ltq-atm: cleanup unused variables and functions
[openwrt/openwrt.git] / package / kernel / lantiq / ltq-atm / src / ltq_atm.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 **
23 ** Copyright 2017 Alexander Couzens <lynxis@fe80.eu>
24 *******************************************************************************/
25
26 #define IFX_ATM_VER_MAJOR 1
27 #define IFX_ATM_VER_MID 0
28 #define IFX_ATM_VER_MINOR 26
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/version.h>
33 #include <linux/types.h>
34 #include <linux/errno.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/ioctl.h>
38 #include <linux/atmdev.h>
39 #include <linux/platform_device.h>
40 #include <linux/of_device.h>
41 #include <linux/atm.h>
42 #include <linux/clk.h>
43 #include <linux/interrupt.h>
44 #ifdef CONFIG_XFRM
45 #include <net/xfrm.h>
46 #endif
47
48 #include <lantiq_soc.h>
49
50 #include "ifxmips_atm_core.h"
51
52 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
53 #define MODULE_PARM(a, b) module_param(a, int, 0)
54
55 /*!
56 \brief QSB cell delay variation due to concurrency
57 */
58 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
59 /*!
60 \brief QSB scheduler burst length
61 */
62 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
63 /*!
64 \brief QSB time step, all legal values are 1, 2, 4
65 */
66 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
67
68 /*!
69 \brief Write descriptor delay
70 */
71 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
72
73 /*!
74 \brief AAL5 padding byte ('~')
75 */
76 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
77 /*!
78 \brief Max frame size for RX
79 */
80 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
81 /*!
82 \brief Min frame size for RX
83 */
84 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
85 /*!
86 \brief Max frame size for TX
87 */
88 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
89 /*!
90 \brief Min frame size for TX
91 */
92 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
93 /*!
94 \brief Drop error packet in RX path
95 */
96 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
97
98 /*!
99 \brief Number of descriptors per DMA RX channel
100 */
101 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
102 /*!
103 \brief Number of descriptors per DMA TX channel
104 */
105 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
106 /*!
107 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
108 */
109 static int dma_rx_clp1_descriptor_threshold = 38;
110 /*@}*/
111
112 MODULE_PARM(qsb_tau, "i");
113 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
114 MODULE_PARM(qsb_srvm, "i");
115 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
116 MODULE_PARM(qsb_tstep, "i");
117 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
118
119 MODULE_PARM(write_descriptor_delay, "i");
120 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
121
122 MODULE_PARM(aal5_fill_pattern, "i");
123 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
124 MODULE_PARM(aal5r_max_packet_size, "i");
125 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
126 MODULE_PARM(aal5r_min_packet_size, "i");
127 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
128 MODULE_PARM(aal5s_max_packet_size, "i");
129 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
130 MODULE_PARM(aal5s_min_packet_size, "i");
131 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
132 MODULE_PARM(aal5r_drop_error_packet, "i");
133 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
134
135 MODULE_PARM(dma_rx_descriptor_length, "i");
136 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
137 MODULE_PARM(dma_tx_descriptor_length, "i");
138 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
139 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
140 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
141
142
143
144 /*
145 * ####################################
146 * Definition
147 * ####################################
148 */
149
150 #ifdef CONFIG_AMAZON_SE
151 #define ENABLE_LESS_CACHE_INV 1
152 #define LESS_CACHE_INV_LEN 96
153 #endif
154
155 #define DUMP_SKB_LEN ~0
156
157
158
159 /*
160 * ####################################
161 * Declaration
162 * ####################################
163 */
164
165 /*
166 * Network Operations
167 */
168 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
169 static int ppe_open(struct atm_vcc *);
170 static void ppe_close(struct atm_vcc *);
171 static int ppe_send(struct atm_vcc *, struct sk_buff *);
172 static int ppe_send_oam(struct atm_vcc *, void *, int);
173 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
174
175 /*
176 * ADSL LED
177 */
178 static inline void adsl_led_flash(void);
179
180 /*
181 * 64-bit operation used by MIB calculation
182 */
183 static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
184
185 /*
186 * buffer manage functions
187 */
188 static inline struct sk_buff* alloc_skb_rx(void);
189 static inline struct sk_buff* alloc_skb_tx(unsigned int);
190 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
191 static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
192 static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
193 static inline int get_tx_desc(unsigned int);
194
195 /*
196 * mailbox handler and signal function
197 */
198 static inline void mailbox_oam_rx_handler(void);
199 static inline void mailbox_aal_rx_handler(void);
200 static irqreturn_t mailbox_irq_handler(int, void *);
201 static inline void mailbox_signal(unsigned int, int);
202 static void do_ppe_tasklet(unsigned long);
203 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
204
205 /*
206 * QSB & HTU setting functions
207 */
208 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
209 static void qsb_global_set(void);
210 static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
211 static inline void clear_htu_entry(unsigned int);
212 static void validate_oam_htu_entry(void);
213 static void invalidate_oam_htu_entry(void);
214
215 /*
216 * look up for connection ID
217 */
218 static inline int find_vpi(unsigned int);
219 static inline int find_vpivci(unsigned int, unsigned int);
220 static inline int find_vcc(struct atm_vcc *);
221
222 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
223
224 /*
225 * Init & clean-up functions
226 */
227 static inline void check_parameters(void);
228 static inline int init_priv_data(void);
229 static inline void clear_priv_data(void);
230 static inline void init_rx_tables(void);
231 static inline void init_tx_tables(void);
232
233 /*
234 * Exteranl Function
235 */
236 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
237 extern void ifx_push_oam(unsigned char *);
238 #else
239 static inline void ifx_push_oam(unsigned char *dummy) {}
240 #endif
241
242 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
243 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
244 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
245
246 extern int (*ifx_mei_atm_showtime_exit)(void);
247 extern int ifx_mei_atm_led_blink(void);
248 #else
249 static inline int ifx_mei_atm_led_blink(void) { return 0; }
250 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
