776a06402f613918a9f8791e6d019f3af5792fd7
[openwrt/openwrt.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2 * Cavium CNS3xxx Gigabit driver for Linux
3 *
4 * Copyright 2011 Gateworks Corporation
5 * Chris Lang <clang@gateworks.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of version 2 of the GNU General Public License
9 * as published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define UDP_CHECKSUM 0x00020000
60 #define TCP_CHECKSUM 0x00010000
61
62 /* Port Config Defines */
63 #define PORT_BP_ENABLE 0x00020000
64 #define PORT_DISABLE 0x00040000
65 #define PORT_LEARN_DIS 0x00080000
66 #define PORT_BLOCK_STATE 0x00100000
67 #define PORT_BLOCK_MODE 0x00200000
68
69 #define PROMISC_OFFSET 29
70
71 /* Global Config Defines */
72 #define UNKNOWN_VLAN_TO_CPU 0x02000000
73 #define ACCEPT_CRC_PACKET 0x00200000
74 #define CRC_STRIPPING 0x00100000
75
76 /* VLAN Config Defines */
77 #define NIC_MODE 0x00008000
78 #define VLAN_UNAWARE 0x00000001
79
80 /* DMA AUTO Poll Defines */
81 #define TS_POLL_EN 0x00000020
82 #define TS_SUSPEND 0x00000010
83 #define FS_POLL_EN 0x00000002
84 #define FS_SUSPEND 0x00000001
85
86 /* DMA Ring Control Defines */
87 #define QUEUE_THRESHOLD 0x000000f0
88 #define CLR_FS_STATE 0x80000000
89
90 /* Interrupt Status Defines */
91 #define MAC0_STATUS_CHANGE 0x00004000
92 #define MAC1_STATUS_CHANGE 0x00008000
93 #define MAC2_STATUS_CHANGE 0x00010000
94 #define MAC0_RX_ERROR 0x00100000
95 #define MAC1_RX_ERROR 0x00200000
96 #define MAC2_RX_ERROR 0x00400000
97
98 struct tx_desc
99 {
100 u32 sdp; /* segment data pointer */
101
102 union {
103 struct {
104 u32 sdl:16; /* segment data length */
105 u32 tco:1;
106 u32 uco:1;
107 u32 ico:1;
108 u32 rsv_1:3; /* reserve */
109 u32 pri:3;
110 u32 fp:1; /* force priority */
111 u32 fr:1;
112 u32 interrupt:1;
113 u32 lsd:1;
114 u32 fsd:1;
115 u32 eor:1;
116 u32 cown:1;
117 };
118 u32 config0;
119 };
120
121 union {
122 struct {
123 u32 ctv:1;
124 u32 stv:1;
125 u32 sid:4;
126 u32 inss:1;
127 u32 dels:1;
128 u32 rsv_2:9;
129 u32 pmap:5;
130 u32 mark:3;
131 u32 ewan:1;
132 u32 fewan:1;
133 u32 rsv_3:5;
134 };
135 u32 config1;
136 };
137
138 union {
139 struct {
140 u32 c_vid:12;
141 u32 c_cfs:1;
142 u32 c_pri:3;
143 u32 s_vid:12;
144 u32 s_dei:1;
145 u32 s_pri:3;
146 };
147 u32 config2;
148 };
149
150 u8 alignment[16]; /* for 32 byte */
151 };
152
153 struct rx_desc
154 {
155 u32 sdp; /* segment data pointer */
156
157 union {
158 struct {
159 u32 sdl:16; /* segment data length */
160 u32 l4f:1;
161 u32 ipf:1;
162 u32 prot:4;
163 u32 hr:6;
164 u32 lsd:1;
165 u32 fsd:1;
166 u32 eor:1;
167 u32 cown:1;
168 };
169 u32 config0;
170 };
171
172 union {
173 struct {
174 u32 ctv:1;
175 u32 stv:1;
176 u32 unv:1;
177 u32 iwan:1;
178 u32 exdv:1;
179 u32 e_wan:1;
180 u32 rsv_1:2;
181 u32 sp:3;
182 u32 crc_err:1;
183 u32 un_eth:1;
184 u32 tc:2;
185 u32 rsv_2:1;
186 u32 ip_offset:5;
187 u32 rsv_3:11;
188 };
189 u32 config1;
190 };
191
192 union {
193 struct {
194 u32 c_vid:12;
195 u32 c_cfs:1;
196 u32 c_pri:3;
197 u32 s_vid:12;
198 u32 s_dei:1;
199 u32 s_pri:3;
200 };
201 u32 config2;
202 };
203
204 u8 alignment[16]; /* for 32 byte alignment */
205 };
206
207
208 struct switch_regs {
209 u32 phy_control;
210 u32 phy_auto_addr;
211 u32 mac_glob_cfg;
212 u32 mac_cfg[4];
213 u32 mac_pri_ctrl[5], __res;
214 u32 etype[2];
215 u32 udp_range[4];
216 u32 prio_etype_udp;
217 u32 prio_ipdscp[8];
218 u32 tc_ctrl;
219 u32 rate_ctrl;
220 u32 fc_glob_thrs;
221 u32 fc_port_thrs;
222 u32 mc_fc_glob_thrs;
223 u32 dc_glob_thrs;
224 u32 arl_vlan_cmd;
225 u32 arl_ctrl[3];
226 u32 vlan_cfg;
227 u32 pvid[2];
228 u32 vlan_ctrl[3];
229 u32 session_id[8];
230 u32 intr_stat;
231 u32 intr_mask;
232 u32 sram_test;
233 u32 mem_queue;
234 u32 farl_ctrl;
235 u32 fc_input_thrs, __res1[2];
236 u32 clk_skew_ctrl;
237 u32 mac_glob_cfg_ext, __res2[2];
238 u32 dma_ring_ctrl;
239 u32 dma_auto_poll_cfg;
240 u32 delay_intr_cfg, __res3;
241 u32 ts_dma_ctrl0;
242 u32 ts_desc_ptr0;
243 u32 ts_desc_base_addr0, __res4;
