kernel: Reorder generic configuration
[openwrt/staging/dedeckeh.git] / target / linux / generic / pending-4.14 / 530-jffs2_make_lzma_available.patch
1 From: Alexandros C. Couloumbis <alex@ozo.com>
2 Subject: fs: add jffs2/lzma support (not activated by default yet)
3
4 lede-commit: c2c88d315fa0e881f8b19da07b62859b915b11b2
5 Signed-off-by: Alexandros C. Couloumbis <alex@ozo.com>
6 ---
7 fs/jffs2/Kconfig | 9 +
8 fs/jffs2/Makefile | 3 +
9 fs/jffs2/compr.c | 6 +
10 fs/jffs2/compr.h | 10 +-
11 fs/jffs2/compr_lzma.c | 128 +++
12 fs/jffs2/super.c | 33 +-
13 include/linux/lzma.h | 62 ++
14 include/linux/lzma/LzFind.h | 115 +++
15 include/linux/lzma/LzHash.h | 54 +
16 include/linux/lzma/LzmaDec.h | 231 +++++
17 include/linux/lzma/LzmaEnc.h | 80 ++
18 include/linux/lzma/Types.h | 226 +++++
19 include/uapi/linux/jffs2.h | 1 +
20 lib/Kconfig | 6 +
21 lib/Makefile | 12 +
22 lib/lzma/LzFind.c | 761 ++++++++++++++
23 lib/lzma/LzmaDec.c | 999 +++++++++++++++++++
24 lib/lzma/LzmaEnc.c | 2271 ++++++++++++++++++++++++++++++++++++++++++
25 lib/lzma/Makefile | 7 +
26 19 files changed, 5008 insertions(+), 6 deletions(-)
27 create mode 100644 fs/jffs2/compr_lzma.c
28 create mode 100644 include/linux/lzma.h
29 create mode 100644 include/linux/lzma/LzFind.h
30 create mode 100644 include/linux/lzma/LzHash.h
31 create mode 100644 include/linux/lzma/LzmaDec.h
32 create mode 100644 include/linux/lzma/LzmaEnc.h
33 create mode 100644 include/linux/lzma/Types.h
34 create mode 100644 lib/lzma/LzFind.c
35 create mode 100644 lib/lzma/LzmaDec.c
36 create mode 100644 lib/lzma/LzmaEnc.c
37 create mode 100644 lib/lzma/Makefile
38
39 --- a/fs/jffs2/Kconfig
40 +++ b/fs/jffs2/Kconfig
41 @@ -139,6 +139,15 @@ config JFFS2_LZO
42 This feature was added in July, 2007. Say 'N' if you need
43 compatibility with older bootloaders or kernels.
44
45 +config JFFS2_LZMA
46 + bool "JFFS2 LZMA compression support" if JFFS2_COMPRESSION_OPTIONS
47 + select LZMA_COMPRESS
48 + select LZMA_DECOMPRESS
49 + depends on JFFS2_FS
50 + default n
51 + help
52 + JFFS2 wrapper to the LZMA C SDK
53 +
54 config JFFS2_RTIME
55 bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS
56 depends on JFFS2_FS
57 --- a/fs/jffs2/Makefile
58 +++ b/fs/jffs2/Makefile
59 @@ -19,4 +19,7 @@ jffs2-$(CONFIG_JFFS2_RUBIN) += compr_rub
60 jffs2-$(CONFIG_JFFS2_RTIME) += compr_rtime.o
61 jffs2-$(CONFIG_JFFS2_ZLIB) += compr_zlib.o
62 jffs2-$(CONFIG_JFFS2_LZO) += compr_lzo.o
63 +jffs2-$(CONFIG_JFFS2_LZMA) += compr_lzma.o
64 jffs2-$(CONFIG_JFFS2_SUMMARY) += summary.o
65 +
66 +CFLAGS_compr_lzma.o += -Iinclude/linux -Ilib/lzma
67 --- a/fs/jffs2/compr.c
68 +++ b/fs/jffs2/compr.c
69 @@ -378,6 +378,9 @@ int __init jffs2_compressors_init(void)
70 #ifdef CONFIG_JFFS2_LZO
71 jffs2_lzo_init();
72 #endif
73 +#ifdef CONFIG_JFFS2_LZMA
74 + jffs2_lzma_init();
75 +#endif
76 /* Setting default compression mode */
77 #ifdef CONFIG_JFFS2_CMODE_NONE
78 jffs2_compression_mode = JFFS2_COMPR_MODE_NONE;
79 @@ -401,6 +404,9 @@ int __init jffs2_compressors_init(void)
80 int jffs2_compressors_exit(void)
81 {
82 /* Unregistering compressors */
83 +#ifdef CONFIG_JFFS2_LZMA
84 + jffs2_lzma_exit();
85 +#endif
86 #ifdef CONFIG_JFFS2_LZO
87 jffs2_lzo_exit();
88 #endif
89 --- a/fs/jffs2/compr.h
90 +++ b/fs/jffs2/compr.h
91 @@ -29,9 +29,9 @@
92 #define JFFS2_DYNRUBIN_PRIORITY 20
93 #define JFFS2_LZARI_PRIORITY 30
94 #define JFFS2_RTIME_PRIORITY 50
95 -#define JFFS2_ZLIB_PRIORITY 60
96 -#define JFFS2_LZO_PRIORITY 80
97 -
98 +#define JFFS2_LZMA_PRIORITY 70
99 +#define JFFS2_ZLIB_PRIORITY 80
100 +#define JFFS2_LZO_PRIORITY 90
101
102 #define JFFS2_RUBINMIPS_DISABLED /* RUBINs will be used only */
103 #define JFFS2_DYNRUBIN_DISABLED /* for decompression */
104 @@ -101,5 +101,9 @@ void jffs2_zlib_exit(void);
105 int jffs2_lzo_init(void);
106 void jffs2_lzo_exit(void);
107 #endif
108 +#ifdef CONFIG_JFFS2_LZMA
109 +int jffs2_lzma_init(void);
110 +void jffs2_lzma_exit(void);
111 +#endif
112
113 #endif /* __JFFS2_COMPR_H__ */
114 --- /dev/null
115 +++ b/fs/jffs2/compr_lzma.c
116 @@ -0,0 +1,128 @@
117 +/*
118 + * JFFS2 -- Journalling Flash File System, Version 2.
