lantiq: ltq-atm/ltq-ptm: fix showtime handling on driver load
[openwrt/openwrt.git] / package / kernel / lantiq / ltq-atm / src / ltq_atm.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 *******************************************************************************/
23
24 #define IFX_ATM_VER_MAJOR 1
25 #define IFX_ATM_VER_MID 0
26 #define IFX_ATM_VER_MINOR 26
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/version.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/ioctl.h>
36 #include <linux/atmdev.h>
37 #include <linux/platform_device.h>
38 #include <linux/of_device.h>
39 #include <linux/atm.h>
40 #include <linux/clk.h>
41 #include <linux/interrupt.h>
42 #ifdef CONFIG_XFRM
43 #include <net/xfrm.h>
44 #endif
45
46 #include <lantiq_soc.h>
47
48 #include "ifxmips_atm_core.h"
49
50 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
51 #define MODULE_PARM(a, b) module_param(a, int, 0)
52
53 /*!
54 \brief QSB cell delay variation due to concurrency
55 */
56 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
57 /*!
58 \brief QSB scheduler burst length
59 */
60 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
61 /*!
62 \brief QSB time step, all legal values are 1, 2, 4
63 */
64 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
65
66 /*!
67 \brief Write descriptor delay
68 */
69 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
70
71 /*!
72 \brief AAL5 padding byte ('~')
73 */
74 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
75 /*!
76 \brief Max frame size for RX
77 */
78 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
79 /*!
80 \brief Min frame size for RX
81 */
82 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
83 /*!
84 \brief Max frame size for TX
85 */
86 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
87 /*!
88 \brief Min frame size for TX
89 */
90 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
91 /*!
92 \brief Drop error packet in RX path
93 */
94 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
95
96 /*!
97 \brief Number of descriptors per DMA RX channel
98 */
99 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
100 /*!
101 \brief Number of descriptors per DMA TX channel
102 */
103 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
104 /*!
105 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
106 */
107 static int dma_rx_clp1_descriptor_threshold = 38;
108 /*@}*/
109
110 MODULE_PARM(qsb_tau, "i");
111 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
112 MODULE_PARM(qsb_srvm, "i");
113 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
114 MODULE_PARM(qsb_tstep, "i");
115 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
116
117 MODULE_PARM(write_descriptor_delay, "i");
118 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
119
120 MODULE_PARM(aal5_fill_pattern, "i");
121 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
122 MODULE_PARM(aal5r_max_packet_size, "i");
123 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
124 MODULE_PARM(aal5r_min_packet_size, "i");
125 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
126 MODULE_PARM(aal5s_max_packet_size, "i");
127 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
128 MODULE_PARM(aal5s_min_packet_size, "i");
129 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
130 MODULE_PARM(aal5r_drop_error_packet, "i");
131 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
132
133 MODULE_PARM(dma_rx_descriptor_length, "i");
134 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
135 MODULE_PARM(dma_tx_descriptor_length, "i");
136 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
137 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
138 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
139
140
141
142 /*
143 * ####################################
144 * Definition
145 * ####################################
146 */
147
148 #ifdef CONFIG_AMAZON_SE
149 #define ENABLE_LESS_CACHE_INV 1
150 #define LESS_CACHE_INV_LEN 96
151 #endif
152
153 #define DUMP_SKB_LEN ~0
154
155
156
157 /*
158 * ####################################
159 * Declaration
160 * ####################################
161 */
162
163 /*
164 * Network Operations
165 */
166 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
167 static int ppe_open(struct atm_vcc *);
168 static void ppe_close(struct atm_vcc *);
169 static int ppe_send(struct atm_vcc *, struct sk_buff *);
170 static int ppe_send_oam(struct atm_vcc *, void *, int);
171 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
172
173 /*
174 * ADSL LED
175 */
176 static inline void adsl_led_flash(void);
177
178 /*
179 * 64-bit operation used by MIB calculation
180 */
181 static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
182
183 /*
184 * buffer manage functions
185 */
186 static inline struct sk_buff* alloc_skb_rx(void);
187 static inline struct sk_buff* alloc_skb_tx(unsigned int);
188 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
189 static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
190 static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
191 static inline int get_tx_desc(unsigned int);
192 static struct sk_buff* skb_duplicate(struct sk_buff *);
193 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *);
194
195 /*
196 * mailbox handler and signal function
197 */
198 static inline void mailbox_oam_rx_handler(void);
199 static inline void mailbox_aal_rx_handler(void);
200 static irqreturn_t mailbox_irq_handler(int, void *);
201 static inline void mailbox_signal(unsigned int, int);
202 static void do_ppe_tasklet(unsigned long);
203 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
204
205 /*
206 * QSB & HTU setting functions
207 */
208 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
209 static void qsb_global_set(void);
210 static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
211 static inline void clear_htu_entry(unsigned int);
212 static void validate_oam_htu_entry(void);
213 static void invalidate_oam_htu_entry(void);
214
215 /*
216 * look up for connection ID
217 */
218 static inline int find_vpi(unsigned int);
219 static inline int find_vpivci(unsigned int, unsigned int);
220 static inline int find_vcc(struct atm_vcc *);
221
222 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
223
224 /*
225 * Init & clean-up functions
226 */
227 static inline void check_parameters(void);
228 static inline int init_priv_data(void);
229 static inline void clear_priv_data(void);
230 static inline void init_rx_tables(void);
231 static inline void init_tx_tables(void);
232
233 /*
234 * Exteranl Function
235 */
236 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
237 extern void ifx_push_oam(unsigned char *);
238 #else
239 static inline void ifx_push_oam(unsigned char *dummy) {}
240 #endif
241
242 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
243 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
244 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
245
246 extern int (*ifx_mei_atm_showtime_exit)(void);
247 extern int ifx_mei_atm_led_blink(void);
248 #else
249 static inline int ifx_mei_atm_led_blink(void) { return 0; }
