cns3xxx: ethernet - revert: clean up tx descs only when needed
[openwrt/openwrt.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2 * Cavium CNS3xxx Gigabit driver for Linux
3 *
4 * Copyright 2011 Gateworks Corporation
5 * Chris Lang <clang@gateworks.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of version 2 of the GNU General Public License
9 * as published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <mach/irqs.h>
25 #include <mach/platform.h>
26
27 #define DRV_NAME "cns3xxx_eth"
28
29 #define RX_DESCS 256
30 #define TX_DESCS 128
31 #define TX_DESC_RESERVE 20
32
33 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
34 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
35 #define REGS_SIZE 336
36
37 #define RX_BUFFER_ALIGN 64
38 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
39
40 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
41 #define RX_SEGMENT_ALLOC_SIZE 2048
42 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
43 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
44 #define MAX_MTU 9500
45
46 #define NAPI_WEIGHT 64
47
48 /* MDIO Defines */
49 #define MDIO_CMD_COMPLETE 0x00008000
50 #define MDIO_WRITE_COMMAND 0x00002000
51 #define MDIO_READ_COMMAND 0x00004000
52 #define MDIO_REG_OFFSET 8
53 #define MDIO_VALUE_OFFSET 16
54
55 /* Descritor Defines */
56 #define END_OF_RING 0x40000000
57 #define FIRST_SEGMENT 0x20000000
58 #define LAST_SEGMENT 0x10000000
59 #define FORCE_ROUTE 0x04000000
60 #define IP_CHECKSUM 0x00040000
61 #define UDP_CHECKSUM 0x00020000
62 #define TCP_CHECKSUM 0x00010000
63
64 /* Port Config Defines */
65 #define PORT_BP_ENABLE 0x00020000
66 #define PORT_DISABLE 0x00040000
67 #define PORT_LEARN_DIS 0x00080000
68 #define PORT_BLOCK_STATE 0x00100000
69 #define PORT_BLOCK_MODE 0x00200000
70
71 #define PROMISC_OFFSET 29
72
73 /* Global Config Defines */
74 #define UNKNOWN_VLAN_TO_CPU 0x02000000
75 #define ACCEPT_CRC_PACKET 0x00200000
76 #define CRC_STRIPPING 0x00100000
77
78 /* VLAN Config Defines */
79 #define NIC_MODE 0x00008000
80 #define VLAN_UNAWARE 0x00000001
81
82 /* DMA AUTO Poll Defines */
83 #define TS_POLL_EN 0x00000020
84 #define TS_SUSPEND 0x00000010
85 #define FS_POLL_EN 0x00000002
86 #define FS_SUSPEND 0x00000001
87
88 /* DMA Ring Control Defines */
89 #define QUEUE_THRESHOLD 0x000000f0
90 #define CLR_FS_STATE 0x80000000
91
92 /* Interrupt Status Defines */
93 #define MAC0_STATUS_CHANGE 0x00004000
94 #define MAC1_STATUS_CHANGE 0x00008000
95 #define MAC2_STATUS_CHANGE 0x00010000
96 #define MAC0_RX_ERROR 0x00100000
97 #define MAC1_RX_ERROR 0x00200000
98 #define MAC2_RX_ERROR 0x00400000
99
100 struct tx_desc
101 {
102 u32 sdp; /* segment data pointer */
103
104 union {
105 struct {
106 u32 sdl:16; /* segment data length */
107 u32 tco:1;
108 u32 uco:1;
109 u32 ico:1;
110 u32 rsv_1:3; /* reserve */
111 u32 pri:3;
112 u32 fp:1; /* force priority */
113 u32 fr:1;
114 u32 interrupt:1;
115 u32 lsd:1;
116 u32 fsd:1;
117 u32 eor:1;
118 u32 cown:1;
119 };
120 u32 config0;
121 };
122
123 union {
124 struct {
125 u32 ctv:1;
126 u32 stv:1;
127 u32 sid:4;
128 u32 inss:1;
129 u32 dels:1;
130 u32 rsv_2:9;
131 u32 pmap:5;
132 u32 mark:3;
133 u32 ewan:1;
134 u32 fewan:1;
135 u32 rsv_3:5;
136 };
137 u32 config1;
138 };
139
140 union {
141 struct {
142 u32 c_vid:12;
143 u32 c_cfs:1;
144 u32 c_pri:3;
145 u32 s_vid:12;
146 u32 s_dei:1;
147 u32 s_pri:3;
148 };
149 u32 config2;
150 };
151
152 u8 alignment[16]; /* for 32 byte */
153 };
154
155 struct rx_desc
156 {
157 u32 sdp; /* segment data pointer */
158
159 union {
160 struct {
161 u32 sdl:16; /* segment data length */
162 u32 l4f:1;
163 u32 ipf:1;
164 u32 prot:4;
165 u32 hr:6;
166 u32 lsd:1;
167 u32 fsd:1;
168 u32 eor:1;
169 u32 cown:1;
170 };
171 u32 config0;
172 };
173
174 union {
175 struct {
176 u32 ctv:1;
177 u32 stv:1;
178 u32 unv:1;
179 u32 iwan:1;
180 u32 exdv:1;
181 u32 e_wan:1;
182 u32 rsv_1:2;
183 u32 sp:3;
184 u32 crc_err:1;
185 u32 un_eth:1;
186 u32 tc:2;
187 u32 rsv_2:1;
188 u32 ip_offset:5;
189 u32 rsv_3:11;
190 };
191 u32 config1;
192 };
193
194 union {
195 struct {
196 u32 c_vid:12;
197 u32 c_cfs:1;
198 u32 c_pri:3;
199 u32 s_vid:12;
200 u32 s_dei:1;
201 u32 s_pri:3;
202 };
203 u32 config2;
204 };
205
206 u8 alignment[16]; /* for 32 byte alignment */
