0b33a3ad4c9b736443a5126ce814fbae059bb9ea
[openwrt/openwrt.git] / package / uboot-lantiq / files / board / infineon / easy50712 / danube.c
1 /*
2 * (C) Copyright 2003
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * (C) Copyright 2010
6 * Thomas Langer, Ralph Hempel
7 *
8 * See file CREDITS for list of people who contributed to this
9 * project.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of
14 * the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24 * MA 02111-1307 USA
25 */
26
27 #include <common.h>
28 #include <command.h>
29 #include <netdev.h>
30 #include <miiphy.h>
31 #include <asm/addrspace.h>
32 #include <asm/danube.h>
33 #include <asm/reboot.h>
34 #include <asm/io.h>
35 #if defined(CONFIG_CMD_HTTPD)
36 #include <httpd.h>
37 #endif
38
39 extern ulong ifx_get_ddr_hz(void);
40 extern ulong ifx_get_cpuclk(void);
41
42 /* definitions for external PHYs / Switches */
43 /* Split values into phy address and register address */
44 #define PHYADDR(_reg) ((_reg >> 5) & 0xff), (_reg & 0x1f)
45
46 /* IDs and registers of known external switches */
47 #define ID_SAMURAI_0 0x1020
48 #define ID_SAMURAI_1 0x0007
49 #define SAMURAI_ID_REG0 0xA0
50 #define SAMURAI_ID_REG1 0xA1
51
52 #define ID_TANTOS 0x2599
53
54 void _machine_restart(void)
55 {
56 *DANUBE_RCU_RST_REQ |=1<<30;
57 }
58
59 #ifdef CONFIG_SYS_RAMBOOT
60 phys_size_t initdram(int board_type)
61 {
62 return get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_MAX_RAM);
63 }
64 #elif defined(CONFIG_USE_DDR_RAM)
65 phys_size_t initdram(int board_type)
66 {
67 return (CONFIG_SYS_MAX_RAM);
68 }
69 #else
70
71 static ulong max_sdram_size(void) /* per Chip Select */
72 {
73 /* The only supported SDRAM data width is 16bit.
74 */
75 #define CFG_DW 4
76
77 /* The only supported number of SDRAM banks is 4.
78 */
79 #define CFG_NB 4
80
81 ulong cfgpb0 = *DANUBE_SDRAM_MC_CFGPB0;
82 int cols = cfgpb0 & 0xF;
83 int rows = (cfgpb0 & 0xF0) >> 4;
84 ulong size = (1 << (rows + cols)) * CFG_DW * CFG_NB;
85
86 return size;
87 }
88
89 /*
90 * Check memory range for valid RAM. A simple memory test determines
91 * the actually available RAM size between addresses `base' and
92 * `base + maxsize'.
93 */
94
95 static long int dram_size(long int *base, long int maxsize)
96 {
97 volatile long int *addr;
98 ulong cnt, val;
99 ulong save[32]; /* to make test non-destructive */
100 unsigned char i = 0;
101
102 for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) {
103 addr = base + cnt; /* pointer arith! */
104
105 save[i++] = *addr;
106 *addr = ~cnt;
107 }
108
109 /* write 0 to base address */
110 addr = base;
111 save[i] = *addr;
112 *addr = 0;
113
114 /* check at base address */
115 if ((val = *addr) != 0) {
116 *addr = save[i];
117 return (0);
118 }
119
120 for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
121 addr = base + cnt; /* pointer arith! */
122
123 val = *addr;
124 *addr = save[--i];
125
126 if (val != (~cnt)) {
127 return (cnt * sizeof (long));
128 }
129 }
130 return (maxsize);
131 }
132
133 phys_size_t initdram(int board_type)
134 {
135 int rows, cols, best_val = *DANUBE_SDRAM_MC_CFGPB0;
136 ulong size, max_size = 0;
137 ulong our_address;
138
139 /* load t9 into our_address */
140 asm volatile ("move %0, $25" : "=r" (our_address) :);
141
142 /* Can't probe for RAM size unless we are running from Flash.
143 * find out whether running from DRAM or Flash.
