lldp: remove calls to user/group_add/exists
[openwrt/openwrt.git] / target / linux / lantiq / patches-3.14 / 0028-SPI-MIPS-lantiq-adds-spi-xway.patch
1 From 855c99aff4c1fb440a679cc8481947daf95643b8 Mon Sep 17 00:00:00 2001
2 From: John Crispin <blogic@openwrt.org>
3 Date: Wed, 13 Mar 2013 09:29:37 +0100
4 Subject: [PATCH 28/31] SPI: MIPS: lantiq: adds spi-xway
5
6 This patch adds support for the SPI core found on several Lantiq SoCs.
7 The Driver has been runtime tested in combination with m25p80 Flash Devices
8 on Amazon_SE and VR9.
9
10 Signed-off-by: Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
11 Signed-off-by: John Crispin <blogic@openwrt.org>
12 ---
13 drivers/spi/Kconfig | 8 +
14 drivers/spi/Makefile | 1 +
15 drivers/spi/spi-xway.c | 977 ++++++++++++++++++++++++++++++++++++++++++++++++
16 3 files changed, 986 insertions(+)
17 create mode 100644 drivers/spi/spi-xway.c
18
19 diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
20 index 581ee2a..b2cd93c 100644
21 --- a/drivers/spi/Kconfig
22 +++ b/drivers/spi/Kconfig
23 @@ -527,6 +527,14 @@ config SPI_NUC900
24 help
25 SPI driver for Nuvoton NUC900 series ARM SoCs
26
27 +config SPI_XWAY
28 + tristate "Lantiq XWAY SPI controller"
29 + depends on LANTIQ && SOC_TYPE_XWAY
30 + select SPI_BITBANG
31 + help
32 + This driver supports the Lantiq SoC SPI controller in master
33 + mode.
34 +
35 #
36 # Add new SPI master controllers in alphabetical order above this line
37 #
38 diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
39 index 95af48d..82d3799 100644
40 --- a/drivers/spi/Makefile
41 +++ b/drivers/spi/Makefile
42 @@ -79,3 +79,4 @@ obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o
43 obj-$(CONFIG_SPI_TXX9) += spi-txx9.o
44 obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o
45 obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o
46 +obj-$(CONFIG_SPI_XWAY) += spi-xway.o
47 diff --git a/drivers/spi/spi-xway.c b/drivers/spi/spi-xway.c
48 new file mode 100644
49 index 0000000..61532e3
50 --- /dev/null
51 +++ b/drivers/spi/spi-xway.c
52 @@ -0,0 +1,977 @@
53 +/*
54 + * Lantiq SoC SPI controller
55 + *
56 + * Copyright (C) 2011 Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
57 + * Copyright (C) 2012 John Crispin <blogic@openwrt.org>
58 + *
59 + * This program is free software; you can distribute it and/or modify it
60 + * under the terms of the GNU General Public License (Version 2) as
61 + * published by the Free Software Foundation.
62 + */
63 +
64 +#include <linux/init.h>
65 +#include <linux/module.h>
66 +#include <linux/workqueue.h>
67 +#include <linux/platform_device.h>
68 +#include <linux/io.h>
69 +#include <linux/sched.h>
70 +#include <linux/delay.h>
71 +#include <linux/interrupt.h>
72 +#include <linux/completion.h>
73 +#include <linux/spinlock.h>
74 +#include <linux/err.h>
75 +#include <linux/clk.h>
76 +#include <linux/spi/spi.h>
77 +#include <linux/spi/spi_bitbang.h>
78 +#include <linux/of_irq.h>
79 +
80 +#include <lantiq_soc.h>
81 +
82 +#define LTQ_SPI_CLC 0x00 /* Clock control */
83 +#define LTQ_SPI_PISEL 0x04 /* Port input select */
84 +#define LTQ_SPI_ID 0x08 /* Identification */
85 +#define LTQ_SPI_CON 0x10 /* Control */
86 +#define LTQ_SPI_STAT 0x14 /* Status */
87 +#define LTQ_SPI_WHBSTATE 0x18 /* Write HW modified state */
88 +#define LTQ_SPI_TB 0x20 /* Transmit buffer */
89 +#define LTQ_SPI_RB 0x24 /* Receive buffer */
90 +#define LTQ_SPI_RXFCON 0x30 /* Receive FIFO control */
91 +#define LTQ_SPI_TXFCON 0x34 /* Transmit FIFO control */
92 +#define LTQ_SPI_FSTAT 0x38 /* FIFO status */
93 +#define LTQ_SPI_BRT 0x40 /* Baudrate timer */
94 +#define LTQ_SPI_BRSTAT 0x44 /* Baudrate timer status */
95 +#define LTQ_SPI_SFCON 0x60 /* Serial frame control */
96 +#define LTQ_SPI_SFSTAT 0x64 /* Serial frame status */
97 +#define LTQ_SPI_GPOCON 0x70 /* General purpose output control */
98 +#define LTQ_SPI_GPOSTAT 0x74 /* General purpose output status */
99 +#define LTQ_SPI_FGPO 0x78 /* Forced general purpose output */
100 +#define LTQ_SPI_RXREQ 0x80 /* Receive request */
101 +#define LTQ_SPI_RXCNT 0x84 /* Receive count */