244 u32 fs_dma_ctrl0;
245 u32 fs_desc_ptr0;
246 u32 fs_desc_base_addr0, __res5;
247 u32 ts_dma_ctrl1;
248 u32 ts_desc_ptr1;
249 u32 ts_desc_base_addr1, __res6;
250 u32 fs_dma_ctrl1;
251 u32 fs_desc_ptr1;
252 u32 fs_desc_base_addr1;
253 u32 __res7[109];
254 u32 mac_counter0[13];
255 };
256
257 struct _tx_ring {
258 struct tx_desc *desc;
259 dma_addr_t phys_addr;
260 struct tx_desc *cur_addr;
261 struct sk_buff *buff_tab[TX_DESCS];
262 unsigned int phys_tab[TX_DESCS];
263 u32 free_index;
264 u32 count_index;
265 u32 cur_index;
266 int num_used;
267 int num_count;
268 bool stopped;
269 };
270
271 struct _rx_ring {
272 struct rx_desc *desc;
273 dma_addr_t phys_addr;
274 struct rx_desc *cur_addr;
275 void *buff_tab[RX_DESCS];
276 unsigned int phys_tab[RX_DESCS];
277 u32 cur_index;
278 u32 alloc_index;
279 int alloc_count;
280 };
281
282 struct sw {
283 struct switch_regs __iomem *regs;
284 struct napi_struct napi;
285 struct cns3xxx_plat_info *plat;
286 struct _tx_ring tx_ring;
287 struct _rx_ring rx_ring;
288 struct sk_buff *frag_first;
289 struct sk_buff *frag_last;
290 struct device *dev;
291 int rx_irq;
292 int stat_irq;
293 };
294
295 struct port {
296 struct net_device *netdev;
297 struct phy_device *phydev;
298 struct sw *sw;
299 int id; /* logical port ID */
300 int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 struct net_device *napi_dev;
310
311 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
312 int write, u16 cmd)
313 {
314 int cycles = 0;
315 u32 temp = 0;
316
317 temp = __raw_readl(&mdio_regs->phy_control);
318 temp |= MDIO_CMD_COMPLETE;
319 __raw_writel(temp, &mdio_regs->phy_control);
320 udelay(10);
321
322 if (write) {
323 temp = (cmd << MDIO_VALUE_OFFSET);
324 temp |= MDIO_WRITE_COMMAND;
325 } else {
326 temp = MDIO_READ_COMMAND;
327 }
328 temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
329 temp |= (phy_id & 0x1f);
330
331 __raw_writel(temp, &mdio_regs->phy_control);
332
333 while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
334 && cycles < 5000) {
335 udelay(1);
336 cycles++;
337 }
338
339 if (cycles == 5000) {
340 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
341 phy_id);
342 return -1;
343 }
344
345 temp = __raw_readl(&mdio_regs->phy_control);
346 temp |= MDIO_CMD_COMPLETE;
347 __raw_writel(temp, &mdio_regs->phy_control);
348
349 if (write)
350 return 0;
351
352 return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
353 }
354
355 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
356 {
357 unsigned long flags;
358 int ret;
359
360 spin_lock_irqsave(&mdio_lock, flags);
361 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
362 spin_unlock_irqrestore(&mdio_lock, flags);
363 return ret;
364 }
365
366 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
367 u16 val)
368 {
369 unsigned long flags;
370 int ret;
371
372 spin_lock_irqsave(&mdio_lock, flags);
373 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
374 spin_unlock_irqrestore(&mdio_lock, flags);
375 return ret;
376 }
377
378 static int cns3xxx_mdio_register(void __iomem *base)
379 {
380 int err;
381
382 if (!(mdio_bus = mdiobus_alloc()))
383 return -ENOMEM;
384
385 mdio_regs = base;
386
387 spin_lock_init(&mdio_lock);
388 mdio_bus->name = "CNS3xxx MII Bus";
389 mdio_bus->read = &cns3xxx_mdio_read;
390 mdio_bus->write = &cns3xxx_mdio_write;
391 strcpy(mdio_bus->id, "0");
392
393 if ((err = mdiobus_register(mdio_bus)))
394 mdiobus_free(mdio_bus);
395 return err;
396 }
397
398 static void cns3xxx_mdio_remove(void)
399 {
400 mdiobus_unregister(mdio_bus);
401 mdiobus_free(mdio_bus);
402 }
403
404 static void enable_tx_dma(struct sw *sw)
405 {
406 __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
407 }
408
409 static void enable_rx_dma(struct sw *sw)
410 {
411 __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
412 }
413
414 static void cns3xxx_adjust_link(struct net_device *dev)
415 {
416 struct port *port = netdev_priv(dev);
417 struct phy_device *phydev = port->phydev;
418
419 if (!phydev->link) {