250 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
251 {
252 if ( is_showtime != NULL )
253 *is_showtime = 0;
254 return 0;
255 }
256 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
257 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
258
259 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
260 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
261
262 #endif
263
264 static struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
265
266 static struct atm_priv_data g_atm_priv_data;
267
268 static struct atmdev_ops g_ifx_atm_ops = {
269 .open = ppe_open,
270 .close = ppe_close,
271 .ioctl = ppe_ioctl,
272 .send = ppe_send,
273 .send_oam = ppe_send_oam,
274 .change_qos = ppe_change_qos,
275 .owner = THIS_MODULE,
276 };
277
278 static int g_showtime = 0;
279 static void *g_xdata_addr = NULL;
280
281 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
282 {
283 int ret = 0;
284 atm_cell_ifEntry_t mib_cell;
285 atm_aal5_ifEntry_t mib_aal5;
286 atm_aal5_vcc_x_t mib_vcc;
287 unsigned int value;
288 int conn;
289
290 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
291 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
292 return -ENOTTY;
293
294 if ( _IOC_DIR(cmd) & _IOC_READ )
295 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
296 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
297 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
298 if ( ret )
299 return -EFAULT;
300
301 switch (cmd) {
302 case PPE_ATM_MIB_CELL: /* cell level MIB */
303 /* These MIB should be read at ARC side, now put zero only. */
304 mib_cell.ifHCInOctets_h = 0;
305 mib_cell.ifHCInOctets_l = 0;
306 mib_cell.ifHCOutOctets_h = 0;
307 mib_cell.ifHCOutOctets_l = 0;
308 mib_cell.ifInErrors = 0;
309 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
310 mib_cell.ifOutErrors = 0;
311
312 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
313 break;
314
315 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
316 value = WAN_MIB_TABLE->wrx_total_byte;
317 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
318 g_atm_priv_data.prev_wrx_total_byte = value;
319 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
320 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
321
322 value = WAN_MIB_TABLE->wtx_total_byte;
323 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
324 g_atm_priv_data.prev_wtx_total_byte = value;
325 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
326 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
327
328 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
329 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
330 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
331 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
332 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
333 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
334
335 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
336 break;
337
338 case PPE_ATM_MIB_VCC: /* VCC related MIB */
339 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
340 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
341 if (conn >= 0) {
342 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
343 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
344 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
345 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
346 } else
347 ret = -EINVAL;
348 break;
349
350 default:
351 ret = -ENOIOCTLCMD;
352 }
353
354 return ret;
355 }
356
357 static int ppe_open(struct atm_vcc *vcc)
358 {
359 int ret;
360 short vpi = vcc->vpi;
361 int vci = vcc->vci;
362 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
363 int conn;
364 int f_enable_irq = 0;
365
366 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
367 return -EPROTONOSUPPORT;
368
369 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
370 /* check bandwidth */
371 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
372 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
373 #if 0
374 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
375 #endif
376 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
377 {
378 ret = -EINVAL;
379 goto PPE_OPEN_EXIT;
380 }
381 #endif
382
383 /* check existing vpi,vci */
384 conn = find_vpivci(vpi, vci);
385 if ( conn >= 0 ) {
386 ret = -EADDRINUSE;
387 goto PPE_OPEN_EXIT;
388 }
389
390 /* check whether it need to enable irq */
391 if ( g_atm_priv_data.conn_table == 0 )
392 f_enable_irq = 1;
393
394 /* allocate connection */
395 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
396 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
397 g_atm_priv_data.conn[conn].vcc = vcc;
398 break;
399 }
400 }
401 if ( conn == MAX_PVC_NUMBER ) {
402 ret = -EINVAL;
403 goto PPE_OPEN_EXIT;
404 }
405
406 /* reserve bandwidth */
407 switch ( vcc->qos.txtp.traffic_class ) {
408 case ATM_CBR:
409 case ATM_VBR_RT:
410 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
411 break;
412 case ATM_VBR_NRT:
413 #if 0
414 port->tx_current_cell_rate += vcc->qos.txtp.scr;
415 #endif
416 break;
417 case ATM_UBR_PLUS:
418 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
419 break;
420 }
421
422 /* set qsb */
423 set_qsb(vcc, &vcc->qos, conn);
424
425 /* update atm_vcc structure */
426 vcc->itf = (int)vcc->dev->dev_data;
427 vcc->vpi = vpi;
428 vcc->vci = vci;
429 set_bit(ATM_VF_READY, &vcc->flags);
430
431 /* enable irq */
432 if ( f_enable_irq ) {
433 ifx_atm_alloc_tx = atm_alloc_tx;
434
435 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
436 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
437
438 enable_irq(PPE_MAILBOX_IGU1_INT);
439 }
440
441 /* set port */
442 WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
443
444 /* set htu entry */
445 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
446
447 ret = 0;
448
449 PPE_OPEN_EXIT:
450 return ret;
451 }
452
453 static void ppe_close(struct atm_vcc *vcc)
454 {
455 int conn;
456 struct port *port;
457 struct connection *connection;
458 if ( vcc == NULL )
459 return;
460
461 /* get connection id */
462 conn = find_vcc(vcc);
463 if ( conn < 0 ) {
464 pr_err("can't find vcc\n");
465 goto PPE_CLOSE_EXIT;
466 }
467 connection = &g_atm_priv_data.conn[conn];
468 port = &g_atm_priv_data.port[connection->port];
469
470 /* clear htu */
471 clear_htu_entry(conn);
472
473 /* release connection */
474 connection->vcc = NULL;
475 connection->aal5_vcc_crc_err = 0;
476 connection->aal5_vcc_oversize_sdu = 0;
477 clear_bit(conn, &g_atm_priv_data.conn_table);
478
479 /* disable irq */
480 if ( g_atm_priv_data.conn_table == 0 ) {
481 disable_irq(PPE_MAILBOX_IGU1_INT);
482 ifx_atm_alloc_tx = NULL;
483 }
484
485 /* release bandwidth */
486 switch ( vcc->qos.txtp.traffic_class )
487 {
488 case ATM_CBR:
489 case ATM_VBR_RT:
490 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
491 break;
492 case ATM_VBR_NRT:
493 #if 0
494 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
495 #endif
496 break;
497 case ATM_UBR_PLUS:
498 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
499 break;
500 }
501
502 /* wait for incoming packets to be processed by upper layers */
