // Access VLAN table (0) via register 0
163 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
164
165 sw_w32(info->tagged_ports, rtl_table_data(r, 0));
166
167 v = info->profile_id;
168 v |= info->hash_mc_fid ? 0x8 : 0;
169 v |= info->hash_uc_fid ? 0x10 : 0;
170 v |= ((u32)info->fid) << 5;
171 sw_w32(v, rtl_table_data(r, 1));
172
173 rtl_table_write(r, vlan);
174 rtl_table_release(r);
175 }
176
177 static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
178 {
179 // Access UNTAG table (0) via register 1
180 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
181
182 sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
183 rtl_table_write(r, vlan);
184 rtl_table_release(r);
185 }
186
187 /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
188 */
189 static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
190 {
191 if (is_set)
192 sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
193 else
194 sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
195 }
196
197 static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
198 {
199 return mac << 12 | vid;
200 }
201
202 /*
203 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
204 * and returns a key into the L2 hash table
205 */
206 static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
207 {
208 u32 h1, h2, h3, h;
209
210 if (sw_r32(priv->r->l2_ctrl_0) & 1) {
211 h1 = (seed >> 11) & 0x7ff;
212 h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
213
214 h2 = (seed >> 33) & 0x7ff;
215 h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
216
217 h3 = (seed >> 44) & 0x7ff;
218 h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
219
220 h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
221 h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
222 } else {
223 h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
224 ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
225 ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
226 }
227
228 return h;
229 }
230
231 static inline int rtl838x_mac_force_mode_ctrl(int p)
232 {
233 return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
234 }
235
236 static inline int rtl838x_mac_port_ctrl(int p)
237 {
238 return RTL838X_MAC_PORT_CTRL(p);
239 }
240
241 static inline int rtl838x_l2_port_new_salrn(int p)
242 {
243 return RTL838X_L2_PORT_NEW_SALRN(p);
244 }
245
246 static inline int rtl838x_l2_port_new_sa_fwd(int p)
247 {
248 return RTL838X_L2_PORT_NEW_SA_FWD(p);
249 }
250
251 static inline int rtl838x_mac_link_spd_sts(int p)
252 {
253 return RTL838X_MAC_LINK_SPD_STS(p);
254 }
255
256 inline static int rtl838x_trk_mbr_ctr(int group)
257 {
258 return RTL838X_TRK_MBR_CTR + (group << 2);
259 }
260
261 /*
262 * Fills an L2 entry structure from the SoC registers
263 */
264 static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
265 {
266 /* Table contains different entry types, we need to identify the right one:
267 * Check for MC entries, first
268 * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
269 * identify valid entries
270 */
271 e->is_ip_mc = !!(r[0] & BIT(22));
272 e->is_ipv6_mc = !!(r[0] & BIT(21));
273 e->type = L2_INVALID;
274
275 if (!e->is_ip_mc && !e->is_ipv6_mc) {
276 e->mac[0] = (r[1] >> 20);
277 e->mac[1] = (r[1] >> 12);
278 e->mac[2] = (r[1] >> 4);
279 e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
280 e->mac[4] = (r[2] >> 20);
281 e->mac[5] = (r[2] >> 12);
282
283 e->rvid = r[2] & 0xfff;
284 e->vid = r[0] & 0xfff;
285
286 /* Is it a unicast entry? check multicast bit */
287 if (!(e->mac[0] & 1)) {
288 e->is_static = !!((r[0] >> 19) & 1);
289 e->port = (r[0] >> 12) & 0x1f;
290 e->block_da = !!(r[1] & BIT(30));
291 e->block_sa = !!(r[1] & BIT(31));
292 e->suspended = !!(r[1] & BIT(29));
293 e->next_hop = !!(r[1] & BIT(28));
294 if (e->next_hop) {
295 pr_debug("Found next hop entry, need to read extra data\n");
296 e->nh_vlan_target = !!(r[0] & BIT(9));
297 e->nh_route_id = r[0] & 0x1ff;
298 e->vid = e->rvid;
299 }
300 e->age = (r[0] >> 17) & 0x3;
301 e->valid = true;
302
303 /* A valid entry has one of mutli-cast, aging, sa/da-blocking,
304 * next-hop or static entry bit set */
305 if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
306 e->valid = false;
307 else
308 e->type = L2_UNICAST;
309 } else { // L2 multicast
310 pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
311 e->valid = true;
312 e->type = L2_MULTICAST;
313 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
314 }
315 } else { // IPv4 and IPv6 multicast
316 e->valid = true;
317 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
318 e->mc_gip = (r[1] << 20) | (r[2] >> 12);
319 e->rvid = r[2] & 0xfff;
320 }
321 if (e->is_ip_mc)
322 e->type = IP4_MULTICAST;
323 if (e->is_ipv6_mc)
324 e->type = IP6_MULTICAST;
325 }
326
327 /*
328 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
329 */
330 static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
331 {
332 u64 mac = ether_addr_to_u64(e->mac);
333
334 if (!e->valid) {
335 r[0] = r[1] = r[2] = 0;
336 return;
337 }
338
339 r[0] = e->is_ip_mc ? BIT(22) : 0;
340 r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
341
342 if (!e->is_ip_mc && !e->is_ipv6_mc) {
343 r[1] = mac >> 20;
344 r[2] = (mac & 0xfffff) << 12;
345
346 /* Is it a unicast entry? check multicast bit */
347 if (!(e->mac[0] & 1)) {
348 r[0] |= e->is_static ? BIT(19) : 0;
349 r[0] |= (e->port & 0x3f) << 12;
350 r[0] |= e->vid;
351 r[1] |= e->block_da ? BIT(30) : 0;
352 r[1] |= e->block_sa ? BIT(31) : 0;
353 r[1] |= e->suspended ? BIT(29) : 0;
354 r[2] |= e->rvid & 0xfff;
355 if (e->next_hop) {
356 r[1] |= BIT(28);
357 r[0] |= e->nh_vlan_target ? BIT(9) : 0;
358 r[0] |= e->nh_route_id & 0x1ff;
359 }
360 r[0] |= (e->age & 0x3) << 17;
361 } else { // L2 Multicast
362 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
363 r[2] |= e->rvid & 0xfff;
364 r[0] |= e->vid & 0xfff;
365 pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
366 }
367 } else { // IPv4 and IPv6 multicast
368 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
369 r[1] = e->mc_gip >> 20;
370 r[2] = e->mc_gip << 12;
371 r[2] |= e->rvid;
372 }
373 }
374
375 /*
376 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
377 * hash is the id of the bucket and pos is the position of the entry in that bucket
378 * The data read from the SoC is filled into rtl838x_l2_entry
379 */
380 static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
381 {
382 u64 entry;
383 u32 r[3];
384 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
385 u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
386 int i;
387
388 rtl_table_read(q, idx);
389 for (i= 0; i < 3; i++)
390 r[i] = sw_r32(rtl_table_data(q, i));
391
392 rtl_table_release(q);
393
394 rtl838x_fill_l2_entry(r, e);
395 if (!e->valid)
396 return 0;
397
398 entry = (((u64) r[1]) << 32) | (r[2]); // mac and vid concatenated as hash seed
399 return entry;
400 }
401
402 static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
403 {
404 u32 r[3];
405 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
406 int i;
407
408 u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
409
410 rtl838x_fill_l2_row(r, e);
411
412 for (i= 0; i < 3; i++)
413 sw_w32(r[i], rtl_table_data(q, i));
414
415 rtl_table_write(q, idx);
416 rtl_table_release(q);
417 }
418
419 static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
420 {
421 u64 entry;
422 u32 r[3];
423 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
424 int i;
425
426 rtl_table_read(q, idx);
427 for (i= 0; i < 3; i++)
428 r[i] = sw_r32(rtl_table_data(q, i));
429
430 rtl_table_release(q);
431
432 rtl838x_fill_l2_entry(r, e);
433 if (!e->valid)
434 return 0;
435
