realtek: avoid busy waiting for RTL839x PHY read/write
[openwrt/staging/ansuel.git] / target / linux / realtek / files-5.10 / drivers / net / dsa / rtl83xx / rtl839x.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <asm/mach-rtl838x/mach-rtl83xx.h>
4 #include "rtl83xx.h"
5
6 extern struct mutex smi_lock;
7 extern struct rtl83xx_soc_info soc_info;
8
9 /* Definition of the RTL839X-specific template field IDs as used in the PIE */
10 enum template_field_id {
11 TEMPLATE_FIELD_SPMMASK = 0,
12 TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
13 TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-31
14 TEMPLATE_FIELD_SPM2 = 3, // Source portmask ports 32-47
15 TEMPLATE_FIELD_SPM3 = 4, // Source portmask ports 48-56
16 TEMPLATE_FIELD_DMAC0 = 5, // Destination MAC [15:0]
17 TEMPLATE_FIELD_DMAC1 = 6, // Destination MAC [31:16]
18 TEMPLATE_FIELD_DMAC2 = 7, // Destination MAC [47:32]
19 TEMPLATE_FIELD_SMAC0 = 8, // Source MAC [15:0]
20 TEMPLATE_FIELD_SMAC1 = 9, // Source MAC [31:16]
21 TEMPLATE_FIELD_SMAC2 = 10, // Source MAC [47:32]
22 TEMPLATE_FIELD_ETHERTYPE = 11, // Ethernet frame type field
23 // Field-ID 12 is not used
24 TEMPLATE_FIELD_OTAG = 13,
25 TEMPLATE_FIELD_ITAG = 14,
26 TEMPLATE_FIELD_SIP0 = 15,
27 TEMPLATE_FIELD_SIP1 = 16,
28 TEMPLATE_FIELD_DIP0 = 17,
29 TEMPLATE_FIELD_DIP1 = 18,
30 TEMPLATE_FIELD_IP_TOS_PROTO = 19,
31 TEMPLATE_FIELD_IP_FLAG = 20,
32 TEMPLATE_FIELD_L4_SPORT = 21,
33 TEMPLATE_FIELD_L4_DPORT = 22,
34 TEMPLATE_FIELD_L34_HEADER = 23,
35 TEMPLATE_FIELD_ICMP_IGMP = 24,
36 TEMPLATE_FIELD_VID_RANG0 = 25,
37 TEMPLATE_FIELD_VID_RANG1 = 26,
38 TEMPLATE_FIELD_L4_PORT_RANG = 27,
39 TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 28,
40 TEMPLATE_FIELD_FIELD_SELECTOR_0 = 29,
41 TEMPLATE_FIELD_FIELD_SELECTOR_1 = 30,
42 TEMPLATE_FIELD_FIELD_SELECTOR_2 = 31,
43 TEMPLATE_FIELD_FIELD_SELECTOR_3 = 32,
44 TEMPLATE_FIELD_FIELD_SELECTOR_4 = 33,
45 TEMPLATE_FIELD_FIELD_SELECTOR_5 = 34,
46 TEMPLATE_FIELD_SIP2 = 35,
47 TEMPLATE_FIELD_SIP3 = 36,
48 TEMPLATE_FIELD_SIP4 = 37,
49 TEMPLATE_FIELD_SIP5 = 38,
50 TEMPLATE_FIELD_SIP6 = 39,
51 TEMPLATE_FIELD_SIP7 = 40,
52 TEMPLATE_FIELD_OLABEL = 41,
53 TEMPLATE_FIELD_ILABEL = 42,
54 TEMPLATE_FIELD_OILABEL = 43,
55 TEMPLATE_FIELD_DPMMASK = 44,
56 TEMPLATE_FIELD_DPM0 = 45,
57 TEMPLATE_FIELD_DPM1 = 46,
58 TEMPLATE_FIELD_DPM2 = 47,
59 TEMPLATE_FIELD_DPM3 = 48,
60 TEMPLATE_FIELD_L2DPM0 = 49,
61 TEMPLATE_FIELD_L2DPM1 = 50,
62 TEMPLATE_FIELD_L2DPM2 = 51,
63 TEMPLATE_FIELD_L2DPM3 = 52,
64 TEMPLATE_FIELD_IVLAN = 53,
65 TEMPLATE_FIELD_OVLAN = 54,
66 TEMPLATE_FIELD_FWD_VID = 55,
67 TEMPLATE_FIELD_DIP2 = 56,
68 TEMPLATE_FIELD_DIP3 = 57,
69 TEMPLATE_FIELD_DIP4 = 58,
70 TEMPLATE_FIELD_DIP5 = 59,
71 TEMPLATE_FIELD_DIP6 = 60,
72 TEMPLATE_FIELD_DIP7 = 61,
73 };
74
75 // Number of fixed templates predefined in the SoC
76 #define N_FIXED_TEMPLATES 5
77 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
78 {
79 {
80 TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_ITAG,
81 TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
82 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
83 TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
84 }, {
85 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
86 TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
87 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_SPM0,
88 TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
89 }, {
90 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
91 TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
92 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
93 TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
94 }, {
95 TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
96 TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
97 TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
98 TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
99 }, {
100 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
101 TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
102 TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_SPM0,
103 TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
104 },
105 };
106
107 void rtl839x_print_matrix(void)
108 {
109 volatile u64 *ptr9;
110 int i;
111
112 ptr9 = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
113 for (i = 0; i < 52; i += 4)
114 pr_debug("> %16llx %16llx %16llx %16llx\n",
115 ptr9[i + 0], ptr9[i + 1], ptr9[i + 2], ptr9[i + 3]);
116 pr_debug("CPU_PORT> %16llx\n", ptr9[52]);
117 }
118
119 static inline int rtl839x_port_iso_ctrl(int p)
120 {
121 return RTL839X_PORT_ISO_CTRL(p);
122 }
123
124 static inline void rtl839x_exec_tbl0_cmd(u32 cmd)
125 {
126 sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0);
127 do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16));
128 }
129
130 static inline void rtl839x_exec_tbl1_cmd(u32 cmd)
131 {
132 sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1);
133 do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16));
134 }
135
136 inline void rtl839x_exec_tbl2_cmd(u32 cmd)
137 {
138 sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_2);
139 do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_2) & (1 << 9));
140 }
141
142 static inline int rtl839x_tbl_access_data_0(int i)
143 {
144 return RTL839X_TBL_ACCESS_DATA_0(i);
145 }
146
147 static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
148 {
149 u32 u, v, w;
150 // Read VLAN table (0) via register 0
151 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
152
153 rtl_table_read(r, vlan);
154 u = sw_r32(rtl_table_data(r, 0));
155 v = sw_r32(rtl_table_data(r, 1));
156 w = sw_r32(rtl_table_data(r, 2));
157 rtl_table_release(r);
158
159 info->tagged_ports = u;
160 info->tagged_ports = (info->tagged_ports << 21) | ((v >> 11) & 0x1fffff);
161 info->profile_id = w >> 30 | ((v & 1) << 2);
162 info->hash_mc_fid = !!(w & BIT(2));
163 info->hash_uc_fid = !!(w & BIT(3));
164 info->fid = (v >> 3) & 0xff;
165
166 // Read UNTAG table (0) via table register 1
167 r = rtl_table_get(RTL8390_TBL_1, 0);
168 rtl_table_read(r, vlan);
169 u = sw_r32(rtl_table_data(r, 0));
170 v = sw_r32(rtl_table_data(r, 1));
171 rtl_table_release(r);
172
173 info->untagged_ports = u;
174 info->untagged_ports = (info->untagged_ports << 21) | ((v >> 11) & 0x1fffff);
175 }
176
177 static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
178 {
179 u32 u, v, w;
180 // Access VLAN table (0) via register 0
181 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
182
183 u = info->tagged_ports >> 21;
184 v = info->tagged_ports << 11;
185 v |= ((u32)info->fid) << 3;
186 v |= info->hash_uc_fid ? BIT(2) : 0;
187 v |= info->hash_mc_fid ? BIT(1) : 0;
188 v |= (info->profile_id & 0x4) ? 1 : 0;
189 w = ((u32)(info->profile_id & 3)) << 30;
190
191 sw_w32(u, rtl_table_data(r, 0));
192 sw_w32(v, rtl_table_data(r, 1));
193 sw_w32(w, rtl_table_data(r, 2));
194
195 rtl_table_write(r, vlan);
196 rtl_table_release(r);
197 }
198
199 static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask)
200 {
201 u32 u, v;
202
203 // Access UNTAG table (0) via table register 1
204 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 0);
205
206 u = portmask >> 21;
207 v = portmask << 11;
208
209 sw_w32(u, rtl_table_data(r, 0));
210 sw_w32(v, rtl_table_data(r, 1));
211 rtl_table_write(r, vlan);
212
213 rtl_table_release(r);
214 }
215
216 /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
217 */
218 static void rtl839x_vlan_fwd_on_inner(int port, bool is_set)
219 {
220 if (is_set)
221 rtl839x_mask_port_reg_be(BIT_ULL(port), 0ULL, RTL839X_VLAN_PORT_FWD);
222 else
223 rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD);
224 }
225
226 /*
227 * Hash seed is vid (actually rvid) concatenated with the MAC address
228 */
229 static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid)
230 {
231 u64 v = vid;
232
233 v <<= 48;
234 v |= mac;
235
236 return v;
237 }
238
239 /*
240 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
241 * and returns a key into the L2 hash table
242 */
243 static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
244 {
245 u32 h1, h2, h;