420 if (port->speed) {
421 port->speed = 0;
422 printk(KERN_INFO "%s: link down\n", dev->name);
423 }
424 return;
425 }
426
427 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
428 return;
429
430 port->speed = phydev->speed;
431 port->duplex = phydev->duplex;
432
433 printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
434 dev->name, port->speed, port->duplex ? "full" : "half");
435 }
436
437 static void eth_schedule_poll(struct sw *sw)
438 {
439 if (unlikely(!napi_schedule_prep(&sw->napi)))
440 return;
441
442 disable_irq_nosync(sw->rx_irq);
443 __napi_schedule(&sw->napi);
444 }
445
446 irqreturn_t eth_rx_irq(int irq, void *pdev)
447 {
448 struct net_device *dev = pdev;
449 struct sw *sw = netdev_priv(dev);
450 eth_schedule_poll(sw);
451 return (IRQ_HANDLED);
452 }
453
454 irqreturn_t eth_stat_irq(int irq, void *pdev)
455 {
456 struct net_device *dev = pdev;
457 struct sw *sw = netdev_priv(dev);
458 u32 cfg;
459 u32 stat = __raw_readl(&sw->regs->intr_stat);
460 __raw_writel(0xffffffff, &sw->regs->intr_stat);
461
462 if (stat & MAC2_RX_ERROR)
463 switch_port_tab[3]->netdev->stats.rx_dropped++;
464 if (stat & MAC1_RX_ERROR)
465 switch_port_tab[1]->netdev->stats.rx_dropped++;
466 if (stat & MAC0_RX_ERROR)
467 switch_port_tab[0]->netdev->stats.rx_dropped++;
468
469 if (stat & MAC0_STATUS_CHANGE) {
470 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
471 switch_port_tab[0]->phydev->link = (cfg & 0x1);
472 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
473 if (((cfg >> 2) & 0x3) == 2)
474 switch_port_tab[0]->phydev->speed = 1000;
475 else if (((cfg >> 2) & 0x3) == 1)
476 switch_port_tab[0]->phydev->speed = 100;
477 else
478 switch_port_tab[0]->phydev->speed = 10;
479 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
480 }
481
482 if (stat & MAC1_STATUS_CHANGE) {
483 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
484 switch_port_tab[1]->phydev->link = (cfg & 0x1);
485 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
486 if (((cfg >> 2) & 0x3) == 2)
487 switch_port_tab[1]->phydev->speed = 1000;
488 else if (((cfg >> 2) & 0x3) == 1)
489 switch_port_tab[1]->phydev->speed = 100;
490 else
491 switch_port_tab[1]->phydev->speed = 10;
492 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
493 }
494
495 if (stat & MAC2_STATUS_CHANGE) {
496 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
497 switch_port_tab[3]->phydev->link = (cfg & 0x1);
498 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
499 if (((cfg >> 2) & 0x3) == 2)
500 switch_port_tab[3]->phydev->speed = 1000;
501 else if (((cfg >> 2) & 0x3) == 1)
502 switch_port_tab[3]->phydev->speed = 100;
503 else
504 switch_port_tab[3]->phydev->speed = 10;
505 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
506 }
507
508 return (IRQ_HANDLED);
509 }
510
511
512 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
513 {
514 struct _rx_ring *rx_ring = &sw->rx_ring;
515 unsigned int i = rx_ring->alloc_index;
516 struct rx_desc *desc = &(rx_ring)->desc[i];
517 void *buf;
518 unsigned int phys;
519
520 for (received += rx_ring->alloc_count; received > 0; received--) {
521 buf = napi_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
522 if (!buf)
523 break;
524
525 phys = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
526 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
527 if (dma_mapping_error(sw->dev, phys)) {
528 skb_free_frag(buf);
529 break;
530 }
531
532 desc->sdl = RX_SEGMENT_MRU;
533 desc->sdp = phys;
534
535 wmb();
536
537 /* put the new buffer on RX-free queue */
538 rx_ring->buff_tab[i] = buf;
539 rx_ring->phys_tab[i] = phys;
540 if (i == RX_DESCS - 1) {
541 i = 0;
542 desc->config0 = END_OF_RING | FIRST_SEGMENT |
543 LAST_SEGMENT | RX_SEGMENT_MRU;
544 desc = &(rx_ring)->desc[i];
545 } else {
546 desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
547 RX_SEGMENT_MRU;
548 i++;
549 desc++;
550 }
551 }
552
553 rx_ring->alloc_count = received;
554 rx_ring->alloc_index = i;
555 }
556