251 {
252 if ( is_showtime != NULL )
253 *is_showtime = 0;
254 return 0;
255 }
256 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
257 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
258
259 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
260 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
261
262 #endif
263
264 static struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
265
266 static struct atm_priv_data g_atm_priv_data;
267
268 static struct atmdev_ops g_ifx_atm_ops = {
269 .open = ppe_open,
270 .close = ppe_close,
271 .ioctl = ppe_ioctl,
272 .send = ppe_send,
273 .send_oam = ppe_send_oam,
274 .change_qos = ppe_change_qos,
275 .owner = THIS_MODULE,
276 };
277
278 static int g_showtime = 0;
279 static void *g_xdata_addr = NULL;
280
281 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
282 {
283 int ret = 0;
284 atm_cell_ifEntry_t mib_cell;
285 atm_aal5_ifEntry_t mib_aal5;
286 atm_aal5_vcc_x_t mib_vcc;
287 unsigned int value;
288 int conn;
289
290 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
291 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
292 return -ENOTTY;
293
294 if ( _IOC_DIR(cmd) & _IOC_READ )
295 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
296 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
297 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
298 if ( ret )
299 return -EFAULT;
300
301 switch (cmd) {
302 case PPE_ATM_MIB_CELL: /* cell level MIB */
303 /* These MIB should be read at ARC side, now put zero only. */
304 mib_cell.ifHCInOctets_h = 0;
305 mib_cell.ifHCInOctets_l = 0;
306 mib_cell.ifHCOutOctets_h = 0;
307 mib_cell.ifHCOutOctets_l = 0;
308 mib_cell.ifInErrors = 0;
309 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
310 mib_cell.ifOutErrors = 0;
311
312 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
313 break;
314
315 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
316 value = WAN_MIB_TABLE->wrx_total_byte;
317 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
318 g_atm_priv_data.prev_wrx_total_byte = value;
319 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
320 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
321
322 value = WAN_MIB_TABLE->wtx_total_byte;
323 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
324 g_atm_priv_data.prev_wtx_total_byte = value;
325 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
326 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
327
328 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
329 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
330 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
331 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
332 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
333 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
334
335 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
336 break;
337
338 case PPE_ATM_MIB_VCC: /* VCC related MIB */
339 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
340 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
341 if (conn >= 0) {
342 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
343 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
344 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
345 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
346 } else
347 ret = -EINVAL;
348 break;
349
350 default:
351 ret = -ENOIOCTLCMD;
352 }
353
354 return ret;
355 }
356
357 static int ppe_open(struct atm_vcc *vcc)
358 {
359 int ret;
360 short vpi = vcc->vpi;
361 int vci = vcc->vci;
362 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
363 int conn;
364 int f_enable_irq = 0;
365
366 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
367 return -EPROTONOSUPPORT;
368
369 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
370 /* check bandwidth */
371 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
372 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
373 #if 0
374 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
375 #endif
376 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
377 {
378 ret = -EINVAL;
379 goto PPE_OPEN_EXIT;
380 }
381 #endif
382
383 /* check existing vpi,vci */
384 conn = find_vpivci(vpi, vci);
385 if ( conn >= 0 ) {
386 ret = -EADDRINUSE;
387 goto PPE_OPEN_EXIT;
388 }
389
390 /* check whether it need to enable irq */
391 if ( g_atm_priv_data.conn_table == 0 )
392 f_enable_irq = 1;
393
394 /* allocate connection */
395 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
396 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
397 g_atm_priv_data.conn[conn].vcc = vcc;
398 break;
399 }
400 }
401 if ( conn == MAX_PVC_NUMBER ) {
402 ret = -EINVAL;
403 goto PPE_OPEN_EXIT;
404 }
405
406 /* reserve bandwidth */
407 switch ( vcc->qos.txtp.traffic_class ) {
408 case ATM_CBR:
409 case ATM_VBR_RT:
410 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
411 break;
412 case ATM_VBR_NRT:
413 #if 0
414 port->tx_current_cell_rate += vcc->qos.txtp.scr;
415 #endif
416 break;
417 case ATM_UBR_PLUS:
418 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
419 break;
420 }
421
422 /* set qsb */
423 set_qsb(vcc, &vcc->qos, conn);
424
425 /* update atm_vcc structure */
426 vcc->itf = (int)vcc->dev->dev_data;
427 vcc->vpi = vpi;
428 vcc->vci = vci;
429 set_bit(ATM_VF_READY, &vcc->flags);
430
431 /* enable irq */
432 if ( f_enable_irq ) {
433 ifx_atm_alloc_tx = atm_alloc_tx;
434
435 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
436 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
437
438 enable_irq(PPE_MAILBOX_IGU1_INT);
439 }
440
441 /* set port */
442 WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
443
444 /* set htu entry */
445 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
446
447 *MBOX_IGU1_ISRC |= (1 << (conn + FIRST_QSB_QID + 16));
448 *MBOX_IGU1_IER |= (1 << (conn + FIRST_QSB_QID + 16));
449
450 ret = 0;
451
452 PPE_OPEN_EXIT:
453 return ret;
454 }
455
456 static void ppe_close(struct atm_vcc *vcc)
457 {
458 int conn;
459 struct port *port;
460 struct connection *connection;
461 if ( vcc == NULL )
462 return;
463
464 /* get connection id */
465 conn = find_vcc(vcc);
466 if ( conn < 0 ) {
467 pr_err("can't find vcc\n");
468 goto PPE_CLOSE_EXIT;
469 }
470 connection = &g_atm_priv_data.conn[conn];
471 port = &g_atm_priv_data.port[connection->port];
472
473 /* clear htu */
474 clear_htu_entry(conn);
475
476 /* release connection */
477 connection->vcc = NULL;
478 connection->aal5_vcc_crc_err = 0;
479 connection->aal5_vcc_oversize_sdu = 0;
480 clear_bit(conn, &g_atm_priv_data.conn_table);
481
482 /* disable irq */
483 if ( g_atm_priv_data.conn_table == 0 ) {
484 disable_irq(PPE_MAILBOX_IGU1_INT);
485 ifx_atm_alloc_tx = NULL;
486 }
487
488 /* release bandwidth */
489 switch ( vcc->qos.txtp.traffic_class )
490 {
491 case ATM_CBR:
492 case ATM_VBR_RT:
493 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
494 break;
495 case ATM_VBR_NRT:
496 #if 0
497 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
498 #endif
499 break;
500 case ATM_UBR_PLUS:
501 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
502 break;
503 }