246
247 if (sw_r32(priv->r->l2_ctrl_0) & 1) {
248 h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
249 ^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
250 ^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
251 h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
252 ^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
253 ^ (seed & 0x3f));
254 h = (h1 << 6) | h2;
255 } else {
256 h = (seed >> 60)
257 ^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
258 ^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
259 ^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
260 }
261
262 return h;
263 }
264
265 static inline int rtl839x_mac_force_mode_ctrl(int p)
266 {
267 return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
268 }
269
270 static inline int rtl839x_mac_port_ctrl(int p)
271 {
272 return RTL839X_MAC_PORT_CTRL(p);
273 }
274
275 static inline int rtl839x_l2_port_new_salrn(int p)
276 {
277 return RTL839X_L2_PORT_NEW_SALRN(p);
278 }
279
280 static inline int rtl839x_l2_port_new_sa_fwd(int p)
281 {
282 return RTL839X_L2_PORT_NEW_SA_FWD(p);
283 }
284
285 static inline int rtl839x_mac_link_spd_sts(int p)
286 {
287 return RTL839X_MAC_LINK_SPD_STS(p);
288 }
289
290 static inline int rtl839x_trk_mbr_ctr(int group)
291 {
292 return RTL839X_TRK_MBR_CTR + (group << 3);
293 }
294
295 static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
296 {
297 /* Table contains different entry types, we need to identify the right one:
298 * Check for MC entries, first
299 */
300 e->is_ip_mc = !!(r[2] & BIT(31));
301 e->is_ipv6_mc = !!(r[2] & BIT(30));
302 e->type = L2_INVALID;
303 if (!e->is_ip_mc && !e->is_ipv6_mc) {
304 e->mac[0] = (r[0] >> 12);
305 e->mac[1] = (r[0] >> 4);
306 e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
307 e->mac[3] = (r[1] >> 20);
308 e->mac[4] = (r[1] >> 12);
309 e->mac[5] = (r[1] >> 4);
310
311 e->vid = (r[2] >> 4) & 0xfff;
312 e->rvid = (r[0] >> 20) & 0xfff;
313
314 /* Is it a unicast entry? check multicast bit */
315 if (!(e->mac[0] & 1)) {
316 e->is_static = !!((r[2] >> 18) & 1);
317 e->port = (r[2] >> 24) & 0x3f;
318 e->block_da = !!(r[2] & (1 << 19));
319 e->block_sa = !!(r[2] & (1 << 20));
320 e->suspended = !!(r[2] & (1 << 17));
321 e->next_hop = !!(r[2] & (1 << 16));
322 if (e->next_hop) {
323 pr_debug("Found next hop entry, need to read data\n");
324 e->nh_vlan_target = !!(r[2] & BIT(15));
325 e->nh_route_id = (r[2] >> 4) & 0x1ff;
326 e->vid = e->rvid;
327 }
328 e->age = (r[2] >> 21) & 3;
329 e->valid = true;
330 if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */
331 e->valid = false;
332 else
333 e->type = L2_UNICAST;
334 } else {
335 e->valid = true;
336 e->type = L2_MULTICAST;
337 e->mc_portmask_index = (r[2] >> 6) & 0xfff;
338 e->vid = e->rvid;
339 }
340 } else { // IPv4 and IPv6 multicast
341 e->vid = e->rvid = (r[0] << 20) & 0xfff;
342 e->mc_gip = r[1];
343 e->mc_portmask_index = (r[2] >> 6) & 0xfff;
344 }
345 if (e->is_ip_mc) {
346 e->valid = true;
347 e->type = IP4_MULTICAST;
348 }
349 if (e->is_ipv6_mc) {
350 e->valid = true;
351 e->type = IP6_MULTICAST;
352 }
353 // pr_info("%s: vid %d, rvid: %d\n", __func__, e->vid, e->rvid);
354 }
355
356 /*
357 * Fills the 3 SoC table registers r[] with the information in the rtl838x_l2_entry
358 */
359 static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
360 {
361 if (!e->valid) {
362 r[0] = r[1] = r[2] = 0;
363 return;
364 }
365
366 r[2] = e->is_ip_mc ? BIT(31) : 0;
367 r[2] |= e->is_ipv6_mc ? BIT(30) : 0;
368
369 if (!e->is_ip_mc && !e->is_ipv6_mc) {
370 r[0] = ((u32)e->mac[0]) << 12;
371 r[0] |= ((u32)e->mac[1]) << 4;
372 r[0] |= ((u32)e->mac[2]) >> 4;
373 r[1] = ((u32)e->mac[2]) << 28;
374 r[1] |= ((u32)e->mac[3]) << 20;
375 r[1] |= ((u32)e->mac[4]) << 12;
376 r[1] |= ((u32)e->mac[5]) << 4;
377
378 if (!(e->mac[0] & 1)) { // Not multicast
379 r[2] |= e->is_static ? BIT(18) : 0;
380 r[0] |= ((u32)e->rvid) << 20;
381 r[2] |= e->port << 24;
382 r[2] |= e->block_da ? BIT(19) : 0;
383 r[2] |= e->block_sa ? BIT(20) : 0;
384 r[2] |= e->suspended ? BIT(17) : 0;
385 r[2] |= ((u32)e->age) << 21;
386 if (e->next_hop) {
387 r[2] |= BIT(16);
388 r[2] |= e->nh_vlan_target ? BIT(15) : 0;
389 r[2] |= (e->nh_route_id & 0x7ff) << 4;
390 } else {
391 r[2] |= e->vid << 4;
392 }
393 pr_debug("Write L2 NH: %08x %08x %08x\n", r[0], r[1], r[2]);
394 } else { // L2 Multicast
395 r[0] |= ((u32)e->rvid) << 20;
396 r[2] |= ((u32)e->mc_portmask_index) << 6;
397 }
398 } else { // IPv4 or IPv6 MC entry
399 r[0] = ((u32)e->rvid) << 20;
400 r[1] = e->mc_gip;
401 r[2] |= ((u32)e->mc_portmask_index) << 6;
402 }
403 }
404
405 /*
406 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
407 * hash is the id of the bucket and pos is the position of the entry in that bucket
408 * The data read from the SoC is filled into rtl838x_l2_entry
409 */
410 static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
411 {
412 u32 r[3];
413 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
414 u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
415 int i;
416
417 rtl_table_read(q, idx);
418 for (i= 0; i < 3; i++)
419 r[i] = sw_r32(rtl_table_data(q, i));
420
421 rtl_table_release(q);
422
423 rtl839x_fill_l2_entry(r, e);
424 if (!e->valid)
425 return 0;
426
427 return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
428 }
429
430 static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
431 {
432 u32 r[3];
433 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
434 int i;
435
436 u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
437
438 rtl839x_fill_l2_row(r, e);
439
440 for (i= 0; i < 3; i++)
441 sw_w32(r[i], rtl_table_data(q, i));
442
443 rtl_table_write(q, idx);
444 rtl_table_release(q);
445 }
446
447 static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e)
448 {
449 u32 r[3];
450 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
451 int i;
452
453 rtl_table_read(q, idx);
454 for (i= 0; i < 3; i++)
455 r[i] = sw_r32(rtl_table_data(q, i));
456
457 rtl_table_release(q);
458
459 rtl839x_fill_l2_entry(r, e);
460 if (!e->valid)
461 return 0;
462
463 pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
464
465 // Return MAC with concatenated VID ac concatenated ID
466 return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
467 }
468
469 static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e)
470 {
471 u32 r[3];
472 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
473 int i;
474
475 rtl839x_fill_l2_row(r, e);
476
477 for (i= 0; i < 3; i++)
478 sw_w32(r[i], rtl_table_data(q, i));
479
480 rtl_table_write(q, idx);
481 rtl_table_release(q);
482 }
483
484 static u64 rtl839x_read_mcast_pmask(int idx)
485 {
486 u64 portmask;
487 // Read MC_PMSK (2) via register RTL8390_TBL_L2
488 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
489
490 rtl_table_read(q, idx);
491 portmask = sw_r32(rtl_table_data(q, 0));
492 portmask <<= 32;
493 portmask |= sw_r32(rtl_table_data(q, 1));
494 portmask >>= 11; // LSB is bit 11 in data registers
495 rtl_table_release(q);
496
497 return portmask;
498 }
499
500 static void rtl839x_write_mcast_pmask(int idx, u64 portmask)
501 {
502 // Access MC_PMSK (2) via register RTL8380_TBL_L2
503 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
504
505 portmask <<= 11; // LSB is bit 11 in data registers
506 sw_w32((u32)(portmask >> 32), rtl_table_data(q, 0));
507 sw_w32((u32)((portmask & 0xfffff800)), rtl_table_data(q, 1));
508 rtl_table_write(q, idx);
509 rtl_table_release(q);
510 }
511
512 static void rtl839x_vlan_profile_setup(int profile)
513 {
514 u32 p[2];
515 u32 pmask_id = UNKNOWN_MC_PMASK;
516
517 p[0] = pmask_id; // Use portmaks 0xfff for unknown IPv6 MC flooding
518 // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for IP/L2-MC traffic flooding
519 p[1] = 1 | pmask_id << 1 | pmask_id << 13;
520
521 sw_w32(p[0], RTL839X_VLAN_PROFILE(profile));
522 sw_w32(p[1], RTL839X_VLAN_PROFILE(profile) + 4);
523
524 rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff);
525 }
526
527 u64 rtl839x_traffic_get(int source)
528 {