102 +#define LTQ_SPI_DMACON 0xEC /* DMA control */
103 +#define LTQ_SPI_IRNEN 0xF4 /* Interrupt node enable */
104 +#define LTQ_SPI_IRNICR 0xF8 /* Interrupt node interrupt capture */
105 +#define LTQ_SPI_IRNCR 0xFC /* Interrupt node control */
106 +
107 +#define LTQ_SPI_CLC_SMC_SHIFT 16 /* Clock divider for sleep mode */
108 +#define LTQ_SPI_CLC_SMC_MASK 0xFF
109 +#define LTQ_SPI_CLC_RMC_SHIFT 8 /* Clock divider for normal run mode */
110 +#define LTQ_SPI_CLC_RMC_MASK 0xFF
111 +#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
112 +#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
113 +
114 +#define LTQ_SPI_ID_TXFS_SHIFT 24 /* Implemented TX FIFO size */
115 +#define LTQ_SPI_ID_TXFS_MASK 0x3F
116 +#define LTQ_SPI_ID_RXFS_SHIFT 16 /* Implemented RX FIFO size */
117 +#define LTQ_SPI_ID_RXFS_MASK 0x3F
118 +#define LTQ_SPI_ID_REV_MASK 0x1F /* Hardware revision number */
119 +#define LTQ_SPI_ID_CFG BIT(5) /* DMA interface support */
120 +
121 +#define LTQ_SPI_CON_BM_SHIFT 16 /* Data width selection */
122 +#define LTQ_SPI_CON_BM_MASK 0x1F
123 +#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
124 +#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
125 +#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
126 +#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
127 +#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
128 +#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
129 +#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
130 +#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
131 +#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
132 +#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
133 +#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
134 +#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
135 +#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
136 +#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
137 +
138 +#define LTQ_SPI_STAT_RXBV_MASK 0x7
139 +#define LTQ_SPI_STAT_RXBV_SHIFT 28
140 +#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
141 +#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
142 +#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
143 +#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
144 +#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
145 +#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
146 +#define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
147 +#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
148 +
149 +#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
150 +#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
151 +#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
152 +#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
153 +#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error
154 + flag */
155 +#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
156 +#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
157 +#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
158 +#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
159 +#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
160 +#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
161 +#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
162 +#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
163 +#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
164 +#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
165 +#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
166 +#define LTQ_SPI_WHBSTATE_CLR_ERRORS 0x0F50
167 +
168 +#define LTQ_SPI_RXFCON_RXFITL_SHIFT 8 /* FIFO interrupt trigger level */
169 +#define LTQ_SPI_RXFCON_RXFITL_MASK 0x3F
170 +#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
171 +#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
172 +
173 +#define LTQ_SPI_TXFCON_TXFITL_SHIFT 8 /* FIFO interrupt trigger level */
174 +#define LTQ_SPI_TXFCON_TXFITL_MASK 0x3F
175 +#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
176 +#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
177 +
178 +#define LTQ_SPI_FSTAT_RXFFL_MASK 0x3f
179 +#define LTQ_SPI_FSTAT_RXFFL_SHIFT 0
180 +#define LTQ_SPI_FSTAT_TXFFL_MASK 0x3f