119 + *
120 + * For licensing information, see the file 'LICENCE' in this directory.
121 + *
122 + * JFFS2 wrapper to the LZMA C SDK
123 + *
124 + */
125 +
126 +#include <linux/lzma.h>
127 +#include "compr.h"
128 +
129 +#ifdef __KERNEL__
130 + static DEFINE_MUTEX(deflate_mutex);
131 +#endif
132 +
133 +CLzmaEncHandle *p;
134 +Byte propsEncoded[LZMA_PROPS_SIZE];
135 +SizeT propsSize = sizeof(propsEncoded);
136 +
137 +STATIC void lzma_free_workspace(void)
138 +{
139 + LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
140 +}
141 +
142 +STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
143 +{
144 + if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
145 + {
146 + PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
147 + return -ENOMEM;
148 + }
149 +
150 + if (LzmaEnc_SetProps(p, props) != SZ_OK)
151 + {
152 + lzma_free_workspace();
153 + return -1;
154 + }
155 +
156 + if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
157 + {
158 + lzma_free_workspace();
159 + return -1;
160 + }
161 +
162 + return 0;
163 +}
164 +
165 +STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
166 + uint32_t *sourcelen, uint32_t *dstlen)
167 +{
168 + SizeT compress_size = (SizeT)(*dstlen);
169 + int ret;
170 +
171 + #ifdef __KERNEL__
172 + mutex_lock(&deflate_mutex);
173 + #endif
174 +
175 + ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
176 + 0, NULL, &lzma_alloc, &lzma_alloc);
177 +
178 + #ifdef __KERNEL__
179 + mutex_unlock(&deflate_mutex);
180 + #endif
181 +
182 + if (ret != SZ_OK)
183 + return -1;
184 +
185 + *dstlen = (uint32_t)compress_size;
186 +
187 + return 0;
188 +}
189 +
190 +STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
191 + uint32_t srclen, uint32_t destlen)
192 +{
193 + int ret;
194 + SizeT dl = (SizeT)destlen;
195 + SizeT sl = (SizeT)srclen;
196 + ELzmaStatus status;
197 +
198 + ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
199 + propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
200 +
201 + if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
202 + return -1;
203 +
204 + return 0;
205 +}
206 +
207 +static struct jffs2_compressor jffs2_lzma_comp = {
208 + .priority = JFFS2_LZMA_PRIORITY,
209 + .name = "lzma",
210 + .compr = JFFS2_COMPR_LZMA,
211 + .compress = &jffs2_lzma_compress,
212 + .decompress = &jffs2_lzma_decompress,
213 + .disabled = 0,
214 +};
215 +
216 +int INIT jffs2_lzma_init(void)
217 +{
218 + int ret;
219 + CLzmaEncProps props;
220 + LzmaEncProps_Init(&props);
221 +
222 + props.dictSize = LZMA_BEST_DICT(0x2000);
223 + props.level = LZMA_BEST_LEVEL;
224 + props.lc = LZMA_BEST_LC;
225 + props.lp = LZMA_BEST_LP;
226 + props.pb = LZMA_BEST_PB;
227 + props.fb = LZMA_BEST_FB;
228 +
229 + ret = lzma_alloc_workspace(&props);
230 + if (ret < 0)
231 + return ret;
232 +
233 + ret = jffs2_register_compressor(&jffs2_lzma_comp);
234 + if (ret)
235 + lzma_free_workspace();
236 +
237 + return ret;
238 +}
239 +
240 +void jffs2_lzma_exit(void)
241 +{
242 + jffs2_unregister_compressor(&jffs2_lzma_comp);
243 + lzma_free_workspace();
244 +}
245 --- a/fs/jffs2/super.c
246 +++ b/fs/jffs2/super.c
247 @@ -371,14 +371,41 @@ static int __init init_jffs2_fs(void)
248 BUILD_BUG_ON(sizeof(struct jffs2_raw_inode) != 68);
249 BUILD_BUG_ON(sizeof(struct jffs2_raw_summary) != 32);
250
251 - pr_info("version 2.2."