503 tasklet_unlock_wait(&g_dma_tasklet);
504
505 PPE_CLOSE_EXIT:
506 return;
507 }
508
509 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
510 {
511 int ret;
512 int conn;
513 int desc_base;
514 struct tx_descriptor reg_desc = {0};
515 struct sk_buff *new_skb;
516
517 if ( vcc == NULL || skb == NULL )
518 return -EINVAL;
519
520 skb_get(skb);
521 atm_free_tx_skb_vcc(skb, vcc);
522
523 conn = find_vcc(vcc);
524 if ( conn < 0 ) {
525 ret = -EINVAL;
526 goto FIND_VCC_FAIL;
527 }
528
529 if ( !g_showtime ) {
530 pr_debug("not in showtime\n");
531 ret = -EIO;
532 goto PPE_SEND_FAIL;
533 }
534
535 if ( vcc->qos.aal == ATM_AAL5 ) {
536 int byteoff;
537 int datalen;
538 struct tx_inband_header *header;
539
540 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
541 if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH )
542 new_skb = skb_duplicate(skb);
543 else
544 new_skb = skb_break_away_from_protocol(skb);
545 if ( new_skb == NULL ) {
546 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
547 ret = -ENOMEM;
548 goto PPE_SEND_FAIL;
549 }
550 dev_kfree_skb_any(skb);
551 skb = new_skb;
552
553 datalen = skb->len;
554 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
555
556 skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
557
558 header = (struct tx_inband_header *)skb->data;
559
560 /* setup inband trailer */
561 header->uu = 0;
562 header->cpi = 0;
563 header->pad = aal5_fill_pattern;
564 header->res1 = 0;
565
566 /* setup cell header */
567 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
568 header->pti = ATM_PTI_US0;
569 header->vci = vcc->vci;
570 header->vpi = vcc->vpi;
571 header->gfc = 0;
572
573 /* setup descriptor */
574 reg_desc.dataptr = (unsigned int)skb->data >> 2;
575 reg_desc.datalen = datalen;
576 reg_desc.byteoff = byteoff;
577 reg_desc.iscell = 0;
578 } else {
579 /* if data pointer is not aligned, allocate new sk_buff */
580 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
581 pr_err("skb->data not aligned\n");
582 new_skb = skb_duplicate(skb);
583 } else
584 new_skb = skb_break_away_from_protocol(skb);
585 if ( new_skb == NULL ) {
586 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
587 ret = -ENOMEM;
588 goto PPE_SEND_FAIL;
589 }
590 dev_kfree_skb_any(skb);
591 skb = new_skb;
592
593 reg_desc.dataptr = (unsigned int)skb->data >> 2;
594 reg_desc.datalen = skb->len;
595 reg_desc.byteoff = 0;
596 reg_desc.iscell = 1;
597 }
598
599 reg_desc.own = 1;
600 reg_desc.c = 1;
601 reg_desc.sop = reg_desc.eop = 1;
602
603 desc_base = get_tx_desc(conn);
604 if ( desc_base < 0 ) {
605 pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
606 ret = -EIO;
607 goto PPE_SEND_FAIL;
608 }
609
610 if ( vcc->stats )
611 atomic_inc(&vcc->stats->tx);
612 if ( vcc->qos.aal == ATM_AAL5 )
613 g_atm_priv_data.wtx_pdu++;
614
615 /* update descriptor send pointer */
616 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
617 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
618 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
619
620 /* write discriptor to memory and write back cache */
621 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
622 dma_cache_wback((unsigned long)skb->data, skb->len);
623
624 mailbox_signal(conn, 1);
625
626 adsl_led_flash();
627
628 return 0;
629
630 FIND_VCC_FAIL:
631 pr_err("FIND_VCC_FAIL\n");
632 g_atm_priv_data.wtx_err_pdu++;
633 dev_kfree_skb_any(skb);
634 return ret;
635
636 PPE_SEND_FAIL:
637 if ( vcc->qos.aal == ATM_AAL5 )
638 g_atm_priv_data.wtx_drop_pdu++;
639 if ( vcc->stats )
640 atomic_inc(&vcc->stats->tx_err);
641 dev_kfree_skb_any(skb);
642 return ret;
643 }
644
645 /* operation and maintainance */
646 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
647 {
648 int conn;
649 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
650 int desc_base;
651 struct sk_buff *skb;
652 struct tx_descriptor reg_desc = {0};
653
654 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
655 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
656 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
657 && find_vpi(uni_cell_header->vpi) < 0) )
658 {
659 g_atm_priv_data.wtx_err_oam++;
660 return -EINVAL;
661 }
662
663 if ( !g_showtime ) {
664 pr_err("not in showtime\n");
665 g_atm_priv_data.wtx_drop_oam++;
666 return -EIO;
667 }
668
669 conn = find_vcc(vcc);
670 if ( conn < 0 ) {
671 pr_err("FIND_VCC_FAIL\n");
672 g_atm_priv_data.wtx_drop_oam++;
673 return -EINVAL;
674 }
675
676 skb = alloc_skb_tx(CELL_SIZE);
677 if ( skb == NULL ) {
678 pr_err("ALLOC_SKB_TX_FAIL\n");
679 g_atm_priv_data.wtx_drop_oam++;
680 return -ENOMEM;
681 }
682 skb_put(skb, CELL_SIZE);
683 memcpy(skb->data, cell, CELL_SIZE);
684
685 reg_desc.dataptr = (unsigned int)skb->data >> 2;
686 reg_desc.datalen = CELL_SIZE;
687 reg_desc.byteoff = 0;
688 reg_desc.iscell = 1;
689
690 reg_desc.own = 1;
691 reg_desc.c = 1;
692 reg_desc.sop = reg_desc.eop = 1;
693
694 desc_base = get_tx_desc(conn);
695 if ( desc_base < 0 ) {
696 dev_kfree_skb_any(skb);
697 pr_err("ALLOC_TX_CONNECTION_FAIL\n");
698 g_atm_priv_data.wtx_drop_oam++;
699 return -EIO;
700 }
701
702 if ( vcc->stats )
703 atomic_inc(&vcc->stats->tx);
704
705 /* update descriptor send pointer */
706 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
707 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
708 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
709
710 /* write discriptor to memory and write back cache */
711 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
712 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
713
714 mailbox_signal(conn, 1);
715
716 g_atm_priv_data.wtx_oam++;
717 adsl_led_flash();
718
719 return 0;
720 }
721
722 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
723 {
724 int conn;
725
726 if ( vcc == NULL || qos == NULL )
727 return -EINVAL;
728
729 conn = find_vcc(vcc);
730 if ( conn < 0 )
731 return -EINVAL;
732
733 set_qsb(vcc, qos, conn);
734
735 return 0;
736 }
737
738 static inline void adsl_led_flash(void)
739 {
740 ifx_mei_atm_led_blink();
741 }
742
743 /*
744 * Description:
745 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
746 * Input:
747 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
748 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
749 * ret --- ppe_u64_t, pointer to a variable to hold result
750 * Output:
751 * none
752 */
753 static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
754 {
755 ret->l = opt1.l + opt2;
756 if ( ret->l < opt1.l || ret->l < opt2 )
757 ret->h++;
758 }
759
760 static inline struct sk_buff* alloc_skb_rx(void)
761 {
762 struct sk_buff *skb;
763
764 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
765 if ( skb != NULL ) {
766 /* must be burst length alignment */
767 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
768 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
769 /* pub skb in reserved area "skb->data - 4" */
770 *((struct sk_buff **)skb->data - 1) = skb;
771 /* write back and invalidate cache */
772 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
773 /* invalidate cache */