436 pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
437
438 // Return MAC with concatenated VID ac concatenated ID
439 entry = (((u64) r[1]) << 32) | r[2];
440 return entry;
441 }
442
443 static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
444 {
445 u32 r[3];
446 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
447 int i;
448
449 rtl838x_fill_l2_row(r, e);
450
451 for (i= 0; i < 3; i++)
452 sw_w32(r[i], rtl_table_data(q, i));
453
454 rtl_table_write(q, idx);
455 rtl_table_release(q);
456 }
457
458 static u64 rtl838x_read_mcast_pmask(int idx)
459 {
460 u32 portmask;
461 // Read MC_PMSK (2) via register RTL8380_TBL_L2
462 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
463
464 rtl_table_read(q, idx);
465 portmask = sw_r32(rtl_table_data(q, 0));
466 rtl_table_release(q);
467
468 return portmask;
469 }
470
471 static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
472 {
473 // Access MC_PMSK (2) via register RTL8380_TBL_L2
474 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
475
476 sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
477 rtl_table_write(q, idx);
478 rtl_table_release(q);
479 }
480
481 static void rtl838x_vlan_profile_setup(int profile)
482 {
483 u32 pmask_id = UNKNOWN_MC_PMASK;
484 // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
485 u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
486
487 sw_w32(p, RTL838X_VLAN_PROFILE(profile));
488
489 /* RTL8380 and RTL8390 use an index into the portmask table to set the
490 * unknown multicast portmask, setup a default at a safe location
491 * On RTL93XX, the portmask is directly set in the profile,
492 * see e.g. rtl9300_vlan_profile_setup
493 */
494 rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
495 }
496
497 static void rtl838x_l2_learning_setup(void)
498 {
499 /* Set portmask for broadcast traffic and unknown unicast address flooding
500 * to the reserved entry in the portmask table used also for
501 * multicast flooding */
502 sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
503
504 /* Enable learning constraint system-wide (bit 0), per-port (bit 1)
505 * and per vlan (bit 2) */
506 sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
507
508 // Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
509 sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
510
511 // Do not trap ARP packets to CPU_PORT
512 sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
513 }
514
515 static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
516 {
517 int i;
518 u32 cmd = 1 << 15 /* Execute cmd */
519 | 1 << 14 /* Read */
520 | 2 << 12 /* Table type 0b10 */
521 | (msti & 0xfff);
522 priv->r->exec_tbl0_cmd(cmd);
523
524 for (i = 0; i < 2; i++)
525 port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
526 }
527
528 static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
529 {
530 int i;
531 u32 cmd = 1 << 15 /* Execute cmd */
532 | 0 << 14 /* Write */
533 | 2 << 12 /* Table type 0b10 */
534 | (msti & 0xfff);
535
536 for (i = 0; i < 2; i++)
537 sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
538 priv->r->exec_tbl0_cmd(cmd);
539 }
540
541 u64 rtl838x_traffic_get(int source)
542 {
543 return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
544 }
545
546 void rtl838x_traffic_set(int source, u64 dest_matrix)
547 {
548 rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
549 }
550
551 void rtl838x_traffic_enable(int source, int dest)
552 {
553 rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
554 }
555
556 void rtl838x_traffic_disable(int source, int dest)
557 {
558 rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
559 }
560
561 /*
562 * Enables or disables the EEE/EEEP capability of a port
563 */
564 static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
565 {
566 u32 v;
567
568 // This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
569 if (port >= 24)
570 return;
571
572 pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
573 v = enable ? 0x3 : 0x0;
574
575 // Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
576 sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
577
578 // Set TX/RX EEE state
579 if (enable) {
580 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
581 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
582 } else {
583 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
584 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
585 }
586 priv->ports[port].eee_enabled = enable;
587 }
588
589
590 /*
591 * Get EEE own capabilities and negotiation result
592 */
593 static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
594 struct ethtool_eee *e, int port)
595 {
596 u64 link;
597
598 if (port >= 24)
599 return 0;
600
601 link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
602 if (!(link & BIT(port)))
603 return 0;
604
605 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
606 e->advertised |= ADVERTISED_100baseT_Full;
607
608 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
609 e->advertised |= ADVERTISED_1000baseT_Full;
610
611 if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
612 e->lp_advertised = ADVERTISED_100baseT_Full;
613 e->lp_advertised |= ADVERTISED_1000baseT_Full;
614 return 1;
615 }
616
617 return 0;
618 }
619
620 static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
621 {
622 int i;
623
624 pr_info("Setting up EEE, state: %d\n", enable);
625 sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
626
627 /* Set timers for EEE */
628 sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
629 sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
630
631 // Enable EEE MAC support on ports
632 for (i = 0; i < priv->cpu_port; i++) {
633 if (priv->ports[i].phy)
634 rtl838x_port_eee_set(priv, i, enable);
635 }
636 priv->eee_enabled = enable;
637 }
638
639 static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
640 {
641 int block = index / PIE_BLOCK_SIZE;
642 u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
643
644 // Make sure rule-lookup is enabled in the block
645 if (!(block_state & BIT(block)))
646 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
647 }
648
649 static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
650 {
651 int block_from = index_from / PIE_BLOCK_SIZE;
652 int block_to = index_to / PIE_BLOCK_SIZE;
653 u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
654 int block;
655 u32 block_state;
656
657 pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
658 mutex_lock(&priv->reg_mutex);
659
660 // Remember currently active blocks
661 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
662
663 // Make sure rule-lookup is disabled in the relevant blocks
664 for (block = block_from; block <= block_to; block++) {
665 if (block_state & BIT(block))
666 sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
667 }
668
669 // Write from-to and execute bit into control register
670 sw_w32(v, RTL838X_ACL_CLR_CTRL);
671
672 // Wait until command has completed
673 do {
674 } while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
675
676 // Re-enable rule lookup
677 for (block = block_from; block <= block_to; block++) {
678 if (!(block_state & BIT(block)))
679 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
680 }
681
682 mutex_unlock(&priv->reg_mutex);
683 }
684
685 /*
686 * Reads the intermediate representation of the templated match-fields of the
687 * PIE rule in the pie_rule structure and fills in the raw data fields in the
688 * raw register space r[].
689 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
690 * however the RTL9310 has 2 more registers / fields and the physical field-ids
691 * are specific to every platform.