529 return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source));
530 }
531
532 void rtl839x_traffic_set(int source, u64 dest_matrix)
533 {
534 rtl839x_set_port_reg_be(dest_matrix, rtl839x_port_iso_ctrl(source));
535 }
536
537 void rtl839x_traffic_enable(int source, int dest)
538 {
539 rtl839x_mask_port_reg_be(0, BIT_ULL(dest), rtl839x_port_iso_ctrl(source));
540 }
541
542 void rtl839x_traffic_disable(int source, int dest)
543 {
544 rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source));
545 }
546
547 static void rtl839x_l2_learning_setup(void)
548 {
549 /* Set portmask for broadcast (offset bit 12) and unknown unicast (offset 0)
550 * address flooding to the reserved entry in the portmask table used
551 * also for multicast flooding */
552 sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL839X_L2_FLD_PMSK);
553
554 // Limit learning to maximum: 32k entries, after that just flood (bits 0-1)
555 sw_w32((0x7fff << 2) | 0, RTL839X_L2_LRN_CONSTRT);
556
557 // Do not trap ARP packets to CPU_PORT
558 sw_w32(0, RTL839X_SPCL_TRAP_ARP_CTRL);
559 }
560
561 static void rtl839x_enable_learning(int port, bool enable)
562 {
563 // Limit learning to maximum: 32k entries
564
565 sw_w32_mask(0x7fff << 2, enable ? (0x7fff << 2) : 0,
566 RTL839X_L2_PORT_LRN_CONSTRT + (port << 2));
567 }
568
569 static void rtl839x_enable_flood(int port, bool enable)
570 {
571 /*
572 * 0: Forward
573 * 1: Disable
574 * 2: to CPU
575 * 3: Copy to CPU
576 */
577 sw_w32_mask(0x3, enable ? 0 : 1,
578 RTL839X_L2_PORT_LRN_CONSTRT + (port << 2));
579 }
580
581 static void rtl839x_enable_mcast_flood(int port, bool enable)
582 {
583
584 }
585
586 static void rtl839x_enable_bcast_flood(int port, bool enable)
587 {
588
589 }
590 irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
591 {
592 struct dsa_switch *ds = dev_id;
593 u32 status = sw_r32(RTL839X_ISR_GLB_SRC);
594 u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG);
595 u64 link;
596 int i;
597
598 /* Clear status */
599 rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
600 pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports);
601
602 for (i = 0; i < RTL839X_CPU_PORT; i++) {
603 if (ports & BIT_ULL(i)) {
604 link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
605 if (link & BIT_ULL(i))
606 dsa_port_phylink_mac_change(ds, i, true);
607 else
608 dsa_port_phylink_mac_change(ds, i, false);
609 }
610 }
611 return IRQ_HANDLED;
612 }
613
614 // TODO: unused
615 int rtl8390_sds_power(int mac, int val)
616 {
617 u32 offset = (mac == 48) ? 0x0 : 0x100;
618 u32 mode = val ? 0 : 1;
619
620 pr_debug("In %s: mac %d, set %d\n", __func__, mac, val);
621
622 if ((mac != 48) && (mac != 49)) {
623 pr_err("%s: not an SFP port: %d\n", __func__, mac);
624 return -1;
625 }
626
627 // Set bit 1003. 1000 starts at 7c
628 sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset);
629
630 return 0;
631 }
632
633 static int rtl839x_smi_wait_op(int timeout)
634 {
635 int ret = 0;
636 u32 val;
637
638 ret = readx_poll_timeout(sw_r32, RTL839X_PHYREG_ACCESS_CTRL,
639 val, !(val & 0x1), 20, timeout);
640 if (ret)
641 pr_err("%s: timeout\n", __func__);
642
643 return ret;
644 }
645
646 int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
647 {
648 u32 v;
649 int err = 0;
650
651 if (port > 63 || page > 4095 || reg > 31)
652 return -ENOTSUPP;
653
654 // Take bug on RTL839x Rev <= C into account
655 if (port >= RTL839X_CPU_PORT)
656 return -EIO;
657
658 mutex_lock(&smi_lock);
659
660 sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL);
661 v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
662 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
663
664 sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
665
666 v |= 1;
667 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
668
669 err = rtl839x_smi_wait_op(100000);
670 if (err)
671 goto errout;
672
673 *val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff;
674
675 errout:
676 mutex_unlock(&smi_lock);
677 return err;
678 }
679
680 int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val)
681 {
682 u32 v;
683 int err = 0;
684
685 val &= 0xffff;
686 if (port > 63 || page > 4095 || reg > 31)
687 return -ENOTSUPP;
688
689 // Take bug on RTL839x Rev <= C into account
690 if (port >= RTL839X_CPU_PORT)
691 return -EIO;
692
693 mutex_lock(&smi_lock);
694
695 // Set PHY to access
696 rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
697
698 sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL);
699
700 v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
701 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
702
703 sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
704
705 v |= BIT(3) | 1; /* Write operation and execute */
706 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
707
708 err = rtl839x_smi_wait_op(100000);
709 if (err)
710 goto errout;
711
712 if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2)
713 err = -EIO;
714
715 errout:
716 mutex_unlock(&smi_lock);
717 return err;
718 }
719
720 /*
721 * Read an mmd register of the PHY
722 */
723 int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
724 {
725 int err = 0;
726 u32 v;
727
728 // Take bug on RTL839x Rev <= C into account
729 if (port >= RTL839X_CPU_PORT)
730 return -EIO;
731
732 mutex_lock(&smi_lock);
733
734 // Set PHY to access
735 sw_w32_mask(0xffff << 16, port << 16, RTL839X_PHYREG_DATA_CTRL);
736
737 // Set MMD device number and register to write to
738 sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
739
740 v = BIT(2) | BIT(0); // MMD-access | EXEC
741 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
742
743 err = rtl839x_smi_wait_op(100000);
744 if (err)
745 goto errout;
746
747 // There is no error-checking via BIT 1 of v, as it does not seem to be set correctly
748 *val = (sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff);
749 pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
750
751 errout:
752 mutex_unlock(&smi_lock);
753 return err;
754 }
755
756 /*
757 * Write to an mmd register of the PHY
758 */
759 int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
760 {
761 int err = 0;
762 u32 v;
763
764 // Take bug on RTL839x Rev <= C into account
765 if (port >= RTL839X_CPU_PORT)
766 return -EIO;
767
768 mutex_lock(&smi_lock);
769
770 // Set PHY to access
771 rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
772
773 // Set data to write
774 sw_w32_mask(0xffff << 16, val << 16, RTL839X_PHYREG_DATA_CTRL);
775
776 // Set MMD device number and register to write to
777 sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
778
779 v = BIT(3) | BIT(2) | BIT(0); // WRITE | MMD-access | EXEC
780 sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
781
782 err = rtl839x_smi_wait_op(100000);
783 if (err)
784 goto errout;
785
786 pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
787
788 errout:
789 mutex_unlock(&smi_lock);
790 return err;
791 }
792
793 void rtl8390_get_version(struct rtl838x_switch_priv *priv)
794 {
795 u32 info, model;
796
797 sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO);
798 info = sw_r32(RTL839X_CHIP_INFO);
799
800 model = sw_r32(RTL839X_MODEL_NAME_INFO);
801 priv->version = RTL8390_VERSION_A + ((model & 0x3f) >> 1);
802
803 pr_info("RTL839X Chip-Info: %x, version %c\n", info, priv->version);
804 }
805
806 void rtl839x_vlan_profile_dump(int profile)
807 {
808 u32 p[2];
809
810 if (profile < 0 || profile > 7)
811 return;
812
813 p[0] = sw_r32(RTL839X_VLAN_PROFILE(profile));
814 p[1] = sw_r32(RTL839X_VLAN_PROFILE(profile) + 4);
815
816 pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
817 UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
818 profile, p[1] & 1, (p[1] >> 1) & 0xfff, (p[1] >> 13) & 0xfff,
819 (p[0]) & 0xfff);
820 pr_info("VLAN profile %d: raw %08x, %08x\n", profile, p[0], p[1]);
821 }
822
823 static void rtl839x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
824 {
825 int i;
826 u32 cmd = 1 << 16 /* Execute cmd */
827 | 0 << 15 /* Read */
828 | 5 << 12 /* Table type 0b101 */
829 | (msti & 0xfff);
830 priv->r->exec_tbl0_cmd(cmd);
831
832 for (i = 0; i < 4; i++)