181 +#define LTQ_SPI_FSTAT_TXFFL_SHIFT 8
182 +
183 +#define LTQ_SPI_GPOCON_ISCSBN_SHIFT 8
184 +#define LTQ_SPI_GPOCON_INVOUTN_SHIFT 0
185 +
186 +#define LTQ_SPI_FGPO_SETOUTN_SHIFT 8
187 +#define LTQ_SPI_FGPO_CLROUTN_SHIFT 0
188 +
189 +#define LTQ_SPI_RXREQ_RXCNT_MASK 0xFFFF /* Receive count value */
190 +#define LTQ_SPI_RXCNT_TODO_MASK 0xFFFF /* Recevie to-do value */
191 +
192 +#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
193 +#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
194 +#define LTQ_SPI_IRNEN_T BIT(1) /* Transmit end interrupt request */
195 +#define LTQ_SPI_IRNEN_R BIT(0) /* Receive end interrupt request */
196 +#define LTQ_SPI_IRNEN_ALL 0xF
197 +
198 +struct ltq_spi {
199 + struct spi_bitbang bitbang;
200 + struct completion done;
201 + spinlock_t lock;
202 +
203 + struct device *dev;
204 + void __iomem *base;
205 + struct clk *fpiclk;
206 + struct clk *spiclk;
207 +
208 + int status;
209 + int irq[3];
210 +
211 + const u8 *tx;
212 + u8 *rx;
213 + u32 tx_cnt;
214 + u32 rx_cnt;
215 + u32 len;
216 + struct spi_transfer *curr_transfer;
217 +
218 + u32 (*get_tx) (struct ltq_spi *);
219 +
220 + u16 txfs;
221 + u16 rxfs;
222 + unsigned dma_support:1;
223 + unsigned cfg_mode:1;
224 +};
225 +
226 +static inline struct ltq_spi *ltq_spi_to_hw(struct spi_device *spi)
227 +{
228 + return spi_master_get_devdata(spi->master);
229 +}
230 +
231 +static inline u32 ltq_spi_reg_read(struct ltq_spi *hw, u32 reg)
232 +{
233 + return ioread32be(hw->base + reg);
234 +}
235 +
236 +static inline void ltq_spi_reg_write(struct ltq_spi *hw, u32 val, u32 reg)
237 +{
238 + iowrite32be(val, hw->base + reg);
239 +}
240 +
241 +static inline void ltq_spi_reg_setbit(struct ltq_spi *hw, u32 bits, u32 reg)
242 +{
243 + u32 val;
244 +
245 + val = ltq_spi_reg_read(hw, reg);
246 + val |= bits;
247 + ltq_spi_reg_write(hw, val, reg);
248 +}
249 +
250 +static inline void ltq_spi_reg_clearbit(struct ltq_spi *hw, u32 bits, u32 reg)
251 +{
252 + u32 val;
253 +
254 + val = ltq_spi_reg_read(hw, reg);
255 + val &= ~bits;
256 + ltq_spi_reg_write(hw, val, reg);
257 +}
258 +
259 +static void ltq_spi_hw_enable(struct ltq_spi *hw)
260 +{
261 + u32 clc;
262 +
263 + /* Power-up module */
264 + clk_enable(hw->spiclk);
265 +
266 + /*
267 + * Set clock divider for run mode to 1 to
268 + * run at same frequency as FPI bus
269 + */
270 + clc = (1 << LTQ_SPI_CLC_RMC_SHIFT);
271 + ltq_spi_reg_write(hw, clc, LTQ_SPI_CLC);
272 +}
273 +
274 +static void ltq_spi_hw_disable(struct ltq_spi *hw)
275 +{
276 + /* Set clock divider to 0 and set module disable bit */
277 + ltq_spi_reg_write(hw, LTQ_SPI_CLC_DISS, LTQ_SPI_CLC);
278 +
279 + /* Power-down module */
280 + clk_disable(hw->spiclk);
281 +}
282 +
283 +static void ltq_spi_reset_fifos(struct ltq_spi *hw)
284 +{
285 + u32 val;
286 +
287 + /*
288 + * Enable and flush FIFOs. Set interrupt trigger level to
289 + * half of FIFO count implemented in hardware.
290 + */
291 + if (hw->txfs > 1) {
292 + val = hw->txfs << (LTQ_SPI_TXFCON_TXFITL_SHIFT - 1);
293 + val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
294 + ltq_spi_reg_write(hw, val, LTQ_SPI_TXFCON);
295 + }
296 +
297 + if (hw->rxfs > 1) {
298 + val = hw->rxfs << (LTQ_SPI_RXFCON_RXFITL_SHIFT - 1);
299 + val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
300 + ltq_spi_reg_write(hw, val, LTQ_SPI_RXFCON);
301 + }
302 +}
303 +
304 +static inline int ltq_spi_wait_ready(struct ltq_spi *hw)
305 +{
306 + u32 stat;
307 + unsigned long timeout;
308 +
309 + timeout = jiffies + msecs_to_jiffies(200);
310 +
311 + do {
312 + stat = ltq_spi_reg_read(hw, LTQ_SPI_STAT);
313 + if (!(stat & LTQ_SPI_STAT_BSY))
314 + return 0;
315 +
316 + cond_resched();
317 + } while (!time_after_eq(jiffies, timeout));
318 +
319 + dev_err(hw->dev, "SPI wait ready timed out stat: %x\n", stat);
320 +
321 + return -ETIMEDOUT;
322 +}
323 +
324 +static void ltq_spi_config_mode_set(struct ltq_spi *hw)
325 +{
326 + if (hw->cfg_mode)
327 + return;
328 +
329 + /*
330 + * Putting the SPI module in config mode is only safe if no
331 + * transfer is in progress as indicated by busy flag STATE.BSY.