557 static void eth_check_num_used(struct _tx_ring *tx_ring)
558 {
559 bool stop = false;
560 int i;
561
562 if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
563 stop = true;
564
565 if (tx_ring->stopped == stop)
566 return;
567
568 tx_ring->stopped = stop;
569 for (i = 0; i < 4; i++) {
570 struct port *port = switch_port_tab[i];
571 struct net_device *dev;
572
573 if (!port)
574 continue;
575
576 dev = port->netdev;
577 if (stop)
578 netif_stop_queue(dev);
579 else
580 netif_wake_queue(dev);
581 }
582 }
583
584 static void eth_complete_tx(struct sw *sw)
585 {
586 struct _tx_ring *tx_ring = &sw->tx_ring;
587 struct tx_desc *desc;
588 int i;
589 int index;
590 int num_used = tx_ring->num_used;
591 struct sk_buff *skb;
592
593 index = tx_ring->free_index;
594 desc = &(tx_ring)->desc[index];
595 for (i = 0; i < num_used; i++) {
596 if (desc->cown) {
597 skb = tx_ring->buff_tab[index];
598 tx_ring->buff_tab[index] = 0;
599 if (skb)
600 dev_kfree_skb_any(skb);
601 dma_unmap_single(sw->dev, tx_ring->phys_tab[index],
602 desc->sdl, DMA_TO_DEVICE);
603 if (++index == TX_DESCS) {
604 index = 0;
605 desc = &(tx_ring)->desc[index];
606 } else {
607 desc++;
608 }
609 } else {
610 break;
611 }
612 }
613 tx_ring->free_index = index;
614 tx_ring->num_used -= i;
615 eth_check_num_used(tx_ring);
616 }
617
618 static int eth_poll(struct napi_struct *napi, int budget)
619 {
620 struct sw *sw = container_of(napi, struct sw, napi);
621 struct _rx_ring *rx_ring = &sw->rx_ring;
622 int received = 0;
623 unsigned int length;
624 unsigned int i = rx_ring->cur_index;
625 struct rx_desc *desc = &(rx_ring)->desc[i];
626 unsigned int alloc_count = rx_ring->alloc_count;
627
628 while (desc->cown && alloc_count + received < RX_DESCS - 1) {
629 struct sk_buff *skb;
630 int reserve = SKB_HEAD_ALIGN;
631
632 if (received >= budget)
633 break;
634
635 /* process received frame */
636 dma_unmap_single(sw->dev, rx_ring->phys_tab[i],
637 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
638
639 skb = build_skb(rx_ring->buff_tab[i], RX_SEGMENT_ALLOC_SIZE);
640 if (!skb)
641 break;
642
643 skb->dev = switch_port_tab[desc->sp]->netdev;
644
645 length = desc->sdl;
646 if (desc->fsd && !desc->lsd)
647 length = RX_SEGMENT_MRU;
648
649 if (!desc->fsd) {
650 reserve -= NET_IP_ALIGN;
651 if (!desc->lsd)
652 length += NET_IP_ALIGN;
653 }
654
655 skb_reserve(skb, reserve);
656 skb_put(skb, length);
657
658 if (!sw->frag_first)
659 sw->frag_first = skb;
660 else {
661 if (sw->frag_first == sw->frag_last)
662 skb_shinfo(sw->frag_first)->frag_list = skb;
663 else
664 sw->frag_last->next = skb;
665 sw->frag_first->len += skb->len;
666 sw->frag_first->data_len += skb->len;
667 sw->frag_first->truesize += skb->truesize;
668 }
669 sw->frag_last = skb;
670
671 if (desc->lsd) {
672 struct net_device *dev;
673
674 skb = sw->frag_first;
675 dev = skb->dev;
676 skb->protocol = eth_type_trans(skb, dev);
677
678 dev->stats.rx_packets++;
679 dev->stats.rx_bytes += skb->len;
680
681 /* RX Hardware checksum offload */
682 skb->ip_summed = CHECKSUM_NONE;
683 switch (desc->prot) {
684 case 1:
685 case 2:
686 case 5:
687 case 6:
688 case 13:
689 case 14:
690 if (!desc->l4f) {
691 skb->ip_summed = CHECKSUM_UNNECESSARY;
692 napi_gro_receive(napi, skb);
693 break;
694 }
695 /* fall through */
696 default:
697 netif_receive_skb(skb);
698 break;
699 }
700
701 sw->frag_first = NULL;
702 sw->frag_last = NULL;
703 }
704
705 received++;
706 if (++i == RX_DESCS) {
707 i = 0;
708 desc = &(rx_ring)->desc[i];
709 } else {
710 desc++;
711 }
712 }
713
714 rx_ring->cur_index = i;
715
716 cns3xxx_alloc_rx_buf(sw, received);
717 wmb();
718 enable_rx_dma(sw);
719
720 if (received < budget && napi_complete_done(napi, received)) {
721 enable_irq(sw->rx_irq);
722 }
723
724 spin_lock_bh(&tx_lock);
725 eth_complete_tx(sw);
726 spin_unlock_bh(&tx_lock);
727
728 return received;
729 }
730
731 static void eth_set_desc(struct sw *sw, struct _tx_ring *tx_ring, int index,
732 int index_last, void *data, int len, u32 config0,