774 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
775 dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
776 #else
777 dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
778 #endif
779 }
780 return skb;
781 }
782
783 static inline struct sk_buff* alloc_skb_tx(unsigned int size)
784 {
785 struct sk_buff *skb;
786
787 /* allocate memory including header and padding */
788 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
789 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
790 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
791 /* must be burst length alignment */
792 if ( skb != NULL )
793 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
794 return skb;
795 }
796
797 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
798 {
799 int conn;
800 struct sk_buff *skb;
801
802 /* oversize packet */
803 if ( size > aal5s_max_packet_size ) {
804 pr_err("atm_alloc_tx: oversize packet\n");
805 return NULL;
806 }
807 /* send buffer overflow */
808 if ( sk_wmem_alloc_get(sk_atm(vcc)) && !atm_may_send(vcc, size) ) {
809 pr_err("atm_alloc_tx: send buffer overflow\n");
810 return NULL;
811 }
812 conn = find_vcc(vcc);
813 if ( conn < 0 ) {
814 pr_err("atm_alloc_tx: unknown VCC\n");
815 return NULL;
816 }
817
818 skb = dev_alloc_skb(size);
819 if ( skb == NULL ) {
820 pr_err("atm_alloc_tx: sk buffer is used up\n");
821 return NULL;
822 }
823
824 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
825
826 return skb;
827 }
828
829 static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
830 {
831 if ( vcc->pop != NULL )
832 vcc->pop(vcc, skb);
833 else
834 dev_kfree_skb_any(skb);
835 }
836
837 static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
838 {
839 unsigned int skb_dataptr;
840 struct sk_buff *skb;
841
842 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
843 skb = *(struct sk_buff **)skb_dataptr;
844
845 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
846 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
847
848 return skb;
849 }
850
851 static inline int get_tx_desc(unsigned int conn)
852 {
853 int desc_base = -1;
854 struct connection *p_conn = &g_atm_priv_data.conn[conn];
855
856 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
857 desc_base = p_conn->tx_desc_pos;
858 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
859 p_conn->tx_desc_pos = 0;
860 }
861
862 return desc_base;
863 }
864
865 static struct sk_buff* skb_duplicate(struct sk_buff *skb)
866 {
867 struct sk_buff *new_skb;
868
869 new_skb = alloc_skb_tx(skb->len);
870 if ( new_skb == NULL )
871 return NULL;
872
873 skb_put(new_skb, skb->len);
874 memcpy(new_skb->data, skb->data, skb->len);
875
876 return new_skb;
877 }
878
879 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *skb)
880 {
881 struct sk_buff *new_skb;
882
883 if ( skb_shared(skb) ) {
884 new_skb = skb_clone(skb, GFP_ATOMIC);
885 if ( new_skb == NULL )
886 return NULL;
887 } else
888 new_skb = skb_get(skb);
889
890 skb_dst_drop(new_skb);
891 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
892 nf_conntrack_put(new_skb->nfct);
893 new_skb->nfct = NULL;
894 #ifdef CONFIG_BRIDGE_NETFILTER
895 nf_bridge_put(new_skb->nf_bridge);
896 new_skb->nf_bridge = NULL;
897 #endif
898 #endif
899
900 return new_skb;
901 }
902
903 static inline void mailbox_oam_rx_handler(void)
904 {
905 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
906 struct rx_descriptor reg_desc;
907 struct uni_cell_header *header;
908 int conn;
909 struct atm_vcc *vcc;
910 unsigned int i;
911
912 for ( i = 0; i < vlddes; i++ ) {
913 unsigned int loop_count = 0;
914
915 do {
916 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
917 if ( ++loop_count == 1000 )
918 break;
919 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
920 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
921
922 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
923
924 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
925 conn = find_vpivci(header->vpi, header->vci);
926 else if ( header->vci == 0x03 || header->vci == 0x04 )
927 conn = find_vpi(header->vpi);
928 else
929 conn = -1;
930
931 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
932 vcc = g_atm_priv_data.conn[conn].vcc;
933
934 if ( vcc->push_oam != NULL )
935 vcc->push_oam(vcc, header);
936 else
937 ifx_push_oam((unsigned char *)header);
938
939 g_atm_priv_data.wrx_oam++;
940
941 adsl_led_flash();
942 } else
943 g_atm_priv_data.wrx_drop_oam++;
944
945 reg_desc.byteoff = 0;
946 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
947 reg_desc.own = 1;
948 reg_desc.c = 0;
949
950 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
951 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
952 g_atm_priv_data.oam_desc_pos = 0;
953
954 dma_cache_inv((unsigned long)header, CELL_SIZE);
955 mailbox_signal(RX_DMA_CH_OAM, 0);
956 }
957 }
958
959 static inline void mailbox_aal_rx_handler(void)
960 {
961 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
962 struct rx_descriptor reg_desc;
963 int conn;
964 struct atm_vcc *vcc;
965 struct sk_buff *skb, *new_skb;
966 struct rx_inband_trailer *trailer;
967 unsigned int i;
968
969 for ( i = 0; i < vlddes; i++ ) {
970 unsigned int loop_count = 0;
971
972 do {
973 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
974 if ( ++loop_count == 1000 )
975 break;
976 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
977 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
978
979 conn = reg_desc.id;
980
981 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
982 vcc = g_atm_priv_data.conn[conn].vcc;
983
984 skb = get_skb_rx_pointer(reg_desc.dataptr);
985
986 if ( reg_desc.err ) {
987 if ( vcc->qos.aal == ATM_AAL5 ) {
988 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
989 if ( trailer->stw_crc )
990 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
991 if ( trailer->stw_ovz )
992 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
993 g_atm_priv_data.wrx_drop_pdu++;
994 }
995 if ( vcc->stats ) {
996 atomic_inc(&vcc->stats->rx_drop);
997 atomic_inc(&vcc->stats->rx_err);
998 }
999 reg_desc.err = 0;
1000 } else if ( atm_charge(vcc, skb->truesize) ) {
1001 new_skb = alloc_skb_rx();
1002 if ( new_skb != NULL ) {
1003 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
1004 if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
1005 dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
1006 #endif
1007
1008 skb_reserve(skb, reg_desc.byteoff);
1009 skb_put(skb, reg_desc.datalen);
1010 ATM_SKB(skb)->vcc = vcc;
1011
1012 vcc->push(vcc, skb);
1013
1014 if ( vcc->qos.aal == ATM_AAL5 )
1015 g_atm_priv_data.wrx_pdu++;
1016 if ( vcc->stats )
1017 atomic_inc(&vcc->stats->rx);
1018 adsl_led_flash();
1019
1020 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1021 } else {
1022 atm_return(vcc, skb->truesize);
1023 if ( vcc->qos.aal == ATM_AAL5 )
1024 g_atm_priv_data.wrx_drop_pdu++;
1025 if ( vcc->stats )
1026 atomic_inc(&vcc->stats->rx_drop);
1027 }
1028 } else {
1029 if ( vcc->qos.aal == ATM_AAL5 )
1030 g_atm_priv_data.wrx_drop_pdu++;
1031 if ( vcc->stats )
1032 atomic_inc(&vcc->stats->rx_drop);
1033 }
1034 } else {