332 + */
333 + if (ltq_spi_wait_ready(hw)) {
334 + ltq_spi_reset_fifos(hw);
335 + hw->status = -ETIMEDOUT;
336 + }
337 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
338 +
339 + hw->cfg_mode = 1;
340 +}
341 +
342 +static void ltq_spi_run_mode_set(struct ltq_spi *hw)
343 +{
344 + if (!hw->cfg_mode)
345 + return;
346 +
347 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
348 +
349 + hw->cfg_mode = 0;
350 +}
351 +
352 +static u32 ltq_spi_tx_word_u8(struct ltq_spi *hw)
353 +{
354 + const u8 *tx = hw->tx;
355 + u32 data = *tx++;
356 +
357 + hw->tx_cnt++;
358 + hw->tx++;
359 +
360 + return data;
361 +}
362 +
363 +static u32 ltq_spi_tx_word_u16(struct ltq_spi *hw)
364 +{
365 + const u16 *tx = (u16 *) hw->tx;
366 + u32 data = *tx++;
367 +
368 + hw->tx_cnt += 2;
369 + hw->tx += 2;
370 +
371 + return data;
372 +}
373 +
374 +static u32 ltq_spi_tx_word_u32(struct ltq_spi *hw)
375 +{
376 + const u32 *tx = (u32 *) hw->tx;
377 + u32 data = *tx++;
378 +
379 + hw->tx_cnt += 4;
380 + hw->tx += 4;
381 +
382 + return data;
383 +}
384 +
385 +static void ltq_spi_bits_per_word_set(struct spi_device *spi)
386 +{
387 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
388 + u32 bm;
389 + u8 bits_per_word = spi->bits_per_word;
390 +
391 + /*
392 + * Use either default value of SPI device or value
393 + * from current transfer.
394 + */
395 + if (hw->curr_transfer && hw->curr_transfer->bits_per_word)
396 + bits_per_word = hw->curr_transfer->bits_per_word;
397 +
398 + if (bits_per_word <= 8)
399 + hw->get_tx = ltq_spi_tx_word_u8;
400 + else if (bits_per_word <= 16)
401 + hw->get_tx = ltq_spi_tx_word_u16;
402 + else if (bits_per_word <= 32)
403 + hw->get_tx = ltq_spi_tx_word_u32;
404 +
405 + /* CON.BM value = bits_per_word - 1 */
406 + bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_SHIFT;
407 +
408 + ltq_spi_reg_clearbit(hw, LTQ_SPI_CON_BM_MASK <<
409 + LTQ_SPI_CON_BM_SHIFT, LTQ_SPI_CON);
410 + ltq_spi_reg_setbit(hw, bm, LTQ_SPI_CON);
411 +}
412 +
413 +static void ltq_spi_speed_set(struct spi_device *spi)
414 +{
415 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
416 + u32 br, max_speed_hz, spi_clk;
417 + u32 speed_hz = spi->max_speed_hz;
418 +
419 + /*
420 + * Use either default value of SPI device or value
421 + * from current transfer.
422 + */
423 + if (hw->curr_transfer && hw->curr_transfer->speed_hz)
424 + speed_hz = hw->curr_transfer->speed_hz;
425 +
426 + /*
427 + * SPI module clock is derived from FPI bus clock dependent on
428 + * divider value in CLC.RMS which is always set to 1.
429 + */
430 + spi_clk = clk_get_rate(hw->fpiclk);
431 +
432 + /*
433 + * Maximum SPI clock frequency in master mode is half of
434 + * SPI module clock frequency. Maximum reload value of
435 + * baudrate generator BR is 2^16.
436 + */
437 + max_speed_hz = spi_clk / 2;
438 + if (speed_hz >= max_speed_hz)
439 + br = 0;
440 + else
441 + br = (max_speed_hz / speed_hz) - 1;
442 +
443 + if (br > 0xFFFF)
444 + br = 0xFFFF;
445 +
446 + ltq_spi_reg_write(hw, br, LTQ_SPI_BRT);
447 +}
448 +
449 +static void ltq_spi_clockmode_set(struct spi_device *spi)
450 +{
451 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
452 + u32 con;
453 +
454 + con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
455 +
456 + /*
457 + * SPI mode mapping in CON register:
458 + * Mode CPOL CPHA CON.PO CON.PH
459 + * 0 0 0 0 1
460 + * 1 0 1 0 0
461 + * 2 1 0 1 1
462 + * 3 1 1 1 0
463 + */
464 + if (spi->mode & SPI_CPHA)
465 + con &= ~LTQ_SPI_CON_PH;
466 + else
467 + con |= LTQ_SPI_CON_PH;
468 +
469 + if (spi->mode & SPI_CPOL)
470 + con |= LTQ_SPI_CON_PO;
471 + else
472 + con &= ~LTQ_SPI_CON_PO;
473 +
474 + /* Set heading control */
475 + if (spi->mode & SPI_LSB_FIRST)
476 + con &= ~LTQ_SPI_CON_HB;
477 + else
478 + con |= LTQ_SPI_CON_HB;
479 +
480 + ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
481 +}
482 +
483 +static void ltq_spi_xmit_set(struct ltq_spi *hw, struct spi_transfer *t)
484 +{
485 + u32 con;
486 +
487 + con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
488 +
489 + if (t) {
490 + if (t->tx_buf && t->rx_buf) {