833 port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
834 }
835
836 static void rtl839x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
837 {
838 int i;
839 u32 cmd = 1 << 16 /* Execute cmd */
840 | 1 << 15 /* Write */
841 | 5 << 12 /* Table type 0b101 */
842 | (msti & 0xfff);
843 for (i = 0; i < 4; i++)
844 sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
845 priv->r->exec_tbl0_cmd(cmd);
846 }
847
848 /*
849 * Enables or disables the EEE/EEEP capability of a port
850 */
851 void rtl839x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
852 {
853 u32 v;
854
855 // This works only for Ethernet ports, and on the RTL839X, ports above 47 are SFP
856 if (port >= 48)
857 return;
858
859 enable = true;
860 pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
861 v = enable ? 0xf : 0x0;
862
863 // Set EEE for 100, 500, 1000MBit and 10GBit
864 sw_w32_mask(0xf << 8, v << 8, rtl839x_mac_force_mode_ctrl(port));
865
866 // Set TX/RX EEE state
867 v = enable ? 0x3 : 0x0;
868 sw_w32(v, RTL839X_EEE_CTRL(port));
869
870 priv->ports[port].eee_enabled = enable;
871 }
872
873 /*
874 * Get EEE own capabilities and negotiation result
875 */
876 int rtl839x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port)
877 {
878 u64 link, a;
879
880 if (port >= 48)
881 return 0;
882
883 link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
884 if (!(link & BIT_ULL(port)))
885 return 0;
886
887 if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(8))
888 e->advertised |= ADVERTISED_100baseT_Full;
889
890 if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(10))
891 e->advertised |= ADVERTISED_1000baseT_Full;
892
893 a = rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY);
894 pr_info("Link partner: %016llx\n", a);
895 if (rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY) & BIT_ULL(port)) {
896 e->lp_advertised = ADVERTISED_100baseT_Full;
897 e->lp_advertised |= ADVERTISED_1000baseT_Full;
898 return 1;
899 }
900
901 return 0;
902 }
903
904 static void rtl839x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
905 {
906 int i;
907
908 pr_info("Setting up EEE, state: %d\n", enable);
909
910 // Set wake timer for TX and pause timer both to 0x21
911 sw_w32_mask(0xff << 20| 0xff, 0x21 << 20| 0x21, RTL839X_EEE_TX_TIMER_GELITE_CTRL);
912 // Set pause wake timer for GIGA-EEE to 0x11
913 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_GIGA_CTRL);
914 // Set pause wake timer for 10GBit ports to 0x11
915 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_10G_CTRL);
916
917 // Setup EEE on all ports
918 for (i = 0; i < priv->cpu_port; i++) {
919 if (priv->ports[i].phy)
920 rtl839x_port_eee_set(priv, i, enable);
921 }
922 priv->eee_enabled = enable;
923 }
924
925 static void rtl839x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
926 {
927 int block = index / PIE_BLOCK_SIZE;
928
929 sw_w32_mask(0, BIT(block), RTL839X_ACL_BLK_LOOKUP_CTRL);
930 }
931
932 /*
933 * Delete a range of Packet Inspection Engine rules
934 */
935 static int rtl839x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
936 {
937 u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0);
938
939 pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
940 mutex_lock(&priv->reg_mutex);
941
942 // Write from-to and execute bit into control register
943 sw_w32(v, RTL839X_ACL_CLR_CTRL);
944
945 // Wait until command has completed
946 do {
947 } while (sw_r32(RTL839X_ACL_CLR_CTRL) & BIT(0));
948
949 mutex_unlock(&priv->reg_mutex);
950 return 0;
951 }
952
953 /*
954 * Reads the intermediate representation of the templated match-fields of the
955 * PIE rule in the pie_rule structure and fills in the raw data fields in the
956 * raw register space r[].
957 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
958 * however the RTL9310 has 2 more registers / fields and the physical field-ids are different
959 * on all SoCs
960 * On the RTL8390 the template mask registers are not word-aligned!
961 */
962 static void rtl839x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
963 {
964 int i;
965 enum template_field_id field_type;
966 u16 data, data_m;
967
968 for (i = 0; i < N_FIXED_FIELDS; i++) {
969 field_type = t[i];
970 data = data_m = 0;
971
972 switch (field_type) {
973 case TEMPLATE_FIELD_SPM0:
974 data = pr->spm;
975 data_m = pr->spm_m;
976 break;
977 case TEMPLATE_FIELD_SPM1:
978 data = pr->spm >> 16;
979 data_m = pr->spm_m >> 16;
980 break;
981 case TEMPLATE_FIELD_SPM2:
982 data = pr->spm >> 32;
983 data_m = pr->spm_m >> 32;
984 break;
985 case TEMPLATE_FIELD_SPM3:
986 data = pr->spm >> 48;
987 data_m = pr->spm_m >> 48;
988 break;
989 case TEMPLATE_FIELD_OTAG:
990 data = pr->otag;
991 data_m = pr->otag_m;
992 break;
993 case TEMPLATE_FIELD_SMAC0:
994 data = pr->smac[4];
995 data = (data << 8) | pr->smac[5];
996 data_m = pr->smac_m[4];
997 data_m = (data_m << 8) | pr->smac_m[5];
998 break;
999 case TEMPLATE_FIELD_SMAC1:
1000 data = pr->smac[2];
1001 data = (data << 8) | pr->smac[3];
1002 data_m = pr->smac_m[2];
1003 data_m = (data_m << 8) | pr->smac_m[3];
1004 break;
1005 case TEMPLATE_FIELD_SMAC2:
1006 data = pr->smac[0];
1007 data = (data << 8) | pr->smac[1];
1008 data_m = pr->smac_m[0];
1009 data_m = (data_m << 8) | pr->smac_m[1];
1010 break;
1011 case TEMPLATE_FIELD_DMAC0:
1012 data = pr->dmac[4];
1013 data = (data << 8) | pr->dmac[5];
1014 data_m = pr->dmac_m[4];
1015 data_m = (data_m << 8) | pr->dmac_m[5];
1016 break;
1017 case TEMPLATE_FIELD_DMAC1:
1018 data = pr->dmac[2];
1019 data = (data << 8) | pr->dmac[3];
1020 data_m = pr->dmac_m[2];
1021 data_m = (data_m << 8) | pr->dmac_m[3];
1022 break;
1023 case TEMPLATE_FIELD_DMAC2:
1024 data = pr->dmac[0];
1025 data = (data << 8) | pr->dmac[1];
1026 data_m = pr->dmac_m[0];
1027 data_m = (data_m << 8) | pr->dmac_m[1];
1028 break;
1029 case TEMPLATE_FIELD_ETHERTYPE:
1030 data = pr->ethertype;
1031 data_m = pr->ethertype_m;
1032 break;
1033 case TEMPLATE_FIELD_ITAG:
1034 data = pr->itag;
1035 data_m = pr->itag_m;
1036 break;
1037 case TEMPLATE_FIELD_SIP0:
1038 if (pr->is_ipv6) {
1039 data = pr->sip6.s6_addr16[7];
1040 data_m = pr->sip6_m.s6_addr16[7];
1041 } else {
1042 data = pr->sip;
1043 data_m = pr->sip_m;
1044 }
1045 break;
1046 case TEMPLATE_FIELD_SIP1:
1047 if (pr->is_ipv6) {
1048 data = pr->sip6.s6_addr16[6];
1049 data_m = pr->sip6_m.s6_addr16[6];
1050 } else {
1051 data = pr->sip >> 16;
1052 data_m = pr->sip_m >> 16;
1053 }
1054 break;
1055
1056 case TEMPLATE_FIELD_SIP2:
1057 case TEMPLATE_FIELD_SIP3:
1058 case TEMPLATE_FIELD_SIP4:
1059 case TEMPLATE_FIELD_SIP5:
1060 case TEMPLATE_FIELD_SIP6:
1061 case TEMPLATE_FIELD_SIP7:
1062 data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
1063 data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
1064 break;
1065
1066 case TEMPLATE_FIELD_DIP0:
1067 if (pr->is_ipv6) {
1068 data = pr->dip6.s6_addr16[7];
1069 data_m = pr->dip6_m.s6_addr16[7];
1070 } else {
1071 data = pr->dip;
1072 data_m = pr->dip_m;
1073 }
1074 break;
1075
1076 case TEMPLATE_FIELD_DIP1:
1077 if (pr->is_ipv6) {
1078 data = pr->dip6.s6_addr16[6];
1079 data_m = pr->dip6_m.s6_addr16[6];
1080 } else {
1081 data = pr->dip >> 16;
1082 data_m = pr->dip_m >> 16;
1083 }
1084 break;
1085
1086 case TEMPLATE_FIELD_DIP2:
1087 case TEMPLATE_FIELD_DIP3:
1088 case TEMPLATE_FIELD_DIP4:
1089 case TEMPLATE_FIELD_DIP5:
1090 case TEMPLATE_FIELD_DIP6:
1091 case TEMPLATE_FIELD_DIP7:
1092 data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
1093 data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
1094 break;
1095
1096 case TEMPLATE_FIELD_IP_TOS_PROTO:
1097 data = pr->tos_proto;
1098 data_m = pr->tos_proto_m;
1099 break;
1100 case TEMPLATE_FIELD_L4_SPORT:
1101 data = pr->sport;
1102 data_m = pr->sport_m;
1103 break;
1104 case TEMPLATE_FIELD_L4_DPORT:
1105 data = pr->dport;
1106 data_m = pr->dport_m;
1107 break;
1108 case TEMPLATE_FIELD_ICMP_IGMP:
1109 data = pr->icmp_igmp;
1110 data_m = pr->icmp_igmp_m;
1111 break;
1112 default:
1113 pr_info("%s: unknown field %d\n", __func__, field_type);
1114 }
1115
1116 // On the RTL8390, the mask fields are not word aligned!