252 + pr_info("version 2.2"
253 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
254 " (NAND)"
255 #endif
256 #ifdef CONFIG_JFFS2_SUMMARY
257 - " (SUMMARY) "
258 + " (SUMMARY)"
259 #endif
260 - " © 2001-2006 Red Hat, Inc.\n");
261 +#ifdef CONFIG_JFFS2_ZLIB
262 + " (ZLIB)"
263 +#endif
264 +#ifdef CONFIG_JFFS2_LZO
265 + " (LZO)"
266 +#endif
267 +#ifdef CONFIG_JFFS2_LZMA
268 + " (LZMA)"
269 +#endif
270 +#ifdef CONFIG_JFFS2_RTIME
271 + " (RTIME)"
272 +#endif
273 +#ifdef CONFIG_JFFS2_RUBIN
274 + " (RUBIN)"
275 +#endif
276 +#ifdef CONFIG_JFFS2_CMODE_NONE
277 + " (CMODE_NONE)"
278 +#endif
279 +#ifdef CONFIG_JFFS2_CMODE_PRIORITY
280 + " (CMODE_PRIORITY)"
281 +#endif
282 +#ifdef CONFIG_JFFS2_CMODE_SIZE
283 + " (CMODE_SIZE)"
284 +#endif
285 +#ifdef CONFIG_JFFS2_CMODE_FAVOURLZO
286 + " (CMODE_FAVOURLZO)"
287 +#endif
288 + " (c) 2001-2006 Red Hat, Inc.\n");
289
290 jffs2_inode_cachep = kmem_cache_create("jffs2_i",
291 sizeof(struct jffs2_inode_info),
292 --- /dev/null
293 +++ b/include/linux/lzma.h
294 @@ -0,0 +1,62 @@
295 +#ifndef __LZMA_H__
296 +#define __LZMA_H__
297 +
298 +#ifdef __KERNEL__
299 + #include <linux/kernel.h>
300 + #include <linux/sched.h>
301 + #include <linux/slab.h>
302 + #include <linux/vmalloc.h>
303 + #include <linux/init.h>
304 + #define LZMA_MALLOC vmalloc
305 + #define LZMA_FREE vfree
306 + #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
307 + #define INIT __init
308 + #define STATIC static
309 +#else
310 + #include <stdint.h>
311 + #include <stdlib.h>
312 + #include <stdio.h>
313 + #include <unistd.h>
314 + #include <string.h>
315 + #include <asm/types.h>
316 + #include <errno.h>
317 + #include <linux/jffs2.h>
318 + #ifndef PAGE_SIZE
319 + extern int page_size;
320 + #define PAGE_SIZE page_size
321 + #endif
322 + #define LZMA_MALLOC malloc
323 + #define LZMA_FREE free
324 + #define PRINT_ERROR(msg) fprintf(stderr, msg)
325 + #define INIT
326 + #define STATIC
327 +#endif
328 +
329 +#include "lzma/LzmaDec.h"
330 +#include "lzma/LzmaEnc.h"
331 +
332 +#define LZMA_BEST_LEVEL (9)
333 +#define LZMA_BEST_LC (0)
334 +#define LZMA_BEST_LP (0)
335 +#define LZMA_BEST_PB (0)
336 +#define LZMA_BEST_FB (273)
337 +
338 +#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
339 +
340 +static void *p_lzma_malloc(void *p, size_t size)
341 +{
342 + if (size == 0)
343 + return NULL;
344 +
345 + return LZMA_MALLOC(size);
346 +}
347 +
348 +static void p_lzma_free(void *p, void *address)
349 +{
350 + if (address != NULL)
351 + LZMA_FREE(address);
352 +}
353 +
354 +static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
355 +
356 +#endif
357 --- /dev/null
358 +++ b/include/linux/lzma/LzFind.h
359 @@ -0,0 +1,115 @@
360 +/* LzFind.h -- Match finder for LZ algorithms
361 +2009-04-22 : Igor Pavlov : Public domain */
362 +
363 +#ifndef __LZ_FIND_H
364 +#define __LZ_FIND_H
365 +
366 +#include "Types.h"
367 +
368 +#ifdef __cplusplus
369 +extern "C" {
370 +#endif
371 +
372 +typedef UInt32 CLzRef;
373 +
374 +typedef struct _CMatchFinder
375 +{
376 + Byte *buffer;
377 + UInt32 pos;
378 + UInt32 posLimit;
379 + UInt32 streamPos;
380 + UInt32 lenLimit;
381 +
382 + UInt32 cyclicBufferPos;
383 + UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
384 +
385 + UInt32 matchMaxLen;
386 + CLzRef *hash;
387 + CLzRef *son;
388 + UInt32 hashMask;
389 + UInt32 cutValue;
390 +
391 + Byte *bufferBase;
392 + ISeqInStream *stream;
393 + int streamEndWasReached;
394 +
395 + UInt32 blockSize;
396 + UInt32 keepSizeBefore;
397 + UInt32 keepSizeAfter;
398 +
399 + UInt32 numHashBytes;
400 + int directInput;
401 + size_t directInputRem;
402 + int btMode;
403 + int bigHash;
404 + UInt32 historySize;
405 + UInt32 fixedHashSize;
406 + UInt32 hashSizeSum;
407 + UInt32 numSons;
408 + SRes result;
409 + UInt32 crc[256];
410 +} CMatchFinder;
411 +
412 +#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
413 +#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
414 +
415 +#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
416 +
417 +int MatchFinder_NeedMove(CMatchFinder *p);
418 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
419 +void MatchFinder_MoveBlock(CMatchFinder *p);
420 +void MatchFinder_ReadIfRequired(CMatchFinder *p);
421 +
422 +void MatchFinder_Construct(CMatchFinder *p);
423 +
424 +/* Conditions:
425 + historySize <= 3 GB
426 + keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
427 +*/
428 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
429 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
430 + ISzAlloc *alloc);
431 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
432 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
433 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
434 +
435 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
436 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
437 + UInt32 *distances, UInt32 maxLen);
438 +
439 +/*
440 +Conditions:
441 + Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
442 + Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
443 +*/
444 +
445 +typedef void (*Mf_Init_Func)(void *object);
446 +typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
447 +typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
448 +typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
449 +typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
450 +typedef void (*Mf_Skip_Func)(void *object, UInt32);
451 +
452 +typedef struct _IMatchFinder
453 +{
454 + Mf_Init_Func Init;
455 + Mf_GetIndexByte_Func GetIndexByte;
456 + Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
457 + Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
458 + Mf_GetMatches_Func GetMatches;
459 + Mf_Skip_Func Skip;
460 +} IMatchFinder;
461 +
462 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
463 +
464 +void MatchFinder_Init(CMatchFinder *p);
465 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
466 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
467 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
468 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