692 */
693 static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
694 {
695 int i;
696 enum template_field_id field_type;
697 u16 data, data_m;
698
699 for (i = 0; i < N_FIXED_FIELDS; i++) {
700 field_type = t[i];
701 data = data_m = 0;
702
703 switch (field_type) {
704 case TEMPLATE_FIELD_SPM0:
705 data = pr->spm;
706 data_m = pr->spm_m;
707 break;
708 case TEMPLATE_FIELD_SPM1:
709 data = pr->spm >> 16;
710 data_m = pr->spm_m >> 16;
711 break;
712 case TEMPLATE_FIELD_OTAG:
713 data = pr->otag;
714 data_m = pr->otag_m;
715 break;
716 case TEMPLATE_FIELD_SMAC0:
717 data = pr->smac[4];
718 data = (data << 8) | pr->smac[5];
719 data_m = pr->smac_m[4];
720 data_m = (data_m << 8) | pr->smac_m[5];
721 break;
722 case TEMPLATE_FIELD_SMAC1:
723 data = pr->smac[2];
724 data = (data << 8) | pr->smac[3];
725 data_m = pr->smac_m[2];
726 data_m = (data_m << 8) | pr->smac_m[3];
727 break;
728 case TEMPLATE_FIELD_SMAC2:
729 data = pr->smac[0];
730 data = (data << 8) | pr->smac[1];
731 data_m = pr->smac_m[0];
732 data_m = (data_m << 8) | pr->smac_m[1];
733 break;
734 case TEMPLATE_FIELD_DMAC0:
735 data = pr->dmac[4];
736 data = (data << 8) | pr->dmac[5];
737 data_m = pr->dmac_m[4];
738 data_m = (data_m << 8) | pr->dmac_m[5];
739 break;
740 case TEMPLATE_FIELD_DMAC1:
741 data = pr->dmac[2];
742 data = (data << 8) | pr->dmac[3];
743 data_m = pr->dmac_m[2];
744 data_m = (data_m << 8) | pr->dmac_m[3];
745 break;
746 case TEMPLATE_FIELD_DMAC2:
747 data = pr->dmac[0];
748 data = (data << 8) | pr->dmac[1];
749 data_m = pr->dmac_m[0];
750 data_m = (data_m << 8) | pr->dmac_m[1];
751 break;
752 case TEMPLATE_FIELD_ETHERTYPE:
753 data = pr->ethertype;
754 data_m = pr->ethertype_m;
755 break;
756 case TEMPLATE_FIELD_ITAG:
757 data = pr->itag;
758 data_m = pr->itag_m;
759 break;
760 case TEMPLATE_FIELD_RANGE_CHK:
761 data = pr->field_range_check;
762 data_m = pr->field_range_check_m;
763 break;
764 case TEMPLATE_FIELD_SIP0:
765 if (pr->is_ipv6) {
766 data = pr->sip6.s6_addr16[7];
767 data_m = pr->sip6_m.s6_addr16[7];
768 } else {
769 data = pr->sip;
770 data_m = pr->sip_m;
771 }
772 break;
773 case TEMPLATE_FIELD_SIP1:
774 if (pr->is_ipv6) {
775 data = pr->sip6.s6_addr16[6];
776 data_m = pr->sip6_m.s6_addr16[6];
777 } else {
778 data = pr->sip >> 16;
779 data_m = pr->sip_m >> 16;
780 }
781 break;
782
783 case TEMPLATE_FIELD_SIP2:
784 case TEMPLATE_FIELD_SIP3:
785 case TEMPLATE_FIELD_SIP4:
786 case TEMPLATE_FIELD_SIP5:
787 case TEMPLATE_FIELD_SIP6:
788 case TEMPLATE_FIELD_SIP7:
789 data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
790 data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
791 break;
792
793 case TEMPLATE_FIELD_DIP0:
794 if (pr->is_ipv6) {
795 data = pr->dip6.s6_addr16[7];
796 data_m = pr->dip6_m.s6_addr16[7];
797 } else {
798 data = pr->dip;
799 data_m = pr->dip_m;
800 }
801 break;
802
803 case TEMPLATE_FIELD_DIP1:
804 if (pr->is_ipv6) {
805 data = pr->dip6.s6_addr16[6];
806 data_m = pr->dip6_m.s6_addr16[6];
807 } else {
808 data = pr->dip >> 16;
809 data_m = pr->dip_m >> 16;
810 }
811 break;
812
813 case TEMPLATE_FIELD_DIP2:
814 case TEMPLATE_FIELD_DIP3:
815 case TEMPLATE_FIELD_DIP4:
816 case TEMPLATE_FIELD_DIP5:
817 case TEMPLATE_FIELD_DIP6:
818 case TEMPLATE_FIELD_DIP7:
819 data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
820 data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
821 break;
822
823 case TEMPLATE_FIELD_IP_TOS_PROTO:
824 data = pr->tos_proto;
825 data_m = pr->tos_proto_m;
826 break;
827 case TEMPLATE_FIELD_L4_SPORT:
828 data = pr->sport;
829 data_m = pr->sport_m;
830 break;
831 case TEMPLATE_FIELD_L4_DPORT:
832 data = pr->dport;
833 data_m = pr->dport_m;
834 break;
835 case TEMPLATE_FIELD_ICMP_IGMP:
836 data = pr->icmp_igmp;
837 data_m = pr->icmp_igmp_m;
838 break;
839 default:
840 pr_info("%s: unknown field %d\n", __func__, field_type);
841 continue;
842 }
843 if (!(i % 2)) {
844 r[5 - i / 2] = data;
845 r[12 - i / 2] = data_m;
846 } else {
847 r[5 - i / 2] |= ((u32)data) << 16;
848 r[12 - i / 2] |= ((u32)data_m) << 16;
849 }
850 }
851 }
852
853 /*
854 * Creates the intermediate representation of the templated match-fields of the
855 * PIE rule in the pie_rule structure by reading the raw data fields in the
856 * raw register space r[].