207 };
208
209
210 struct switch_regs {
211 u32 phy_control;
212 u32 phy_auto_addr;
213 u32 mac_glob_cfg;
214 u32 mac_cfg[4];
215 u32 mac_pri_ctrl[5], __res;
216 u32 etype[2];
217 u32 udp_range[4];
218 u32 prio_etype_udp;
219 u32 prio_ipdscp[8];
220 u32 tc_ctrl;
221 u32 rate_ctrl;
222 u32 fc_glob_thrs;
223 u32 fc_port_thrs;
224 u32 mc_fc_glob_thrs;
225 u32 dc_glob_thrs;
226 u32 arl_vlan_cmd;
227 u32 arl_ctrl[3];
228 u32 vlan_cfg;
229 u32 pvid[2];
230 u32 vlan_ctrl[3];
231 u32 session_id[8];
232 u32 intr_stat;
233 u32 intr_mask;
234 u32 sram_test;
235 u32 mem_queue;
236 u32 farl_ctrl;
237 u32 fc_input_thrs, __res1[2];
238 u32 clk_skew_ctrl;
239 u32 mac_glob_cfg_ext, __res2[2];
240 u32 dma_ring_ctrl;
241 u32 dma_auto_poll_cfg;
242 u32 delay_intr_cfg, __res3;
243 u32 ts_dma_ctrl0;
244 u32 ts_desc_ptr0;
245 u32 ts_desc_base_addr0, __res4;
246 u32 fs_dma_ctrl0;
247 u32 fs_desc_ptr0;
248 u32 fs_desc_base_addr0, __res5;
249 u32 ts_dma_ctrl1;
250 u32 ts_desc_ptr1;
251 u32 ts_desc_base_addr1, __res6;
252 u32 fs_dma_ctrl1;
253 u32 fs_desc_ptr1;
254 u32 fs_desc_base_addr1;
255 u32 __res7[109];
256 u32 mac_counter0[13];
257 };
258
259 struct _tx_ring {
260 struct tx_desc *desc;
261 dma_addr_t phys_addr;
262 struct tx_desc *cur_addr;
263 struct sk_buff *buff_tab[TX_DESCS];
264 unsigned int phys_tab[TX_DESCS];
265 u32 free_index;
266 u32 count_index;
267 u32 cur_index;
268 int num_used;
269 int num_count;
270 bool stopped;
271 };
272
273 struct _rx_ring {
274 struct rx_desc *desc;
275 dma_addr_t phys_addr;
276 struct rx_desc *cur_addr;
277 void *buff_tab[RX_DESCS];
278 unsigned int phys_tab[RX_DESCS];
279 u32 cur_index;
280 u32 alloc_index;
281 int alloc_count;
282 };
283
284 struct sw {
285 struct resource *mem_res;
286 struct switch_regs __iomem *regs;
287 struct napi_struct napi;
288 struct cns3xxx_plat_info *plat;
289 struct _tx_ring tx_ring;
290 struct _rx_ring rx_ring;
291 struct sk_buff *frag_first;
292 struct sk_buff *frag_last;
293 };
294
295 struct port {
296 struct net_device *netdev;
297 struct phy_device *phydev;
298 struct sw *sw;
299 int id; /* logical port ID */
300 int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 static struct dma_pool *rx_dma_pool;
310 static struct dma_pool *tx_dma_pool;
311 struct net_device *napi_dev;
312
313 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
314 int write, u16 cmd)
315 {
316 int cycles = 0;
317 u32 temp = 0;
318
319 temp = __raw_readl(&mdio_regs->phy_control);
320 temp |= MDIO_CMD_COMPLETE;
321 __raw_writel(temp, &mdio_regs->phy_control);
322 udelay(10);
323
324 if (write) {
325 temp = (cmd << MDIO_VALUE_OFFSET);
326 temp |= MDIO_WRITE_COMMAND;
327 } else {
328 temp = MDIO_READ_COMMAND;
329 }
330 temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
331 temp |= (phy_id & 0x1f);
332
333 __raw_writel(temp, &mdio_regs->phy_control);
334
335 while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
336 && cycles < 5000) {
337 udelay(1);
338 cycles++;
339 }
340
341 if (cycles == 5000) {
342 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
343 phy_id);
344 return -1;
345 }
346
347 temp = __raw_readl(&mdio_regs->phy_control);
348 temp |= MDIO_CMD_COMPLETE;
349 __raw_writel(temp, &mdio_regs->phy_control);
350
351 if (write)
352 return 0;
353
354 return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
355 }
356
357 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
358 {
359 unsigned long flags;
360 int ret;
361
362 spin_lock_irqsave(&mdio_lock, flags);
363 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
364 spin_unlock_irqrestore(&mdio_lock, flags);
365 return ret;
366 }
367
368 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
369 u16 val)
370 {
371 unsigned long flags;
372 int ret;
373
374 spin_lock_irqsave(&mdio_lock, flags);
375 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
376 spin_unlock_irqrestore(&mdio_lock, flags);
377 return ret;
378 }
379
380 static int cns3xxx_mdio_register(void)
381 {
382 int err;
383
384 if (!(mdio_bus = mdiobus_alloc()))
385 return -ENOMEM;
386
387 mdio_regs = (struct switch_regs __iomem *)CNS3XXX_SWITCH_BASE_VIRT;
388
389 spin_lock_init(&mdio_lock);
390 mdio_bus->name = "CNS3xxx MII Bus";
391 mdio_bus->read = &cns3xxx_mdio_read;
392 mdio_bus->write = &cns3xxx_mdio_write;