1035 g_atm_priv_data.wrx_drop_pdu++;
1036 }
1037
1038 reg_desc.byteoff = 0;
1039 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1040 reg_desc.own = 1;
1041 reg_desc.c = 0;
1042
1043 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1044 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1045 g_atm_priv_data.aal_desc_pos = 0;
1046
1047 mailbox_signal(RX_DMA_CH_AAL, 0);
1048 }
1049 }
1050
1051 static void do_ppe_tasklet(unsigned long data)
1052 {
1053 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1054 mailbox_oam_rx_handler();
1055 mailbox_aal_rx_handler();
1056
1057 if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
1058 tasklet_schedule(&g_dma_tasklet);
1059 else
1060 enable_irq(PPE_MAILBOX_IGU1_INT);
1061 }
1062
1063 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1064 {
1065 if ( !*MBOX_IGU1_ISR )
1066 return IRQ_HANDLED;
1067
1068 disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
1069 tasklet_schedule(&g_dma_tasklet);
1070
1071 return IRQ_HANDLED;
1072 }
1073
1074 static inline void mailbox_signal(unsigned int queue, int is_tx)
1075 {
1076 int count = 1000;
1077
1078 if ( is_tx ) {
1079 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
1080 count--;
1081 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1082 } else {
1083 while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
1084 count--;
1085 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1086 }
1087
1088 ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
1089 }
1090
1091 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1092 {
1093 struct clk *fpi_clk = clk_get_fpi();
1094 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1095 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1096 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1097 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1098 unsigned int tmp;
1099
1100
1101 /*
1102 * Peak Cell Rate (PCR) Limiter
1103 */
1104 if ( qos->txtp.max_pcr == 0 )
1105 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1106 else {
1107 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1108 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1109 /* check if overflow takes place */
1110 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1111 }
1112
1113 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
1114 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1115 // Send packets to these two PVCs at same time, it trigger strange behavior.
1116 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1117 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1118 // To work around, create UBR always with max_pcr.
1119 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1120 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1121 int port = g_atm_priv_data.conn[queue].port;
1122 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1123
1124 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1125 if ( tmp > QSB_TP_TS_MAX )
1126 tmp = QSB_TP_TS_MAX;
1127 else if ( tmp < 1 )
1128 tmp = 1;
1129 qsb_queue_parameter_table.bit.tp = tmp;
1130 }
1131 #endif
1132
1133 /*
1134 * Weighted Fair Queueing Factor (WFQF)
1135 */
1136 switch ( qos->txtp.traffic_class ) {
1137 case ATM_CBR:
1138 case ATM_VBR_RT:
1139 /* real time queue gets weighted fair queueing bypass */
1140 qsb_queue_parameter_table.bit.wfqf = 0;
1141 break;
1142 case ATM_VBR_NRT:
1143 case ATM_UBR_PLUS:
1144 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1145 /* WFQF is maximum cell rate / garenteed cell rate */
1146 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1147 if ( qos->txtp.min_pcr == 0 )
1148 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1149 else {
1150 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1151 if ( tmp == 0 )
1152 qsb_queue_parameter_table.bit.wfqf = 1;
1153 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1154 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1155 else
1156 qsb_queue_parameter_table.bit.wfqf = tmp;
1157 }
1158 break;
1159 default:
1160 case ATM_UBR:
1161 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1162 }
1163
1164 /*
1165 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1166 */
1167 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1168 #if 0
1169 if ( qos->txtp.scr == 0 ) {
1170 #endif
1171 /* disable shaper */
1172 qsb_queue_vbr_parameter_table.bit.taus = 0;
1173 qsb_queue_vbr_parameter_table.bit.ts = 0;
1174 #if 0
1175 } else {
1176 /* Cell Loss Priority (CLP) */
1177 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1178 /* CLP1 */
1179 qsb_queue_parameter_table.bit.vbr = 1;
1180 else
1181 /* CLP0 */
1182 qsb_queue_parameter_table.bit.vbr = 0;
1183 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1184 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1185 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1186 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1187 if ( tmp == 0 )
1188 qsb_queue_vbr_parameter_table.bit.taus = 1;
1189 else if ( tmp > QSB_TAUS_MAX )
1190 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1191 else
1192 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1193 }
1194 #endif
1195 } else {
1196 qsb_queue_vbr_parameter_table.bit.taus = 0;
1197 qsb_queue_vbr_parameter_table.bit.ts = 0;
1198 }
1199
1200 /* Queue Parameter Table (QPT) */
1201 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1202 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1203 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1204 /* Queue VBR Paramter Table (QVPT) */
1205 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1206 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1207 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1208
1209 }
1210
1211 static void qsb_global_set(void)
1212 {
1213 struct clk *fpi_clk = clk_get_fpi();
1214 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1215 int i;
1216 unsigned int tmp1, tmp2, tmp3;
1217
1218 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1219 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1220 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1221
1222 /*
1223 * set SCT and SPT per port
1224 */
1225 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1226 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1227 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1228 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1229 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1230 /* carry over to integer part (?) */
1231 if ( tmp3 == (1 << 6) ) {
1232 tmp3 = 0;
1233 tmp2++;
1234 }
1235 if ( tmp2 == 0 )
1236 tmp2 = tmp3 = 1;
1237 /* 1. set mask */
1238 /* 2. write value to data transfer register */
1239 /* 3. start the tranfer */
1240 /* SCT (FracRate) */
1241 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1242 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1243 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1244 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
1245 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1246 QSB_RAMAC_TESEL_SET(i & 0x01);
1247 /* SPT (SBV + PN + IntRage) */