857 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
858 * however the RTL9310 has 2 more registers / fields and the physical field-ids
859 */
860 static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
861 {
862 int i;
863 enum template_field_id field_type;
864 u16 data, data_m;
865
866 for (i = 0; i < N_FIXED_FIELDS; i++) {
867 field_type = t[i];
868 if (!(i % 2)) {
869 data = r[5 - i / 2];
870 data_m = r[12 - i / 2];
871 } else {
872 data = r[5 - i / 2] >> 16;
873 data_m = r[12 - i / 2] >> 16;
874 }
875
876 switch (field_type) {
877 case TEMPLATE_FIELD_SPM0:
878 pr->spm = (pr->spn << 16) | data;
879 pr->spm_m = (pr->spn << 16) | data_m;
880 break;
881 case TEMPLATE_FIELD_SPM1:
882 pr->spm = data;
883 pr->spm_m = data_m;
884 break;
885 case TEMPLATE_FIELD_OTAG:
886 pr->otag = data;
887 pr->otag_m = data_m;
888 break;
889 case TEMPLATE_FIELD_SMAC0:
890 pr->smac[4] = data >> 8;
891 pr->smac[5] = data;
892 pr->smac_m[4] = data >> 8;
893 pr->smac_m[5] = data;
894 break;
895 case TEMPLATE_FIELD_SMAC1:
896 pr->smac[2] = data >> 8;
897 pr->smac[3] = data;
898 pr->smac_m[2] = data >> 8;
899 pr->smac_m[3] = data;
900 break;
901 case TEMPLATE_FIELD_SMAC2:
902 pr->smac[0] = data >> 8;
903 pr->smac[1] = data;
904 pr->smac_m[0] = data >> 8;
905 pr->smac_m[1] = data;
906 break;
907 case TEMPLATE_FIELD_DMAC0:
908 pr->dmac[4] = data >> 8;
909 pr->dmac[5] = data;
910 pr->dmac_m[4] = data >> 8;
911 pr->dmac_m[5] = data;
912 break;
913 case TEMPLATE_FIELD_DMAC1:
914 pr->dmac[2] = data >> 8;
915 pr->dmac[3] = data;
916 pr->dmac_m[2] = data >> 8;
917 pr->dmac_m[3] = data;
918 break;
919 case TEMPLATE_FIELD_DMAC2:
920 pr->dmac[0] = data >> 8;
921 pr->dmac[1] = data;
922 pr->dmac_m[0] = data >> 8;
923 pr->dmac_m[1] = data;
924 break;
925 case TEMPLATE_FIELD_ETHERTYPE:
926 pr->ethertype = data;
927 pr->ethertype_m = data_m;
928 break;
929 case TEMPLATE_FIELD_ITAG:
930 pr->itag = data;
931 pr->itag_m = data_m;
932 break;
933 case TEMPLATE_FIELD_RANGE_CHK:
934 pr->field_range_check = data;
935 pr->field_range_check_m = data_m;
936 break;
937 case TEMPLATE_FIELD_SIP0:
938 pr->sip = data;
939 pr->sip_m = data_m;
940 break;
941 case TEMPLATE_FIELD_SIP1:
942 pr->sip = (pr->sip << 16) | data;
943 pr->sip_m = (pr->sip << 16) | data_m;
944 break;
945 case TEMPLATE_FIELD_SIP2:
946 pr->is_ipv6 = true;
947 // Make use of limitiations on the position of the match values
948 ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
949 r[4 - i / 2], r[3 - i / 2]);
950 ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
951 r[4 - i / 2], r[3 - i / 2]);
952 case TEMPLATE_FIELD_SIP3:
953 case TEMPLATE_FIELD_SIP4:
954 case TEMPLATE_FIELD_SIP5:
955 case TEMPLATE_FIELD_SIP6:
956 case TEMPLATE_FIELD_SIP7:
957 break;
958
959 case TEMPLATE_FIELD_DIP0:
960 pr->dip = data;
961 pr->dip_m = data_m;
962 break;
963 case TEMPLATE_FIELD_DIP1:
964 pr->dip = (pr->dip << 16) | data;
965 pr->dip_m = (pr->dip << 16) | data_m;
966 break;
967 case TEMPLATE_FIELD_DIP2:
968 pr->is_ipv6 = true;
969 ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
970 r[4 - i / 2], r[3 - i / 2]);
971 ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
972 r[4 - i / 2], r[3 - i / 2]);
973 case TEMPLATE_FIELD_DIP3:
974 case TEMPLATE_FIELD_DIP4:
975 case TEMPLATE_FIELD_DIP5:
976 case TEMPLATE_FIELD_DIP6:
977 case TEMPLATE_FIELD_DIP7:
978 break;
979 case TEMPLATE_FIELD_IP_TOS_PROTO:
980 pr->tos_proto = data;
981 pr->tos_proto_m = data_m;
982 break;
983 case TEMPLATE_FIELD_L4_SPORT:
984 pr->sport = data;
985 pr->sport_m = data_m;
986 break;
987 case TEMPLATE_FIELD_L4_DPORT:
988 pr->dport = data;
989 pr->dport_m = data_m;
990 break;
991 case TEMPLATE_FIELD_ICMP_IGMP:
992 pr->icmp_igmp = data;
993 pr->icmp_igmp_m = data_m;
994 break;
995 default:
996 pr_info("%s: unknown field %d\n", __func__, field_type);
997 }
998 }
999 }
1000
1001 static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1002 {
1003 pr->spmmask_fix = (r[6] >> 22) & 0x3;
1004 pr->spn = (r[6] >> 16) & 0x3f;
1005 pr->mgnt_vlan = (r[6] >> 15) & 1;
1006 pr->dmac_hit_sw = (r[6] >> 14) & 1;
1007 pr->not_first_frag = (r[6] >> 13) & 1;
1008 pr->frame_type_l4 = (r[6] >> 10) & 7;
1009 pr->frame_type = (r[6] >> 8) & 3;
1010 pr->otag_fmt = (r[6] >> 7) & 1;
1011 pr->itag_fmt = (r[6] >> 6) & 1;
1012 pr->otag_exist = (r[6] >> 5) & 1;
1013 pr->itag_exist = (r[6] >> 4) & 1;
1014 pr->frame_type_l2 = (r[6] >> 2) & 3;
1015 pr->tid = r[6] & 3;
1016
1017 pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
1018 pr->spn_m = (r[13] >> 16) & 0x3f;
1019 pr->mgnt_vlan_m = (r[13] >> 15) & 1;
1020 pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
1021 pr->not_first_frag_m = (r[13] >> 13) & 1;
1022 pr->frame_type_l4_m = (r[13] >> 10) & 7;
1023 pr->frame_type_m = (r[13] >> 8) & 3;
1024 pr->otag_fmt_m = (r[13] >> 7) & 1;
1025 pr->itag_fmt_m = (r[13] >> 6) & 1;
1026 pr->otag_exist_m = (r[13] >> 5) & 1;
1027 pr->itag_exist_m = (r[13] >> 4) & 1;
1028 pr->frame_type_l2_m = (r[13] >> 2) & 3;
1029 pr->tid_m = r[13] & 3;
1030
1031 pr->valid = r[14] & BIT(31);
1032 pr->cond_not = r[14] & BIT(30);
1033 pr->cond_and1 = r[14] & BIT(29);
1034 pr->cond_and2 = r[14] & BIT(28);
1035 pr->ivalid = r[14] & BIT(27);
1036
1037 pr->drop = (r[17] >> 14) & 3;
1038 pr->fwd_sel = r[17] & BIT(13);
1039 pr->ovid_sel = r[17] & BIT(12);
1040 pr->ivid_sel = r[17] & BIT(11);
1041 pr->flt_sel = r[17] & BIT(10);
1042 pr->log_sel = r[17] & BIT(9);
1043 pr->rmk_sel = r[17] & BIT(8);
1044 pr->meter_sel = r[17] & BIT(7);
1045 pr->tagst_sel = r[17] & BIT(6);
1046 pr->mir_sel = r[17] & BIT(5);
1047 pr->nopri_sel = r[17] & BIT(4);
1048 pr->cpupri_sel = r[17] & BIT(3);
1049 pr->otpid_sel = r[17] & BIT(2);
1050 pr->itpid_sel = r[17] & BIT(1);
1051 pr->shaper_sel = r[17] & BIT(0);
1052 }
1053
1054 static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1055 {
1056 r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
1057 r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
1058 r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
1059 r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
1060 r[6] |= pr->not_first_frag ? BIT(13) : 0;
1061 r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
1062 r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
1063 r[6] |= pr->otag_fmt ? BIT(7) : 0;
1064 r[6] |= pr->itag_fmt ? BIT(6) : 0;
1065 r[6] |= pr->otag_exist ? BIT(5) : 0;
1066 r[6] |= pr->itag_exist ? BIT(4) : 0;
1067 r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
1068 r[6] |= ((u32) (pr->tid & 0x3));
1069
1070 r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
1071 r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