491 + con &= ~(LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
492 + } else if (t->rx_buf) {
493 + con &= ~LTQ_SPI_CON_RXOFF;
494 + con |= LTQ_SPI_CON_TXOFF;
495 + } else if (t->tx_buf) {
496 + con &= ~LTQ_SPI_CON_TXOFF;
497 + con |= LTQ_SPI_CON_RXOFF;
498 + }
499 + } else
500 + con |= (LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
501 +
502 + ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
503 +}
504 +
505 +static void ltq_spi_internal_cs_activate(struct spi_device *spi)
506 +{
507 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
508 + u32 fgpo;
509 +
510 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_CLROUTN_SHIFT));
511 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
512 +}
513 +
514 +static void ltq_spi_internal_cs_deactivate(struct spi_device *spi)
515 +{
516 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
517 + u32 fgpo;
518 +
519 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
520 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
521 +}
522 +
523 +static void ltq_spi_chipselect(struct spi_device *spi, int cs)
524 +{
525 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
526 +
527 + switch (cs) {
528 + case BITBANG_CS_ACTIVE:
529 + ltq_spi_bits_per_word_set(spi);
530 + ltq_spi_speed_set(spi);
531 + ltq_spi_clockmode_set(spi);
532 + ltq_spi_run_mode_set(hw);
533 + ltq_spi_internal_cs_activate(spi);
534 + break;
535 +
536 + case BITBANG_CS_INACTIVE:
537 + ltq_spi_internal_cs_deactivate(spi);
538 + ltq_spi_config_mode_set(hw);
539 + break;
540 + }
541 +}
542 +
543 +static int ltq_spi_setup_transfer(struct spi_device *spi,
544 + struct spi_transfer *t)
545 +{
546 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
547 + u8 bits_per_word = spi->bits_per_word;
548 +
549 + hw->curr_transfer = t;
550 +
551 + if (t && t->bits_per_word)
552 + bits_per_word = t->bits_per_word;
553 +
554 + if (bits_per_word > 32)
555 + return -EINVAL;
556 +
557 + ltq_spi_config_mode_set(hw);
558 +
559 + return 0;
560 +}
561 +
562 +static int ltq_spi_setup(struct spi_device *spi)
563 +{
564 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
565 + u32 gpocon, fgpo;
566 +
567 + /* Set default word length to 8 if not set */
568 + if (!spi->bits_per_word)
569 + spi->bits_per_word = 8;
570 +
571 + if (spi->bits_per_word > 32)
572 + return -EINVAL;
573 +
574 + /*
575 + * Up to six GPIOs can be connected to the SPI module
576 + * via GPIO alternate function to control the chip select lines.
577 + */
578 + gpocon = (1 << (spi->chip_select +
579 + LTQ_SPI_GPOCON_ISCSBN_SHIFT));
580 +
581 + if (spi->mode & SPI_CS_HIGH)
582 + gpocon |= (1 << spi->chip_select);
583 +
584 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
585 +
586 + ltq_spi_reg_setbit(hw, gpocon, LTQ_SPI_GPOCON);
587 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
588 +
589 + return 0;
590 +}
591 +
592 +static void ltq_spi_cleanup(struct spi_device *spi)
593 +{
594 +
595 +}
596 +
597 +static void ltq_spi_txfifo_write(struct ltq_spi *hw)
598 +{
599 + u32 fstat, data;
600 + u16 fifo_space;
601 +
602 + /* Determine how much FIFOs are free for TX data */
603 + fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
604 + fifo_space = hw->txfs - ((fstat >> LTQ_SPI_FSTAT_TXFFL_SHIFT) &
605 + LTQ_SPI_FSTAT_TXFFL_MASK);
606 +
607 + if (!fifo_space)
608 + return;
609 +
610 + while (hw->tx_cnt < hw->len && fifo_space) {
611 + data = hw->get_tx(hw);
612 + ltq_spi_reg_write(hw, data, LTQ_SPI_TB);
613 + fifo_space--;
614 + }
615 +}
616 +
617 +static void ltq_spi_rxfifo_read(struct ltq_spi *hw)
618 +{
619 + u32 fstat, data, *rx32;
620 + u16 fifo_fill;
621 + u8 rxbv, shift, *rx8;
622 +
623 + /* Determine how much FIFOs are filled with RX data */
624 + fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
625 + fifo_fill = ((fstat >> LTQ_SPI_FSTAT_RXFFL_SHIFT)
626 + & LTQ_SPI_FSTAT_RXFFL_MASK);
627 +
628 + if (!fifo_fill)
629 + return;
630 +
631 + /*
632 + * The 32 bit FIFO is always used completely independent from the
633 + * bits_per_word value. Thus four bytes have to be read at once
634 + * per FIFO.