733 u32 pmap)
734 {
735 struct tx_desc *tx_desc = &(tx_ring)->desc[index];
736 unsigned int phys;
737
738 phys = dma_map_single(sw->dev, data, len, DMA_TO_DEVICE);
739 tx_desc->sdp = phys;
740 tx_desc->pmap = pmap;
741 tx_ring->phys_tab[index] = phys;
742
743 config0 |= len;
744 if (index == TX_DESCS - 1)
745 config0 |= END_OF_RING;
746 if (index == index_last)
747 config0 |= LAST_SEGMENT;
748
749 wmb();
750 tx_desc->config0 = config0;
751 }
752
753 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
754 {
755 struct port *port = netdev_priv(dev);
756 struct sw *sw = port->sw;
757 struct _tx_ring *tx_ring = &sw->tx_ring;
758 struct sk_buff *skb1;
759 char pmap = (1 << port->id);
760 int nr_frags = skb_shinfo(skb)->nr_frags;
761 int nr_desc = nr_frags;
762 int index0, index, index_last;
763 int len0;
764 int i;
765 u32 config0;
766
767 if (pmap == 8)
768 pmap = (1 << 4);
769
770 skb_walk_frags(skb, skb1)
771 nr_desc++;
772
773 eth_schedule_poll(sw);
774 spin_lock_bh(&tx_lock);
775 if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
776 spin_unlock_bh(&tx_lock);
777 return NETDEV_TX_BUSY;
778 }
779
780 index = index0 = tx_ring->cur_index;
781 index_last = (index0 + nr_desc) % TX_DESCS;
782 tx_ring->cur_index = (index_last + 1) % TX_DESCS;
783
784 spin_unlock_bh(&tx_lock);
785
786 config0 = FORCE_ROUTE;
787 if (skb->ip_summed == CHECKSUM_PARTIAL)
788 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
789
790 len0 = skb->len;
791
792 /* fragments */
793 for (i = 0; i < nr_frags; i++) {
794 struct skb_frag_struct *frag;
795 void *addr;
796
797 index = (index + 1) % TX_DESCS;
798
799 frag = &skb_shinfo(skb)->frags[i];
800 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
801
802 eth_set_desc(sw, tx_ring, index, index_last, addr, frag->size,
803 config0, pmap);
804 }
805
806 if (nr_frags)
807 len0 = skb->len - skb->data_len;
808
809 skb_walk_frags(skb, skb1) {
810 index = (index + 1) % TX_DESCS;
811 len0 -= skb1->len;
812
813 eth_set_desc(sw, tx_ring, index, index_last, skb1->data,
814 skb1->len, config0, pmap);
815 }
816
817 tx_ring->buff_tab[index0] = skb;
818 eth_set_desc(sw, tx_ring, index0, index_last, skb->data, len0,
819 config0 | FIRST_SEGMENT, pmap);
820
821 wmb();
822
823 spin_lock(&tx_lock);
824 tx_ring->num_used += nr_desc + 1;
825 spin_unlock(&tx_lock);
826
827 dev->stats.tx_packets++;
828 dev->stats.tx_bytes += skb->len;
829
830 enable_tx_dma(sw);
831
832 return NETDEV_TX_OK;
833 }
834
835 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
836 {
837 struct port *port = netdev_priv(dev);
838
839 if (!netif_running(dev))
840 return -EINVAL;
841 return phy_mii_ioctl(port->phydev, req, cmd);
842 }
843
844 /* ethtool support */
845
846 static void cns3xxx_get_drvinfo(struct net_device *dev,
847 struct ethtool_drvinfo *info)
848 {
849 strcpy(info->driver, DRV_NAME);
850 strcpy(info->bus_info, "internal");
851 }
852
853 static int cns3xxx_nway_reset(struct net_device *dev)
854 {
855 struct port *port = netdev_priv(dev);
856 return phy_start_aneg(port->phydev);
857 }
858
859 static struct ethtool_ops cns3xxx_ethtool_ops = {
860 .get_drvinfo = cns3xxx_get_drvinfo,
861 .get_link_ksettings = phy_ethtool_get_link_ksettings,
862 .set_link_ksettings = phy_ethtool_set_link_ksettings,
863 .nway_reset = cns3xxx_nway_reset,
864 .get_link = ethtool_op_get_link,
865 };
866
867
868 static int init_rings(struct sw *sw)
869 {
870 int i;
871 struct _rx_ring *rx_ring = &sw->rx_ring;
872 struct _tx_ring *tx_ring = &sw->tx_ring;
873
874 __raw_writel(0, &sw->regs->fs_dma_ctrl0);
875 __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
876 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
877 __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
878
879 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
880
881 rx_ring->desc = dmam_alloc_coherent(sw->dev, RX_POOL_ALLOC_SIZE,
882 &rx_ring->phys_addr, GFP_KERNEL);
883 if (!rx_ring->desc)
884 return -ENOMEM;
885
886 /* Setup RX buffers */
887 memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