393 strcpy(mdio_bus->id, "0");
394
395 if ((err = mdiobus_register(mdio_bus)))
396 mdiobus_free(mdio_bus);
397 return err;
398 }
399
400 static void cns3xxx_mdio_remove(void)
401 {
402 mdiobus_unregister(mdio_bus);
403 mdiobus_free(mdio_bus);
404 }
405
406 static void enable_tx_dma(struct sw *sw)
407 {
408 __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
409 }
410
411 static void enable_rx_dma(struct sw *sw)
412 {
413 __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
414 }
415
416 static void cns3xxx_adjust_link(struct net_device *dev)
417 {
418 struct port *port = netdev_priv(dev);
419 struct phy_device *phydev = port->phydev;
420
421 if (!phydev->link) {
422 if (port->speed) {
423 port->speed = 0;
424 printk(KERN_INFO "%s: link down\n", dev->name);
425 }
426 return;
427 }
428
429 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
430 return;
431
432 port->speed = phydev->speed;
433 port->duplex = phydev->duplex;
434
435 printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
436 dev->name, port->speed, port->duplex ? "full" : "half");
437 }
438
439 static void eth_schedule_poll(struct sw *sw)
440 {
441 if (unlikely(!napi_schedule_prep(&sw->napi)))
442 return;
443
444 disable_irq_nosync(IRQ_CNS3XXX_SW_R0RXC);
445 __napi_schedule(&sw->napi);
446 }
447
448 irqreturn_t eth_rx_irq(int irq, void *pdev)
449 {
450 struct net_device *dev = pdev;
451 struct sw *sw = netdev_priv(dev);
452 eth_schedule_poll(sw);
453 return (IRQ_HANDLED);
454 }
455
456 irqreturn_t eth_stat_irq(int irq, void *pdev)
457 {
458 struct net_device *dev = pdev;
459 struct sw *sw = netdev_priv(dev);
460 u32 cfg;
461 u32 stat = __raw_readl(&sw->regs->intr_stat);
462 __raw_writel(0xffffffff, &sw->regs->intr_stat);
463
464 if (stat & MAC2_RX_ERROR)
465 switch_port_tab[3]->netdev->stats.rx_dropped++;
466 if (stat & MAC1_RX_ERROR)
467 switch_port_tab[1]->netdev->stats.rx_dropped++;
468 if (stat & MAC0_RX_ERROR)
469 switch_port_tab[0]->netdev->stats.rx_dropped++;
470
471 if (stat & MAC0_STATUS_CHANGE) {
472 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
473 switch_port_tab[0]->phydev->link = (cfg & 0x1);
474 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
475 if (((cfg >> 2) & 0x3) == 2)
476 switch_port_tab[0]->phydev->speed = 1000;
477 else if (((cfg >> 2) & 0x3) == 1)
478 switch_port_tab[0]->phydev->speed = 100;
479 else
480 switch_port_tab[0]->phydev->speed = 10;
481 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
482 }
483
484 if (stat & MAC1_STATUS_CHANGE) {
485 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
486 switch_port_tab[1]->phydev->link = (cfg & 0x1);
487 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
488 if (((cfg >> 2) & 0x3) == 2)
489 switch_port_tab[1]->phydev->speed = 1000;
490 else if (((cfg >> 2) & 0x3) == 1)
491 switch_port_tab[1]->phydev->speed = 100;
492 else
493 switch_port_tab[1]->phydev->speed = 10;
494 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
495 }
496
497 if (stat & MAC2_STATUS_CHANGE) {
498 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
499 switch_port_tab[3]->phydev->link = (cfg & 0x1);
500 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
501 if (((cfg >> 2) & 0x3) == 2)
502 switch_port_tab[3]->phydev->speed = 1000;
503 else if (((cfg >> 2) & 0x3) == 1)
504 switch_port_tab[3]->phydev->speed = 100;
505 else
506 switch_port_tab[3]->phydev->speed = 10;
507 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
508 }
509
510 return (IRQ_HANDLED);
511 }
512
513
514 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
515 {
516 struct _rx_ring *rx_ring = &sw->rx_ring;
517 unsigned int i = rx_ring->alloc_index;
518 struct rx_desc *desc = &(rx_ring)->desc[i];
519 void *buf;
520 unsigned int phys;
521
522 for (received += rx_ring->alloc_count; received > 0; received--) {
523 buf = kmalloc(RX_SEGMENT_ALLOC_SIZE, GFP_ATOMIC);
524 if (!buf)
525 break;
526
527 phys = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
528 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
529 if (dma_mapping_error(NULL, phys)) {
530 kfree(buf);
531 break;
532 }
533
534 desc->sdl = RX_SEGMENT_MRU;
535 desc->sdp = phys;
536
537 wmb();
538
539 /* put the new buffer on RX-free queue */
540 rx_ring->buff_tab[i] = buf;