1248 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1249 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1250 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1251 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
1252 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1253 QSB_RAMAC_TESEL_SET(i & 0x01);
1254 }
1255 }
1256 }
1257
1258 static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1259 {
1260 struct htu_entry htu_entry = {
1261 res1: 0x00,
1262 clp: is_retx ? 0x01 : 0x00,
1263 pid: g_atm_priv_data.conn[queue].port & 0x01,
1264 vpi: vpi,
1265 vci: vci,
1266 pti: 0x00,
1267 vld: 0x01};
1268
1269 struct htu_mask htu_mask = {
1270 set: 0x01,
1271 clp: 0x01,
1272 pid_mask: 0x02,
1273 vpi_mask: 0x00,
1274 vci_mask: 0x0000,
1275 pti_mask: 0x03, // 0xx, user data
1276 clear: 0x00};
1277
1278 struct htu_result htu_result = {
1279 res1: 0x00,
1280 cellid: queue,
1281 res2: 0x00,
1282 type: aal5 ? 0x00 : 0x01,
1283 ven: 0x01,
1284 res3: 0x00,
1285 qid: queue};
1286
1287 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1288 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1289 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1290 }
1291
1292 static inline void clear_htu_entry(unsigned int queue)
1293 {
1294 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1295 }
1296
1297 static void validate_oam_htu_entry(void)
1298 {
1299 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1300 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1301 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1302 }
1303
1304 static void invalidate_oam_htu_entry(void)
1305 {
1306 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1307 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1308 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1309 }
1310
1311 static inline int find_vpi(unsigned int vpi)
1312 {
1313 int i;
1314 unsigned int bit;
1315
1316 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1317 if ( (g_atm_priv_data.conn_table & bit) != 0
1318 && g_atm_priv_data.conn[i].vcc != NULL
1319 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1320 return i;
1321 }
1322
1323 return -1;
1324 }
1325
1326 static inline int find_vpivci(unsigned int vpi, unsigned int vci)
1327 {
1328 int i;
1329 unsigned int bit;
1330
1331 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1332 if ( (g_atm_priv_data.conn_table & bit) != 0
1333 && g_atm_priv_data.conn[i].vcc != NULL
1334 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1335 && vci == g_atm_priv_data.conn[i].vcc->vci )
1336 return i;
1337 }
1338
1339 return -1;
1340 }
1341
1342 static inline int find_vcc(struct atm_vcc *vcc)
1343 {
1344 int i;
1345 unsigned int bit;
1346
1347 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1348 if ( (g_atm_priv_data.conn_table & bit) != 0
1349 && g_atm_priv_data.conn[i].vcc == vcc )
1350 return i;
1351 }
1352
1353 return -1;
1354 }
1355
1356 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
1357 {
1358 int len = 0;
1359 unsigned int major, minor;
1360
1361 ops->fw_ver(&major, &minor);
1362
1363 len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1364 len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
1365
1366 return len;
1367 }
1368
1369 static inline void check_parameters(void)
1370 {
1371 /* Please refer to Amazon spec 15.4 for setting these values. */
1372 if ( qsb_tau < 1 )
1373 qsb_tau = 1;
1374 if ( qsb_tstep < 1 )
1375 qsb_tstep = 1;
1376 else if ( qsb_tstep > 4 )
1377 qsb_tstep = 4;
1378 else if ( qsb_tstep == 3 )
1379 qsb_tstep = 2;
1380
1381 /* There is a delay between PPE write descriptor and descriptor is */
1382 /* really stored in memory. Host also has this delay when writing */
1383 /* descriptor. So PPE will use this value to determine if the write */
1384 /* operation makes effect. */
1385 if ( write_descriptor_delay < 0 )
1386 write_descriptor_delay = 0;
1387
1388 if ( aal5_fill_pattern < 0 )
1389 aal5_fill_pattern = 0;
1390 else
1391 aal5_fill_pattern &= 0xFF;
1392
1393 /* Because of the limitation of length field in descriptors, the packet */
1394 /* size could not be larger than 64K minus overhead size. */
1395 if ( aal5r_max_packet_size < 0 )
1396 aal5r_max_packet_size = 0;
1397 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1398 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1399 if ( aal5r_min_packet_size < 0 )
1400 aal5r_min_packet_size = 0;
1401 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1402 aal5r_min_packet_size = aal5r_max_packet_size;
1403 if ( aal5s_max_packet_size < 0 )
1404 aal5s_max_packet_size = 0;
1405 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1406 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1407 if ( aal5s_min_packet_size < 0 )
1408 aal5s_min_packet_size = 0;
1409 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1410 aal5s_min_packet_size = aal5s_max_packet_size;
1411
1412 if ( dma_rx_descriptor_length < 2 )
1413 dma_rx_descriptor_length = 2;
1414 if ( dma_tx_descriptor_length < 2 )
1415 dma_tx_descriptor_length = 2;
1416 if ( dma_rx_clp1_descriptor_threshold < 0 )
1417 dma_rx_clp1_descriptor_threshold = 0;
1418 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1419 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1420
1421 if ( dma_tx_descriptor_length < 2 )
1422 dma_tx_descriptor_length = 2;
1423 }
1424
1425 static inline int init_priv_data(void)
1426 {
1427 void *p;
1428 int i;
1429 struct rx_descriptor rx_desc = {0};
1430 struct sk_buff *skb;
1431 volatile struct tx_descriptor *p_tx_desc;
1432 struct sk_buff **ppskb;
1433
1434 // clear atm private data structure
1435 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
1436
1437 // allocate memory for RX (AAL) descriptors
1438 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1439 if ( p == NULL )
1440 return -1;
1441 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1442 g_atm_priv_data.aal_desc_base = p;
1443 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1444 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
1445
1446 // allocate memory for RX (OAM) descriptors
1447 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1448 if ( p == NULL )
1449 return -1;
1450 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1451 g_atm_priv_data.oam_desc_base = p;
1452 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1453 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
1454
1455 // allocate memory for RX (OAM) buffer
1456 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
1457 if ( p == NULL )
1458 return -1;
1459 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
1460 g_atm_priv_data.oam_buf_base = p;
1461 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
1462 g_atm_priv_data.oam_buf = p;
1463
1464 // allocate memory for TX descriptors
1465 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1466 if ( p == NULL )
1467 return -1;
1468 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
1469 g_atm_priv_data.tx_desc_base = p;
1470
1471 // allocate memory for TX skb pointers
1472 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
1473 if ( p == NULL )