635 + */
636 + rx32 = (u32 *) hw->rx;
637 + while (hw->len - hw->rx_cnt >= 4 && fifo_fill) {
638 + *rx32++ = ltq_spi_reg_read(hw, LTQ_SPI_RB);
639 + hw->rx_cnt += 4;
640 + hw->rx += 4;
641 + fifo_fill--;
642 + }
643 +
644 + /*
645 + * If there are remaining bytes, read byte count from STAT.RXBV
646 + * register and read the data byte-wise.
647 + */
648 + while (fifo_fill && hw->rx_cnt < hw->len) {
649 + rxbv = (ltq_spi_reg_read(hw, LTQ_SPI_STAT) >>
650 + LTQ_SPI_STAT_RXBV_SHIFT) & LTQ_SPI_STAT_RXBV_MASK;
651 + data = ltq_spi_reg_read(hw, LTQ_SPI_RB);
652 +
653 + shift = (rxbv - 1) * 8;
654 + rx8 = hw->rx;
655 +
656 + while (rxbv) {
657 + *rx8++ = (data >> shift) & 0xFF;
658 + rxbv--;
659 + shift -= 8;
660 + hw->rx_cnt++;
661 + hw->rx++;
662 + }
663 +
664 + fifo_fill--;
665 + }
666 +}
667 +
668 +static void ltq_spi_rxreq_set(struct ltq_spi *hw)
669 +{
670 + u32 rxreq, rxreq_max, rxtodo;
671 +
672 + rxtodo = ltq_spi_reg_read(hw, LTQ_SPI_RXCNT) & LTQ_SPI_RXCNT_TODO_MASK;
673 +
674 + /*
675 + * In RX-only mode the serial clock is activated only after writing
676 + * the expected amount of RX bytes into RXREQ register.
677 + * To avoid receive overflows at high clocks it is better to request
678 + * only the amount of bytes that fits into all FIFOs. This value
679 + * depends on the FIFO size implemented in hardware.
680 + */
681 + rxreq = hw->len - hw->rx_cnt;
682 + rxreq_max = hw->rxfs << 2;
683 + rxreq = min(rxreq_max, rxreq);
684 +
685 + if (!rxtodo && rxreq)
686 + ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ);
687 +}
688 +
689 +static inline void ltq_spi_complete(struct ltq_spi *hw)
690 +{
691 + complete(&hw->done);
692 +}
693 +
694 +irqreturn_t ltq_spi_tx_irq(int irq, void *data)
695 +{
696 + struct ltq_spi *hw = data;
697 + unsigned long flags;
698 + int completed = 0;
699 +
700 + spin_lock_irqsave(&hw->lock, flags);
701 +
702 + if (hw->tx_cnt < hw->len)
703 + ltq_spi_txfifo_write(hw);
704 +
705 + if (hw->tx_cnt == hw->len)
706 + completed = 1;
707 +
708 + spin_unlock_irqrestore(&hw->lock, flags);
709 +
710 + if (completed)
711 + ltq_spi_complete(hw);
712 +
713 + return IRQ_HANDLED;
714 +}
715 +
716 +irqreturn_t ltq_spi_rx_irq(int irq, void *data)
717 +{
718 + struct ltq_spi *hw = data;
719 + unsigned long flags;
720 + int completed = 0;
721 +
722 + spin_lock_irqsave(&hw->lock, flags);
723 +
724 + if (hw->rx_cnt < hw->len) {
725 + ltq_spi_rxfifo_read(hw);
726 +
727 + if (hw->tx && hw->tx_cnt < hw->len)
728 + ltq_spi_txfifo_write(hw);
729 + }
730 +
731 + if (hw->rx_cnt == hw->len)
732 + completed = 1;
733 + else if (!hw->tx)
734 + ltq_spi_rxreq_set(hw);
735 +
736 + spin_unlock_irqrestore(&hw->lock, flags);
737 +
738 + if (completed)
739 + ltq_spi_complete(hw);
740 +
741 + return IRQ_HANDLED;
742 +}
743 +
744 +irqreturn_t ltq_spi_err_irq(int irq, void *data)
745 +{
746 + struct ltq_spi *hw = data;
747 + unsigned long flags;
748 +
749 + spin_lock_irqsave(&hw->lock, flags);
750 +
751 + /* Disable all interrupts */
752 + ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
753 +
754 + /* Clear all error flags */
755 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
756 +
757 + /* Flush FIFOs */
758 + ltq_spi_reg_setbit(hw, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
759 + ltq_spi_reg_setbit(hw, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
760 +
761 + hw->status = -EIO;
762 + spin_unlock_irqrestore(&hw->lock, flags);
763 +
764 + ltq_spi_complete(hw);
765 +
766 + return IRQ_HANDLED;
767 +}
768 +
769 +static int ltq_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
770 +{
771 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
772 + u32 irq_flags = 0;
773 +
774 + hw->tx = t->tx_buf;