888 for (i = 0; i < RX_DESCS; i++) {
889 struct rx_desc *desc = &(rx_ring)->desc[i];
890 void *buf;
891
892 buf = netdev_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
893 if (!buf)
894 return -ENOMEM;
895
896 desc->sdl = RX_SEGMENT_MRU;
897 if (i == (RX_DESCS - 1))
898 desc->eor = 1;
899 desc->fsd = 1;
900 desc->lsd = 1;
901
902 desc->sdp = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
903 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
904 if (dma_mapping_error(sw->dev, desc->sdp))
905 return -EIO;
906
907 rx_ring->buff_tab[i] = buf;
908 rx_ring->phys_tab[i] = desc->sdp;
909 desc->cown = 0;
910 }
911 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
912 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
913
914 tx_ring->desc = dmam_alloc_coherent(sw->dev, TX_POOL_ALLOC_SIZE,
915 &tx_ring->phys_addr, GFP_KERNEL);
916 if (!tx_ring->desc)
917 return -ENOMEM;
918
919 /* Setup TX buffers */
920 memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
921 for (i = 0; i < TX_DESCS; i++) {
922 struct tx_desc *desc = &(tx_ring)->desc[i];
923 tx_ring->buff_tab[i] = 0;
924
925 if (i == (TX_DESCS - 1))
926 desc->eor = 1;
927 desc->cown = 1;
928 }
929 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
930 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
931
932 return 0;
933 }
934
935 static void destroy_rings(struct sw *sw)
936 {
937 int i;
938
939 for (i = 0; i < RX_DESCS; i++) {
940 struct _rx_ring *rx_ring = &sw->rx_ring;
941 struct rx_desc *desc = &(rx_ring)->desc[i];
942 void *buf = sw->rx_ring.buff_tab[i];
943
944 if (!buf)
945 continue;
946
947 dma_unmap_single(sw->dev, desc->sdp, RX_SEGMENT_MRU,
948 DMA_FROM_DEVICE);
949 skb_free_frag(buf);
950 }
951
952 for (i = 0; i < TX_DESCS; i++) {
953 struct _tx_ring *tx_ring = &sw->tx_ring;
954 struct tx_desc *desc = &(tx_ring)->desc[i];
955 struct sk_buff *skb = sw->tx_ring.buff_tab[i];
956
957 if (!skb)
958 continue;
959
960 dma_unmap_single(sw->dev, desc->sdp, skb->len, DMA_TO_DEVICE);
961 dev_kfree_skb(skb);
962 }
963 }
964
965 static int eth_open(struct net_device *dev)
966 {
967 struct port *port = netdev_priv(dev);
968 struct sw *sw = port->sw;
969 u32 temp;
970
971 port->speed = 0; /* force "link up" message */
972 phy_start(port->phydev);
973
974 netif_start_queue(dev);
975
976 if (!ports_open) {
977 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
978 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
979 napi_enable(&sw->napi);
980 netif_start_queue(napi_dev);
981
982 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
983 MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
984
985 temp = __raw_readl(&sw->regs->mac_cfg[2]);
986 temp &= ~(PORT_DISABLE);
987 __raw_writel(temp, &sw->regs->mac_cfg[2]);
988
989 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
990 temp &= ~(TS_SUSPEND | FS_SUSPEND);
991 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
992
993 enable_rx_dma(sw);
994 }
995 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
996 temp &= ~(PORT_DISABLE);
997 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
998
999 ports_open++;
1000 netif_carrier_on(dev);
1001
1002 return 0;
1003 }
1004
1005 static int eth_close(struct net_device *dev)
1006 {
1007 struct port *port = netdev_priv(dev);
1008 struct sw *sw = port->sw;
1009 u32 temp;
1010
1011 ports_open--;
1012
1013 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1014 temp |= (PORT_DISABLE);
1015 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1016
1017 netif_stop_queue(dev);
1018
1019 phy_stop(port->phydev);
1020
1021 if (!ports_open) {
1022 disable_irq(sw->rx_irq);
1023 free_irq(sw->rx_irq, napi_dev);
1024 disable_irq(sw->stat_irq);
1025 free_irq(sw->stat_irq, napi_dev);
1026 napi_disable(&sw->napi);
1027 netif_stop_queue(napi_dev);
1028 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1029 temp |= (PORT_DISABLE);
1030 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1031