144 */
145 if (CPHYSADDR(our_address) < CPHYSADDR(PHYS_FLASH_1))
146 {
147 return max_sdram_size();
148 }
149
150 for (cols = 0x8; cols <= 0xC; cols++)
151 {
152 for (rows = 0xB; rows <= 0xD; rows++)
153 {
154 *DANUBE_SDRAM_MC_CFGPB0 = (0x14 << 8) |
155 (rows << 4) | cols;
156 size = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
157 max_sdram_size());
158
159 if (size > max_size)
160 {
161 best_val = *DANUBE_SDRAM_MC_CFGPB0;
162 max_size = size;
163 }
164 }
165 }
166
167 *DANUBE_SDRAM_MC_CFGPB0 = best_val;
168 return max_size;
169 }
170 #endif
171
172 int checkboard (void)
173 {
174 unsigned long chipid = *DANUBE_MPS_CHIPID;
175 int part_num;
176
177 puts ("Board: ");
178
179 part_num = DANUBE_MPS_CHIPID_PARTNUM_GET(chipid);
180 switch (part_num)
181 {
182 case 0x129:
183 case 0x12D:
184 puts("Danube/Twinpass/Vinax-VE ");
185 break;
186 default:
187 printf ("unknown, chip part number 0x%03X ", part_num);
188 break;
189 }
190 printf ("V1.%ld, ", DANUBE_MPS_CHIPID_VERSION_GET(chipid));
191
192 printf("DDR Speed %ld MHz, ", ifx_get_ddr_hz()/1000000);
193 printf("CPU Speed %ld MHz\n", ifx_get_cpuclk()/1000000);
194
195 return 0;
196 }
197
198 #ifdef CONFIG_SKIP_LOWLEVEL_INIT
199 int board_early_init_f(void)
200 {
201 #ifdef CONFIG_EBU_ADDSEL0
202 (*DANUBE_EBU_ADDSEL0) = CONFIG_EBU_ADDSEL0;
203 #endif
204 #ifdef CONFIG_EBU_ADDSEL1
205 (*DANUBE_EBU_ADDSEL1) = CONFIG_EBU_ADDSEL1;
206 #endif
207 #ifdef CONFIG_EBU_ADDSEL2
208 (*DANUBE_EBU_ADDSEL2) = CONFIG_EBU_ADDSEL2;
209 #endif
210 #ifdef CONFIG_EBU_ADDSEL3
211 (*DANUBE_EBU_ADDSEL3) = CONFIG_EBU_ADDSEL3;
212 #endif
213 #ifdef CONFIG_EBU_BUSCON0
214 (*DANUBE_EBU_BUSCON0) = CONFIG_EBU_BUSCON0;
215 #endif
216 #ifdef CONFIG_EBU_BUSCON1
217 (*DANUBE_EBU_BUSCON1) = CONFIG_EBU_BUSCON1;
218 #endif
219 #ifdef CONFIG_EBU_BUSCON2
220 (*DANUBE_EBU_BUSCON2) = CONFIG_EBU_BUSCON2;
221 #endif
222 #ifdef CONFIG_EBU_BUSCON3
223 (*DANUBE_EBU_BUSCON3) = CONFIG_EBU_BUSCON3;
224 #endif
225
226 return 0;
227 }
228 #endif /* CONFIG_SKIP_LOWLEVEL_INIT */
229
230 #ifdef CONFIG_EXTRA_SWITCH
231 static int external_switch_init(void)
232 {
233 unsigned short chipid0=0xdead, chipid1=0xbeef;
234 static char * const name = "lq_cpe_eth";
235
236 #ifdef CLK_OUT2_25MHZ
237 *DANUBE_GPIO_P0_DIR=0x0000ae78;
238 *DANUBE_GPIO_P0_ALTSEL0=0x00008078;
239 //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
240 *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
241 *DANUBE_CGU_IFCCR=0x00400010;
242 *DANUBE_GPIO_P0_OD=0x0000ae78;
243 #endif
244
245 /* earlier no valid response is available, at least on Twinpass & Tantos @ 111MHz, M4530 platform */
246 udelay(100000);
247
248 debug("\nsearching for Samurai switch ... ");
249 if ( (miiphy_read(name, PHYADDR(SAMURAI_ID_REG0), &chipid0)==0) &&
250 (miiphy_read(name, PHYADDR(SAMURAI_ID_REG1), &chipid1)==0) ) {
251 if (((chipid0 & 0xFFF0) == ID_SAMURAI_0) &&
252 ((chipid1 & 0x000F) == ID_SAMURAI_1)) {
253 debug("found");
254
255 /* enable "Crossover Auto Detect" + defaults */
256 /* P0 */
257 miiphy_write(name, PHYADDR(0x01), 0x840F);
258 /* P1 */
259 miiphy_write(name, PHYADDR(0x03), 0x840F);
260 /* P2 */
261 miiphy_write(name, PHYADDR(0x05), 0x840F);
262 /* P3 */
263 miiphy_write(name, PHYADDR(0x07), 0x840F);