775 + hw->rx = t->rx_buf;
776 + hw->len = t->len;
777 + hw->tx_cnt = 0;
778 + hw->rx_cnt = 0;
779 + hw->status = 0;
780 + INIT_COMPLETION(hw->done);
781 +
782 + ltq_spi_xmit_set(hw, t);
783 +
784 + /* Enable error interrupts */
785 + ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
786 +
787 + if (hw->tx) {
788 + /* Initially fill TX FIFO with as much data as possible */
789 + ltq_spi_txfifo_write(hw);
790 + irq_flags |= LTQ_SPI_IRNEN_T;
791 +
792 + /* Always enable RX interrupt in Full Duplex mode */
793 + if (hw->rx)
794 + irq_flags |= LTQ_SPI_IRNEN_R;
795 + } else if (hw->rx) {
796 + /* Start RX clock */
797 + ltq_spi_rxreq_set(hw);
798 +
799 + /* Enable RX interrupt to receive data from RX FIFOs */
800 + irq_flags |= LTQ_SPI_IRNEN_R;
801 + }
802 +
803 + /* Enable TX or RX interrupts */
804 + ltq_spi_reg_setbit(hw, irq_flags, LTQ_SPI_IRNEN);
805 + wait_for_completion_interruptible(&hw->done);
806 +
807 + /* Disable all interrupts */
808 + ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
809 +
810 + /*
811 + * Return length of current transfer for bitbang utility code if
812 + * no errors occured during transmission.
813 + */
814 + if (!hw->status)
815 + hw->status = hw->len;
816 +
817 + return hw->status;
818 +}
819 +
820 +static const struct ltq_spi_irq_map {
821 + char *name;
822 + irq_handler_t handler;
823 +} ltq_spi_irqs[] = {
824 + { "spi_rx", ltq_spi_rx_irq },
825 + { "spi_tx", ltq_spi_tx_irq },
826 + { "spi_err", ltq_spi_err_irq },
827 +};
828 +
829 +static int ltq_spi_probe(struct platform_device *pdev)
830 +{
831 + struct resource irqres[3];
832 + struct spi_master *master;
833 + struct resource *r;
834 + struct ltq_spi *hw;
835 + int ret, i;
836 + u32 data, id;
837 +
838 + if (of_irq_to_resource_table(pdev->dev.of_node, irqres, 3) != 3) {
839 + dev_err(&pdev->dev, "IRQ settings missing in device tree\n");
840 + return -EINVAL;
841 + }
842 +
843 + master = spi_alloc_master(&pdev->dev, sizeof(struct ltq_spi));
844 + if (!master) {
845 + dev_err(&pdev->dev, "spi_alloc_master\n");
846 + ret = -ENOMEM;
847 + goto err;
848 + }
849 +
850 + hw = spi_master_get_devdata(master);
851 +
852 + r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
853 + if (r == NULL) {
854 + dev_err(&pdev->dev, "platform_get_resource\n");
855 + ret = -ENOENT;
856 + goto err_master;
857 + }
858 +
859 + r = devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
860 + pdev->name);
861 + if (!r) {
862 + dev_err(&pdev->dev, "failed to request memory region\n");
863 + ret = -ENXIO;
864 + goto err_master;
865 + }
866 +
867 + hw->base = devm_ioremap_nocache(&pdev->dev, r->start, resource_size(r));
868 + if (!hw->base) {
869 + dev_err(&pdev->dev, "failed to remap memory region\n");
870 + ret = -ENXIO;
871 + goto err_master;
872 + }
873 +
874 + memset(hw->irq, 0, sizeof(hw->irq));
875 + for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) {
876 + hw->irq[i] = irqres[i].start;
877 + ret = request_irq(hw->irq[i], ltq_spi_irqs[i].handler,
878 + 0, ltq_spi_irqs[i].name, hw);
879 + if (ret) {
880 + dev_err(&pdev->dev, "failed to request %s irq (%d)\n",
881 + ltq_spi_irqs[i].name, hw->irq[i]);
882 + goto err_irq;
883 + }
884 + }
885 +
886 + hw->fpiclk = clk_get_fpi();
887 + if (IS_ERR(hw->fpiclk)) {
888 + dev_err(&pdev->dev, "failed to get fpi clock\n");
889 + ret = PTR_ERR(hw->fpiclk);
890 + goto err_clk;
891 + }
892 +
893 + hw->spiclk = clk_get(&pdev->dev, NULL);
894 + if (IS_ERR(hw->spiclk)) {
895 + dev_err(&pdev->dev, "failed to get spi clock gate\n");
896 + ret = PTR_ERR(hw->spiclk);
897 + goto err_clk;
898 + }
899 +
900 + hw->bitbang.master = spi_master_get(master);
901 + hw->bitbang.chipselect = ltq_spi_chipselect;