504
505 /* wait for incoming packets to be processed by upper layers */
506 tasklet_unlock_wait(&g_dma_tasklet);
507
508 PPE_CLOSE_EXIT:
509 return;
510 }
511
512 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
513 {
514 int ret;
515 int conn;
516 int desc_base;
517 int byteoff;
518 int required;
519 /* the len of the data without offset and header */
520 int datalen;
521 unsigned long flags;
522 struct tx_descriptor reg_desc = {0};
523 struct tx_inband_header *header;
524
525 if ( vcc == NULL || skb == NULL )
526 return -EINVAL;
527
528
529 conn = find_vcc(vcc);
530 if ( conn < 0 ) {
531 ret = -EINVAL;
532 goto FIND_VCC_FAIL;
533 }
534
535 if ( !g_showtime ) {
536 pr_debug("not in showtime\n");
537 ret = -EIO;
538 goto PPE_SEND_FAIL;
539 }
540
541 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
542 required = sizeof(*header) + byteoff;
543 if (!skb_clone_writable(skb, required)) {
544 int expand_by = 0;
545 int ret;
546
547 if (skb_headroom(skb) < required)
548 expand_by = required - skb_headroom(skb);
549
550 ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
551 if (ret) {
552 printk("pskb_expand_head failed.\n");
553 atm_free_tx_skb_vcc(skb, vcc);
554 return ret;
555 }
556 }
557
558 datalen = skb->len;
559 header = (void *)skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
560
561
562 if ( vcc->qos.aal == ATM_AAL5 ) {
563 /* setup inband trailer */
564 header->uu = 0;
565 header->cpi = 0;
566 header->pad = aal5_fill_pattern;
567 header->res1 = 0;
568
569 /* setup cell header */
570 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
571 header->pti = ATM_PTI_US0;
572 header->vci = vcc->vci;
573 header->vpi = vcc->vpi;
574 header->gfc = 0;
575
576 /* setup descriptor */
577 reg_desc.dataptr = (unsigned int)skb->data >> 2;
578 reg_desc.datalen = datalen;
579 reg_desc.byteoff = byteoff;
580 reg_desc.iscell = 0;
581 } else {
582 reg_desc.dataptr = (unsigned int)skb->data >> 2;
583 reg_desc.datalen = skb->len;
584 reg_desc.byteoff = byteoff;
585 reg_desc.iscell = 1;
586 }
587
588 reg_desc.own = 1;
589 reg_desc.c = 1;
590 reg_desc.sop = reg_desc.eop = 1;
591
592 spin_lock_irqsave(&g_atm_priv_data.conn[conn].lock, flags);
593 desc_base = get_tx_desc(conn);
594 if ( desc_base < 0 ) {
595 spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
596 pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
597 ret = -EIO;
598 goto PPE_SEND_FAIL;
599 }
600 /* update descriptor send pointer */
601 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
602 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
603 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
604
605 spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
606
607 if ( vcc->stats )
608 atomic_inc(&vcc->stats->tx);
609 if ( vcc->qos.aal == ATM_AAL5 )
610 g_atm_priv_data.wtx_pdu++;
611 /* write discriptor to memory and write back cache */
612 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
613 dma_cache_wback((unsigned long)skb->data, skb->len);
614
615 mailbox_signal(conn, 1);
616
617 adsl_led_flash();
618
619 return 0;
620
621 FIND_VCC_FAIL:
622 pr_err("FIND_VCC_FAIL\n");
623 g_atm_priv_data.wtx_err_pdu++;
624 dev_kfree_skb_any(skb);
625 return ret;
626
627 PPE_SEND_FAIL:
628 if ( vcc->qos.aal == ATM_AAL5 )
629 g_atm_priv_data.wtx_drop_pdu++;
630 if ( vcc->stats )
631 atomic_inc(&vcc->stats->tx_err);
632 dev_kfree_skb_any(skb);
633 return ret;
634 }
635
636 /* operation and maintainance */
637 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
638 {
639 int conn;
640 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
641 int desc_base;
642 struct sk_buff *skb;
643 struct tx_descriptor reg_desc = {0};
644
645 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
646 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
647 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
648 && find_vpi(uni_cell_header->vpi) < 0) )
649 {
650 g_atm_priv_data.wtx_err_oam++;
651 return -EINVAL;
652 }
653
654 if ( !g_showtime ) {
655 pr_err("not in showtime\n");
656 g_atm_priv_data.wtx_drop_oam++;
657 return -EIO;
658 }
659
660 conn = find_vcc(vcc);
661 if ( conn < 0 ) {
662 pr_err("FIND_VCC_FAIL\n");
663 g_atm_priv_data.wtx_drop_oam++;
664 return -EINVAL;
665 }
666
667 skb = alloc_skb_tx(CELL_SIZE);
668 if ( skb == NULL ) {
669 pr_err("ALLOC_SKB_TX_FAIL\n");
670 g_atm_priv_data.wtx_drop_oam++;
671 return -ENOMEM;
672 }
673 skb_put(skb, CELL_SIZE);
674 memcpy(skb->data, cell, CELL_SIZE);
675
676 reg_desc.dataptr = (unsigned int)skb->data >> 2;
677 reg_desc.datalen = CELL_SIZE;
678 reg_desc.byteoff = 0;
679 reg_desc.iscell = 1;
680
681 reg_desc.own = 1;
682 reg_desc.c = 1;
683 reg_desc.sop = reg_desc.eop = 1;
684
685 desc_base = get_tx_desc(conn);
686 if ( desc_base < 0 ) {
687 dev_kfree_skb_any(skb);
688 pr_err("ALLOC_TX_CONNECTION_FAIL\n");
689 g_atm_priv_data.wtx_drop_oam++;
690 return -EIO;
691 }
692
693 if ( vcc->stats )
694 atomic_inc(&vcc->stats->tx);
695
696 /* update descriptor send pointer */
697 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
698 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
699 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
700
701 /* write discriptor to memory and write back cache */
702 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
703 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
704
705 mailbox_signal(conn, 1);
706
707 g_atm_priv_data.wtx_oam++;
708 adsl_led_flash();
709
710 return 0;
711 }
712
713 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
714 {
715 int conn;
716
717 if ( vcc == NULL || qos == NULL )
718 return -EINVAL;
719
720 conn = find_vcc(vcc);
721 if ( conn < 0 )
722 return -EINVAL;
723
724 set_qsb(vcc, qos, conn);
725
726 return 0;
727 }
728
729 static inline void adsl_led_flash(void)
730 {
731 ifx_mei_atm_led_blink();
732 }
733
734 /*
735 * Description:
736 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
737 * Input:
738 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
739 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
740 * ret --- ppe_u64_t, pointer to a variable to hold result
741 * Output:
742 * none
743 */
744 static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
745 {
746 ret->l = opt1.l + opt2;
747 if ( ret->l < opt1.l || ret->l < opt2 )
748 ret->h++;
749 }
750
751 static inline struct sk_buff* alloc_skb_rx(void)
752 {
753 struct sk_buff *skb;
754
755 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
756 if ( skb != NULL ) {
757 /* must be burst length alignment */
758 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
759 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
760 /* pub skb in reserved area "skb->data - 4" */
761 *((struct sk_buff **)skb->data - 1) = skb;
762 /* write back and invalidate cache */
763 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
764 /* invalidate cache */
765 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
766 dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
767 #else
768 dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
769 #endif
770 }
771 return skb;
772 }
773
774 static inline struct sk_buff* alloc_skb_tx(unsigned int size)