1072 r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
1073 r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
1074 r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
1075 r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
1076 r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
1077 r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
1078 r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
1079 r[13] |= pr->otag_exist_m ? BIT(5) : 0;
1080 r[13] |= pr->itag_exist_m ? BIT(4) : 0;
1081 r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
1082 r[13] |= ((u32) (pr->tid_m & 0x3));
1083
1084 r[14] = pr->valid ? BIT(31) : 0;
1085 r[14] |= pr->cond_not ? BIT(30) : 0;
1086 r[14] |= pr->cond_and1 ? BIT(29) : 0;
1087 r[14] |= pr->cond_and2 ? BIT(28) : 0;
1088 r[14] |= pr->ivalid ? BIT(27) : 0;
1089
1090 if (pr->drop)
1091 r[17] = 0x1 << 14; // Standard drop action
1092 else
1093 r[17] = 0;
1094 r[17] |= pr->fwd_sel ? BIT(13) : 0;
1095 r[17] |= pr->ovid_sel ? BIT(12) : 0;
1096 r[17] |= pr->ivid_sel ? BIT(11) : 0;
1097 r[17] |= pr->flt_sel ? BIT(10) : 0;
1098 r[17] |= pr->log_sel ? BIT(9) : 0;
1099 r[17] |= pr->rmk_sel ? BIT(8) : 0;
1100 r[17] |= pr->meter_sel ? BIT(7) : 0;
1101 r[17] |= pr->tagst_sel ? BIT(6) : 0;
1102 r[17] |= pr->mir_sel ? BIT(5) : 0;
1103 r[17] |= pr->nopri_sel ? BIT(4) : 0;
1104 r[17] |= pr->cpupri_sel ? BIT(3) : 0;
1105 r[17] |= pr->otpid_sel ? BIT(2) : 0;
1106 r[17] |= pr->itpid_sel ? BIT(1) : 0;
1107 r[17] |= pr->shaper_sel ? BIT(0) : 0;
1108 }
1109
1110 static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
1111 {
1112 u16 *aif = (u16 *)&r[17];
1113 u16 data;
1114 int fields_used = 0;
1115
1116 aif--;
1117
1118 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1119 /* Multiple actions can be linked to a match of a PIE rule,
1120 * they have different precedence depending on their type and this precedence
1121 * defines which Action Information Field (0-4) in the IACL table stores
1122 * the additional data of the action (like e.g. the port number a packet is
1123 * forwarded to) */
1124 // TODO: count bits in selectors to limit to a maximum number of actions
1125 if (pr->fwd_sel) { // Forwarding action
1126 data = pr->fwd_act << 13;
1127 data |= pr->fwd_data;
1128 data |= pr->bypass_all ? BIT(12) : 0;
1129 data |= pr->bypass_ibc_sc ? BIT(11) : 0;
1130 data |= pr->bypass_igr_stp ? BIT(10) : 0;
1131 *aif-- = data;
1132 fields_used++;
1133 }
1134
1135 if (pr->ovid_sel) { // Outer VID action
1136 data = (pr->ovid_act & 0x3) << 12;
1137 data |= pr->ovid_data;
1138 *aif-- = data;
1139 fields_used++;
1140 }
1141
1142 if (pr->ivid_sel) { // Inner VID action
1143 data = (pr->ivid_act & 0x3) << 12;
1144 data |= pr->ivid_data;
1145 *aif-- = data;
1146 fields_used++;
1147 }
1148
1149 if (pr->flt_sel) { // Filter action
1150 *aif-- = pr->flt_data;
1151 fields_used++;
1152 }
1153
1154 if (pr->log_sel) { // Log action
1155 if (fields_used >= 4)
1156 return -1;
1157 *aif-- = pr->log_data;
1158 fields_used++;
1159 }
1160
1161 if (pr->rmk_sel) { // Remark action
1162 if (fields_used >= 4)
1163 return -1;
1164 *aif-- = pr->rmk_data;
1165 fields_used++;
1166 }
1167
1168 if (pr->meter_sel) { // Meter action
1169 if (fields_used >= 4)
1170 return -1;
1171 *aif-- = pr->meter_data;
1172 fields_used++;
1173 }
1174
1175 if (pr->tagst_sel) { // Egress Tag Status action
1176 if (fields_used >= 4)
1177 return -1;
1178 *aif-- = pr->tagst_data;
1179 fields_used++;
1180 }
1181
1182 if (pr->mir_sel) { // Mirror action
1183 if (fields_used >= 4)
1184 return -1;
1185 *aif-- = pr->mir_data;
1186 fields_used++;
1187 }
1188
1189 if (pr->nopri_sel) { // Normal Priority action
1190 if (fields_used >= 4)
1191 return -1;
1192 *aif-- = pr->nopri_data;
1193 fields_used++;
1194 }
1195
1196 if (pr->cpupri_sel) { // CPU Priority action
1197 if (fields_used >= 4)
1198 return -1;
1199 *aif-- = pr->nopri_data;
1200 fields_used++;
1201 }
1202
1203 if (pr->otpid_sel) { // OTPID action
1204 if (fields_used >= 4)
1205 return -1;
1206 *aif-- = pr->otpid_data;
1207 fields_used++;
1208 }
1209
1210 if (pr->itpid_sel) { // ITPID action
1211 if (fields_used >= 4)
1212 return -1;
1213 *aif-- = pr->itpid_data;
1214 fields_used++;
1215 }
1216
1217 if (pr->shaper_sel) { // Traffic shaper action
1218 if (fields_used >= 4)
1219 return -1;
1220 *aif-- = pr->shaper_data;
1221 fields_used++;
1222 }
1223
1224 return 0;
1225 }
1226
1227 static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
1228 {
1229 u16 *aif = (u16 *)&r[17];
1230
1231 aif--;
1232
1233 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1234 if (pr->drop)
1235 pr_debug("%s: Action Drop: %d", __func__, pr->drop);
1236
1237 if (pr->fwd_sel){ // Forwarding action
1238 pr->fwd_act = *aif >> 13;
1239 pr->fwd_data = *aif--;
1240 pr->bypass_all = pr->fwd_data & BIT(12);
1241 pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
1242 pr->bypass_igr_stp = pr->fwd_data & BIT(10);
1243 if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
1244 pr->bypass_sel = true;
1245 }
1246 if (pr->ovid_sel) // Outer VID action
1247 pr->ovid_data = *aif--;
1248 if (pr->ivid_sel) // Inner VID action
1249 pr->ivid_data = *aif--;
1250 if (pr->flt_sel) // Filter action
1251 pr->flt_data = *aif--;
1252 if (pr->log_sel) // Log action
1253 pr->log_data = *aif--;
1254 if (pr->rmk_sel) // Remark action
1255 pr->rmk_data = *aif--;
1256 if (pr->meter_sel) // Meter action
1257 pr->meter_data = *aif--;
1258 if (pr->tagst_sel) // Egress Tag Status action
1259 pr->tagst_data = *aif--;
1260 if (pr->mir_sel) // Mirror action
1261 pr->mir_data = *aif--;
1262 if (pr->nopri_sel) // Normal Priority action
1263 pr->nopri_data = *aif--;
1264 if (pr->cpupri_sel) // CPU Priority action
1265 pr->nopri_data = *aif--;
1266 if (pr->otpid_sel) // OTPID action
1267 pr->otpid_data = *aif--;
1268 if (pr->itpid_sel) // ITPID action
1269 pr->itpid_data = *aif--;
1270 if (pr->shaper_sel) // Traffic shaper action
1271 pr->shaper_data = *aif--;
1272 }
1273
1274 static void rtl838x_pie_rule_dump_raw(u32 r[])
1275 {
1276 pr_info("Raw IACL table entry:\n");
1277 pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
1278 pr_info("Fixed : %08x\n", r[6]);
1279 pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
1280 pr_info("Fixed M: %08x\n", r[13]);
1281 pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
1282 pr_info("Sel : %08x\n", r[17]);
1283 }
1284
1285 static void rtl838x_pie_rule_dump(struct pie_rule *pr)
1286 {
1287 pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
1288 pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
1289 pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
1290 if (pr->fwd_sel)
