cleaning up olpc patch 1
[openwrt/openwrt.git] / target / linux / olpc / files / arch / i386 / pci / olpc.c
1 /*
2 * olpcpci.c - Low-level PCI config space access for OLPC systems
3 * without the VSA PCI virtualization software.
4 *
5 * The AMD Geode chipset (GX2 processor, cs5536 I/O companion device)
6 * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
7 * that more or less behave like PCI devices, but the hardware doesn't
8 * directly implement the PCI configuration space headers. AMD provides
9 * "VSA" (Virtual System Architecture) software that emulates PCI config
10 * space for these devices, by trapping I/O accesses to PCI config register
11 * (CF8/CFC) and running some code in System Management Mode interrupt state.
12 * On the OLPC platform, we don't want to use that VSA code because
13 * (a) it slows down suspend/resume, and (b) recompiling it requires special
14 * compilers that are hard to get. So instead of letting the complex VSA
15 * code simulate the PCI config registers for the on-chip devices, we
16 * just simulate them the easy way, by inserting the code into the
17 * pci_write_config and pci_read_config path. Most of the config registers
18 * are read-only anyway, so the bulk of the simulation is just table lookup.
19 */
20
21 #include <linux/pci.h>
22 #include <linux/init.h>
23 #include <asm/olpc.h>
24 #include <asm/geode.h>
25 #include "pci.h"
26
27 static int is_lx;
28
29 /*
30 * In the tables below, the first two line (8 longwords) are the
31 * size masks that are used when the higher level PCI code determines
32 * the size of the region by writing ~0 to a base address register
33 * and reading back the result.
34 *
35 * The following lines are the values that are read during normal
36 * PCI config access cycles, i.e. not after just having written
37 * ~0 to a base address register.
38 */
39
40 static const u32 lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
41 0x0 , 0x0 , 0x0 , 0x0 ,
42 0x0 , 0x0 , 0x0 , 0x0 ,
43
44 0x281022 , 0x2200005 , 0x6000021 , 0x80f808 , /* AMD Vendor ID */
45 0x0 , 0x0 , 0x0 , 0x0 , /* No virtual registers, hence no BAR for them */
46 0x0 , 0x0 , 0x0 , 0x28100b ,
47 0x0 , 0x0 , 0x0 , 0x0 ,
48 0x0 , 0x0 , 0x0 , 0x0 ,
49 0x0 , 0x0 , 0x0 , 0x0 ,
50 0x0 , 0x0 , 0x0 , 0x0 ,
51 };
52
53 static const u32 gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
54 0xfffffffd , 0x0 , 0x0 , 0x0 ,
55 0x0 , 0x0 , 0x0 , 0x0 ,
56
57 0x28100b , 0x2200005 , 0x6000021 , 0x80f808 , /* NSC Vendor ID */
58 0xac1d , 0x0 , 0x0 , 0x0 , /* I/O BAR - base of virtual registers */
59 0x0 , 0x0 , 0x0 , 0x28100b ,
60 0x0 , 0x0 , 0x0 , 0x0 ,
61 0x0 , 0x0 , 0x0 , 0x0 ,
62 0x0 , 0x0 , 0x0 , 0x0 ,
63 0x0 , 0x0 , 0x0 , 0x0 ,
64 };
65
66 static const u32 lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
67 0xff800008 , 0xffffc000 , 0xffffc000 , 0xffffc000 ,
68 0x0 , 0x0 , 0x0 , 0x0 ,
69
70 0x20811022 , 0x2200003 , 0x3000000 , 0x0 , /* AMD Vendor ID */
71 0xfd000000 , 0xfe000000 , 0xfe004000 , 0xfe008000 , /* FB, GP, VG, DF */
72 0xfe00c000 , 0x0 , 0x0 , 0x30100b , /* VIP */
73 0x0 , 0x0 , 0x0 , 0x10e , /* INTA, IRQ14 for graphics accel */
74 0x0 , 0x0 , 0x0 , 0x0 ,
75 0x3d0 , 0x3c0 , 0xa0000 , 0x0 , /* VG IO, VG IO, EGA FB, MONO FB */
76 0x0 , 0x0 , 0x0 , 0x0 ,
77 };
78
79 static const u32 gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
80 0xff800008 , 0xffffc000 , 0xffffc000 , 0xffffc000 ,
81 0x0 , 0x0 , 0x0 , 0x0 ,
82
83 0x30100b , 0x2200003 , 0x3000000 , 0x0 , /* NSC Vendor ID */
84 0xfd000000 , 0xfe000000 , 0xfe004000 , 0xfe008000 , /* FB, GP, VG, DF */