775 {
776 struct sk_buff *skb;
777
778 /* allocate memory including header and padding */
779 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
780 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
781 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
782 /* must be burst length alignment */
783 if ( skb != NULL )
784 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
785 return skb;
786 }
787
788 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
789 {
790 int conn;
791 struct sk_buff *skb;
792
793 /* oversize packet */
794 if ( size > aal5s_max_packet_size ) {
795 pr_err("atm_alloc_tx: oversize packet\n");
796 return NULL;
797 }
798 /* send buffer overflow */
799 if ( sk_wmem_alloc_get(sk_atm(vcc)) && !atm_may_send(vcc, size) ) {
800 pr_err("atm_alloc_tx: send buffer overflow\n");
801 return NULL;
802 }
803 conn = find_vcc(vcc);
804 if ( conn < 0 ) {
805 pr_err("atm_alloc_tx: unknown VCC\n");
806 return NULL;
807 }
808
809 skb = dev_alloc_skb(size);
810 if ( skb == NULL ) {
811 pr_err("atm_alloc_tx: sk buffer is used up\n");
812 return NULL;
813 }
814
815 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
816
817 return skb;
818 }
819
820 static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
821 {
822 if ( vcc->pop != NULL )
823 vcc->pop(vcc, skb);
824 else
825 dev_kfree_skb_any(skb);
826 }
827
828 static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
829 {
830 unsigned int skb_dataptr;
831 struct sk_buff *skb;
832
833 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
834 skb = *(struct sk_buff **)skb_dataptr;
835
836 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
837 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
838
839 return skb;
840 }
841
842 static inline int get_tx_desc(unsigned int conn)
843 {
844 int desc_base = -1;
845 struct connection *p_conn = &g_atm_priv_data.conn[conn];
846
847 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
848 desc_base = p_conn->tx_desc_pos;
849 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
850 p_conn->tx_desc_pos = 0;
851 }
852
853 return desc_base;
854 }
855
856 static void free_tx_ring(unsigned int queue)
857 {
858 unsigned long flags;
859 int i;
860 struct connection *conn = &g_atm_priv_data.conn[queue];
861 struct sk_buff *skb;
862
863 if (!conn)
864 return;
865
866 spin_lock_irqsave(&conn->lock, flags);
867
868 for (i = 0; i < dma_tx_descriptor_length; i++) {
869 if (conn->tx_desc[i].own == 0 && conn->tx_skb[i] != NULL) {
870 skb = conn->tx_skb[i];
871 conn->tx_skb[i] = NULL;
872 atm_free_tx_skb_vcc(skb, ATM_SKB(skb)->vcc);
873 }
874 }
875 spin_unlock_irqrestore(&conn->lock, flags);
876 }
877
878 static void mailbox_tx_handler(unsigned int queue_bitmap)
879 {
880 int i;
881 int bit;
882
883 /* only get valid queues */
884 queue_bitmap &= g_atm_priv_data.conn_table;
885
886 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
887 if (queue_bitmap & bit)
888 free_tx_ring(i);
889 }
890 }
891
892 static inline void mailbox_oam_rx_handler(void)
893 {
894 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
895 struct rx_descriptor reg_desc;
896 struct uni_cell_header *header;
897 int conn;
898 struct atm_vcc *vcc;
899 unsigned int i;
900
901 for ( i = 0; i < vlddes; i++ ) {
902 unsigned int loop_count = 0;
903
904 do {
905 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
906 if ( ++loop_count == 1000 )
907 break;
908 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
909 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
910
911 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
912
913 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
914 conn = find_vpivci(header->vpi, header->vci);
915 else if ( header->vci == 0x03 || header->vci == 0x04 )
916 conn = find_vpi(header->vpi);
917 else
918 conn = -1;
919
920 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
921 vcc = g_atm_priv_data.conn[conn].vcc;
922
923 if ( vcc->push_oam != NULL )
924 vcc->push_oam(vcc, header);
925 else
926 ifx_push_oam((unsigned char *)header);
927
928 g_atm_priv_data.wrx_oam++;
929
930 adsl_led_flash();
931 } else
932 g_atm_priv_data.wrx_drop_oam++;
933
934 reg_desc.byteoff = 0;
935 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
936 reg_desc.own = 1;
937 reg_desc.c = 0;
938
939 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
940 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
941 g_atm_priv_data.oam_desc_pos = 0;
942
943 dma_cache_inv((unsigned long)header, CELL_SIZE);
944 mailbox_signal(RX_DMA_CH_OAM, 0);
945 }
946 }
947
948 static inline void mailbox_aal_rx_handler(void)
949 {
950 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
951 struct rx_descriptor reg_desc;
952 int conn;
953 struct atm_vcc *vcc;
954 struct sk_buff *skb, *new_skb;
955 struct rx_inband_trailer *trailer;
956 unsigned int i;
957
958 for ( i = 0; i < vlddes; i++ ) {
959 unsigned int loop_count = 0;
960
961 do {
962 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
963 if ( ++loop_count == 1000 )
964 break;
965 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
966 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
967
968 conn = reg_desc.id;
969
970 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
971 vcc = g_atm_priv_data.conn[conn].vcc;
972
973 skb = get_skb_rx_pointer(reg_desc.dataptr);
974
975 if ( reg_desc.err ) {
976 if ( vcc->qos.aal == ATM_AAL5 ) {
977 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
978 if ( trailer->stw_crc )
979 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
980 if ( trailer->stw_ovz )
981 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
982 g_atm_priv_data.wrx_drop_pdu++;
983 }
984 if ( vcc->stats ) {
985 atomic_inc(&vcc->stats->rx_drop);
986 atomic_inc(&vcc->stats->rx_err);
987 }
988 reg_desc.err = 0;
989 } else if ( atm_charge(vcc, skb->truesize) ) {
990 new_skb = alloc_skb_rx();
991 if ( new_skb != NULL ) {
992 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
993 if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
994 dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
995 #endif
996
997 skb_reserve(skb, reg_desc.byteoff);
998 skb_put(skb, reg_desc.datalen);
999 ATM_SKB(skb)->vcc = vcc;
1000
1001 vcc->push(vcc, skb);
1002
1003 if ( vcc->qos.aal == ATM_AAL5 )
1004 g_atm_priv_data.wrx_pdu++;
1005 if ( vcc->stats )
1006 atomic_inc(&vcc->stats->rx);
1007 adsl_led_flash();
1008
1009 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1010 } else {
1011 atm_return(vcc, skb->truesize);
1012 if ( vcc->qos.aal == ATM_AAL5 )
1013 g_atm_priv_data.wrx_drop_pdu++;
1014 if ( vcc->stats )
1015 atomic_inc(&vcc->stats->rx_drop);
1016 }
1017 } else {
1018 if ( vcc->qos.aal == ATM_AAL5 )
1019 g_atm_priv_data.wrx_drop_pdu++;
1020 if ( vcc->stats )
1021 atomic_inc(&vcc->stats->rx_drop);
1022 }
1023 } else {
1024 g_atm_priv_data.wrx_drop_pdu++;
1025 }
1026
1027 reg_desc.byteoff = 0;
1028 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1029 reg_desc.own = 1;
1030 reg_desc.c = 0;
1031
1032 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1033 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1034 g_atm_priv_data.aal_desc_pos = 0;