1291 pr_info("FWD: %08x\n", pr->fwd_data);
1292 pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
1293 }
1294
1295 static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1296 {
1297 // Read IACL table (1) via register 0
1298 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1299 u32 r[18];
1300 int i;
1301 int block = idx / PIE_BLOCK_SIZE;
1302 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1303
1304 memset(pr, 0, sizeof(*pr));
1305 rtl_table_read(q, idx);
1306 for (i = 0; i < 18; i++)
1307 r[i] = sw_r32(rtl_table_data(q, i));
1308
1309 rtl_table_release(q);
1310
1311 rtl838x_read_pie_fixed_fields(r, pr);
1312 if (!pr->valid)
1313 return 0;
1314
1315 pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
1316 rtl838x_pie_rule_dump_raw(r);
1317
1318 rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1319
1320 rtl838x_read_pie_action(r, pr);
1321
1322 return 0;
1323 }
1324
1325 static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1326 {
1327 // Access IACL table (1) via register 0
1328 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1329 u32 r[18];
1330 int i, err = 0;
1331 int block = idx / PIE_BLOCK_SIZE;
1332 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1333
1334 pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
1335
1336 for (i = 0; i < 18; i++)
1337 r[i] = 0;
1338
1339 if (!pr->valid)
1340 goto err_out;
1341
1342 rtl838x_write_pie_fixed_fields(r, pr);
1343
1344 pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
1345 rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1346
1347 if (rtl838x_write_pie_action(r, pr)) {
1348 pr_err("Rule actions too complex\n");
1349 goto err_out;
1350 }
1351
1352 // rtl838x_pie_rule_dump_raw(r);
1353
1354 for (i = 0; i < 18; i++)
1355 sw_w32(r[i], rtl_table_data(q, i));
1356
1357 err_out:
1358 rtl_table_write(q, idx);
1359 rtl_table_release(q);
1360
1361 return err;
1362 }
1363
1364 static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
1365 {
1366 int i;
1367 enum template_field_id ft;
1368
1369 for (i = 0; i < N_FIXED_FIELDS; i++) {
1370 ft = fixed_templates[t][i];
1371 if (field_type == ft)
1372 return true;
1373 }
1374
1375 return false;
1376 }
1377
1378 static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
1379 struct pie_rule *pr, int t, int block)
1380 {
1381 int i;
1382
1383 if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
1384 return -1;
1385
1386 if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
1387 return -1;
1388
1389 if (pr->is_ipv6) {
1390 if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
1391 || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
1392 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
1393 return -1;
1394 if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
1395 || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
1396 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
1397 return -1;
1398 }
1399
1400 if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
1401 return -1;
1402
1403 if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
1404 return -1;
1405
1406 // TODO: Check more
1407
1408 i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
1409
1410 if (i >= PIE_BLOCK_SIZE)
1411 return -1;
1412
1413 return i + PIE_BLOCK_SIZE * block;
1414 }
1415
1416 static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1417 {
1418 int idx, block, j, t;
1419
1420 pr_debug("In %s\n", __func__);
1421
1422 mutex_lock(&priv->pie_mutex);
1423
1424 for (block = 0; block < priv->n_pie_blocks; block++) {
1425 for (j = 0; j < 3; j++) {
1426 t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
1427 pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
1428 idx = rtl838x_pie_verify_template(priv, pr, t, block);
1429 if (idx >= 0)
1430 break;
1431 }
1432 if (j < 3)
1433 break;
1434 }
1435
1436 if (block >= priv->n_pie_blocks) {
1437 mutex_unlock(&priv->pie_mutex);
1438 return -EOPNOTSUPP;
1439 }
1440
1441 pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
1442 set_bit(idx, priv->pie_use_bm);
1443
1444 pr->valid = true;
1445 pr->tid = j; // Mapped to template number
1446 pr->tid_m = 0x3;
1447 pr->id = idx;
1448
1449 rtl838x_pie_lookup_enable(priv, idx);
1450 rtl838x_pie_rule_write(priv, idx, pr);
1451
1452 mutex_unlock(&priv->pie_mutex);
1453 return 0;
1454 }
1455
1456 static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1457 {
1458 int idx = pr->id;
1459
1460 rtl838x_pie_rule_del(priv, idx, idx);
1461 clear_bit(idx, priv->pie_use_bm);
1462 }
1463
1464 /*
1465 * Initializes the Packet Inspection Engine:
1466 * powers it up, enables default matching templates for all blocks
1467 * and clears all rules possibly installed by u-boot
1468 */
1469 static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
1470 {
1471 int i;
1472 u32 template_selectors;
1473
1474 mutex_init(&priv->pie_mutex);
1475
1476 // Enable ACL lookup on all ports, including CPU_PORT
1477 for (i = 0; i <= priv->cpu_port; i++)
1478 sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
1479
1480 // Power on all PIE blocks
1481 for (i = 0; i < priv->n_pie_blocks; i++)
1482 sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
1483
1484 // Include IPG in metering
1485 sw_w32(1, RTL838X_METER_GLB_CTRL);
1486
1487 // Delete all present rules
1488 rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
1489
1490 // Routing bypasses source port filter: disable write-protection, first
1491 sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
1492 sw_w32_mask(0, 1, RTL838X_DMY_REG27);
1493 sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
1494
1495 // Enable predefined templates 0, 1 and 2 for even blocks
1496 template_selectors = 0 | (1 << 3) | (2 << 6);
1497 for (i = 0; i < 6; i += 2)
1498 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1499
1500 // Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
1501 template_selectors = 0 | (3 << 3) | (4 << 6);
1502 for (i = 1; i < priv->n_pie_blocks; i += 2)
1503 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1504
1505 // Group each pair of physical blocks together to a logical block
1506 sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
1507 }
1508
1509 static u32 rtl838x_packet_cntr_read(int counter)
1510 {
1511 u32 v;
1512
1513 // Read LOG table (3) via register RTL8380_TBL_0
1514 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1515
1516 pr_debug("In %s, id %d\n", __func__, counter);
1517 rtl_table_read(r, counter / 2);
1518
1519 pr_debug("Registers: %08x %08x\n",
1520 sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
1521 // The table has a size of 2 registers
1522 if (counter % 2)
1523 v = sw_r32(rtl_table_data(r, 0));