1032 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1033 &sw->regs->dma_auto_poll_cfg);
1034 }
1035
1036 netif_carrier_off(dev);
1037 return 0;
1038 }
1039
1040 static void eth_rx_mode(struct net_device *dev)
1041 {
1042 struct port *port = netdev_priv(dev);
1043 struct sw *sw = port->sw;
1044 u32 temp;
1045
1046 temp = __raw_readl(&sw->regs->mac_glob_cfg);
1047
1048 if (dev->flags & IFF_PROMISC) {
1049 if (port->id == 3)
1050 temp |= ((1 << 2) << PROMISC_OFFSET);
1051 else
1052 temp |= ((1 << port->id) << PROMISC_OFFSET);
1053 } else {
1054 if (port->id == 3)
1055 temp &= ~((1 << 2) << PROMISC_OFFSET);
1056 else
1057 temp &= ~((1 << port->id) << PROMISC_OFFSET);
1058 }
1059 __raw_writel(temp, &sw->regs->mac_glob_cfg);
1060 }
1061
1062 static int eth_set_mac(struct net_device *netdev, void *p)
1063 {
1064 struct port *port = netdev_priv(netdev);
1065 struct sw *sw = port->sw;
1066 struct sockaddr *addr = p;
1067 u32 cycles = 0;
1068
1069 if (!is_valid_ether_addr(addr->sa_data))
1070 return -EADDRNOTAVAIL;
1071
1072 /* Invalidate old ARL Entry */
1073 if (port->id == 3)
1074 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1075 else
1076 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1077 __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1078 (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1079 &sw->regs->arl_ctrl[1]);
1080
1081 __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1082 (1 << 1)),
1083 &sw->regs->arl_ctrl[2]);
1084 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1085
1086 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1087 && cycles < 5000) {
1088 udelay(1);
1089 cycles++;
1090 }
1091
1092 cycles = 0;
1093 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1094
1095 if (port->id == 3)
1096 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1097 else
1098 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1099 __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1100 (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1101 &sw->regs->arl_ctrl[1]);
1102
1103 __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1104 (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1105 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1106
1107 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1108 && cycles < 5000) {
1109 udelay(1);
1110 cycles++;
1111 }
1112 return 0;
1113 }
1114
1115 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1116 {
1117 if (new_mtu > MAX_MTU)
1118 return -EINVAL;
1119
1120 dev->mtu = new_mtu;
1121 return 0;
1122 }
1123
1124 static const struct net_device_ops cns3xxx_netdev_ops = {
1125 .ndo_open = eth_open,
1126 .ndo_stop = eth_close,
1127 .ndo_start_xmit = eth_xmit,
1128 .ndo_set_rx_mode = eth_rx_mode,
1129 .ndo_do_ioctl = eth_ioctl,
1130 .ndo_change_mtu = cns3xxx_change_mtu,
1131 .ndo_set_mac_address = eth_set_mac,
1132 .ndo_validate_addr = eth_validate_addr,
1133 };
1134
1135 static int eth_init_one(struct platform_device *pdev)
1136 {
1137 int i;
1138 struct port *port;
1139 struct sw *sw;
1140 struct net_device *dev;
1141 struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1142 char phy_id[MII_BUS_ID_SIZE + 3];
1143 int err;
1144 u32 temp;
1145 struct resource *res;
1146 void __iomem *regs;
1147
1148 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1149 regs = devm_ioremap_resource(&pdev->dev, res);
1150 if (IS_ERR(regs))
1151 return PTR_ERR(regs);
1152
1153 err = cns3xxx_mdio_register(regs);
1154 if (err)
1155 return err;
1156
1157 if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1158 err = -ENOMEM;
1159 goto err_remove_mdio;
1160 }
1161
1162 strcpy(napi_dev->name, "cns3xxx_eth");
1163 napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1164
1165 SET_NETDEV_DEV(napi_dev, &pdev->dev);
1166 sw = netdev_priv(napi_dev);
1167 memset(sw, 0, sizeof(struct sw));
1168 sw->regs = regs;
1169 sw->dev = &pdev->dev;
1170
1171 sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1172 sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1173