1035
1036 mailbox_signal(RX_DMA_CH_AAL, 0);
1037 }
1038 }
1039
1040 static void do_ppe_tasklet(unsigned long data)
1041 {
1042 unsigned int irqs = *MBOX_IGU1_ISR;
1043 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1044
1045 if (irqs & (1 << RX_DMA_CH_AAL))
1046 mailbox_aal_rx_handler();
1047 if (irqs & (1 << RX_DMA_CH_OAM))
1048 mailbox_oam_rx_handler();
1049
1050 /* any valid tx irqs */
1051 if ((irqs >> (FIRST_QSB_QID + 16)) & g_atm_priv_data.conn_table)
1052 mailbox_tx_handler(irqs >> (FIRST_QSB_QID + 16));
1053
1054 if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
1055 tasklet_schedule(&g_dma_tasklet);
1056 else if (*MBOX_IGU1_ISR >> (FIRST_QSB_QID + 16)) /* TX queue */
1057 tasklet_schedule(&g_dma_tasklet);
1058 else
1059 enable_irq(PPE_MAILBOX_IGU1_INT);
1060 }
1061
1062 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1063 {
1064 if ( !*MBOX_IGU1_ISR )
1065 return IRQ_HANDLED;
1066
1067 disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
1068 tasklet_schedule(&g_dma_tasklet);
1069
1070 return IRQ_HANDLED;
1071 }
1072
1073 static inline void mailbox_signal(unsigned int queue, int is_tx)
1074 {
1075 int count = 1000;
1076
1077 if ( is_tx ) {
1078 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
1079 count--;
1080 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1081 } else {
1082 while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
1083 count--;
1084 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1085 }
1086
1087 ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
1088 }
1089
1090 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1091 {
1092 struct clk *fpi_clk = clk_get_fpi();
1093 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1094 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1095 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1096 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1097 unsigned int tmp;
1098
1099
1100 /*
1101 * Peak Cell Rate (PCR) Limiter
1102 */
1103 if ( qos->txtp.max_pcr == 0 )
1104 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1105 else {
1106 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1107 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1108 /* check if overflow takes place */
1109 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1110 }
1111
1112 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
1113 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1114 // Send packets to these two PVCs at same time, it trigger strange behavior.
1115 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1116 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1117 // To work around, create UBR always with max_pcr.
1118 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1119 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1120 int port = g_atm_priv_data.conn[queue].port;
1121 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1122
1123 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1124 if ( tmp > QSB_TP_TS_MAX )
1125 tmp = QSB_TP_TS_MAX;
1126 else if ( tmp < 1 )
1127 tmp = 1;
1128 qsb_queue_parameter_table.bit.tp = tmp;
1129 }
1130 #endif
1131
1132 /*
1133 * Weighted Fair Queueing Factor (WFQF)
1134 */
1135 switch ( qos->txtp.traffic_class ) {
1136 case ATM_CBR:
1137 case ATM_VBR_RT:
1138 /* real time queue gets weighted fair queueing bypass */
1139 qsb_queue_parameter_table.bit.wfqf = 0;
1140 break;
1141 case ATM_VBR_NRT:
1142 case ATM_UBR_PLUS:
1143 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1144 /* WFQF is maximum cell rate / garenteed cell rate */
1145 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1146 if ( qos->txtp.min_pcr == 0 )
1147 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1148 else {
1149 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1150 if ( tmp == 0 )
1151 qsb_queue_parameter_table.bit.wfqf = 1;
1152 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1153 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1154 else
1155 qsb_queue_parameter_table.bit.wfqf = tmp;
1156 }
1157 break;
1158 default:
1159 case ATM_UBR:
1160 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1161 }
1162
1163 /*
1164 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1165 */
1166 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1167 #if 0
1168 if ( qos->txtp.scr == 0 ) {
1169 #endif
1170 /* disable shaper */
1171 qsb_queue_vbr_parameter_table.bit.taus = 0;
1172 qsb_queue_vbr_parameter_table.bit.ts = 0;
1173 #if 0
1174 } else {
1175 /* Cell Loss Priority (CLP) */
1176 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1177 /* CLP1 */
1178 qsb_queue_parameter_table.bit.vbr = 1;
1179 else
1180 /* CLP0 */
1181 qsb_queue_parameter_table.bit.vbr = 0;
1182 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1183 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1184 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1185 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1186 if ( tmp == 0 )
1187 qsb_queue_vbr_parameter_table.bit.taus = 1;
1188 else if ( tmp > QSB_TAUS_MAX )
1189 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1190 else
1191 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1192 }
1193 #endif
1194 } else {
1195 qsb_queue_vbr_parameter_table.bit.taus = 0;
1196 qsb_queue_vbr_parameter_table.bit.ts = 0;
1197 }
1198
1199 /* Queue Parameter Table (QPT) */
1200 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1201 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1202 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1203 /* Queue VBR Paramter Table (QVPT) */
1204 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1205 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1206 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1207
1208 }
1209
1210 static void qsb_global_set(void)
1211 {
1212 struct clk *fpi_clk = clk_get_fpi();
1213 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1214 int i;
1215 unsigned int tmp1, tmp2, tmp3;
1216
1217 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1218 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1219 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1220
1221 /*
1222 * set SCT and SPT per port
1223 */
1224 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1225 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1226 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1227 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1228 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1229 /* carry over to integer part (?) */
1230 if ( tmp3 == (1 << 6) ) {
1231 tmp3 = 0;
1232 tmp2++;
1233 }
1234 if ( tmp2 == 0 )
1235 tmp2 = tmp3 = 1;
1236 /* 1. set mask */
1237 /* 2. write value to data transfer register */
1238 /* 3. start the tranfer */
1239 /* SCT (FracRate) */
1240 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1241 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1242 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1243 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
1244 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1245 QSB_RAMAC_TESEL_SET(i & 0x01);