1524 else
1525 v = sw_r32(rtl_table_data(r, 1));
1526
1527 rtl_table_release(r);
1528
1529 return v;
1530 }
1531
1532 static void rtl838x_packet_cntr_clear(int counter)
1533 {
1534 // Access LOG table (3) via register RTL8380_TBL_0
1535 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1536
1537 pr_debug("In %s, id %d\n", __func__, counter);
1538 // The table has a size of 2 registers
1539 if (counter % 2)
1540 sw_w32(0, rtl_table_data(r, 0));
1541 else
1542 sw_w32(0, rtl_table_data(r, 1));
1543
1544 rtl_table_write(r, counter / 2);
1545
1546 rtl_table_release(r);
1547 }
1548
1549 static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
1550 {
1551 // Read ROUTING table (2) via register RTL8380_TBL_1
1552 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1553
1554 pr_debug("In %s, id %d\n", __func__, idx);
1555 rtl_table_read(r, idx);
1556
1557 // The table has a size of 2 registers
1558 rt->nh.gw = sw_r32(rtl_table_data(r, 0));
1559 rt->nh.gw <<= 32;
1560 rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
1561
1562 rtl_table_release(r);
1563 }
1564
1565 static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
1566 {
1567 // Access ROUTING table (2) via register RTL8380_TBL_1
1568 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1569
1570 pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
1571 sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
1572 sw_w32(rt->nh.gw, rtl_table_data(r, 1));
1573 rtl_table_write(r, idx);
1574
1575 rtl_table_release(r);
1576 }
1577
1578 static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
1579 {
1580 // Nothing to be done
1581 return 0;
1582 }
1583
1584 void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
1585 {
1586 if (type == PBVLAN_TYPE_INNER)
1587 sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1588 else
1589 sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1590 }
1591
1592 void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
1593 {
1594 if (type == PBVLAN_TYPE_INNER)
1595 sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1596 else
1597 sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1598 }
1599
1600 static void rtl838x_set_igr_filter(int port, enum igr_filter state)
1601 {
1602 sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
1603 RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
1604 }
1605
1606 static void rtl838x_set_egr_filter(int port, enum egr_filter state)
1607 {
1608 sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
1609 RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
1610 }
1611
1612 void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
1613 {
1614 algoidx &= 1; // RTL838X only supports 2 concurrent algorithms
1615 sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
1616 RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
1617 sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
1618 }
1619
1620 const struct rtl838x_reg rtl838x_reg = {
1621 .mask_port_reg_be = rtl838x_mask_port_reg,
1622 .set_port_reg_be = rtl838x_set_port_reg,
1623 .get_port_reg_be = rtl838x_get_port_reg,
1624 .mask_port_reg_le = rtl838x_mask_port_reg,
1625 .set_port_reg_le = rtl838x_set_port_reg,
1626 .get_port_reg_le = rtl838x_get_port_reg,
1627 .stat_port_rst = RTL838X_STAT_PORT_RST,
1628 .stat_rst = RTL838X_STAT_RST,
1629 .stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
1630 .port_iso_ctrl = rtl838x_port_iso_ctrl,
1631 .traffic_enable = rtl838x_traffic_enable,
1632 .traffic_disable = rtl838x_traffic_disable,
1633 .traffic_get = rtl838x_traffic_get,
1634 .traffic_set = rtl838x_traffic_set,
1635 .l2_ctrl_0 = RTL838X_L2_CTRL_0,
1636 .l2_ctrl_1 = RTL838X_L2_CTRL_1,
1637 .l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
1638 .smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
1639 .l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
1640 .exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
1641 .exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
1642 .tbl_access_data_0 = rtl838x_tbl_access_data_0,
1643 .isr_glb_src = RTL838X_ISR_GLB_SRC,
1644 .isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
1645 .imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
1646 .imr_glb = RTL838X_IMR_GLB,
1647 .vlan_tables_read = rtl838x_vlan_tables_read,
1648 .vlan_set_tagged = rtl838x_vlan_set_tagged,
1649 .vlan_set_untagged = rtl838x_vlan_set_untagged,
1650 .mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
1651 .vlan_profile_dump = rtl838x_vlan_profile_dump,
1652 .vlan_profile_setup = rtl838x_vlan_profile_setup,
1653 .vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
1654 .set_vlan_igr_filter = rtl838x_set_igr_filter,
1655 .set_vlan_egr_filter = rtl838x_set_egr_filter,
1656 .stp_get = rtl838x_stp_get,
1657 .stp_set = rtl838x_stp_set,
1658 .mac_port_ctrl = rtl838x_mac_port_ctrl,
1659 .l2_port_new_salrn = rtl838x_l2_port_new_salrn,
1660 .l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
1661 .mir_ctrl = RTL838X_MIR_CTRL,
1662 .mir_dpm = RTL838X_MIR_DPM_CTRL,
1663 .mir_spm = RTL838X_MIR_SPM_CTRL,
1664 .mac_link_sts = RTL838X_MAC_LINK_STS,
1665 .mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
1666 .mac_link_spd_sts = rtl838x_mac_link_spd_sts,
1667 .mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
1668 .mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
1669 .read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
1670 .write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
1671 .read_cam = rtl838x_read_cam,
1672 .write_cam = rtl838x_write_cam,
1673 .vlan_port_tag_sts_ctrl = RTL838X_VLAN_PORT_TAG_STS_CTRL,
1674 .vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
1675 .vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
1676 .trk_mbr_ctr = rtl838x_trk_mbr_ctr,
1677 .rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
1678 .spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
1679 .init_eee = rtl838x_init_eee,
1680 .port_eee_set = rtl838x_port_eee_set,
1681 .eee_port_ability = rtl838x_eee_port_ability,
1682 .l2_hash_seed = rtl838x_l2_hash_seed,
1683 .l2_hash_key = rtl838x_l2_hash_key,
1684 .read_mcast_pmask = rtl838x_read_mcast_pmask,
1685 .write_mcast_pmask = rtl838x_write_mcast_pmask,
1686 .pie_init = rtl838x_pie_init,
1687 .pie_rule_read = rtl838x_pie_rule_read,
1688 .pie_rule_write = rtl838x_pie_rule_write,
1689 .pie_rule_add = rtl838x_pie_rule_add,
1690 .pie_rule_rm = rtl838x_pie_rule_rm,
1691 .l2_learning_setup = rtl838x_l2_learning_setup,
1692 .packet_cntr_read = rtl838x_packet_cntr_read,
1693 .packet_cntr_clear = rtl838x_packet_cntr_clear,
1694 .route_read = rtl838x_route_read,
1695 .route_write = rtl838x_route_write,