469 +
470 +#ifdef __cplusplus
471 +}
472 +#endif
473 +
474 +#endif
475 --- /dev/null
476 +++ b/include/linux/lzma/LzHash.h
477 @@ -0,0 +1,54 @@
478 +/* LzHash.h -- HASH functions for LZ algorithms
479 +2009-02-07 : Igor Pavlov : Public domain */
480 +
481 +#ifndef __LZ_HASH_H
482 +#define __LZ_HASH_H
483 +
484 +#define kHash2Size (1 << 10)
485 +#define kHash3Size (1 << 16)
486 +#define kHash4Size (1 << 20)
487 +
488 +#define kFix3HashSize (kHash2Size)
489 +#define kFix4HashSize (kHash2Size + kHash3Size)
490 +#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
491 +
492 +#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
493 +
494 +#define HASH3_CALC { \
495 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
496 + hash2Value = temp & (kHash2Size - 1); \
497 + hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
498 +
499 +#define HASH4_CALC { \
500 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
501 + hash2Value = temp & (kHash2Size - 1); \
502 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
503 + hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
504 +
505 +#define HASH5_CALC { \
506 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
507 + hash2Value = temp & (kHash2Size - 1); \
508 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
509 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
510 + hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
511 + hash4Value &= (kHash4Size - 1); }
512 +
513 +/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
514 +#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
515 +
516 +
517 +#define MT_HASH2_CALC \
518 + hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
519 +
520 +#define MT_HASH3_CALC { \
521 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
522 + hash2Value = temp & (kHash2Size - 1); \
523 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
524 +
525 +#define MT_HASH4_CALC { \
526 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
527 + hash2Value = temp & (kHash2Size - 1); \
528 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
529 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
530 +
531 +#endif
532 --- /dev/null
533 +++ b/include/linux/lzma/LzmaDec.h
534 @@ -0,0 +1,231 @@
535 +/* LzmaDec.h -- LZMA Decoder
536 +2009-02-07 : Igor Pavlov : Public domain */
537 +
538 +#ifndef __LZMA_DEC_H
539 +#define __LZMA_DEC_H
540 +
541 +#include "Types.h"
542 +
543 +#ifdef __cplusplus
544 +extern "C" {
545 +#endif
546 +
547 +/* #define _LZMA_PROB32 */
548 +/* _LZMA_PROB32 can increase the speed on some CPUs,
549 + but memory usage for CLzmaDec::probs will be doubled in that case */
550 +
551 +#ifdef _LZMA_PROB32
552 +#define CLzmaProb UInt32
553 +#else
554 +#define CLzmaProb UInt16
555 +#endif
556 +
557 +
558 +/* ---------- LZMA Properties ---------- */
559 +
560 +#define LZMA_PROPS_SIZE 5
561 +
562 +typedef struct _CLzmaProps
563 +{
564 + unsigned lc, lp, pb;
565 + UInt32 dicSize;
566 +} CLzmaProps;
567 +
568 +/* LzmaProps_Decode - decodes properties
569 +Returns:
570 + SZ_OK
571 + SZ_ERROR_UNSUPPORTED - Unsupported properties
572 +*/
573 +
574 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
575 +
576 +
577 +/* ---------- LZMA Decoder state ---------- */
578 +
579 +/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
580 + Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
581 +
582 +#define LZMA_REQUIRED_INPUT_MAX 20
583 +
584 +typedef struct
585 +{
586 + CLzmaProps prop;
587 + CLzmaProb *probs;
588 + Byte *dic;
589 + const Byte *buf;
590 + UInt32 range, code;
591 + SizeT dicPos;
592 + SizeT dicBufSize;
593 + UInt32 processedPos;
594 + UInt32 checkDicSize;
595 + unsigned state;
596 + UInt32 reps[4];
597 + unsigned remainLen;
598 + int needFlush;
599 + int needInitState;
600 + UInt32 numProbs;
601 + unsigned tempBufSize;
602 + Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
603 +} CLzmaDec;
604 +
605 +#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
606 +
607 +void LzmaDec_Init(CLzmaDec *p);
608 +
609 +/* There are two types of LZMA streams:
610 + 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
611 + 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
612 +
613 +typedef enum
614 +{
615 + LZMA_FINISH_ANY, /* finish at any point */
616 + LZMA_FINISH_END /* block must be finished at the end */
617 +} ELzmaFinishMode;
618 +
619 +/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
620 +
621 + You must use LZMA_FINISH_END, when you know that current output buffer
622 + covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
623 +
624 + If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
625 + and output value of destLen will be less than output buffer size limit.
626 + You can check status result also.
627 +
628 + You can use multiple checks to test data integrity after full decompression:
629 + 1) Check Result and "status" variable.
630 + 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
631 + 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
632 + You must use correct finish mode in that case. */
633 +
634 +typedef enum
635 +{
636 + LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
637 + LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
638 + LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
639 + LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
640 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
641 +} ELzmaStatus;
642 +
643 +/* ELzmaStatus is used only as output value for function call */
644 +
645 +
646 +/* ---------- Interfaces ---------- */
647 +
648 +/* There are 3 levels of interfaces:
649 + 1) Dictionary Interface
650 + 2) Buffer Interface
651 + 3) One Call Interface
652 + You can select any of these interfaces, but don't mix functions from different
653 + groups for same object. */
654 +
655 +
656 +/* There are two variants to allocate state for Dictionary Interface:
657 + 1) LzmaDec_Allocate / LzmaDec_Free
658 + 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
659 + You can use variant 2, if you set dictionary buffer manually.