541 rx_ring->phys_tab[i] = phys;
542 if (i == RX_DESCS - 1) {
543 i = 0;
544 desc->config0 = END_OF_RING | FIRST_SEGMENT |
545 LAST_SEGMENT | RX_SEGMENT_MRU;
546 desc = &(rx_ring)->desc[i];
547 } else {
548 desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
549 RX_SEGMENT_MRU;
550 i++;
551 desc++;
552 }
553 }
554
555 rx_ring->alloc_count = received;
556 rx_ring->alloc_index = i;
557 }
558
559 static void eth_check_num_used(struct _tx_ring *tx_ring)
560 {
561 bool stop = false;
562 int i;
563
564 if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
565 stop = true;
566
567 if (tx_ring->stopped == stop)
568 return;
569
570 tx_ring->stopped = stop;
571 for (i = 0; i < 4; i++) {
572 struct port *port = switch_port_tab[i];
573 struct net_device *dev;
574
575 if (!port)
576 continue;
577
578 dev = port->netdev;
579 if (stop)
580 netif_stop_queue(dev);
581 else
582 netif_wake_queue(dev);
583 }
584 }
585
586 static void eth_complete_tx(struct sw *sw)
587 {
588 struct _tx_ring *tx_ring = &sw->tx_ring;
589 struct tx_desc *desc;
590 int i;
591 int index;
592 int num_used = tx_ring->num_used;
593 struct sk_buff *skb;
594
595 index = tx_ring->free_index;
596 desc = &(tx_ring)->desc[index];
597 for (i = 0; i < num_used; i++) {
598 if (desc->cown) {
599 skb = tx_ring->buff_tab[index];
600 tx_ring->buff_tab[index] = 0;
601 if (skb)
602 dev_kfree_skb_any(skb);
603 dma_unmap_single(NULL, tx_ring->phys_tab[index],
604 desc->sdl, DMA_TO_DEVICE);
605 if (++index == TX_DESCS) {
606 index = 0;
607 desc = &(tx_ring)->desc[index];
608 } else {
609 desc++;
610 }
611 } else {
612 break;
613 }
614 }
615 tx_ring->free_index = index;
616 tx_ring->num_used -= i;
617 eth_check_num_used(tx_ring);
618 }
619
620 static int eth_poll(struct napi_struct *napi, int budget)
621 {
622 struct sw *sw = container_of(napi, struct sw, napi);
623 struct _rx_ring *rx_ring = &sw->rx_ring;
624 int received = 0;
625 unsigned int length;
626 unsigned int i = rx_ring->cur_index;
627 struct rx_desc *desc = &(rx_ring)->desc[i];
628 unsigned int alloc_count = rx_ring->alloc_count;
629
630 while (desc->cown && alloc_count + received < RX_DESCS - 1) {
631 struct sk_buff *skb;
632 int reserve = SKB_HEAD_ALIGN;
633
634 if (received >= budget)
635 break;
636
637 /* process received frame */
638 dma_unmap_single(NULL, rx_ring->phys_tab[i],
639 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
640
641 skb = build_skb(rx_ring->buff_tab[i], 0);
642 if (!skb)
643 break;
644
645 skb->dev = switch_port_tab[desc->sp]->netdev;
646
647 length = desc->sdl;
648 if (desc->fsd && !desc->lsd)
649 length = RX_SEGMENT_MRU;
650
651 if (!desc->fsd) {
652 reserve -= NET_IP_ALIGN;
653 if (!desc->lsd)
654 length += NET_IP_ALIGN;
655 }
656
657 skb_reserve(skb, reserve);
658 skb_put(skb, length);
659
660 if (!sw->frag_first)
661 sw->frag_first = skb;
662 else {
663 if (sw->frag_first == sw->frag_last)
664 skb_frag_add_head(sw->frag_first, skb);
665 else
666 sw->frag_last->next = skb;
667 sw->frag_first->len += skb->len;
668 sw->frag_first->data_len += skb->len;
669 sw->frag_first->truesize += skb->truesize;
670 }
671 sw->frag_last = skb;
672
673 if (desc->lsd) {
674 struct net_device *dev;
675
676 skb = sw->frag_first;
677 dev = skb->dev;
678 skb->protocol = eth_type_trans(skb, dev);
679
680 dev->stats.rx_packets++;
681 dev->stats.rx_bytes += skb->len;
682
683 /* RX Hardware checksum offload */
684 skb->ip_summed = CHECKSUM_NONE;
685 switch (desc->prot) {
686 case 1:
687 case 2:
688 case 5:
689 case 6:
690 case 13:
691 case 14:
692 if (!desc->l4f) {
693 skb->ip_summed = CHECKSUM_UNNECESSARY;
694 napi_gro_receive(napi, skb);
695 break;
696 }
697 /* fall through */
698 default:
699 netif_receive_skb(skb);
700 break;
701 }
702
703 sw->frag_first = NULL;
704 sw->frag_last = NULL;
705 }
706
707 received++;
708 if (++i == RX_DESCS) {
709 i = 0;
710 desc = &(rx_ring)->desc[i];
711 } else {
712 desc++;
713 }
714 }
715
716 rx_ring->cur_index = i;
717 if (!received) {
718 napi_complete(napi);
719 enable_irq(IRQ_CNS3XXX_SW_R0RXC);
720
721 /* if rx descriptors are full schedule another poll */
722 if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
723 eth_schedule_poll(sw);
724 }
725
726 spin_lock_bh(&tx_lock);
727 eth_complete_tx(sw);
728 spin_unlock_bh(&tx_lock);