1696 .l3_setup = rtl838x_l3_setup,
1697 .set_distribution_algorithm = rtl838x_set_distribution_algorithm,
1698 };
1699
1700 irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
1701 {
1702 struct dsa_switch *ds = dev_id;
1703 u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
1704 u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
1705 u32 link;
1706 int i;
1707
1708 /* Clear status */
1709 sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
1710 pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
1711
1712 for (i = 0; i < 28; i++) {
1713 if (ports & BIT(i)) {
1714 link = sw_r32(RTL838X_MAC_LINK_STS);
1715 if (link & BIT(i))
1716 dsa_port_phylink_mac_change(ds, i, true);
1717 else
1718 dsa_port_phylink_mac_change(ds, i, false);
1719 }
1720 }
1721 return IRQ_HANDLED;
1722 }
1723
1724 int rtl838x_smi_wait_op(int timeout)
1725 {
1726 do {
1727 timeout--;
1728 udelay(10);
1729 } while ((sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & 0x1) && (timeout >= 0));
1730 if (timeout <= 0)
1731 return -1;
1732 return 0;
1733 }
1734
1735 /*
1736 * Reads a register in a page from the PHY
1737 */
1738 int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
1739 {
1740 u32 v;
1741 u32 park_page;
1742
1743 if (port > 31) {
1744 *val = 0xffff;
1745 return 0;
1746 }
1747
1748 if (page > 4095 || reg > 31)
1749 return -ENOTSUPP;
1750
1751 mutex_lock(&smi_lock);
1752
1753 if (rtl838x_smi_wait_op(10000))
1754 goto timeout;
1755
1756 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1757
1758 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1759 v = reg << 20 | page << 3;
1760 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1761 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1762
1763 if (rtl838x_smi_wait_op(10000))
1764 goto timeout;
1765
1766 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1767
1768 mutex_unlock(&smi_lock);
1769 return 0;
1770
1771 timeout:
1772 mutex_unlock(&smi_lock);
1773 return -ETIMEDOUT;
1774 }
1775
1776 /*
1777 * Write to a register in a page of the PHY
1778 */
1779 int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
1780 {
1781 u32 v;
1782 u32 park_page;
1783
1784 val &= 0xffff;
1785 if (port > 31 || page > 4095 || reg > 31)
1786 return -ENOTSUPP;
1787
1788 mutex_lock(&smi_lock);
1789 if (rtl838x_smi_wait_op(10000))
1790 goto timeout;
1791
1792 sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
1793 mdelay(10);
1794
1795 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1796
1797 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1798 v = reg << 20 | page << 3 | 0x4;
1799 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1800 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1801
1802 if (rtl838x_smi_wait_op(10000))
1803 goto timeout;
1804
1805 mutex_unlock(&smi_lock);
1806 return 0;
1807
1808 timeout:
1809 mutex_unlock(&smi_lock);
1810 return -ETIMEDOUT;
1811 }
1812
1813 /*
1814 * Read an mmd register of a PHY
1815 */
1816 int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
1817 {
1818 u32 v;
1819
1820 mutex_lock(&smi_lock);
1821
1822 if (rtl838x_smi_wait_op(10000))
1823 goto timeout;
1824
1825 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1826 mdelay(10);
1827
1828 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1829
1830 v = addr << 16 | reg;
1831 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1832
1833 /* mmd-access | read | cmd-start */
1834 v = 1 << 1 | 0 << 2 | 1;
1835 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1836
1837 if (rtl838x_smi_wait_op(10000))
1838 goto timeout;
1839
1840 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1841
1842 mutex_unlock(&smi_lock);
1843 return 0;
1844
1845 timeout:
1846 mutex_unlock(&smi_lock);
1847 return -ETIMEDOUT;
1848 }
1849
1850 /*
1851 * Write to an mmd register of a PHY
1852 */
1853 int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
1854 {
1855 u32 v;
1856
1857 pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
1858 val &= 0xffff;
1859 mutex_lock(&smi_lock);
1860
1861 if (rtl838x_smi_wait_op(10000))
1862 goto timeout;
1863
1864 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1865 mdelay(10);
1866
1867 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1868
1869 sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1870 sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1871 /* mmd-access | write | cmd-start */
1872 v = 1 << 1 | 1 << 2 | 1;
1873 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1874
1875 if (rtl838x_smi_wait_op(10000))
1876 goto timeout;
1877
1878 mutex_unlock(&smi_lock);
1879 return 0;
1880
1881 timeout:
1882 mutex_unlock(&smi_lock);
1883 return -ETIMEDOUT;
1884 }
1885
1886 void rtl8380_get_version(struct rtl838x_switch_priv *priv)
1887 {
1888 u32 rw_save, info_save;
1889 u32 info;
1890
1891 rw_save = sw_r32(RTL838X_INT_RW_CTRL);
1892 sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
1893
1894 info_save = sw_r32(RTL838X_CHIP_INFO);
1895 sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
1896
1897 info = sw_r32(RTL838X_CHIP_INFO);
1898 sw_w32(info_save, RTL838X_CHIP_INFO);
1899 sw_w32(rw_save, RTL838X_INT_RW_CTRL);
1900
1901 if ((info & 0xFFFF) == 0x6275) {
1902 if (((info >> 16) & 0x1F) == 0x1)
1903 priv->version = RTL8380_VERSION_A;
1904 else if (((info >> 16) & 0x1F) == 0x2)
1905 priv->version = RTL8380_VERSION_B;
1906 else
1907 priv->version = RTL8380_VERSION_B;
1908 } else {
1909 priv->version = '-';
1910 }
1911 }
1912
1913 void rtl838x_vlan_profile_dump(int profile)
1914 {
1915 u32 p;
1916
1917 if (profile < 0 || profile > 7)
1918 return;
1919
1920 p = sw_r32(RTL838X_VLAN_PROFILE(profile));
1921
1922 pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
1923 UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
1924 profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
1925 }
1926
1927 void rtl8380_sds_rst(int mac)
1928 {
1929 u32 offset = (mac == 24) ? 0 : 0x100;
1930
1931 sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
1932 sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
1933 sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
1934 sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
1935 sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
1936 pr_debug("SERDES reset: %d\n", mac);
1937 }
1938
1939 int rtl8380_sds_power(int mac, int val)
1940 {
1941 u32 mode = (val == 1) ? 0x4 : 0x9;
1942 u32 offset = (mac == 24) ? 5 : 0;
1943
1944 if ((mac != 24) && (mac != 26)) {
1945 pr_err("%s: not a fibre port: %d\n", __func__, mac);
1946 return -1;
1947 }
1948
1949 sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
1950
1951 rtl8380_sds_rst(mac);
1952
1953 return 0;
1954 }