660 + For Buffer Interface you must always use variant 1.
661 +
662 +LzmaDec_Allocate* can return:
663 + SZ_OK
664 + SZ_ERROR_MEM - Memory allocation error
665 + SZ_ERROR_UNSUPPORTED - Unsupported properties
666 +*/
667 +
668 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
669 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
670 +
671 +SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
672 +void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
673 +
674 +/* ---------- Dictionary Interface ---------- */
675 +
676 +/* You can use it, if you want to eliminate the overhead for data copying from
677 + dictionary to some other external buffer.
678 + You must work with CLzmaDec variables directly in this interface.
679 +
680 + STEPS:
681 + LzmaDec_Constr()
682 + LzmaDec_Allocate()
683 + for (each new stream)
684 + {
685 + LzmaDec_Init()
686 + while (it needs more decompression)
687 + {
688 + LzmaDec_DecodeToDic()
689 + use data from CLzmaDec::dic and update CLzmaDec::dicPos
690 + }
691 + }
692 + LzmaDec_Free()
693 +*/
694 +
695 +/* LzmaDec_DecodeToDic
696 +
697 + The decoding to internal dictionary buffer (CLzmaDec::dic).
698 + You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
699 +
700 +finishMode:
701 + It has meaning only if the decoding reaches output limit (dicLimit).
702 + LZMA_FINISH_ANY - Decode just dicLimit bytes.
703 + LZMA_FINISH_END - Stream must be finished after dicLimit.
704 +
705 +Returns:
706 + SZ_OK
707 + status:
708 + LZMA_STATUS_FINISHED_WITH_MARK
709 + LZMA_STATUS_NOT_FINISHED
710 + LZMA_STATUS_NEEDS_MORE_INPUT
711 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
712 + SZ_ERROR_DATA - Data error
713 +*/
714 +
715 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
716 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
717 +
718 +
719 +/* ---------- Buffer Interface ---------- */
720 +
721 +/* It's zlib-like interface.
722 + See LzmaDec_DecodeToDic description for information about STEPS and return results,
723 + but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
724 + to work with CLzmaDec variables manually.
725 +
726 +finishMode:
727 + It has meaning only if the decoding reaches output limit (*destLen).
728 + LZMA_FINISH_ANY - Decode just destLen bytes.
729 + LZMA_FINISH_END - Stream must be finished after (*destLen).
730 +*/
731 +
732 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
733 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
734 +
735 +
736 +/* ---------- One Call Interface ---------- */
737 +
738 +/* LzmaDecode
739 +
740 +finishMode:
741 + It has meaning only if the decoding reaches output limit (*destLen).
742 + LZMA_FINISH_ANY - Decode just destLen bytes.
743 + LZMA_FINISH_END - Stream must be finished after (*destLen).
744 +
745 +Returns:
746 + SZ_OK
747 + status:
748 + LZMA_STATUS_FINISHED_WITH_MARK
749 + LZMA_STATUS_NOT_FINISHED
750 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
751 + SZ_ERROR_DATA - Data error
752 + SZ_ERROR_MEM - Memory allocation error
753 + SZ_ERROR_UNSUPPORTED - Unsupported properties
754 + SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
755 +*/
756 +
757 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
758 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
759 + ELzmaStatus *status, ISzAlloc *alloc);
760 +
761 +#ifdef __cplusplus
762 +}
763 +#endif
764 +
765 +#endif
766 --- /dev/null
767 +++ b/include/linux/lzma/LzmaEnc.h
768 @@ -0,0 +1,80 @@
769 +/* LzmaEnc.h -- LZMA Encoder
770 +2009-02-07 : Igor Pavlov : Public domain */
771 +
772 +#ifndef __LZMA_ENC_H
773 +#define __LZMA_ENC_H
774 +
775 +#include "Types.h"
776 +
777 +#ifdef __cplusplus
778 +extern "C" {
779 +#endif
780 +
781 +#define LZMA_PROPS_SIZE 5
782 +
783 +typedef struct _CLzmaEncProps
784 +{
785 + int level; /* 0 <= level <= 9 */
786 + UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
787 + (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
788 + default = (1 << 24) */
789 + int lc; /* 0 <= lc <= 8, default = 3 */
790 + int lp; /* 0 <= lp <= 4, default = 0 */
791 + int pb; /* 0 <= pb <= 4, default = 2 */
792 + int algo; /* 0 - fast, 1 - normal, default = 1 */
793 + int fb; /* 5 <= fb <= 273, default = 32 */
794 + int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
795 + int numHashBytes; /* 2, 3 or 4, default = 4 */
796 + UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
797 + unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
798 + int numThreads; /* 1 or 2, default = 2 */
799 +} CLzmaEncProps;
800 +
801 +void LzmaEncProps_Init(CLzmaEncProps *p);
802 +void LzmaEncProps_Normalize(CLzmaEncProps *p);
803 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
804 +
805 +
806 +/* ---------- CLzmaEncHandle Interface ---------- */
807 +
808 +/* LzmaEnc_* functions can return the following exit codes:
809 +Returns:
810 + SZ_OK - OK
811 + SZ_ERROR_MEM - Memory allocation error
812 + SZ_ERROR_PARAM - Incorrect paramater in props
813 + SZ_ERROR_WRITE - Write callback error.