902 + hw->bitbang.setup_transfer = ltq_spi_setup_transfer;
903 + hw->bitbang.txrx_bufs = ltq_spi_txrx_bufs;
904 +
905 + if (of_machine_is_compatible("lantiq,ase"))
906 + master->num_chipselect = 3;
907 + else
908 + master->num_chipselect = 6;
909 + master->bus_num = pdev->id;
910 + master->setup = ltq_spi_setup;
911 + master->cleanup = ltq_spi_cleanup;
912 + master->dev.of_node = pdev->dev.of_node;
913 +
914 + hw->dev = &pdev->dev;
915 + init_completion(&hw->done);
916 + spin_lock_init(&hw->lock);
917 +
918 + ltq_spi_hw_enable(hw);
919 +
920 + /* Read module capabilities */
921 + id = ltq_spi_reg_read(hw, LTQ_SPI_ID);
922 + hw->txfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
923 + hw->rxfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
924 + hw->dma_support = (id & LTQ_SPI_ID_CFG) ? 1 : 0;
925 +
926 + ltq_spi_config_mode_set(hw);
927 +
928 + /* Enable error checking, disable TX/RX, set idle value high */
929 + data = LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
930 + LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN |
931 + LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF | LTQ_SPI_CON_IDLE;
932 + ltq_spi_reg_write(hw, data, LTQ_SPI_CON);
933 +
934 + /* Enable master mode and clear error flags */
935 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETMS |
936 + LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
937 +
938 + /* Reset GPIO/CS registers */
939 + ltq_spi_reg_write(hw, 0x0, LTQ_SPI_GPOCON);
940 + ltq_spi_reg_write(hw, 0xFF00, LTQ_SPI_FGPO);
941 +
942 + /* Enable and flush FIFOs */
943 + ltq_spi_reset_fifos(hw);
944 +
945 + ret = spi_bitbang_start(&hw->bitbang);
946 + if (ret) {
947 + dev_err(&pdev->dev, "spi_bitbang_start failed\n");
948 + goto err_bitbang;
949 + }
950 +
951 + platform_set_drvdata(pdev, hw);
952 +
953 + pr_info("Lantiq SoC SPI controller rev %u (TXFS %u, RXFS %u, DMA %u)\n",
954 + id & LTQ_SPI_ID_REV_MASK, hw->txfs, hw->rxfs, hw->dma_support);
955 +
956 + return 0;
957 +
958 +err_bitbang:
959 + ltq_spi_hw_disable(hw);
960 +
961 +err_clk:
962 + if (hw->fpiclk)
963 + clk_put(hw->fpiclk);
964 + if (hw->spiclk)
965 + clk_put(hw->spiclk);
966 +
967 +err_irq:
968 + clk_put(hw->fpiclk);
969 +
970 + for (; i > 0; i--)
971 + free_irq(hw->irq[i], hw);
972 +
973 +err_master:
974 + spi_master_put(master);
975 +
976 +err:
977 + return ret;
978 +}
979 +
980 +static int ltq_spi_remove(struct platform_device *pdev)
981 +{
982 + struct ltq_spi *hw = platform_get_drvdata(pdev);
983 + int ret, i;
984 +
985 + ret = spi_bitbang_stop(&hw->bitbang);
986 + if (ret)
987 + return ret;
988 +
989 + platform_set_drvdata(pdev, NULL);
990 +
991 + ltq_spi_config_mode_set(hw);
992 + ltq_spi_hw_disable(hw);
993 +
994 + for (i = 0; i < ARRAY_SIZE(hw->irq); i++)
995 + if (0 < hw->irq[i])
996 + free_irq(hw->irq[i], hw);
997 +
998 + if (hw->fpiclk)
999 + clk_put(hw->fpiclk);
1000 + if (hw->spiclk)
1001 + clk_put(hw->spiclk);
1002 +
1003 + spi_master_put(hw->bitbang.master);
1004 +
1005 + return 0;
1006 +}
1007 +
1008 +static const struct of_device_id ltq_spi_match[] = {
1009 + { .compatible = "lantiq,spi-xway" },
1010 + {},
1011 +};
1012 +MODULE_DEVICE_TABLE(of, ltq_spi_match);
1013 +
1014 +static struct platform_driver ltq_spi_driver = {
1015 + .probe = ltq_spi_probe,
1016 + .remove = ltq_spi_remove,
1017 + .driver = {
1018 + .name = "spi-xway",
1019 + .owner = THIS_MODULE,
1020 + .of_match_table = ltq_spi_match,
1021 + },
1022 +};
1023 +
1024 +module_platform_driver(ltq_spi_driver);
1025 +
1026 +MODULE_DESCRIPTION("Lantiq SoC SPI controller driver");
1027 +MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>");
1028 +MODULE_LICENSE("GPL");
1029 +MODULE_ALIAS("platform:spi-xway");
1030 --
1031 1.7.10.4
1032