1117 if (!(i % 2)) {
1118 r[5 - i / 2] = data;
1119 r[12 - i / 2] |= ((u32)data_m << 8);
1120 } else {
1121 r[5 - i / 2] |= ((u32)data) << 16;
1122 r[12 - i / 2] |= ((u32)data_m) << 24;
1123 r[11 - i / 2] |= ((u32)data_m) >> 8;
1124 }
1125 }
1126 }
1127
1128 /*
1129 * Creates the intermediate representation of the templated match-fields of the
1130 * PIE rule in the pie_rule structure by reading the raw data fields in the
1131 * raw register space r[].
1132 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
1133 * however the RTL9310 has 2 more registers / fields and the physical field-ids
1134 * On the RTL8390 the template mask registers are not word-aligned!
1135 */
1136 void rtl839x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
1137 {
1138 int i;
1139 enum template_field_id field_type;
1140 u16 data, data_m;
1141
1142 for (i = 0; i < N_FIXED_FIELDS; i++) {
1143 field_type = t[i];
1144 if (!(i % 2)) {
1145 data = r[5 - i / 2];
1146 data_m = r[12 - i / 2];
1147 } else {
1148 data = r[5 - i / 2] >> 16;
1149 data_m = r[12 - i / 2] >> 16;
1150 }
1151
1152 switch (field_type) {
1153 case TEMPLATE_FIELD_SPM0:
1154 pr->spm = (pr->spn << 16) | data;
1155 pr->spm_m = (pr->spn << 16) | data_m;
1156 break;
1157 case TEMPLATE_FIELD_SPM1:
1158 pr->spm = data;
1159 pr->spm_m = data_m;
1160 break;
1161 case TEMPLATE_FIELD_OTAG:
1162 pr->otag = data;
1163 pr->otag_m = data_m;
1164 break;
1165 case TEMPLATE_FIELD_SMAC0:
1166 pr->smac[4] = data >> 8;
1167 pr->smac[5] = data;
1168 pr->smac_m[4] = data >> 8;
1169 pr->smac_m[5] = data;
1170 break;
1171 case TEMPLATE_FIELD_SMAC1:
1172 pr->smac[2] = data >> 8;
1173 pr->smac[3] = data;
1174 pr->smac_m[2] = data >> 8;
1175 pr->smac_m[3] = data;
1176 break;
1177 case TEMPLATE_FIELD_SMAC2:
1178 pr->smac[0] = data >> 8;
1179 pr->smac[1] = data;
1180 pr->smac_m[0] = data >> 8;
1181 pr->smac_m[1] = data;
1182 break;
1183 case TEMPLATE_FIELD_DMAC0:
1184 pr->dmac[4] = data >> 8;
1185 pr->dmac[5] = data;
1186 pr->dmac_m[4] = data >> 8;
1187 pr->dmac_m[5] = data;
1188 break;
1189 case TEMPLATE_FIELD_DMAC1:
1190 pr->dmac[2] = data >> 8;
1191 pr->dmac[3] = data;
1192 pr->dmac_m[2] = data >> 8;
1193 pr->dmac_m[3] = data;
1194 break;
1195 case TEMPLATE_FIELD_DMAC2:
1196 pr->dmac[0] = data >> 8;
1197 pr->dmac[1] = data;
1198 pr->dmac_m[0] = data >> 8;
1199 pr->dmac_m[1] = data;
1200 break;
1201 case TEMPLATE_FIELD_ETHERTYPE:
1202 pr->ethertype = data;
1203 pr->ethertype_m = data_m;
1204 break;
1205 case TEMPLATE_FIELD_ITAG:
1206 pr->itag = data;
1207 pr->itag_m = data_m;
1208 break;
1209 case TEMPLATE_FIELD_SIP0:
1210 pr->sip = data;
1211 pr->sip_m = data_m;
1212 break;
1213 case TEMPLATE_FIELD_SIP1:
1214 pr->sip = (pr->sip << 16) | data;
1215 pr->sip_m = (pr->sip << 16) | data_m;
1216 break;
1217 case TEMPLATE_FIELD_SIP2:
1218 pr->is_ipv6 = true;
1219 // Make use of limitiations on the position of the match values
1220 ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
1221 r[4 - i / 2], r[3 - i / 2]);
1222 ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
1223 r[4 - i / 2], r[3 - i / 2]);
1224 case TEMPLATE_FIELD_SIP3:
1225 case TEMPLATE_FIELD_SIP4:
1226 case TEMPLATE_FIELD_SIP5:
1227 case TEMPLATE_FIELD_SIP6:
1228 case TEMPLATE_FIELD_SIP7:
1229 break;
1230
1231 case TEMPLATE_FIELD_DIP0:
1232 pr->dip = data;
1233 pr->dip_m = data_m;
1234 break;
1235
1236 case TEMPLATE_FIELD_DIP1:
1237 pr->dip = (pr->dip << 16) | data;
1238 pr->dip_m = (pr->dip << 16) | data_m;
1239 break;
1240
1241 case TEMPLATE_FIELD_DIP2:
1242 pr->is_ipv6 = true;
1243 ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
1244 r[4 - i / 2], r[3 - i / 2]);
1245 ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
1246 r[4 - i / 2], r[3 - i / 2]);
1247 case TEMPLATE_FIELD_DIP3:
1248 case TEMPLATE_FIELD_DIP4:
1249 case TEMPLATE_FIELD_DIP5:
1250 case TEMPLATE_FIELD_DIP6:
1251 case TEMPLATE_FIELD_DIP7:
1252 break;
1253 case TEMPLATE_FIELD_IP_TOS_PROTO:
1254 pr->tos_proto = data;
1255 pr->tos_proto_m = data_m;
1256 break;
1257 case TEMPLATE_FIELD_L4_SPORT:
1258 pr->sport = data;
1259 pr->sport_m = data_m;
1260 break;
1261 case TEMPLATE_FIELD_L4_DPORT:
1262 pr->dport = data;
1263 pr->dport_m = data_m;
1264 break;
1265 case TEMPLATE_FIELD_ICMP_IGMP:
1266 pr->icmp_igmp = data;
1267 pr->icmp_igmp_m = data_m;
1268 break;
1269 default:
1270 pr_info("%s: unknown field %d\n", __func__, field_type);
1271 }
1272 }
1273 }
1274
1275 static void rtl839x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1276 {