814 + SZ_ERROR_PROGRESS - some break from progress callback
815 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
816 +*/
817 +
818 +typedef void * CLzmaEncHandle;
819 +
820 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
821 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
822 +SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
823 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
824 +SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
825 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
826 +SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
827 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
828 +
829 +/* ---------- One Call Interface ---------- */
830 +
831 +/* LzmaEncode
832 +Return code:
833 + SZ_OK - OK
834 + SZ_ERROR_MEM - Memory allocation error
835 + SZ_ERROR_PARAM - Incorrect paramater
836 + SZ_ERROR_OUTPUT_EOF - output buffer overflow
837 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
838 +*/
839 +
840 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
841 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
842 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
843 +
844 +#ifdef __cplusplus
845 +}
846 +#endif
847 +
848 +#endif
849 --- /dev/null
850 +++ b/include/linux/lzma/Types.h
851 @@ -0,0 +1,226 @@
852 +/* Types.h -- Basic types
853 +2009-11-23 : Igor Pavlov : Public domain */
854 +
855 +#ifndef __7Z_TYPES_H
856 +#define __7Z_TYPES_H
857 +
858 +#include <stddef.h>
859 +
860 +#ifdef _WIN32
861 +#include <windows.h>
862 +#endif
863 +
864 +#ifndef EXTERN_C_BEGIN
865 +#ifdef __cplusplus
866 +#define EXTERN_C_BEGIN extern "C" {
867 +#define EXTERN_C_END }
868 +#else
869 +#define EXTERN_C_BEGIN
870 +#define EXTERN_C_END
871 +#endif
872 +#endif
873 +
874 +EXTERN_C_BEGIN
875 +
876 +#define SZ_OK 0
877 +
878 +#define SZ_ERROR_DATA 1
879 +#define SZ_ERROR_MEM 2
880 +#define SZ_ERROR_CRC 3
881 +#define SZ_ERROR_UNSUPPORTED 4
882 +#define SZ_ERROR_PARAM 5
883 +#define SZ_ERROR_INPUT_EOF 6
884 +#define SZ_ERROR_OUTPUT_EOF 7
885 +#define SZ_ERROR_READ 8
886 +#define SZ_ERROR_WRITE 9
887 +#define SZ_ERROR_PROGRESS 10
888 +#define SZ_ERROR_FAIL 11
889 +#define SZ_ERROR_THREAD 12
890 +
891 +#define SZ_ERROR_ARCHIVE 16
892 +#define SZ_ERROR_NO_ARCHIVE 17
893 +
894 +typedef int SRes;
895 +
896 +#ifdef _WIN32
897 +typedef DWORD WRes;
898 +#else
899 +typedef int WRes;
900 +#endif
901 +
902 +#ifndef RINOK
903 +#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
904 +#endif
905 +
906 +typedef unsigned char Byte;
907 +typedef short Int16;
908 +typedef unsigned short UInt16;
909 +
910 +#ifdef _LZMA_UINT32_IS_ULONG
911 +typedef long Int32;
912 +typedef unsigned long UInt32;
913 +#else
914 +typedef int Int32;
915 +typedef unsigned int UInt32;
916 +#endif
917 +
918 +#ifdef _SZ_NO_INT_64
919 +
920 +/* define _SZ_NO_INT_64, if your compiler doesn't support 64-bit integers.
921 + NOTES: Some code will work incorrectly in that case! */
922 +
923 +typedef long Int64;
924 +typedef unsigned long UInt64;
925 +
926 +#else
927 +
928 +#if defined(_MSC_VER) || defined(__BORLANDC__)
929 +typedef __int64 Int64;
930 +typedef unsigned __int64 UInt64;
931 +#else
932 +typedef long long int Int64;
933 +typedef unsigned long long int UInt64;
934 +#endif
935 +
936 +#endif
937 +
938 +#ifdef _LZMA_NO_SYSTEM_SIZE_T
939 +typedef UInt32 SizeT;
940 +#else
941 +typedef size_t SizeT;
942 +#endif
943 +
944 +typedef int Bool;
945 +#define True 1
946 +#define False 0
947 +
948 +
949 +#ifdef _WIN32
950 +#define MY_STD_CALL __stdcall
951 +#else
952 +#define MY_STD_CALL
953 +#endif
954 +
955 +#ifdef _MSC_VER
956 +
957 +#if _MSC_VER >= 1300
958 +#define MY_NO_INLINE __declspec(noinline)
959 +#else
960 +#define MY_NO_INLINE
961 +#endif
962 +
963 +#define MY_CDECL __cdecl
964 +#define MY_FAST_CALL __fastcall
965 +
966 +#else
967 +
968 +#define MY_CDECL
969 +#define MY_FAST_CALL
970 +
971 +#endif
972 +
973 +
974 +/* The following interfaces use first parameter as pointer to structure */
975 +
976 +typedef struct
977 +{
978 + SRes (*Read)(void *p, void *buf, size_t *size);
979 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
980 + (output(*size) < input(*size)) is allowed */
981 +} ISeqInStream;
982 +
983 +/* it can return SZ_ERROR_INPUT_EOF */
984 +SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size);
985 +SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType);
986 +SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf);
987 +
988 +typedef struct
989 +{
990 + size_t (*Write)(void *p, const void *buf, size_t size);
991 + /* Returns: result - the number of actually written bytes.