1246 /* SPT (SBV + PN + IntRage) */
1247 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1248 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1249 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1250 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
1251 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1252 QSB_RAMAC_TESEL_SET(i & 0x01);
1253 }
1254 }
1255 }
1256
1257 static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1258 {
1259 struct htu_entry htu_entry = {
1260 res1: 0x00,
1261 clp: is_retx ? 0x01 : 0x00,
1262 pid: g_atm_priv_data.conn[queue].port & 0x01,
1263 vpi: vpi,
1264 vci: vci,
1265 pti: 0x00,
1266 vld: 0x01};
1267
1268 struct htu_mask htu_mask = {
1269 set: 0x01,
1270 clp: 0x01,
1271 pid_mask: 0x02,
1272 vpi_mask: 0x00,
1273 vci_mask: 0x0000,
1274 pti_mask: 0x03, // 0xx, user data
1275 clear: 0x00};
1276
1277 struct htu_result htu_result = {
1278 res1: 0x00,
1279 cellid: queue,
1280 res2: 0x00,
1281 type: aal5 ? 0x00 : 0x01,
1282 ven: 0x01,
1283 res3: 0x00,
1284 qid: queue};
1285
1286 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1287 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1288 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1289 }
1290
1291 static inline void clear_htu_entry(unsigned int queue)
1292 {
1293 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1294 }
1295
1296 static void validate_oam_htu_entry(void)
1297 {
1298 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1299 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1300 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1301 }
1302
1303 static void invalidate_oam_htu_entry(void)
1304 {
1305 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1306 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1307 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1308 }
1309
1310 static inline int find_vpi(unsigned int vpi)
1311 {
1312 int i;
1313 unsigned int bit;
1314
1315 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1316 if ( (g_atm_priv_data.conn_table & bit) != 0
1317 && g_atm_priv_data.conn[i].vcc != NULL
1318 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1319 return i;
1320 }
1321
1322 return -1;
1323 }
1324
1325 static inline int find_vpivci(unsigned int vpi, unsigned int vci)
1326 {
1327 int i;
1328 unsigned int bit;
1329
1330 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1331 if ( (g_atm_priv_data.conn_table & bit) != 0
1332 && g_atm_priv_data.conn[i].vcc != NULL
1333 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1334 && vci == g_atm_priv_data.conn[i].vcc->vci )
1335 return i;
1336 }
1337
1338 return -1;
1339 }
1340
1341 static inline int find_vcc(struct atm_vcc *vcc)
1342 {
1343 int i;
1344 unsigned int bit;
1345
1346 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1347 if ( (g_atm_priv_data.conn_table & bit) != 0
1348 && g_atm_priv_data.conn[i].vcc == vcc )
1349 return i;
1350 }
1351
1352 return -1;
1353 }
1354
1355 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
1356 {
1357 int len = 0;
1358 unsigned int major, minor;
1359
1360 ops->fw_ver(&major, &minor);
1361
1362 len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1363 len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
1364
1365 return len;
1366 }
1367
1368 static inline void check_parameters(void)
1369 {
1370 /* Please refer to Amazon spec 15.4 for setting these values. */
1371 if ( qsb_tau < 1 )
1372 qsb_tau = 1;
1373 if ( qsb_tstep < 1 )
1374 qsb_tstep = 1;
1375 else if ( qsb_tstep > 4 )
1376 qsb_tstep = 4;
1377 else if ( qsb_tstep == 3 )
1378 qsb_tstep = 2;
1379
1380 /* There is a delay between PPE write descriptor and descriptor is */
1381 /* really stored in memory. Host also has this delay when writing */
1382 /* descriptor. So PPE will use this value to determine if the write */
1383 /* operation makes effect. */
1384 if ( write_descriptor_delay < 0 )
1385 write_descriptor_delay = 0;
1386
1387 if ( aal5_fill_pattern < 0 )
1388 aal5_fill_pattern = 0;
1389 else
1390 aal5_fill_pattern &= 0xFF;
1391
1392 /* Because of the limitation of length field in descriptors, the packet */
1393 /* size could not be larger than 64K minus overhead size. */
1394 if ( aal5r_max_packet_size < 0 )
1395 aal5r_max_packet_size = 0;
1396 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1397 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1398 if ( aal5r_min_packet_size < 0 )
1399 aal5r_min_packet_size = 0;
1400 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1401 aal5r_min_packet_size = aal5r_max_packet_size;
1402 if ( aal5s_max_packet_size < 0 )
1403 aal5s_max_packet_size = 0;
1404 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1405 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1406 if ( aal5s_min_packet_size < 0 )
1407 aal5s_min_packet_size = 0;
1408 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1409 aal5s_min_packet_size = aal5s_max_packet_size;
1410
1411 if ( dma_rx_descriptor_length < 2 )
1412 dma_rx_descriptor_length = 2;
1413 if ( dma_tx_descriptor_length < 2 )
1414 dma_tx_descriptor_length = 2;
1415 if ( dma_rx_clp1_descriptor_threshold < 0 )
1416 dma_rx_clp1_descriptor_threshold = 0;
1417 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1418 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1419
1420 if ( dma_tx_descriptor_length < 2 )
1421 dma_tx_descriptor_length = 2;
1422 }
1423
1424 static inline int init_priv_data(void)
1425 {
1426 void *p;
1427 int i;
1428 struct rx_descriptor rx_desc = {0};
1429 struct sk_buff *skb;
1430 volatile struct tx_descriptor *p_tx_desc;
1431 struct sk_buff **ppskb;
1432
1433 // clear atm private data structure
1434 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
1435
1436 // allocate memory for RX (AAL) descriptors
1437 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1438 if ( p == NULL )
1439 return -1;
1440 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1441 g_atm_priv_data.aal_desc_base = p;
1442 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1443 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
1444
1445 // allocate memory for RX (OAM) descriptors
1446 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1447 if ( p == NULL )
1448 return -1;
1449 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1450 g_atm_priv_data.oam_desc_base = p;
1451 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1452 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
1453
1454 // allocate memory for RX (OAM) buffer
1455 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
1456 if ( p == NULL )
1457 return -1;
1458 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
1459 g_atm_priv_data.oam_buf_base = p;
1460 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
1461 g_atm_priv_data.oam_buf = p;
1462
1463 // allocate memory for TX descriptors
1464 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1465 if ( p == NULL )
1466 return -1;
1467 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
1468 g_atm_priv_data.tx_desc_base = p;
1469
1470 // allocate memory for TX skb pointers
1471 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