1474 return -1;
1475 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
1476 g_atm_priv_data.tx_skb_base = p;
1477
1478 // setup RX (AAL) descriptors
1479 rx_desc.own = 1;
1480 rx_desc.c = 0;
1481 rx_desc.sop = 1;
1482 rx_desc.eop = 1;
1483 rx_desc.byteoff = 0;
1484 rx_desc.id = 0;
1485 rx_desc.err = 0;
1486 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1487 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1488 skb = alloc_skb_rx();
1489 if ( skb == NULL )
1490 return -1;
1491 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
1492 g_atm_priv_data.aal_desc[i] = rx_desc;
1493 }
1494
1495 // setup RX (OAM) descriptors
1496 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
1497 rx_desc.own = 1;
1498 rx_desc.c = 0;
1499 rx_desc.sop = 1;
1500 rx_desc.eop = 1;
1501 rx_desc.byteoff = 0;
1502 rx_desc.id = 0;
1503 rx_desc.err = 0;
1504 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1505 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
1506 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
1507 g_atm_priv_data.oam_desc[i] = rx_desc;
1508 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
1509 }
1510
1511 // setup TX descriptors and skb pointers
1512 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1513 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
1514 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1515 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
1516 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
1517 }
1518
1519 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1520 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
1521
1522 return 0;
1523 }
1524
1525 static inline void clear_priv_data(void)
1526 {
1527 int i, j;
1528 struct sk_buff *skb;
1529
1530 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1531 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
1532 for ( j = 0; j < dma_tx_descriptor_length; j++ )
1533 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
1534 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
1535 }
1536 }
1537
1538 if ( g_atm_priv_data.tx_skb_base != NULL )
1539 kfree(g_atm_priv_data.tx_skb_base);
1540
1541 if ( g_atm_priv_data.tx_desc_base != NULL )
1542 kfree(g_atm_priv_data.tx_desc_base);
1543
1544 if ( g_atm_priv_data.oam_buf_base != NULL )
1545 kfree(g_atm_priv_data.oam_buf_base);
1546
1547 if ( g_atm_priv_data.oam_desc_base != NULL )
1548 kfree(g_atm_priv_data.oam_desc_base);
1549
1550 if ( g_atm_priv_data.aal_desc_base != NULL ) {
1551 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1552 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
1553 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
1554 dev_kfree_skb_any(skb);
1555 }
1556 }
1557 kfree(g_atm_priv_data.aal_desc_base);
1558 }
1559 }
1560
1561 static inline void init_rx_tables(void)
1562 {
1563 int i;
1564 struct wrx_queue_config wrx_queue_config = {0};
1565 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
1566 struct htu_entry htu_entry = {0};
1567 struct htu_result htu_result = {0};
1568 struct htu_mask htu_mask = {
1569 set: 0x01,
1570 clp: 0x01,
1571 pid_mask: 0x00,
1572 vpi_mask: 0x00,
1573 vci_mask: 0x00,
1574 pti_mask: 0x00,
1575 clear: 0x00
1576 };
1577
1578 /*
1579 * General Registers
1580 */
1581 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
1582 #ifndef CONFIG_AMAZON_SE
1583 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
1584 #endif
1585 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
1586 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
1587 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
1588
1589 /*
1590 * WRX Queue Configuration Table
1591 */
1592 wrx_queue_config.uumask = 0xFF;
1593 wrx_queue_config.cpimask = 0xFF;
1594 wrx_queue_config.uuexp = 0;
1595 wrx_queue_config.cpiexp = 0;
1596 wrx_queue_config.mfs = aal5r_max_packet_size;
1597 wrx_queue_config.oversize = aal5r_max_packet_size;
1598 wrx_queue_config.undersize = aal5r_min_packet_size;
1599 wrx_queue_config.errdp = aal5r_drop_error_packet;
1600 wrx_queue_config.dmach = RX_DMA_CH_AAL;
1601 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
1602 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
1603 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
1604
1605 /*
1606 * WRX DMA Channel Configuration Table
1607 */
1608 wrx_dma_channel_config.chrl = 0;
1609 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
1610 wrx_dma_channel_config.mode = 0;
1611 wrx_dma_channel_config.rlcfg = 0;
1612
1613 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
1614 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
1615 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
1616
1617 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
1618 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
1619 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
1620
1621 /*
1622 * HTU Tables
1623 */
1624 for (i = 0; i < MAX_PVC_NUMBER; i++) {
1625 htu_result.qid = (unsigned int)i;
1626
1627 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1628 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1629 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
1630 }
1631
1632 /* OAM HTU Entry */
1633 htu_entry.vci = 0x03;
1634 htu_mask.pid_mask = 0x03;
1635 htu_mask.vpi_mask = 0xFF;
1636 htu_mask.vci_mask = 0x0000;
1637 htu_mask.pti_mask = 0x07;
1638 htu_result.cellid = OAM_RX_QUEUE;
1639 htu_result.type = 1;
1640 htu_result.ven = 1;
1641 htu_result.qid = OAM_RX_QUEUE;
1642 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
1643 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
1644 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
1645 htu_entry.vci = 0x04;
1646 htu_result.cellid = OAM_RX_QUEUE;
1647 htu_result.type = 1;
1648 htu_result.ven = 1;
1649 htu_result.qid = OAM_RX_QUEUE;
1650 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
1651 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
1652 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
1653 htu_entry.vci = 0x00;
1654 htu_entry.pti = 0x04;
1655 htu_mask.vci_mask = 0xFFFF;
1656 htu_mask.pti_mask = 0x01;
1657 htu_result.cellid = OAM_RX_QUEUE;
1658 htu_result.type = 1;
1659 htu_result.ven = 1;
1660 htu_result.qid = OAM_RX_QUEUE;
1661 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
1662 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
1663 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
1664 }
1665
1666 static inline void init_tx_tables(void)
1667 {
1668 int i;
1669 struct wtx_queue_config wtx_queue_config = {0};
1670 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
1671 struct wtx_port_config wtx_port_config = {
1672 res1: 0,
1673 qid: 0,
1674 qsben: 1
1675 };
1676
1677 /*
1678 * General Registers
1679 */
1680 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
1681 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
1682 *CFG_WRDES_DELAY = write_descriptor_delay;
1683
1684 /*
1685 * WTX Port Configuration Table
1686 */
1687 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1688 *WTX_PORT_CONFIG(i) = wtx_port_config;
1689
1690 /*
1691 * WTX Queue Configuration Table
1692 */