1277 pr->spmmask_fix = (r[6] >> 30) & 0x3;
1278 pr->spn = (r[6] >> 24) & 0x3f;
1279 pr->mgnt_vlan = (r[6] >> 23) & 1;
1280 pr->dmac_hit_sw = (r[6] >> 22) & 1;
1281 pr->not_first_frag = (r[6] >> 21) & 1;
1282 pr->frame_type_l4 = (r[6] >> 18) & 7;
1283 pr->frame_type = (r[6] >> 16) & 3;
1284 pr->otag_fmt = (r[6] >> 15) & 1;
1285 pr->itag_fmt = (r[6] >> 14) & 1;
1286 pr->otag_exist = (r[6] >> 13) & 1;
1287 pr->itag_exist = (r[6] >> 12) & 1;
1288 pr->frame_type_l2 = (r[6] >> 10) & 3;
1289 pr->tid = (r[6] >> 8) & 3;
1290
1291 pr->spmmask_fix_m = (r[12] >> 6) & 0x3;
1292 pr->spn_m = r[12] & 0x3f;
1293 pr->mgnt_vlan_m = (r[13] >> 31) & 1;
1294 pr->dmac_hit_sw_m = (r[13] >> 30) & 1;
1295 pr->not_first_frag_m = (r[13] >> 29) & 1;
1296 pr->frame_type_l4_m = (r[13] >> 26) & 7;
1297 pr->frame_type_m = (r[13] >> 24) & 3;
1298 pr->otag_fmt_m = (r[13] >> 23) & 1;
1299 pr->itag_fmt_m = (r[13] >> 22) & 1;
1300 pr->otag_exist_m = (r[13] >> 21) & 1;
1301 pr->itag_exist_m = (r[13] >> 20) & 1;
1302 pr->frame_type_l2_m = (r[13] >> 18) & 3;
1303 pr->tid_m = (r[13] >> 16) & 3;
1304
1305 pr->valid = r[13] & BIT(15);
1306 pr->cond_not = r[13] & BIT(14);
1307 pr->cond_and1 = r[13] & BIT(13);
1308 pr->cond_and2 = r[13] & BIT(12);
1309 }
1310
1311 static void rtl839x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1312 {
1313 r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 30;
1314 r[6] |= ((u32) (pr->spn & 0x3f)) << 24;
1315 r[6] |= pr->mgnt_vlan ? BIT(23) : 0;
1316 r[6] |= pr->dmac_hit_sw ? BIT(22) : 0;
1317 r[6] |= pr->not_first_frag ? BIT(21) : 0;
1318 r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18;
1319 r[6] |= ((u32) (pr->frame_type & 0x3)) << 16;
1320 r[6] |= pr->otag_fmt ? BIT(15) : 0;
1321 r[6] |= pr->itag_fmt ? BIT(14) : 0;
1322 r[6] |= pr->otag_exist ? BIT(13) : 0;
1323 r[6] |= pr->itag_exist ? BIT(12) : 0;
1324 r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10;
1325 r[6] |= ((u32) (pr->tid & 0x3)) << 8;
1326
1327 r[12] |= ((u32) (pr->spmmask_fix_m & 0x3)) << 6;
1328 r[12] |= (u32) (pr->spn_m & 0x3f);
1329 r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0;
1330 r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0;
1331 r[13] |= pr->not_first_frag_m ? BIT(29) : 0;
1332 r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26;
1333 r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24;
1334 r[13] |= pr->otag_fmt_m ? BIT(23) : 0;
1335 r[13] |= pr->itag_fmt_m ? BIT(22) : 0;
1336 r[13] |= pr->otag_exist_m ? BIT(21) : 0;
1337 r[13] |= pr->itag_exist_m ? BIT(20) : 0;
1338 r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18;
1339 r[13] |= ((u32) (pr->tid_m & 0x3)) << 16;
1340
1341 r[13] |= pr->valid ? BIT(15) : 0;
1342 r[13] |= pr->cond_not ? BIT(14) : 0;
1343 r[13] |= pr->cond_and1 ? BIT(13) : 0;
1344 r[13] |= pr->cond_and2 ? BIT(12) : 0;
1345 }
1346
1347 static void rtl839x_write_pie_action(u32 r[], struct pie_rule *pr)
1348 {
1349 if (pr->drop) {
1350 r[13] |= 0x9; // Set ACT_MASK_FWD & FWD_ACT = DROP
1351 r[13] |= BIT(3);
1352 } else {
1353 r[13] |= pr->fwd_sel ? BIT(3) : 0;
1354 r[13] |= pr->fwd_act;
1355 }
1356 r[13] |= pr->bypass_sel ? BIT(11) : 0;
1357 r[13] |= pr->mpls_sel ? BIT(10) : 0;
1358 r[13] |= pr->nopri_sel ? BIT(9) : 0;
1359 r[13] |= pr->ovid_sel ? BIT(8) : 0;
1360 r[13] |= pr->ivid_sel ? BIT(7) : 0;
1361 r[13] |= pr->meter_sel ? BIT(6) : 0;
1362 r[13] |= pr->mir_sel ? BIT(5) : 0;
1363 r[13] |= pr->log_sel ? BIT(4) : 0;
1364
1365 r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 18;
1366 r[14] |= pr->log_octets ? BIT(17) : 0;
1367 r[14] |= ((u32)(pr->log_data & 0x7ff)) << 4;
1368 r[14] |= (pr->mir_data & 0x3) << 3;
1369 r[14] |= ((u32)(pr->meter_data >> 7)) & 0x7;
1370 r[15] |= (u32)(pr->meter_data) << 26;
1371 r[15] |= ((u32)(pr->ivid_act) << 23) & 0x3;
1372 r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff;
1373 r[15] |= ((u32)(pr->ovid_act) << 6) & 0x3;
1374 r[15] |= ((u32)(pr->ovid_data) >> 4) & 0xff;
1375 r[16] |= ((u32)(pr->ovid_data) & 0xf) << 28;
1376 r[16] |= ((u32)(pr->nopri_data) & 0x7) << 20;
1377 r[16] |= ((u32)(pr->mpls_act) & 0x7) << 20;
1378 r[16] |= ((u32)(pr->mpls_lib_idx) & 0x7) << 20;
1379 r[16] |= pr->bypass_all ? BIT(9) : 0;
1380 r[16] |= pr->bypass_igr_stp ? BIT(8) : 0;
1381 r[16] |= pr->bypass_ibc_sc ? BIT(7) : 0;
1382 }
1383
1384 static void rtl839x_read_pie_action(u32 r[], struct pie_rule *pr)
1385 {
1386 if (r[13] & BIT(3)) { // ACT_MASK_FWD set, is it a drop?