729
730 cns3xxx_alloc_rx_buf(sw, received);
731
732 wmb();
733 enable_rx_dma(sw);
734
735 return received;
736 }
737
738 static void eth_set_desc(struct _tx_ring *tx_ring, int index, int index_last,
739 void *data, int len, u32 config0, u32 pmap)
740 {
741 struct tx_desc *tx_desc = &(tx_ring)->desc[index];
742 unsigned int phys;
743
744 phys = dma_map_single(NULL, data, len, DMA_TO_DEVICE);
745 tx_desc->sdp = phys;
746 tx_desc->pmap = pmap;
747 tx_ring->phys_tab[index] = phys;
748
749 config0 |= len;
750 if (index == TX_DESCS - 1)
751 config0 |= END_OF_RING;
752 if (index == index_last)
753 config0 |= LAST_SEGMENT;
754
755 wmb();
756 tx_desc->config0 = config0;
757 }
758
759 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
760 {
761 struct port *port = netdev_priv(dev);
762 struct sw *sw = port->sw;
763 struct _tx_ring *tx_ring = &sw->tx_ring;
764 struct sk_buff *skb1;
765 char pmap = (1 << port->id);
766 int nr_frags = skb_shinfo(skb)->nr_frags;
767 int nr_desc = nr_frags;
768 int index0, index, index_last;
769 int len0;
770 unsigned int i;
771 u32 config0;
772
773 if (pmap == 8)
774 pmap = (1 << 4);
775
776 skb_walk_frags(skb, skb1)
777 nr_desc++;
778
779 eth_schedule_poll(sw);
780 spin_lock_bh(&tx_lock);
781 if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
782 spin_unlock_bh(&tx_lock);
783 return NETDEV_TX_BUSY;
784 }
785
786 index = index0 = tx_ring->cur_index;
787 index_last = (index0 + nr_desc) % TX_DESCS;
788 tx_ring->cur_index = (index_last + 1) % TX_DESCS;
789
790 spin_unlock_bh(&tx_lock);
791
792 config0 = FORCE_ROUTE;
793 if (skb->ip_summed == CHECKSUM_PARTIAL)
794 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
795
796 len0 = skb->len;
797
798 /* fragments */
799 for (i = 0; i < nr_frags; i++) {
800 struct skb_frag_struct *frag;
801 void *addr;
802
803 index = (index + 1) % TX_DESCS;
804
805 frag = &skb_shinfo(skb)->frags[i];
806 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
807
808 eth_set_desc(tx_ring, index, index_last, addr, frag->size,
809 config0, pmap);
810 }
811
812 if (nr_frags)
813 len0 = skb->len - skb->data_len;
814
815 skb_walk_frags(skb, skb1) {
816 index = (index + 1) % TX_DESCS;
817 len0 -= skb1->len;
818
819 eth_set_desc(tx_ring, index, index_last, skb1->data, skb1->len,
820 config0, pmap);
821 }
822
823 tx_ring->buff_tab[index0] = skb;
824 eth_set_desc(tx_ring, index0, index_last, skb->data, len0,
825 config0 | FIRST_SEGMENT, pmap);
826
827 wmb();
828
829 spin_lock(&tx_lock);
830 tx_ring->num_used += nr_desc + 1;
831 spin_unlock(&tx_lock);
832
833 dev->stats.tx_packets++;
834 dev->stats.tx_bytes += skb->len;
835
836 enable_tx_dma(sw);
837
838 return NETDEV_TX_OK;
839 }
840
841 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
842 {
843 struct port *port = netdev_priv(dev);
844
845 if (!netif_running(dev))
846 return -EINVAL;
847 return phy_mii_ioctl(port->phydev, req, cmd);
848 }
849
850 /* ethtool support */
851
852 static void cns3xxx_get_drvinfo(struct net_device *dev,
853 struct ethtool_drvinfo *info)
854 {
855 strcpy(info->driver, DRV_NAME);
856 strcpy(info->bus_info, "internal");
857 }
858
859 static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
860 {
861 struct port *port = netdev_priv(dev);
862 return phy_ethtool_gset(port->phydev, cmd);
863 }
864
865 static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
866 {
867 struct port *port = netdev_priv(dev);
868 return phy_ethtool_sset(port->phydev, cmd);
869 }
870
871 static int cns3xxx_nway_reset(struct net_device *dev)
872 {
873 struct port *port = netdev_priv(dev);
874 return phy_start_aneg(port->phydev);
875 }
876
877 static struct ethtool_ops cns3xxx_ethtool_ops = {
878 .get_drvinfo = cns3xxx_get_drvinfo,
879 .get_settings = cns3xxx_get_settings,
880 .set_settings = cns3xxx_set_settings,
881 .nway_reset = cns3xxx_nway_reset,
882 .get_link = ethtool_op_get_link,
883 };
884
885
886 static int init_rings(struct sw *sw)
887 {
888 int i;
889 struct _rx_ring *rx_ring = &sw->rx_ring;
890 struct _tx_ring *tx_ring = &sw->tx_ring;
891
892 __raw_writel(0, &sw->regs->fs_dma_ctrl0);
893 __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
894 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
895 __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