1174 temp = __raw_readl(&sw->regs->phy_auto_addr);
1175 temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1176 __raw_writel(temp, &sw->regs->phy_auto_addr);
1177
1178 for (i = 0; i < 4; i++) {
1179 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1180 temp |= (PORT_DISABLE);
1181 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1182 }
1183
1184 temp = PORT_DISABLE;
1185 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1186
1187 temp = __raw_readl(&sw->regs->vlan_cfg);
1188 temp |= NIC_MODE | VLAN_UNAWARE;
1189 __raw_writel(temp, &sw->regs->vlan_cfg);
1190
1191 __raw_writel(UNKNOWN_VLAN_TO_CPU |
1192 CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1193
1194 if ((err = init_rings(sw)) != 0) {
1195 err = -ENOMEM;
1196 goto err_free;
1197 }
1198 platform_set_drvdata(pdev, napi_dev);
1199
1200 netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1201
1202 for (i = 0; i < 3; i++) {
1203 if (!(plat->ports & (1 << i))) {
1204 continue;
1205 }
1206
1207 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1208 goto free_ports;
1209 }
1210
1211 port = netdev_priv(dev);
1212 port->netdev = dev;
1213 if (i == 2)
1214 port->id = 3;
1215 else
1216 port->id = i;
1217 port->sw = sw;
1218
1219 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1220 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1221 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1222
1223 SET_NETDEV_DEV(dev, &pdev->dev);
1224 dev->netdev_ops = &cns3xxx_netdev_ops;
1225 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1226 dev->tx_queue_len = 1000;
1227 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1228
1229 switch_port_tab[port->id] = port;
1230 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1231
1232 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1233 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1234 PHY_INTERFACE_MODE_RGMII);
1235 if ((err = IS_ERR(port->phydev))) {
1236 switch_port_tab[port->id] = 0;
1237 free_netdev(dev);
1238 goto free_ports;
1239 }
1240
1241 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1242
1243 if ((err = register_netdev(dev))) {
1244 phy_disconnect(port->phydev);
1245 switch_port_tab[port->id] = 0;
1246 free_netdev(dev);
1247 goto free_ports;
1248 }
1249
1250 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1251 netif_carrier_off(dev);
1252 dev = 0;
1253 }
1254
1255 return 0;
1256
1257 free_ports:
1258 err = -ENOMEM;
1259 for (--i; i >= 0; i--) {
1260 if (switch_port_tab[i]) {
1261 port = switch_port_tab[i];
1262 dev = port->netdev;
1263 unregister_netdev(dev);
1264 phy_disconnect(port->phydev);
1265 switch_port_tab[i] = 0;
1266 free_netdev(dev);
1267 }
1268 }
1269 err_free:
1270 free_netdev(napi_dev);
1271 err_remove_mdio:
1272 cns3xxx_mdio_remove();
1273 return err;
1274 }
1275
1276 static int eth_remove_one(struct platform_device *pdev)
1277 {
1278 struct net_device *dev = platform_get_drvdata(pdev);
1279 struct sw *sw = netdev_priv(dev);
1280 int i;
1281
1282 destroy_rings(sw);
1283 for (i = 3; i >= 0; i--) {
1284 if (switch_port_tab[i]) {
1285 struct port *port = switch_port_tab[i];
1286 struct net_device *dev = port->netdev;
1287 unregister_netdev(dev);
1288 phy_disconnect(port->phydev);
1289 switch_port_tab[i] = 0;
1290 free_netdev(dev);
1291 }
1292 }
1293
1294 free_netdev(napi_dev);
1295 cns3xxx_mdio_remove();
1296
1297 return 0;
1298 }
1299
1300 static struct platform_driver cns3xxx_eth_driver = {
1301 .driver.name = DRV_NAME,
1302 .probe = eth_init_one,
1303 .remove = eth_remove_one,
1304 };
1305
1306 static int __init eth_init_module(void)
1307 {
1308 return platform_driver_register(&cns3xxx_eth_driver);
1309 }
1310
1311 static void __exit eth_cleanup_module(void)
1312 {
1313 platform_driver_unregister(&cns3xxx_eth_driver);
1314 }
1315
1316 module_init(eth_init_module);
1317 module_exit(eth_cleanup_module);
1318
1319 MODULE_AUTHOR("Chris Lang");
1320 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1321 MODULE_LICENSE("GPL v2");
1322 MODULE_ALIAS("platform:cns3xxx_eth");