1693 wtx_queue_config.qsben = 1;
1694 wtx_queue_config.sbid = 0;
1695 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
1696 wtx_queue_config.qsb_vcid = i;
1697 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
1698 }
1699
1700 /*
1701 * WTX DMA Channel Configuration Table
1702 */
1703 wtx_dma_channel_config.mode = 0;
1704 wtx_dma_channel_config.deslen = 0;
1705 wtx_dma_channel_config.desba = 0;
1706 for ( i = 0; i < FIRST_QSB_QID; i++ )
1707 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1708 /* normal connection */
1709 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
1710 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
1711 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
1712 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1713 }
1714 }
1715
1716 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
1717 {
1718 int i, j, port_num;
1719
1720 ASSERT(port_cell != NULL, "port_cell is NULL");
1721 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
1722
1723 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
1724 if ( port_cell->tx_link_rate[j] > 0 )
1725 break;
1726 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
1727 g_atm_priv_data.port[i].tx_max_cell_rate =
1728 port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
1729
1730 qsb_global_set();
1731
1732 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
1733 if ( g_atm_priv_data.conn[i].vcc != NULL )
1734 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
1735
1736 // TODO: ReTX set xdata_addr
1737 g_xdata_addr = xdata_addr;
1738
1739 g_showtime = 1;
1740
1741 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1742 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_FOUND);
1743
1744 #if defined(CONFIG_VR9)
1745 IFX_REG_W32(0x0F, UTP_CFG);
1746 #endif
1747
1748 printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
1749 g_atm_priv_data.port[0].tx_max_cell_rate,
1750 g_atm_priv_data.port[1].tx_max_cell_rate,
1751 (unsigned int)g_xdata_addr);
1752
1753 return 0;
1754 }
1755
1756 static int atm_showtime_exit(void)
1757 {
1758 int port_num;
1759
1760 if ( !g_showtime )
1761 return -1;
1762
1763 #if defined(CONFIG_VR9)
1764 IFX_REG_W32(0x00, UTP_CFG);
1765 #endif
1766
1767 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1768 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1769
1770 g_showtime = 0;
1771 g_xdata_addr = NULL;
1772 printk("leave showtime\n");
1773 return 0;
1774 }
1775
1776 extern struct ltq_atm_ops ar9_ops;
1777 extern struct ltq_atm_ops vr9_ops;
1778 extern struct ltq_atm_ops danube_ops;
1779 extern struct ltq_atm_ops ase_ops;
1780
1781 static const struct of_device_id ltq_atm_match[] = {
1782 #ifdef CONFIG_DANUBE
1783 { .compatible = "lantiq,ppe-danube", .data = &danube_ops },
1784 #elif defined CONFIG_AMAZON_SE
1785 { .compatible = "lantiq,ppe-ase", .data = &ase_ops },
1786 #elif defined CONFIG_AR9
1787 { .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
1788 #elif defined CONFIG_VR9
1789 { .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
1790 #endif
1791 {},
1792 };
1793 MODULE_DEVICE_TABLE(of, ltq_atm_match);
1794
1795 static int ltq_atm_probe(struct platform_device *pdev)
1796 {
1797 const struct of_device_id *match;
1798 struct ltq_atm_ops *ops = NULL;
1799 int ret;
1800 int port_num;
1801 struct port_cell_info port_cell = {0};
1802 int i, j;
1803 char ver_str[256];
1804
1805 match = of_match_device(ltq_atm_match, &pdev->dev);
1806 if (!match) {
1807 dev_err(&pdev->dev, "failed to find matching device\n");
1808 return -ENOENT;
1809 }
1810 ops = (struct ltq_atm_ops *) match->data;
1811
1812 check_parameters();
1813
1814 ret = init_priv_data();
1815 if ( ret != 0 ) {
1816 pr_err("INIT_PRIV_DATA_FAIL\n");
1817 goto INIT_PRIV_DATA_FAIL;
1818 }
1819
1820 ops->init();
1821 init_rx_tables();
1822 init_tx_tables();
1823
1824 /* create devices */
1825 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
1826 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
1827 if ( !g_atm_priv_data.port[port_num].dev ) {
1828 pr_err("failed to register atm device %d!\n", port_num);
1829 ret = -EIO;
1830 goto ATM_DEV_REGISTER_FAIL;
1831 } else {
1832 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
1833 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
1834 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
1835 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
1836
1837 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
1838 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1839 #endif
1840 }
1841 }
1842
1843 /* register interrupt handler */
1844 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
1845 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, 0, "atm_mailbox_isr", &g_atm_priv_data);
1846 #else
1847 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
1848 #endif
1849 if ( ret ) {
1850 if ( ret == -EBUSY ) {
1851 pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
1852 } else {
1853 pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
1854 }
1855 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
1856 }
1857 disable_irq(PPE_MAILBOX_IGU1_INT);
1858
1859
1860 ret = ops->start(0);
1861 if ( ret ) {
1862 pr_err("ifx_pp32_start fail!\n");
1863 goto PP32_START_FAIL;
1864 }
1865
1866 port_cell.port_num = ATM_PORT_NUMBER;
1867 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
1868 if ( g_showtime ) {
1869 atm_showtime_enter(&port_cell, &g_xdata_addr);
1870 } else {
1871 qsb_global_set();
1872 }
1873
1874 validate_oam_htu_entry();
1875
1876 ifx_mei_atm_showtime_enter = atm_showtime_enter;
1877 ifx_mei_atm_showtime_exit = atm_showtime_exit;
1878
1879 ifx_atm_version(ops, ver_str);
1880 printk(KERN_INFO "%s", ver_str);
1881 platform_set_drvdata(pdev, ops);
1882 printk("ifxmips_atm: ATM init succeed\n");
1883
1884 return 0;
1885
1886 PP32_START_FAIL:
1887 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1888 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
1889 ATM_DEV_REGISTER_FAIL:
1890 while ( port_num-- > 0 )
1891 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1892 INIT_PRIV_DATA_FAIL:
1893 clear_priv_data();
1894 printk("ifxmips_atm: ATM init failed\n");
1895 return ret;
1896 }
1897
1898 static int ltq_atm_remove(struct platform_device *pdev)
1899 {
1900 int port_num;
1901 struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
1902
1903 ifx_mei_atm_showtime_enter = NULL;
1904 ifx_mei_atm_showtime_exit = NULL;
1905
1906 invalidate_oam_htu_entry();
1907
1908 ops->stop(0);
1909
1910 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1911
1912 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1913 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1914
1915 ops->shutdown();
1916
1917 clear_priv_data();
1918
1919 return 0;
1920 }
1921
1922 static struct platform_driver ltq_atm_driver = {
1923 .probe = ltq_atm_probe,
1924 .remove = ltq_atm_remove,
1925 .driver = {
1926 .name = "atm",
1927 .owner = THIS_MODULE,
1928 .of_match_table = ltq_atm_match,
1929 },
1930 };
1931
1932 module_platform_driver(ltq_atm_driver);
1933
1934 MODULE_LICENSE("Dual BSD/GPL");