896
897 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
898
899 if (!(rx_dma_pool = dma_pool_create(DRV_NAME, NULL,
900 RX_POOL_ALLOC_SIZE, 32, 0)))
901 return -ENOMEM;
902
903 if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL,
904 &rx_ring->phys_addr)))
905 return -ENOMEM;
906 memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
907
908 /* Setup RX buffers */
909 for (i = 0; i < RX_DESCS; i++) {
910 struct rx_desc *desc = &(rx_ring)->desc[i];
911 void *buf;
912
913 buf = kzalloc(RX_SEGMENT_ALLOC_SIZE, GFP_KERNEL);
914 if (!buf)
915 return -ENOMEM;
916
917 desc->sdl = RX_SEGMENT_MRU;
918 if (i == (RX_DESCS - 1))
919 desc->eor = 1;
920 desc->fsd = 1;
921 desc->lsd = 1;
922
923 desc->sdp = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
924 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
925 if (dma_mapping_error(NULL, desc->sdp))
926 return -EIO;
927
928 rx_ring->buff_tab[i] = buf;
929 rx_ring->phys_tab[i] = desc->sdp;
930 desc->cown = 0;
931 }
932 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
933 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
934
935 if (!(tx_dma_pool = dma_pool_create(DRV_NAME, NULL,
936 TX_POOL_ALLOC_SIZE, 32, 0)))
937 return -ENOMEM;
938
939 if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL,
940 &tx_ring->phys_addr)))
941 return -ENOMEM;
942 memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
943
944 /* Setup TX buffers */
945 for (i = 0; i < TX_DESCS; i++) {
946 struct tx_desc *desc = &(tx_ring)->desc[i];
947 tx_ring->buff_tab[i] = 0;
948
949 if (i == (TX_DESCS - 1))
950 desc->eor = 1;
951 desc->cown = 1;
952 }
953 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
954 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
955
956 return 0;
957 }
958
959 static void destroy_rings(struct sw *sw)
960 {
961 int i;
962 if (sw->rx_ring.desc) {
963 for (i = 0; i < RX_DESCS; i++) {
964 struct _rx_ring *rx_ring = &sw->rx_ring;
965 struct rx_desc *desc = &(rx_ring)->desc[i];
966 struct sk_buff *skb = sw->rx_ring.buff_tab[i];
967
968 if (!skb)
969 continue;
970
971 dma_unmap_single(NULL, desc->sdp, RX_SEGMENT_MRU,
972 DMA_FROM_DEVICE);
973 dev_kfree_skb(skb);
974 }
975 dma_pool_free(rx_dma_pool, sw->rx_ring.desc, sw->rx_ring.phys_addr);
976 dma_pool_destroy(rx_dma_pool);
977 rx_dma_pool = 0;
978 sw->rx_ring.desc = 0;
979 }
980 if (sw->tx_ring.desc) {
981 for (i = 0; i < TX_DESCS; i++) {
982 struct _tx_ring *tx_ring = &sw->tx_ring;
983 struct tx_desc *desc = &(tx_ring)->desc[i];
984 struct sk_buff *skb = sw->tx_ring.buff_tab[i];
985 if (skb) {
986 dma_unmap_single(NULL, desc->sdp,
987 skb->len, DMA_TO_DEVICE);
988 dev_kfree_skb(skb);
989 }
990 }
991 dma_pool_free(tx_dma_pool, sw->tx_ring.desc, sw->tx_ring.phys_addr);
992 dma_pool_destroy(tx_dma_pool);
993 tx_dma_pool = 0;
994 sw->tx_ring.desc = 0;
995 }
996 }
997
998 static int eth_open(struct net_device *dev)
999 {
1000 struct port *port = netdev_priv(dev);
1001 struct sw *sw = port->sw;
1002 u32 temp;
1003
1004 port->speed = 0; /* force "link up" message */
1005 phy_start(port->phydev);
1006
1007 netif_start_queue(dev);
1008
1009 if (!ports_open) {
1010 request_irq(IRQ_CNS3XXX_SW_R0RXC, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
1011 request_irq(IRQ_CNS3XXX_SW_STATUS, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
1012 napi_enable(&sw->napi);
1013 netif_start_queue(napi_dev);
1014
1015 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
1016 MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
1017
1018 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1019 temp &= ~(PORT_DISABLE);
1020 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1021
1022 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1023 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1024 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1025
1026 enable_rx_dma(sw);
1027 }
1028 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1029 temp &= ~(PORT_DISABLE);
1030 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1031
1032 ports_open++;
1033 netif_carrier_on(dev);
1034
1035 return 0;
1036 }
1037
1038 static int eth_close(struct net_device *dev)
1039 {
1040 struct port *port = netdev_priv(dev);
1041 struct sw *sw = port->sw;
1042 u32 temp;
1043
