kernel: remove linux 3.18 support
[openwrt/staging/chunkeey.git] / target / linux / generic / pending-4.4 / 090-MIPS-c-r4k-Use-IPI-calls-for-CM-indexed-cache-ops.patch
1 From: James Hogan <james.hogan@imgtec.com>
2 Date: Mon, 25 Jan 2016 21:30:00 +0000
3 Subject: [PATCH] MIPS: c-r4k: Use IPI calls for CM indexed cache ops
4
5 The Coherence Manager (CM) can propagate address-based ("hit") cache
6 operations to other cores in the coherent system, alleviating software
7 of the need to use IPI calls, however indexed cache operations are not
8 propagated since doing so makes no sense for separate caches.
9
10 r4k_on_each_cpu() previously had a special case for CONFIG_MIPS_MT_SMP,
11 intended to avoid the IPIs when the only other CPUs in the system were
12 other VPEs in the same core, and hence sharing the same caches. This was
13 changed by commit cccf34e9411c ("MIPS: c-r4k: Fix cache flushing for MT
14 cores") to apparently handle multi-core multi-VPE systems, but it
15 focussed mainly on hit cache ops, so the IPI calls were still disabled
16 entirely for CM systems.
17
18 This doesn't normally cause problems, but tests can be written to hit
19 these corner cases by using multiple threads, or changing task
20 affinities to force the process to migrate cores. For example the
21 failure of mprotect RW->RX to globally sync icaches (via
22 flush_cache_range) can be detected by modifying and mprotecting a code
23 page on one core, and migrating to a different core to execute from it.
24
25 Most of the functions called by r4k_on_each_cpu() perform cache
26 operations exclusively with a single addressing-type (virtual address vs
27 indexed), so add a type argument and modify the callers to pass in
28 R4K_USER (user virtual addressing), R4K_KERN (global kernel virtual
29 addressing) or R4K_INDEX (index into cache).
30
31 local_r4k_flush_icache_range() is split up, to allow it to be called
32 from the rest of the kernel, or from r4k_flush_icache_range() where it
33 will choose either indexed or hit cache operations based on the size of
34 the range and the cache sizes.
35
36 local_r4k_flush_kernel_vmap_range() is split into two functions, each of
37 which uses cache operations with a single addressing-type, with
38 r4k_flush_kernel_vmap_range() making the decision whether to use indexed
39 cache ops or not.
40
41 Signed-off-by: James Hogan <james.hogan@imgtec.com>
42 Cc: Ralf Baechle <ralf@linux-mips.org>
43 Cc: Paul Burton <paul.burton@imgtec.com>
44 Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com>
45 Cc: linux-mips@linux-mips.org
46 ---
47
48 --- a/arch/mips/mm/c-r4k.c
49 +++ b/arch/mips/mm/c-r4k.c
50 @@ -40,6 +40,50 @@
51 #include <asm/mips-cm.h>
52
53 /*
54 + * Bits describing what cache ops an IPI callback function may perform.
55 + *
56 + * R4K_USER - Virtual user address based cache operations.
57 + * Ineffective on other CPUs.
58 + * R4K_KERN - Virtual kernel address based cache operations (including kmap).
59 + * Effective on other CPUs.
60 + * R4K_INDEX - Index based cache operations.
61 + * Effective on other CPUs.
62 + */
63 +
64 +#define R4K_USER BIT(0)
65 +#define R4K_KERN BIT(1)
66 +#define R4K_INDEX BIT(2)
67 +
68 +#ifdef CONFIG_SMP
69 +/* The Coherence manager propagates address-based cache ops to other cores */
70 +#define r4k_hit_globalized mips_cm_present()
71 +#define r4k_index_globalized 0
72 +#else
73 +/* If there's only 1 CPU, then all cache ops are globalized to that 1 CPU */
74 +#define r4k_hit_globalized 1
75 +#define r4k_index_globalized 1
76 +#endif
77 +
78 +/**
79 + * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
80 + * @type: Type of cache operations (R4K_USER, R4K_KERN or R4K_INDEX).
81 + *
82 + * Returns: 1 if the cache operation @type should be done on every core in
83 + * the system.