992 + (result < size) means error */
993 +} ISeqOutStream;
994 +
995 +typedef enum
996 +{
997 + SZ_SEEK_SET = 0,
998 + SZ_SEEK_CUR = 1,
999 + SZ_SEEK_END = 2
1000 +} ESzSeek;
1001 +
1002 +typedef struct
1003 +{
1004 + SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
1005 + SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
1006 +} ISeekInStream;
1007 +
1008 +typedef struct
1009 +{
1010 + SRes (*Look)(void *p, void **buf, size_t *size);
1011 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
1012 + (output(*size) > input(*size)) is not allowed
1013 + (output(*size) < input(*size)) is allowed */
1014 + SRes (*Skip)(void *p, size_t offset);
1015 + /* offset must be <= output(*size) of Look */
1016 +
1017 + SRes (*Read)(void *p, void *buf, size_t *size);
1018 + /* reads directly (without buffer). It's same as ISeqInStream::Read */
1019 + SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
1020 +} ILookInStream;
1021 +
1022 +SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size);
1023 +SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset);
1024 +
1025 +/* reads via ILookInStream::Read */
1026 +SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType);
1027 +SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size);
1028 +
1029 +#define LookToRead_BUF_SIZE (1 << 14)
1030 +
1031 +typedef struct
1032 +{
1033 + ILookInStream s;
1034 + ISeekInStream *realStream;
1035 + size_t pos;
1036 + size_t size;
1037 + Byte buf[LookToRead_BUF_SIZE];
1038 +} CLookToRead;
1039 +
1040 +void LookToRead_CreateVTable(CLookToRead *p, int lookahead);
1041 +void LookToRead_Init(CLookToRead *p);
1042 +
1043 +typedef struct
1044 +{
1045 + ISeqInStream s;
1046 + ILookInStream *realStream;
1047 +} CSecToLook;
1048 +
1049 +void SecToLook_CreateVTable(CSecToLook *p);
1050 +
1051 +typedef struct
1052 +{
1053 + ISeqInStream s;
1054 + ILookInStream *realStream;
1055 +} CSecToRead;
1056 +
1057 +void SecToRead_CreateVTable(CSecToRead *p);
1058 +
1059 +typedef struct
1060 +{
1061 + SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
1062 + /* Returns: result. (result != SZ_OK) means break.
1063 + Value (UInt64)(Int64)-1 for size means unknown value. */
1064 +} ICompressProgress;
1065 +
1066 +typedef struct
1067 +{
1068 + void *(*Alloc)(void *p, size_t size);
1069 + void (*Free)(void *p, void *address); /* address can be 0 */
1070 +} ISzAlloc;
1071 +
1072 +#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
1073 +#define IAlloc_Free(p, a) (p)->Free((p), a)
1074 +
1075 +EXTERN_C_END
1076 +
1077 +#endif
1078 --- a/include/uapi/linux/jffs2.h
1079 +++ b/include/uapi/linux/jffs2.h
1080 @@ -46,6 +46,7 @@
1081 #define JFFS2_COMPR_DYNRUBIN 0x05
1082 #define JFFS2_COMPR_ZLIB 0x06
1083 #define JFFS2_COMPR_LZO 0x07
1084 +#define JFFS2_COMPR_LZMA 0x08
1085 /* Compatibility flags. */
1086 #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
1087 #define JFFS2_NODE_ACCURATE 0x2000
1088 --- a/lib/Kconfig
1089 +++ b/lib/Kconfig
1090 @@ -259,6 +259,12 @@ config ZSTD_DECOMPRESS
1091
1092 source "lib/xz/Kconfig"
1093
1094 +config LZMA_COMPRESS
1095 + tristate
1096 +
1097 +config LZMA_DECOMPRESS
1098 + tristate
1099 +
1100 #
1101 # These all provide a common interface (hence the apparent duplication with
1102 # ZLIB_INFLATE; DECOMPRESS_GZIP is just a wrapper.)
1103 --- a/lib/Makefile
1104 +++ b/lib/Makefile
1105 @@ -3,6 +3,16 @@
1106 # Makefile for some libs needed in the kernel.
1107 #
1108
1109 +ifdef CONFIG_JFFS2_ZLIB
1110 + CONFIG_ZLIB_INFLATE:=y
1111 + CONFIG_ZLIB_DEFLATE:=y
1112 +endif
1113 +
1114 +ifdef CONFIG_JFFS2_LZMA
1115 + CONFIG_LZMA_DECOMPRESS:=y
1116 + CONFIG_LZMA_COMPRESS:=y
1117 +endif
1118 +
1119 ifdef CONFIG_FUNCTION_TRACER
1120 ORIG_CFLAGS := $(KBUILD_CFLAGS)
1121 KBUILD_CFLAGS = $(subst $(CC_FLAGS_FTRACE),,$(ORIG_CFLAGS))
1122 @@ -122,6 +132,8 @@ obj-$(CONFIG_ZSTD_COMPRESS) += zstd/
1123 obj-$(CONFIG_ZSTD_DECOMPRESS) += zstd/
1124 obj-$(CONFIG_XZ_DEC) += xz/
1125 obj-$(CONFIG_RAID6_PQ) += raid6/
1126 +obj-$(CONFIG_LZMA_COMPRESS) += lzma/
1127 +obj-$(CONFIG_LZMA_DECOMPRESS) += lzma/
1128
1129 lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
1130 lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
1131 --- /dev/null
1132 +++ b/lib/lzma/LzFind.c
1133 @@ -0,0 +1,761 @@
1134 +/* LzFind.c -- Match finder for LZ algorithms
1135 +2009-04-22 : Igor Pavlov : Public domain */
1136 +
1137 +#include <string.h>
1138 +
1139 +#include "LzFind.h"
1140 +#include "LzHash.h"
1141 +
1142 +#define kEmptyHashValue 0
1143 +#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
1144 +#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
1145 +#define kNormalizeMask (~(kNormalizeStepMin - 1))
1146 +#define kMaxHistorySize ((UInt32)3 << 30)
1147 +
1148 +#define kStartMaxLen 3
1149 +
1150 +static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
1151 +{
1152 + if (!p->directInput)
1153 + {
1154 + alloc->Free(alloc, p->bufferBase);
1155 + p->bufferBase = 0;
1156 + }
1157 +}
1158 +
1159 +/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
1160 +