1044 ports_open--;
1045
1046 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1047 temp |= (PORT_DISABLE);
1048 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1049
1050 netif_stop_queue(dev);
1051
1052 phy_stop(port->phydev);
1053
1054 if (!ports_open) {
1055 disable_irq(IRQ_CNS3XXX_SW_R0RXC);
1056 free_irq(IRQ_CNS3XXX_SW_R0RXC, napi_dev);
1057 disable_irq(IRQ_CNS3XXX_SW_STATUS);
1058 free_irq(IRQ_CNS3XXX_SW_STATUS, napi_dev);
1059 napi_disable(&sw->napi);
1060 netif_stop_queue(napi_dev);
1061 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1062 temp |= (PORT_DISABLE);
1063 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1064
1065 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1066 &sw->regs->dma_auto_poll_cfg);
1067 }
1068
1069 netif_carrier_off(dev);
1070 return 0;
1071 }
1072
1073 static void eth_rx_mode(struct net_device *dev)
1074 {
1075 struct port *port = netdev_priv(dev);
1076 struct sw *sw = port->sw;
1077 u32 temp;
1078
1079 temp = __raw_readl(&sw->regs->mac_glob_cfg);
1080
1081 if (dev->flags & IFF_PROMISC) {
1082 if (port->id == 3)
1083 temp |= ((1 << 2) << PROMISC_OFFSET);
1084 else
1085 temp |= ((1 << port->id) << PROMISC_OFFSET);
1086 } else {
1087 if (port->id == 3)
1088 temp &= ~((1 << 2) << PROMISC_OFFSET);
1089 else
1090 temp &= ~((1 << port->id) << PROMISC_OFFSET);
1091 }
1092 __raw_writel(temp, &sw->regs->mac_glob_cfg);
1093 }
1094
1095 static int eth_set_mac(struct net_device *netdev, void *p)
1096 {
1097 struct port *port = netdev_priv(netdev);
1098 struct sw *sw = port->sw;
1099 struct sockaddr *addr = p;
1100 u32 cycles = 0;
1101
1102 if (!is_valid_ether_addr(addr->sa_data))
1103 return -EADDRNOTAVAIL;
1104
1105 /* Invalidate old ARL Entry */
1106 if (port->id == 3)
1107 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1108 else
1109 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1110 __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1111 (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1112 &sw->regs->arl_ctrl[1]);
1113
1114 __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1115 (1 << 1)),
1116 &sw->regs->arl_ctrl[2]);
1117 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1118
1119 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1120 && cycles < 5000) {
1121 udelay(1);
1122 cycles++;
1123 }
1124
1125 cycles = 0;
1126 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1127
1128 if (port->id == 3)
1129 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1130 else
1131 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1132 __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1133 (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1134 &sw->regs->arl_ctrl[1]);
1135
1136 __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1137 (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1138 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1139
1140 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1141 && cycles < 5000) {
1142 udelay(1);
1143 cycles++;
1144 }
1145 return 0;
1146 }
1147
1148 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1149 {
1150 if (new_mtu > MAX_MTU)
1151 return -EINVAL;
1152
1153 dev->mtu = new_mtu;
1154 return 0;
1155 }
1156
1157 static const struct net_device_ops cns3xxx_netdev_ops = {
1158 .ndo_open = eth_open,
1159 .ndo_stop = eth_close,
1160 .ndo_start_xmit = eth_xmit,
1161 .ndo_set_rx_mode = eth_rx_mode,
1162 .ndo_do_ioctl = eth_ioctl,
1163 .ndo_change_mtu = cns3xxx_change_mtu,
1164 .ndo_set_mac_address = eth_set_mac,
1165 .ndo_validate_addr = eth_validate_addr,
1166 };
1167
1168 static int eth_init_one(struct platform_device *pdev)
1169 {
1170 int i;
1171 struct port *port;
1172 struct sw *sw;
1173 struct net_device *dev;
1174 struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1175 u32 regs_phys;
1176 char phy_id[MII_BUS_ID_SIZE + 3];
1177 int err;
1178 u32 temp;
1179
1180 if (!(napi_dev = alloc_etherdev(sizeof(struct sw))))
1181 return -ENOMEM;
1182 strcpy(napi_dev->name, "switch%d");
1183 napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1184
1185 SET_NETDEV_DEV(napi_dev, &pdev->dev);
1186 sw = netdev_priv(napi_dev);
1187 memset(sw, 0, sizeof(struct sw));
1188 sw->regs = (struct switch_regs __iomem *)CNS3XXX_SWITCH_BASE_VIRT;