84 + * 0 if the cache operation @type is globalized and only needs to
85 + * be performed on a simple CPU.
86 + */
87 +static inline bool r4k_op_needs_ipi(unsigned int type)
88 +{
89 + /*
90 + * If hardware doesn't globalize the required cache ops we must use IPIs
91 + * to do so.
92 + */
93 + return (type & R4K_KERN && !r4k_hit_globalized) ||
94 + (type & R4K_INDEX && !r4k_index_globalized);
95 +}
96 +
97 +/*
98 * Special Variant of smp_call_function for use by cache functions:
99 *
100 * o No return value
101 @@ -48,19 +92,11 @@
102 * primary cache.
103 * o doesn't disable interrupts on the local CPU
104 */
105 -static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
106 +static inline void r4k_on_each_cpu(unsigned int type,
107 + void (*func) (void *info), void *info)
108 {
109 preempt_disable();
110 -
111 - /*
112 - * The Coherent Manager propagates address-based cache ops to other
113 - * cores but not index-based ops. However, r4k_on_each_cpu is used
114 - * in both cases so there is no easy way to tell what kind of op is
115 - * executed to the other cores. The best we can probably do is
116 - * to restrict that call when a CM is not present because both
117 - * CM-based SMP protocols (CMP & CPS) restrict index-based cache ops.
118 - */
119 - if (!mips_cm_present())
120 + if (r4k_op_needs_ipi(type))
121 smp_call_function_many(&cpu_foreign_map, func, info, 1);
122 func(info);
123 preempt_enable();
124 @@ -456,7 +492,7 @@ static inline void local_r4k___flush_cac
125
126 static void r4k___flush_cache_all(void)
127 {
128 - r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
129 + r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
130 }
131
132 static inline int has_valid_asid(const struct mm_struct *mm)
133 @@ -503,7 +539,7 @@ static void r4k_flush_cache_range(struct
134 int exec = vma->vm_flags & VM_EXEC;
135
136 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
137 - r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
138 + r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
139 }
140
141 static inline void local_r4k_flush_cache_mm(void * args)
142 @@ -535,7 +571,7 @@ static void r4k_flush_cache_mm(struct mm
143 if (!cpu_has_dc_aliases)
144 return;
145
146 - r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
147 + r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
148 }
149
150 struct flush_cache_page_args {
151 @@ -629,7 +665,7 @@ static void r4k_flush_cache_page(struct
152 args.addr = addr;
153 args.pfn = pfn;
154
155 - r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
156 + r4k_on_each_cpu(R4K_KERN, local_r4k_flush_cache_page, &args);
157 }
158
159 static inline void local_r4k_flush_data_cache_page(void * addr)
160 @@ -642,18 +678,23 @@ static void r4k_flush_data_cache_page(un
161 if (in_atomic())
162 local_r4k_flush_data_cache_page((void *)addr);
163 else
164 - r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
165 + r4k_on_each_cpu(R4K_KERN, local_r4k_flush_data_cache_page,
166 + (void *) addr);
167 }
168
169 struct flush_icache_range_args {
170 unsigned long start;
171 unsigned long end;
172 + unsigned int type;
173 };
174
175 -static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
176 +static inline void __local_r4k_flush_icache_range(unsigned long start,
177 + unsigned long end,
178 + unsigned int type)
179 {
180 if (!cpu_has_ic_fills_f_dc) {
181 - if (end - start >= dcache_size) {
182 + if (type == R4K_INDEX ||
183 + (type & R4K_INDEX && end - start >= dcache_size)) {
184 r4k_blast_dcache();
185 } else {
186 R4600_HIT_CACHEOP_WAR_IMPL;
187 @@ -661,7 +702,8 @@ static inline void local_r4k_flush_icach
188 }
189 }
190
191 - if (end - start > icache_size)
192 + if (type == R4K_INDEX ||
193 + (type & R4K_INDEX && end - start > icache_size))
194 r4k_blast_icache();
195 else {
196 switch (boot_cpu_type()) {
197 @@ -687,23 +729,59 @@ static inline void local_r4k_flush_icach
198 #endif
199 }
200
201 +static inline void local_r4k_flush_icache_range(unsigned long start,
202 + unsigned long end)
203 +{
204 + __local_r4k_flush_icache_range(start, end, R4K_KERN | R4K_INDEX);
205 +}
206 +
207 static inline void local_r4k_flush_icache_range_ipi(void *args)
208 {
209 struct flush_icache_range_args *fir_args = args;
210 unsigned long start = fir_args->start;
211 unsigned long end = fir_args->end;
212 + unsigned int type = fir_args->type;
213
214 - local_r4k_flush_icache_range(start, end);
215 + __local_r4k_flush_icache_range(start, end, type);
216 }
217
218 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
219 {
220 struct flush_icache_range_args args;
221 + unsigned long size, cache_size;
222
223 args.start = start;
224 args.end = end;
225 + args.type = R4K_KERN | R4K_INDEX;
226
227 - r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
228 + if (in_atomic()) {
229 + /*
230 + * We can't do blocking IPI calls from atomic context, so fall
231 + * back to pure address-based cache ops if they globalize.