1472 if ( p == NULL )
1473 return -1;
1474 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
1475 g_atm_priv_data.tx_skb_base = p;
1476
1477 // setup RX (AAL) descriptors
1478 rx_desc.own = 1;
1479 rx_desc.c = 0;
1480 rx_desc.sop = 1;
1481 rx_desc.eop = 1;
1482 rx_desc.byteoff = 0;
1483 rx_desc.id = 0;
1484 rx_desc.err = 0;
1485 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1486 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1487 skb = alloc_skb_rx();
1488 if ( skb == NULL )
1489 return -1;
1490 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
1491 g_atm_priv_data.aal_desc[i] = rx_desc;
1492 }
1493
1494 // setup RX (OAM) descriptors
1495 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
1496 rx_desc.own = 1;
1497 rx_desc.c = 0;
1498 rx_desc.sop = 1;
1499 rx_desc.eop = 1;
1500 rx_desc.byteoff = 0;
1501 rx_desc.id = 0;
1502 rx_desc.err = 0;
1503 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1504 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
1505 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
1506 g_atm_priv_data.oam_desc[i] = rx_desc;
1507 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
1508 }
1509
1510 // setup TX descriptors and skb pointers
1511 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1512 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
1513 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1514 spin_lock_init(&g_atm_priv_data.conn[i].lock);
1515 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
1516 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
1517 }
1518
1519 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1520 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
1521
1522 return 0;
1523 }
1524
1525 static inline void clear_priv_data(void)
1526 {
1527 int i, j;
1528 struct sk_buff *skb;
1529
1530 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1531 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
1532 for ( j = 0; j < dma_tx_descriptor_length; j++ )
1533 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
1534 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
1535 }
1536 }
1537
1538 if ( g_atm_priv_data.tx_skb_base != NULL )
1539 kfree(g_atm_priv_data.tx_skb_base);
1540
1541 if ( g_atm_priv_data.tx_desc_base != NULL )
1542 kfree(g_atm_priv_data.tx_desc_base);
1543
1544 if ( g_atm_priv_data.oam_buf_base != NULL )
1545 kfree(g_atm_priv_data.oam_buf_base);
1546
1547 if ( g_atm_priv_data.oam_desc_base != NULL )
1548 kfree(g_atm_priv_data.oam_desc_base);
1549
1550 if ( g_atm_priv_data.aal_desc_base != NULL ) {
1551 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1552 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
1553 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
1554 dev_kfree_skb_any(skb);
1555 }
1556 }
1557 kfree(g_atm_priv_data.aal_desc_base);
1558 }
1559 }
1560
1561 static inline void init_rx_tables(void)
1562 {
1563 int i;
1564 struct wrx_queue_config wrx_queue_config = {0};
1565 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
1566 struct htu_entry htu_entry = {0};
1567 struct htu_result htu_result = {0};
1568 struct htu_mask htu_mask = {
1569 set: 0x01,
1570 clp: 0x01,
1571 pid_mask: 0x00,
1572 vpi_mask: 0x00,
1573 vci_mask: 0x00,
1574 pti_mask: 0x00,
1575 clear: 0x00
1576 };
1577
1578 /*
1579 * General Registers
1580 */
1581 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
1582 #ifndef CONFIG_AMAZON_SE
1583 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
1584 #endif
1585 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
1586 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
1587 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
1588
1589 /*
1590 * WRX Queue Configuration Table
1591 */
1592 wrx_queue_config.uumask = 0xFF;
1593 wrx_queue_config.cpimask = 0xFF;
1594 wrx_queue_config.uuexp = 0;
1595 wrx_queue_config.cpiexp = 0;
1596 wrx_queue_config.mfs = aal5r_max_packet_size;
1597 wrx_queue_config.oversize = aal5r_max_packet_size;
1598 wrx_queue_config.undersize = aal5r_min_packet_size;
1599 wrx_queue_config.errdp = aal5r_drop_error_packet;
1600 wrx_queue_config.dmach = RX_DMA_CH_AAL;
1601 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
1602 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
1603 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
1604
1605 /*
1606 * WRX DMA Channel Configuration Table
1607 */
1608 wrx_dma_channel_config.chrl = 0;
1609 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
1610 wrx_dma_channel_config.mode = 0;
1611 wrx_dma_channel_config.rlcfg = 0;
1612
1613 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
1614 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
1615 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
1616
1617 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
1618 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
1619 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
1620
1621 /*
1622 * HTU Tables
1623 */
1624 for (i = 0; i < MAX_PVC_NUMBER; i++) {
1625 htu_result.qid = (unsigned int)i;
1626
1627 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1628 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1629 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
1630 }
1631
1632 /* OAM HTU Entry */
1633 htu_entry.vci = 0x03;
1634 htu_mask.pid_mask = 0x03;
1635 htu_mask.vpi_mask = 0xFF;
1636 htu_mask.vci_mask = 0x0000;
1637 htu_mask.pti_mask = 0x07;
1638 htu_result.cellid = OAM_RX_QUEUE;
1639 htu_result.type = 1;
1640 htu_result.ven = 1;
1641 htu_result.qid = OAM_RX_QUEUE;
1642 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
1643 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
1644 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
1645 htu_entry.vci = 0x04;
1646 htu_result.cellid = OAM_RX_QUEUE;
1647 htu_result.type = 1;
1648 htu_result.ven = 1;
1649 htu_result.qid = OAM_RX_QUEUE;
1650 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
1651 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
1652 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
1653 htu_entry.vci = 0x00;
1654 htu_entry.pti = 0x04;
1655 htu_mask.vci_mask = 0xFFFF;
1656 htu_mask.pti_mask = 0x01;
1657 htu_result.cellid = OAM_RX_QUEUE;
1658 htu_result.type = 1;
1659 htu_result.ven = 1;
1660 htu_result.qid = OAM_RX_QUEUE;
1661 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
1662 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
1663 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
1664 }
1665
1666 static inline void init_tx_tables(void)
1667 {
1668 int i;
1669 struct wtx_queue_config wtx_queue_config = {0};
1670 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
1671 struct wtx_port_config wtx_port_config = {
1672 res1: 0,
1673 qid: 0,
1674 qsben: 1
1675 };
1676
1677 /*
1678 * General Registers
1679 */
1680 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
1681 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
1682 *CFG_WRDES_DELAY = write_descriptor_delay;
1683
1684 /*
1685 * WTX Port Configuration Table
1686 */
1687 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1688 *WTX_PORT_CONFIG(i) = wtx_port_config;
1689
1690 /*