1189 regs_phys = CNS3XXX_SWITCH_BASE;
1190 sw->mem_res = request_mem_region(regs_phys, REGS_SIZE, napi_dev->name);
1191 if (!sw->mem_res) {
1192 err = -EBUSY;
1193 goto err_free;
1194 }
1195
1196 temp = __raw_readl(&sw->regs->phy_auto_addr);
1197 temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1198 __raw_writel(temp, &sw->regs->phy_auto_addr);
1199
1200 for (i = 0; i < 4; i++) {
1201 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1202 temp |= (PORT_DISABLE);
1203 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1204 }
1205
1206 temp = PORT_DISABLE;
1207 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1208
1209 temp = __raw_readl(&sw->regs->vlan_cfg);
1210 temp |= NIC_MODE | VLAN_UNAWARE;
1211 __raw_writel(temp, &sw->regs->vlan_cfg);
1212
1213 __raw_writel(UNKNOWN_VLAN_TO_CPU |
1214 CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1215
1216 if ((err = init_rings(sw)) != 0) {
1217 destroy_rings(sw);
1218 err = -ENOMEM;
1219 goto err_free;
1220 }
1221 platform_set_drvdata(pdev, napi_dev);
1222
1223 netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1224
1225 for (i = 0; i < 3; i++) {
1226 if (!(plat->ports & (1 << i))) {
1227 continue;
1228 }
1229
1230 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1231 goto free_ports;
1232 }
1233
1234 port = netdev_priv(dev);
1235 port->netdev = dev;
1236 if (i == 2)
1237 port->id = 3;
1238 else
1239 port->id = i;
1240 port->sw = sw;
1241
1242 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1243 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1244 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1245
1246 dev->netdev_ops = &cns3xxx_netdev_ops;
1247 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1248 dev->tx_queue_len = 1000;
1249 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1250
1251 switch_port_tab[port->id] = port;
1252 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1253
1254 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1255 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link, 0,
1256 PHY_INTERFACE_MODE_RGMII);
1257 if ((err = IS_ERR(port->phydev))) {
1258 switch_port_tab[port->id] = 0;
1259 free_netdev(dev);
1260 goto free_ports;
1261 }
1262
1263 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1264
1265 if ((err = register_netdev(dev))) {
1266 phy_disconnect(port->phydev);
1267 switch_port_tab[port->id] = 0;
1268 free_netdev(dev);
1269 goto free_ports;
1270 }
1271
1272 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1273 netif_carrier_off(dev);
1274 dev = 0;
1275 }
1276
1277 return 0;
1278
1279 free_ports:
1280 err = -ENOMEM;
1281 for (--i; i >= 0; i--) {
1282 if (switch_port_tab[i]) {
1283 port = switch_port_tab[i];
1284 dev = port->netdev;
1285 unregister_netdev(dev);
1286 phy_disconnect(port->phydev);
1287 switch_port_tab[i] = 0;
1288 free_netdev(dev);
1289 }
1290 }
1291 err_free:
1292 free_netdev(napi_dev);
1293 return err;
1294 }
1295
1296 static int eth_remove_one(struct platform_device *pdev)
1297 {
1298 struct net_device *dev = platform_get_drvdata(pdev);
1299 struct sw *sw = netdev_priv(dev);
1300 int i;
1301 destroy_rings(sw);
1302
1303 for (i = 3; i >= 0; i--) {
1304 if (switch_port_tab[i]) {
1305 struct port *port = switch_port_tab[i];
1306 struct net_device *dev = port->netdev;
1307 unregister_netdev(dev);
1308 phy_disconnect(port->phydev);
1309 switch_port_tab[i] = 0;
1310 free_netdev(dev);
1311 }
1312 }
1313
1314 release_resource(sw->mem_res);
1315 free_netdev(napi_dev);
1316 return 0;
1317 }
1318
1319 static struct platform_driver cns3xxx_eth_driver = {
1320 .driver.name = DRV_NAME,
1321 .probe = eth_init_one,
1322 .remove = eth_remove_one,
1323 };
1324
1325 static int __init eth_init_module(void)
1326 {
1327 int err;
1328 if ((err = cns3xxx_mdio_register()))
1329 return err;
1330 return platform_driver_register(&cns3xxx_eth_driver);
1331 }
1332
1333 static void __exit eth_cleanup_module(void)
1334 {
1335 platform_driver_unregister(&cns3xxx_eth_driver);
1336 cns3xxx_mdio_remove();
1337 }
1338
1339 module_init(eth_init_module);
1340 module_exit(eth_cleanup_module);
1341
1342 MODULE_AUTHOR("Chris Lang");
1343 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1344 MODULE_LICENSE("GPL v2");
1345 MODULE_ALIAS("platform:cns3xxx_eth");