85 0x0 , 0x0 , 0x0 , 0x30100b ,
86 0x0 , 0x0 , 0x0 , 0x0 ,
87 0x0 , 0x0 , 0x0 , 0x0 ,
88 0x3d0 , 0x3c0 , 0xa0000 , 0x0 , /* VG IO, VG IO, EGA FB, MONO FB */
89 0x0 , 0x0 , 0x0 , 0x0 ,
90 };
91
92 static const u32 aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */
93 0xffffc000 , 0x0 , 0x0 , 0x0 ,
94 0x0 , 0x0 , 0x0 , 0x0 ,
95
96 0x20821022 , 0x2a00006 , 0x10100000 , 0x8 , /* NSC Vendor ID */
97 0xfe010000 , 0x0 , 0x0 , 0x0 , /* AES registers */
98 0x0 , 0x0 , 0x0 , 0x20821022 ,
99 0x0 , 0x0 , 0x0 , 0x0 ,
100 0x0 , 0x0 , 0x0 , 0x0 ,
101 0x0 , 0x0 , 0x0 , 0x0 ,
102 0x0 , 0x0 , 0x0 , 0x0 ,
103 };
104
105
106 static const u32 isa_hdr[] = { /* dev f function 0 - devfn = 78 */
107 0xfffffff9 , 0xffffff01 , 0xffffffc1 , 0xffffffe1 ,
108 0xffffff81 , 0xffffffc1 , 0x0 , 0x0 ,
109
110 0x20901022 , 0x2a00049 , 0x6010003 , 0x802000 ,
111 0x18b1 , 0x1001 , 0x1801 , 0x1881 , /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */
112 0x1401 , 0x1841 , 0x0 , 0x20901022 , /* PMS-128 ACPI-64 */
113 0x0 , 0x0 , 0x0 , 0x0 ,
114 0x0 , 0x0 , 0x0 , 0x0 ,
115 0x0 , 0x0 , 0x0 , 0xaa5b , /* interrupt steering */
116 0x0 , 0x0 , 0x0 , 0x0 ,
117 };
118
119 static const u32 ac97_hdr[] = { /* dev f function 3 - devfn = 7b */
120 0xffffff81 , 0x0 , 0x0 , 0x0 ,
121 0x0 , 0x0 , 0x0 , 0x0 ,
122
123 0x20931022 , 0x2a00041 , 0x4010001 , 0x0 ,
124 0x1481 , 0x0 , 0x0 , 0x0 , /* I/O BAR-128 */
125 0x0 , 0x0 , 0x0 , 0x20931022 ,
126 0x0 , 0x0 , 0x0 , 0x205 , /* IntB , IRQ5 */
127 0x0 , 0x0 , 0x0 , 0x0 ,
128 0x0 , 0x0 , 0x0 , 0x0 ,
129 0x0 , 0x0 , 0x0 , 0x0 ,
130 };
131
132 static const u32 ohci_hdr[] = { /* dev f function 4 - devfn = 7c */
133 0xfffff000 , 0x0 , 0x0 , 0x0 ,
134 0x0 , 0x0 , 0x0 , 0x0 ,
135
136 0x20941022 , 0x2300006 , 0xc031002 , 0x0 ,
137 0xfe01a000 , 0x0 , 0x0 , 0x0 , /* MEMBAR-1000 */
138 0x0 , 0x0 , 0x0 , 0x20941022 ,
139 0x0 , 0x40 , 0x0 , 0x40a , /* CapPtr INT-D, IRQ A */
140 0xc8020001 , 0x0 , 0x0 , 0x0 , /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */
141 0x0 , 0x0 , 0x0 , 0x0 ,
142 0x0 , 0x0 , 0x0 , 0x0 ,
143 };
144
145 static const u32 ehci_hdr[] = { /* dev f function 4 - devfn = 7d */
146 0xfffff000 , 0x0 , 0x0 , 0x0 ,
147 0x0 , 0x0 , 0x0 , 0x0 ,
148
149 0x20951022 , 0x2300006 , 0xc032002 , 0x0 ,
150 0xfe01b000 , 0x0 , 0x0 , 0x0 , /* MEMBAR-1000 */
151 0x0 , 0x0 , 0x0 , 0x20951022 ,
152 0x0 , 0x40 , 0x0 , 0x40a , /* CapPtr INT-D, IRQ A */
153 0xc8020001 , 0x0 , 0x0 , 0x0 , /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */
154 #if 0
155 0x1 , 0x40080000 , 0x0 , 0x0 , /* EECP - see section 2.1.7 of EHCI spec */
156 #endif
157 0x01000001 , 0x00000000 , 0x0 , 0x0 , /* EECP - see section 2.1.7 of EHCI spec */
158 0x2020 , 0x0 , 0x0 , 0x0 , /* (EHCI page 8) 60 SBRN (R/O), 61 FLADJ (R/W), PORTWAKECAP */
159 };
160
161 static u32 ff_loc = ~0;
162 static u32 zero_loc = 0;
163
164 static int bar_probing = 0; /* Set after a write of ~0 to a BAR */
165
166 #define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */
167 #define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */
168 #define SIMULATED(bus, devfn) (((bus) == 0) && ((PCI_SLOT(devfn) == NB_SLOT) || (PCI_SLOT(devfn) == SB_SLOT)))
169
170 static u32 *hdr_addr(const u32 *hdr, int reg)
171 {
172 u32 addr;
173
174 /*
175 * This is a little bit tricky. The header maps consist of
176 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
177 * In the normal case, when not probing a BAR's size, we want
178 * to access the header data, so we add 0x20 to the reg offset,
179 * thus skipping the size mask area.