1387 if ((r[14] & 0x7) == 1) {
1388 pr->drop = true;
1389 } else {
1390 pr->fwd_sel = true;
1391 pr->fwd_act = r[14] & 0x7;
1392 }
1393 }
1394
1395 pr->bypass_sel = r[13] & BIT(11);
1396 pr->mpls_sel = r[13] & BIT(10);
1397 pr->nopri_sel = r[13] & BIT(9);
1398 pr->ovid_sel = r[13] & BIT(8);
1399 pr->ivid_sel = r[13] & BIT(7);
1400 pr->meter_sel = r[13] & BIT(6);
1401 pr->mir_sel = r[13] & BIT(5);
1402 pr->log_sel = r[13] & BIT(4);
1403
1404 // TODO: Read in data fields
1405
1406 pr->bypass_all = r[16] & BIT(9);
1407 pr->bypass_igr_stp = r[16] & BIT(8);
1408 pr->bypass_ibc_sc = r[16] & BIT(7);
1409 }
1410
1411 void rtl839x_pie_rule_dump_raw(u32 r[])
1412 {
1413 pr_info("Raw IACL table entry:\n");
1414 pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
1415 pr_info("Fixed : %06x\n", r[6] >> 8);
1416 pr_info("Match M: %08x %08x %08x %08x %08x %08x\n",
1417 (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8),
1418 (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8),
1419 (r[11] << 24) | (r[12] >> 8));
1420 pr_info("R[13]: %08x\n", r[13]);
1421 pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff);
1422 pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf);
1423 pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]);
1424 }
1425
1426 void rtl839x_pie_rule_dump(struct pie_rule *pr)
1427 {
1428 pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
1429 pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
1430 pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
1431 if (pr->fwd_sel)
1432 pr_info("FWD: %08x\n", pr->fwd_data);
1433 pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
1434 }
1435
1436 static int rtl839x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1437 {
1438 // Read IACL table (2) via register 0
1439 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 2);
1440 u32 r[17];
1441 int i;
1442 int block = idx / PIE_BLOCK_SIZE;
1443 u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block));
1444
1445 memset(pr, 0, sizeof(*pr));
1446 rtl_table_read(q, idx);
1447 for (i = 0; i < 17; i++)
1448 r[i] = sw_r32(rtl_table_data(q, i));
1449
1450 rtl_table_release(q);
1451
1452 rtl839x_read_pie_fixed_fields(r, pr);
1453 if (!pr->valid)
1454 return 0;
1455
1456 pr_debug("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
1457 rtl839x_pie_rule_dump_raw(r);
1458
1459 rtl839x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1460
1461 rtl839x_read_pie_action(r, pr);
1462
1463 return 0;
1464 }
1465
1466 static int rtl839x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1467 {
1468 // Access IACL table (2) via register 0
1469 struct table_reg *q = rtl_table_get(RTL8390_TBL_0, 2);
1470 u32 r[17];
1471 int i;
1472 int block = idx / PIE_BLOCK_SIZE;
1473 u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block));
1474
1475 pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
1476
1477 for (i = 0; i < 17; i++)
1478 r[i] = 0;
1479
1480 if (!pr->valid) {
1481 rtl_table_write(q, idx);
1482 rtl_table_release(q);
1483 return 0;
1484 }
1485 rtl839x_write_pie_fixed_fields(r, pr);
1486
1487 pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
1488 rtl839x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1489
1490 rtl839x_write_pie_action(r, pr);
1491
1492 // rtl839x_pie_rule_dump_raw(r);
1493
1494 for (i = 0; i < 17; i++)
1495 sw_w32(r[i], rtl_table_data(q, i));
1496
1497 rtl_table_write(q, idx);
1498 rtl_table_release(q);
1499
1500 return 0;
1501 }
1502
1503 static bool rtl839x_pie_templ_has(int t, enum template_field_id field_type)
1504 {
1505 int i;
1506 enum template_field_id ft;
1507
1508 for (i = 0; i < N_FIXED_FIELDS; i++) {
1509 ft = fixed_templates[t][i];
1510 if (field_type == ft)
1511 return true;
1512 }
1513
1514 return false;
1515 }
1516
1517 static int rtl839x_pie_verify_template(struct rtl838x_switch_priv *priv,
1518 struct pie_rule *pr, int t, int block)
1519 {
1520 int i;
1521
1522 if (!pr->is_ipv6 && pr->sip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
1523 return -1;
1524
1525 if (!pr->is_ipv6 && pr->dip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
1526 return -1;
1527
1528 if (pr->is_ipv6) {
1529 if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
1530 || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
1531 && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
1532 return -1;
1533 if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
1534 || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
1535 && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
1536 return -1;
1537 }
1538
1539 if (ether_addr_to_u64(pr->smac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
1540 return -1;
1541
1542 if (ether_addr_to_u64(pr->dmac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
1543 return -1;
1544
1545 // TODO: Check more
1546
1547 i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
1548
1549 if (i >= PIE_BLOCK_SIZE)
1550 return -1;
1551
1552 return i + PIE_BLOCK_SIZE * block;
1553 }
1554
1555 static int rtl839x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1556 {
1557 int idx, block, j, t;
1558 int min_block = 0;
1559 int max_block = priv->n_pie_blocks / 2;
1560
1561 if (pr->is_egress) {
1562 min_block = max_block;
1563 max_block = priv->n_pie_blocks;
1564 }
1565
1566 mutex_lock(&priv->pie_mutex);
1567
1568 for (block = min_block; block < max_block; block++) {
1569 for (j = 0; j < 2; j++) {
1570 t = (sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
1571 idx = rtl839x_pie_verify_template(priv, pr, t, block);
1572 if (idx >= 0)
1573 break;
1574 }
1575 if (j < 2)
1576 break;
1577 }
1578
1579 if (block >= priv->n_pie_blocks) {
1580 mutex_unlock(&priv->pie_mutex);
1581 return -EOPNOTSUPP;
1582 }
1583
1584 set_bit(idx, priv->pie_use_bm);
1585
1586 pr->valid = true;
1587 pr->tid = j; // Mapped to template number
1588 pr->tid_m = 0x3;
1589 pr->id = idx;
1590
1591 rtl839x_pie_lookup_enable(priv, idx);
1592 rtl839x_pie_rule_write(priv, idx, pr);
1593
1594 mutex_unlock(&priv->pie_mutex);
1595 return 0;
1596 }
1597
1598 static void rtl839x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1599 {
1600 int idx = pr->id;
1601
1602 rtl839x_pie_rule_del(priv, idx, idx);
1603 clear_bit(idx, priv->pie_use_bm);
1604 }
1605
1606 static void rtl839x_pie_init(struct rtl838x_switch_priv *priv)
1607 {
1608 int i;
1609 u32 template_selectors;
1610
1611 mutex_init(&priv->pie_mutex);
1612
1613 // Power on all PIE blocks
1614 for (i = 0; i < priv->n_pie_blocks; i++)
1615 sw_w32_mask(0, BIT(i), RTL839X_PS_ACL_PWR_CTRL);
1616
1617 // Set ingress and egress ACL blocks to 50/50: first Egress block is 9
1618 sw_w32_mask(0x1f, 9, RTL839X_ACL_CTRL); // Writes 9 to cutline field
1619
1620 // Include IPG in metering
1621 sw_w32(1, RTL839X_METER_GLB_CTRL);
1622
1623 // Delete all present rules
1624 rtl839x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
1625
1626 // Enable predefined templates 0, 1 for blocks 0-2
1627 template_selectors = 0 | (1 << 3);
1628 for (i = 0; i < 3; i++)
1629 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1630
1631 // Enable predefined templates 2, 3 for blocks 3-5
1632 template_selectors = 2 | (3 << 3);
1633 for (i = 3; i < 6; i++)
1634 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1635
1636 // Enable predefined templates 1, 4 for blocks 6-8
1637 template_selectors = 2 | (3 << 3);
1638 for (i = 6; i < 9; i++)
1639 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1640
1641 // Enable predefined templates 0, 1 for blocks 9-11
1642 template_selectors = 0 | (1 << 3);
1643 for (i = 9; i < 12; i++)
1644 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1645
1646 // Enable predefined templates 2, 3 for blocks 12-14
1647 template_selectors = 2 | (3 << 3);
1648 for (i = 12; i < 15; i++)
1649 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1650
1651 // Enable predefined templates 1, 4 for blocks 15-17
1652 template_selectors = 2 | (3 << 3);
1653 for (i = 15; i < 18; i++)
1654 sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
1655 }
1656
1657 static u32 rtl839x_packet_cntr_read(int counter)
1658 {
1659 u32 v;
1660
1661 // Read LOG table (4) via register RTL8390_TBL_0
1662 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4);
1663
1664 pr_debug("In %s, id %d\n", __func__, counter);
1665 rtl_table_read(r, counter / 2);
1666
1667 // The table has a size of 2 registers
1668 if (counter % 2)
1669 v = sw_r32(rtl_table_data(r, 0));
1670 else
1671 v = sw_r32(rtl_table_data(r, 1));
1672
1673 rtl_table_release(r);
1674
1675 return v;
1676 }
1677
1678 static void rtl839x_packet_cntr_clear(int counter)
1679 {
1680 // Access LOG table (4) via register RTL8390_TBL_0