1691 * WTX Queue Configuration Table
1692 */
1693 wtx_queue_config.qsben = 1;
1694 wtx_queue_config.sbid = 0;
1695 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
1696 wtx_queue_config.qsb_vcid = i;
1697 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
1698 }
1699
1700 /*
1701 * WTX DMA Channel Configuration Table
1702 */
1703 wtx_dma_channel_config.mode = 0;
1704 wtx_dma_channel_config.deslen = 0;
1705 wtx_dma_channel_config.desba = 0;
1706 for ( i = 0; i < FIRST_QSB_QID; i++ )
1707 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1708 /* normal connection */
1709 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
1710 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
1711 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
1712 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1713 }
1714 }
1715
1716 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
1717 {
1718 int i, j, port_num;
1719
1720 ASSERT(port_cell != NULL, "port_cell is NULL");
1721 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
1722
1723 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
1724 if ( port_cell->tx_link_rate[j] > 0 )
1725 break;
1726 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
1727 g_atm_priv_data.port[i].tx_max_cell_rate =
1728 port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
1729
1730 qsb_global_set();
1731
1732 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
1733 if ( g_atm_priv_data.conn[i].vcc != NULL )
1734 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
1735
1736 // TODO: ReTX set xdata_addr
1737 g_xdata_addr = xdata_addr;
1738
1739 g_showtime = 1;
1740
1741 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1742 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_FOUND);
1743
1744 #if defined(CONFIG_VR9)
1745 IFX_REG_W32(0x0F, UTP_CFG);
1746 #endif
1747
1748 printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
1749 g_atm_priv_data.port[0].tx_max_cell_rate,
1750 g_atm_priv_data.port[1].tx_max_cell_rate,
1751 (unsigned int)g_xdata_addr);
1752
1753 return 0;
1754 }
1755
1756 static int atm_showtime_exit(void)
1757 {
1758 int port_num;
1759
1760 if ( !g_showtime )
1761 return -1;
1762
1763 #if defined(CONFIG_VR9)
1764 IFX_REG_W32(0x00, UTP_CFG);
1765 #endif
1766
1767 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1768 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1769
1770 g_showtime = 0;
1771 g_xdata_addr = NULL;
1772 printk("leave showtime\n");
1773 return 0;
1774 }
1775
1776 extern struct ltq_atm_ops ar9_ops;
1777 extern struct ltq_atm_ops vr9_ops;
1778 extern struct ltq_atm_ops danube_ops;
1779 extern struct ltq_atm_ops ase_ops;
1780
1781 static const struct of_device_id ltq_atm_match[] = {
1782 #ifdef CONFIG_DANUBE
1783 { .compatible = "lantiq,ppe-danube", .data = &danube_ops },
1784 #elif defined CONFIG_AMAZON_SE
1785 { .compatible = "lantiq,ppe-ase", .data = &ase_ops },
1786 #elif defined CONFIG_AR9
1787 { .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
1788 #elif defined CONFIG_VR9
1789 { .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
1790 #endif
1791 {},
1792 };
1793 MODULE_DEVICE_TABLE(of, ltq_atm_match);
1794
1795 static int ltq_atm_probe(struct platform_device *pdev)
1796 {
1797 const struct of_device_id *match;
1798 struct ltq_atm_ops *ops = NULL;
1799 int ret;
1800 int port_num;
1801 struct port_cell_info port_cell = {0};
1802 char ver_str[256];
1803
1804 match = of_match_device(ltq_atm_match, &pdev->dev);
1805 if (!match) {
1806 dev_err(&pdev->dev, "failed to find matching device\n");
1807 return -ENOENT;
1808 }
1809 ops = (struct ltq_atm_ops *) match->data;
1810
1811 check_parameters();
1812
1813 ret = init_priv_data();
1814 if ( ret != 0 ) {
1815 pr_err("INIT_PRIV_DATA_FAIL\n");
1816 goto INIT_PRIV_DATA_FAIL;
1817 }
1818
1819 ops->init();
1820 init_rx_tables();
1821 init_tx_tables();
1822
1823 /* create devices */
1824 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
1825 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
1826 if ( !g_atm_priv_data.port[port_num].dev ) {
1827 pr_err("failed to register atm device %d!\n", port_num);
1828 ret = -EIO;
1829 goto ATM_DEV_REGISTER_FAIL;
1830 } else {
1831 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
1832 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
1833 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
1834 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
1835
1836 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
1837 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1838 #endif
1839 }
1840 }
1841
1842 /* register interrupt handler */
1843 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
1844 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, 0, "atm_mailbox_isr", &g_atm_priv_data);
1845 #else
1846 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
1847 #endif
1848 if ( ret ) {
1849 if ( ret == -EBUSY ) {
1850 pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
1851 } else {
1852 pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
1853 }
1854 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
1855 }
1856 disable_irq(PPE_MAILBOX_IGU1_INT);
1857
1858
1859 ret = ops->start(0);
1860 if ( ret ) {
1861 pr_err("ifx_pp32_start fail!\n");
1862 goto PP32_START_FAIL;
1863 }
1864
1865 port_cell.port_num = ATM_PORT_NUMBER;
1866 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
1867 if ( g_showtime ) {
1868 atm_showtime_enter(&port_cell, &g_xdata_addr);
1869 } else {
1870 qsb_global_set();
1871 }
1872
1873 validate_oam_htu_entry();
1874
1875 ifx_mei_atm_showtime_enter = atm_showtime_enter;
1876 ifx_mei_atm_showtime_exit = atm_showtime_exit;
1877
1878 ifx_atm_version(ops, ver_str);
1879 printk(KERN_INFO "%s", ver_str);
1880 platform_set_drvdata(pdev, ops);
1881 printk("ifxmips_atm: ATM init succeed\n");
1882
1883 return 0;
1884
1885 PP32_START_FAIL:
1886 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1887 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
1888 ATM_DEV_REGISTER_FAIL:
1889 while ( port_num-- > 0 )
1890 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1891 INIT_PRIV_DATA_FAIL:
1892 clear_priv_data();
1893 printk("ifxmips_atm: ATM init failed\n");
1894 return ret;
1895 }
1896
1897 static int ltq_atm_remove(struct platform_device *pdev)
1898 {
1899 int port_num;
1900 struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
1901
1902 ifx_mei_atm_showtime_enter = NULL;
1903 ifx_mei_atm_showtime_exit = NULL;
1904
1905 invalidate_oam_htu_entry();
1906
1907 ops->stop(0);
1908
1909 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1910
1911 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1912 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1913
1914 ops->shutdown();
1915
1916 clear_priv_data();
1917
1918 return 0;
1919 }
1920
1921 static struct platform_driver ltq_atm_driver = {
1922 .probe = ltq_atm_probe,
1923 .remove = ltq_atm_remove,
1924 .driver = {
1925 .name = "atm",
1926 .owner = THIS_MODULE,
1927 .of_match_table = ltq_atm_match,
1928 },
1929 };
1930
1931 module_platform_driver(ltq_atm_driver);
1932
1933 MODULE_LICENSE("Dual BSD/GPL");