180 * In the BAR probing case, we want to access the size mask for
181 * the BAR, so we subtract 0x10 (the config header offset for
182 * BAR0), and don't skip the size mask area.
183 */
184
185 addr = (u32)hdr + reg + (bar_probing ? -0x10 : 0x20);
186
187 bar_probing = 0;
188 return (u32 *)addr;
189 }
190
191 static int pci_olpc_read(unsigned int seg, unsigned int bus,
192 unsigned int devfn, int reg, int len, u32 *value)
193 {
194 u32 *addr;
195
196 /* Use the hardware mechanism for non-simulated devices */
197 if (!SIMULATED(bus, devfn))
198 return pci_conf1_read(seg, bus, devfn, reg, len, value);
199
200 /*
201 * No device has config registers past 0x70, so we save table space
202 * by not storing entries for the nonexistent registers
203 */
204 if (reg >= 0x70)
205 addr = &zero_loc;
206 else {
207 switch (devfn) {
208 case 0x8:
209 addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
210 break;
211 case 0x9:
212 addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
213 break;
214 case 0xa:
215 addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
216 break;
217 case 0x78:
218 addr = hdr_addr(isa_hdr, reg);
219 break;
220 case 0x7b:
221 addr = hdr_addr(ac97_hdr, reg);
222 break;
223 case 0x7c:
224 addr = hdr_addr(ohci_hdr, reg);
225 break;
226 case 0x7d:
227 addr = hdr_addr(ehci_hdr, reg);
228 break;
229 default:
230 addr = &ff_loc;
231 break;
232 }
233 }
234 switch (len) {
235 case 1:
236 *value = *(u8 *) addr;
237 break;
238 case 2:
239 *value = *(u16 *) addr;
240 break;
241 case 4:
242 *value = *addr;
243 break;
244 default:
245 BUG();
246 }
247
248 return 0;
249 }
250
251 static int pci_olpc_write(unsigned int seg, unsigned int bus,
252 unsigned int devfn, int reg, int len, u32 value)
253 {
254 /* Use the hardware mechanism for non-simulated devices */
255 if (!SIMULATED(bus, devfn))
256 return pci_conf1_write(seg, bus, devfn, reg, len, value);
257
258 /* XXX we may want to extend this to simulate EHCI power management */
259
260 /*
261 * Mostly we just discard writes, but if the write is a size probe
262 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
263 * the appropriate size mask on the next read. This is cheating
264 * to some extent, because it depends on the fact that the next
265 * access after such a write will always be a read to the same BAR.
266 */
267
268 if ((reg >= 0x10) && (reg < 0x2c)) {
269 /* Write is to a BAR */
270 if (value == ~0)
271 bar_probing = 1;
272 } else {
273 /*
274 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
275 * CACHE_LINE_SIZE, or PM registers.
276 */
277 if ((reg != 0x30) && (reg != 0x04) && (reg != 0x0d) &&
278 (reg != 0x0c) && (reg != 0x44))
279 printk(KERN_WARNING "OLPC PCI: Config write to devfn %x reg %x value %x\n", devfn, reg, value);
280 }
281
282 return 0;
283 }
284
285 static struct pci_raw_ops pci_olpc_conf = {
286 .read = pci_olpc_read,
287 .write = pci_olpc_write,
288 };
289
290 void __init pci_olpc_init(void)
291 {
292 if (!machine_is_olpc() || olpc_has_vsa())
293 return;
294
295 printk(KERN_INFO "PCI: Using configuration type OLPC\n");
296 raw_pci_ops = &pci_olpc_conf;
297 is_lx = is_geode_lx();
298 }