1681 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4);
1682
1683 pr_debug("In %s, id %d\n", __func__, counter);
1684 // The table has a size of 2 registers
1685 if (counter % 2)
1686 sw_w32(0, rtl_table_data(r, 0));
1687 else
1688 sw_w32(0, rtl_table_data(r, 1));
1689
1690 rtl_table_write(r, counter / 2);
1691
1692 rtl_table_release(r);
1693 }
1694
1695 static void rtl839x_route_read(int idx, struct rtl83xx_route *rt)
1696 {
1697 u64 v;
1698 // Read ROUTING table (2) via register RTL8390_TBL_1
1699 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
1700
1701 pr_debug("In %s\n", __func__);
1702 rtl_table_read(r, idx);
1703
1704 // The table has a size of 2 registers
1705 v = sw_r32(rtl_table_data(r, 0));
1706 v <<= 32;
1707 v |= sw_r32(rtl_table_data(r, 1));
1708 rt->switch_mac_id = (v >> 12) & 0xf;
1709 rt->nh.gw = v >> 16;
1710
1711 rtl_table_release(r);
1712 }
1713
1714 static void rtl839x_route_write(int idx, struct rtl83xx_route *rt)
1715 {
1716 u32 v;
1717
1718 // Read ROUTING table (2) via register RTL8390_TBL_1
1719 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
1720
1721 pr_debug("In %s\n", __func__);
1722 sw_w32(rt->nh.gw >> 16, rtl_table_data(r, 0));
1723 v = rt->nh.gw << 16;
1724 v |= rt->switch_mac_id << 12;
1725 sw_w32(v, rtl_table_data(r, 1));
1726 rtl_table_write(r, idx);
1727
1728 rtl_table_release(r);
1729 }
1730
1731 /*
1732 * Configure the switch's own MAC addresses used when routing packets
1733 */
1734 static void rtl839x_setup_port_macs(struct rtl838x_switch_priv *priv)
1735 {
1736 int i;
1737 struct net_device *dev;
1738 u64 mac;
1739
1740 pr_debug("%s: got port %08x\n", __func__, (u32)priv->ports[priv->cpu_port].dp);
1741 dev = priv->ports[priv->cpu_port].dp->slave;
1742 mac = ether_addr_to_u64(dev->dev_addr);
1743
1744 for (i = 0; i < 15; i++) {
1745 mac++; // BUG: VRRP for testing
1746 sw_w32(mac >> 32, RTL839X_ROUTING_SA_CTRL + i * 8);
1747 sw_w32(mac, RTL839X_ROUTING_SA_CTRL + i * 8 + 4);
1748 }
1749 }
1750
1751 int rtl839x_l3_setup(struct rtl838x_switch_priv *priv)
1752 {
1753 rtl839x_setup_port_macs(priv);
1754
1755 return 0;
1756 }
1757
1758 void rtl839x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
1759 {
1760 if (type == PBVLAN_TYPE_INNER)
1761 sw_w32_mask(0x3, mode, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
1762 else
1763 sw_w32_mask(0x3 << 14, mode << 14, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
1764 }
1765
1766 void rtl839x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
1767 {
1768 if (type == PBVLAN_TYPE_INNER)
1769 sw_w32_mask(0xfff << 2, pvid << 2, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
1770 else
1771 sw_w32_mask(0xfff << 16, pvid << 16, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
1772 }
1773
1774 static int rtl839x_set_ageing_time(unsigned long msec)
1775 {
1776 int t = sw_r32(RTL839X_L2_CTRL_1);
1777
1778 t &= 0x1FFFFF;
1779 t = t * 3 / 5; /* Aging time in seconds. 0: L2 aging disabled */
1780 pr_debug("L2 AGING time: %d sec\n", t);
1781
1782 t = (msec * 5 + 2000) / 3000;
1783 t = t > 0x1FFFFF ? 0x1FFFFF : t;
1784 sw_w32_mask(0x1FFFFF, t, RTL839X_L2_CTRL_1);
1785 pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL839X_L2_PORT_AGING_OUT));
1786
1787 return 0;
1788 }
1789
1790 static void rtl839x_set_igr_filter(int port, enum igr_filter state)
1791 {
1792 sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
1793 RTL839X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
1794 }
1795
1796 static void rtl839x_set_egr_filter(int port, enum egr_filter state)
1797 {
1798 sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20),
1799 RTL839X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2)));
1800 }
1801
1802 void rtl839x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
1803 {
1804 sw_w32_mask(3 << ((group & 0xf) << 1), algoidx << ((group & 0xf) << 1),
1805 RTL839X_TRK_HASH_IDX_CTRL + ((group >> 4) << 2));
1806 sw_w32(algomsk, RTL839X_TRK_HASH_CTRL + (algoidx << 2));
1807 }
1808
1809 void rtl839x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
1810 {
1811 switch(type) {
1812 case BPDU:
1813 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1814 RTL839X_RMA_BPDU_CTRL + ((port >> 4) << 2));
1815 break;
1816 case PTP:
1817 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1818 RTL839X_RMA_PTP_CTRL + ((port >> 4) << 2));
1819 break;
1820 case LLTP:
1821 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1822 RTL839X_RMA_LLTP_CTRL + ((port >> 4) << 2));
1823 break;
1824 default:
1825 break;
1826 }
1827 }
1828
1829 const struct rtl838x_reg rtl839x_reg = {
1830 .mask_port_reg_be = rtl839x_mask_port_reg_be,
1831 .set_port_reg_be = rtl839x_set_port_reg_be,
1832 .get_port_reg_be = rtl839x_get_port_reg_be,
1833 .mask_port_reg_le = rtl839x_mask_port_reg_le,
1834 .set_port_reg_le = rtl839x_set_port_reg_le,
1835 .get_port_reg_le = rtl839x_get_port_reg_le,
1836 .stat_port_rst = RTL839X_STAT_PORT_RST,
1837 .stat_rst = RTL839X_STAT_RST,
1838 .stat_port_std_mib = RTL839X_STAT_PORT_STD_MIB,
1839 .traffic_enable = rtl839x_traffic_enable,
1840 .traffic_disable = rtl839x_traffic_disable,
1841 .traffic_get = rtl839x_traffic_get,
1842 .traffic_set = rtl839x_traffic_set,
1843 .port_iso_ctrl = rtl839x_port_iso_ctrl,
1844 .l2_ctrl_0 = RTL839X_L2_CTRL_0,
1845 .l2_ctrl_1 = RTL839X_L2_CTRL_1,
1846 .l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT,
1847 .set_ageing_time = rtl839x_set_ageing_time,
1848 .smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL,
1849 .l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
1850 .exec_tbl0_cmd = rtl839x_exec_tbl0_cmd,
1851 .exec_tbl1_cmd = rtl839x_exec_tbl1_cmd,
1852 .tbl_access_data_0 = rtl839x_tbl_access_data_0,
1853 .isr_glb_src = RTL839X_ISR_GLB_SRC,
1854 .isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG,
1855 .imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG,
1856 .imr_glb = RTL839X_IMR_GLB,
1857 .vlan_tables_read = rtl839x_vlan_tables_read,
1858 .vlan_set_tagged = rtl839x_vlan_set_tagged,
1859 .vlan_set_untagged = rtl839x_vlan_set_untagged,
1860 .vlan_profile_dump = rtl839x_vlan_profile_dump,
1861 .vlan_profile_setup = rtl839x_vlan_profile_setup,
1862 .vlan_fwd_on_inner = rtl839x_vlan_fwd_on_inner,
1863 .vlan_port_pvidmode_set = rtl839x_vlan_port_pvidmode_set,
1864 .vlan_port_pvid_set = rtl839x_vlan_port_pvid_set,
1865 .set_vlan_igr_filter = rtl839x_set_igr_filter,
1866 .set_vlan_egr_filter = rtl839x_set_egr_filter,
1867 .enable_learning = rtl839x_enable_learning,
1868 .enable_flood = rtl839x_enable_flood,
1869 .enable_mcast_flood = rtl839x_enable_mcast_flood,
1870 .enable_bcast_flood = rtl839x_enable_bcast_flood,
1871 .stp_get = rtl839x_stp_get,
1872 .stp_set = rtl839x_stp_set,
1873 .mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
1874 .mac_port_ctrl = rtl839x_mac_port_ctrl,
1875 .l2_port_new_salrn = rtl839x_l2_port_new_salrn,
1876 .l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd,
1877 .mir_ctrl = RTL839X_MIR_CTRL,
1878 .mir_dpm = RTL839X_MIR_DPM_CTRL,
1879 .mir_spm = RTL839X_MIR_SPM_CTRL,
1880 .mac_link_sts = RTL839X_MAC_LINK_STS,
1881 .mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS,
1882 .mac_link_spd_sts = rtl839x_mac_link_spd_sts,
1883 .mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS,
1884 .mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS,
1885 .read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash,
1886 .write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash,
1887 .read_cam = rtl839x_read_cam,
1888 .write_cam = rtl839x_write_cam,
1889 .vlan_port_tag_sts_ctrl = RTL839X_VLAN_PORT_TAG_STS_CTRL,
1890 .trk_mbr_ctr = rtl839x_trk_mbr_ctr,
1891 .rma_bpdu_fld_pmask = RTL839X_RMA_BPDU_FLD_PMSK,
1892 .spcl_trap_eapol_ctrl = RTL839X_SPCL_TRAP_EAPOL_CTRL,
1893 .init_eee = rtl839x_init_eee,
1894 .port_eee_set = rtl839x_port_eee_set,
1895 .eee_port_ability = rtl839x_eee_port_ability,
1896 .l2_hash_seed = rtl839x_l2_hash_seed,
1897 .l2_hash_key = rtl839x_l2_hash_key,
1898 .read_mcast_pmask = rtl839x_read_mcast_pmask,
1899 .write_mcast_pmask = rtl839x_write_mcast_pmask,
1900 .pie_init = rtl839x_pie_init,
1901 .pie_rule_read = rtl839x_pie_rule_read,
1902 .pie_rule_write = rtl839x_pie_rule_write,
1903 .pie_rule_add = rtl839x_pie_rule_add,
1904 .pie_rule_rm = rtl839x_pie_rule_rm,
1905 .l2_learning_setup = rtl839x_l2_learning_setup,
1906 .packet_cntr_read = rtl839x_packet_cntr_read,
1907 .packet_cntr_clear = rtl839x_packet_cntr_clear,
1908 .route_read = rtl839x_route_read,
1909 .route_write = rtl839x_route_write,
1910 .l3_setup = rtl839x_l3_setup,
1911 .set_distribution_algorithm = rtl839x_set_distribution_algorithm,
1912 .set_receive_management_action = rtl839x_set_receive_management_action,
1913 };