264 /* P4 */
265 miiphy_write(name, PHYADDR(0x08), 0x840F);
266 /* P5 */
267 miiphy_write(name, PHYADDR(0x09), 0x840F);
268 /* System Control 4: CPU on port 1 and other */
269 miiphy_write(name, PHYADDR(0x12), 0x3602);
270 #ifdef CLK_OUT2_25MHZ
271 /* Bandwidth Control Enable Register: enable */
272 miiphy_write(name, PHYADDR(0x33), 0x4000);
273 #endif
274 }
275 }
276
277 debug("\nsearching for TANTOS switch ... ");
278 if (miiphy_read(name, PHYADDR(0x101), &chipid0) == 0) {
279 if (chipid0 == ID_TANTOS) {
280 debug("found");
281
282 /* P5 Basic Control: Force Link Up */
283 miiphy_write(name, PHYADDR(0xA1), 0x0004);
284 /* P6 Basic Control: Force Link Up */
285 miiphy_write(name, PHYADDR(0xC1), 0x0004);
286 /* RGMII/MII Port Control (P4/5/6) */
287 miiphy_write(name, PHYADDR(0xF5), 0x0773);
288
289 /* Software workaround. */
290 /* PHY reset from P0 to P4. */
291
292 /* set data for indirect write */
293 miiphy_write(name, PHYADDR(0x121), 0x8000);
294
295 /* P0 */
296 miiphy_write(name, PHYADDR(0x120), 0x0400);
297 udelay(1000);
298 /* P1 */
299 miiphy_write(name, PHYADDR(0x120), 0x0420);
300 udelay(1000);
301 /* P2 */
302 miiphy_write(name, PHYADDR(0x120), 0x0440);
303 udelay(1000);
304 /* P3 */
305 miiphy_write(name, PHYADDR(0x120), 0x0460);
306 udelay(1000);
307 /* P4 */
308 miiphy_write(name, PHYADDR(0x120), 0x0480);
309 udelay(1000);
310 }
311 }
312 debug("\n");
313
314 return 0;
315 }
316 #endif /* CONFIG_EXTRA_SWITCH */
317
318 int board_eth_init(bd_t *bis)
319 {
320 #if defined(CONFIG_IFX_ETOP)
321
322 *DANUBE_PMU_PWDCR &= 0xFFFFEFDF;
323 *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
324
325 if (lq_eth_initialize(bis)<0)
326 return -1;
327
328 *DANUBE_RCU_RST_REQ |=1;
329 udelay(200000);
330 *DANUBE_RCU_RST_REQ &=(unsigned long)~1;
331 udelay(1000);
332
333 #ifdef CONFIG_EXTRA_SWITCH
334 if (external_switch_init()<0)
335 return -1;
336 #endif /* CONFIG_EXTRA_SWITCH */
337 #endif /* CONFIG_IFX_ETOP */
338
339 return 0;
340 }
341
342 #if defined(CONFIG_CMD_HTTPD)
343 int do_http_upgrade(const unsigned char *data, const ulong size)
344 {
345 char buf[128];
346
347 if(getenv ("ram_addr") == NULL)
348 return -1;
349 if(getenv ("kernel_addr") == NULL)
350 return -1;
351 /* check the image */
352 if(run_command("imi ${ram_addr}", 0) < 0) {
353 return -1;
354 }
355 /* write the image to the flash */
356 puts("http ugrade ...\n");
357 sprintf(buf, "era ${kernel_addr} +0x%x; cp.b ${ram_addr} ${kernel_addr} 0x%x", size, size);
358 return run_command(buf, 0);
359 }
360
361 int do_http_progress(const int state)
362 {
363 /* toggle LED's here */
364 switch(state) {
365 case HTTP_PROGRESS_START:
366 puts("http start\n");
367 break;
368 case HTTP_PROGRESS_TIMEOUT:
369 puts(".");
370 break;
371 case HTTP_PROGRESS_UPLOAD_READY:
372 puts("http upload ready\n");
373 break;
374 case HTTP_PROGRESS_UGRADE_READY:
375 puts("http ugrade ready\n");
376 break;
377 case HTTP_PROGRESS_UGRADE_FAILED:
378 puts("http ugrade failed\n");
379 break;
380 }
381 return 0;
382 }
383
384 unsigned long do_http_tmp_address(void)
385 {
386 char *s = getenv ("ram_addr");
387 if (s) {
388 ulong tmp = simple_strtoul (s, NULL, 16);
389 return tmp;
390 }
391 return 0 /*0x80a00000*/;
392 }
393
394 #endif