232 + */
233 + if (!r4k_index_globalized && r4k_hit_globalized) {
234 + args.type &= ~R4K_INDEX;
235 + } else {
236 + /* Just do it locally instead. */
237 + local_r4k_flush_icache_range(start, end);
238 + instruction_hazard();
239 + return;
240 + }
241 + } else if (!r4k_index_globalized && r4k_hit_globalized) {
242 + /*
243 + * If address-based cache ops are globalized, then we may be
244 + * able to avoid the IPI for small flushes.
245 + */
246 + size = start - end;
247 + cache_size = icache_size;
248 + if (!cpu_has_ic_fills_f_dc) {
249 + size *= 2;
250 + cache_size += dcache_size;
251 + }
252 + if (size <= cache_size)
253 + args.type &= ~R4K_INDEX;
254 + }
255 + r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
256 instruction_hazard();
257 }
258
259 @@ -823,7 +901,12 @@ static void local_r4k_flush_cache_sigtra
260
261 static void r4k_flush_cache_sigtramp(unsigned long addr)
262 {
263 - r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
264 + /*
265 + * FIXME this is a bit broken when !r4k_hit_globalized, since the user
266 + * code probably won't be mapped on other CPUs, so if the process is
267 + * migrated, it could end up hitting stale icache lines.
268 + */
269 + r4k_on_each_cpu(R4K_USER, local_r4k_flush_cache_sigtramp, (void *)addr);
270 }
271
272 static void r4k_flush_icache_all(void)
273 @@ -837,6 +920,15 @@ struct flush_kernel_vmap_range_args {
274 int size;
275 };
276
277 +static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
278 +{
279 + /*
280 + * Aliases only affect the primary caches so don't bother with
281 + * S-caches or T-caches.
282 + */
283 + r4k_blast_dcache();
284 +}
285 +
286 static inline void local_r4k_flush_kernel_vmap_range(void *args)
287 {
288 struct flush_kernel_vmap_range_args *vmra = args;
289 @@ -847,12 +939,8 @@ static inline void local_r4k_flush_kerne
290 * Aliases only affect the primary caches so don't bother with
291 * S-caches or T-caches.
292 */
293 - if (cpu_has_safe_index_cacheops && size >= dcache_size)
294 - r4k_blast_dcache();
295 - else {
296 - R4600_HIT_CACHEOP_WAR_IMPL;
297 - blast_dcache_range(vaddr, vaddr + size);
298 - }
299 + R4600_HIT_CACHEOP_WAR_IMPL;
300 + blast_dcache_range(vaddr, vaddr + size);
301 }
302
303 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
304 @@ -862,7 +950,12 @@ static void r4k_flush_kernel_vmap_range(
305 args.vaddr = (unsigned long) vaddr;
306 args.size = size;
307
308 - r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
309 + if (cpu_has_safe_index_cacheops && size >= dcache_size)
310 + r4k_on_each_cpu(R4K_INDEX,
311 + local_r4k_flush_kernel_vmap_range_index, NULL);
312 + else
313 + r4k_on_each_cpu(R4K_KERN, local_r4k_flush_kernel_vmap_range,
314 + &args);
315 }
316
317 static inline void rm7k_erratum31(void)