1161 +static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
1162 +{
1163 + UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
1164 + if (p->directInput)
1165 + {
1166 + p->blockSize = blockSize;
1167 + return 1;
1168 + }
1169 + if (p->bufferBase == 0 || p->blockSize != blockSize)
1170 + {
1171 + LzInWindow_Free(p, alloc);
1172 + p->blockSize = blockSize;
1173 + p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
1174 + }
1175 + return (p->bufferBase != 0);
1176 +}
1177 +
1178 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
1179 +Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
1180 +
1181 +UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
1182 +
1183 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
1184 +{
1185 + p->posLimit -= subValue;
1186 + p->pos -= subValue;
1187 + p->streamPos -= subValue;
1188 +}
1189 +
1190 +static void MatchFinder_ReadBlock(CMatchFinder *p)
1191 +{
1192 + if (p->streamEndWasReached || p->result != SZ_OK)
1193 + return;
1194 + if (p->directInput)
1195 + {
1196 + UInt32 curSize = 0xFFFFFFFF - p->streamPos;
1197 + if (curSize > p->directInputRem)
1198 + curSize = (UInt32)p->directInputRem;
1199 + p->directInputRem -= curSize;
1200 + p->streamPos += curSize;
1201 + if (p->directInputRem == 0)
1202 + p->streamEndWasReached = 1;
1203 + return;
1204 + }
1205 + for (;;)
1206 + {
1207 + Byte *dest = p->buffer + (p->streamPos - p->pos);
1208 + size_t size = (p->bufferBase + p->blockSize - dest);
1209 + if (size == 0)
1210 + return;
1211 + p->result = p->stream->Read(p->stream, dest, &size);
1212 + if (p->result != SZ_OK)
1213 + return;
1214 + if (size == 0)
1215 + {
1216 + p->streamEndWasReached = 1;
1217 + return;
1218 + }
1219 + p->streamPos += (UInt32)size;
1220 + if (p->streamPos - p->pos > p->keepSizeAfter)
1221 + return;
1222 + }
1223 +}
1224 +
1225 +void MatchFinder_MoveBlock(CMatchFinder *p)
1226 +{
1227 + memmove(p->bufferBase,
1228 + p->buffer - p->keepSizeBefore,
1229 + (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
1230 + p->buffer = p->bufferBase + p->keepSizeBefore;
1231 +}
1232 +
1233 +int MatchFinder_NeedMove(CMatchFinder *p)
1234 +{
1235 + if (p->directInput)
1236 + return 0;
1237 + /* if (p->streamEndWasReached) return 0; */
1238 + return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
1239 +}
1240 +
1241 +void MatchFinder_ReadIfRequired(CMatchFinder *p)
1242 +{
1243 + if (p->streamEndWasReached)
1244 + return;
1245 + if (p->keepSizeAfter >= p->streamPos - p->pos)
1246 + MatchFinder_ReadBlock(p);
1247 +}
1248 +
1249 +static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
1250 +{
1251 + if (MatchFinder_NeedMove(p))
1252 + MatchFinder_MoveBlock(p);
1253 + MatchFinder_ReadBlock(p);
1254 +}
1255 +
1256 +static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
1257 +{
1258 + p->cutValue = 32;
1259 + p->btMode = 1;
1260 + p->numHashBytes = 4;
1261 + p->bigHash = 0;
1262 +}
1263 +
1264 +#define kCrcPoly 0xEDB88320
1265 +
1266 +void MatchFinder_Construct(CMatchFinder *p)
1267 +{
1268 + UInt32 i;
1269 + p->bufferBase = 0;
1270 + p->directInput = 0;
1271 + p->hash = 0;
1272 + MatchFinder_SetDefaultSettings(p);
1273 +
1274 + for (i = 0; i < 256; i++)
1275 + {
1276 + UInt32 r = i;
1277 + int j;
1278 + for (j = 0; j < 8; j++)
1279 + r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
1280 + p->crc[i] = r;
1281 + }
1282 +}
1283 +
1284 +static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
1285 +{
1286 + alloc->Free(alloc, p->hash);
1287 + p->hash = 0;
1288 +}
1289 +
1290 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
1291 +{
1292 + MatchFinder_FreeThisClassMemory(p, alloc);
1293 + LzInWindow_Free(p, alloc);
1294 +}
1295 +
1296 +static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
1297 +{
1298 + size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
1299 + if (sizeInBytes / sizeof(CLzRef) != num)
1300 + return 0;
1301 + return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
1302 +}
1303 +
1304 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
1305 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
1306 + ISzAlloc *alloc)
1307 +{
1308 + UInt32 sizeReserv;
1309 + if (historySize > kMaxHistorySize)
1310 + {
1311 + MatchFinder_Free(p, alloc);
1312 + return 0;
1313 + }
1314 + sizeReserv = historySize >> 1;
1315 + if (historySize > ((UInt32)2 << 30))
1316 + sizeReserv = historySize >> 2;
1317 + sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
1318 +
1319 + p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
1320 + p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
1321 + /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
1322 + if (LzInWindow_Create(p, sizeReserv, alloc))
1323 + {
1324 + UInt32 newCyclicBufferSize = historySize + 1;
1325 + UInt32 hs;
1326 + p->matchMaxLen = matchMaxLen;
1327 + {
1328 + p->fixedHashSize = 0;
1329 + if (p->numHashBytes == 2)
1330 + hs = (1 << 16) - 1;
1331 + else
1332 + {
1333 + hs = historySize - 1;
1334 + hs |= (hs >> 1);
1335 + hs |= (hs >> 2);
1336 + hs |= (hs >> 4);
1337 + hs |= (hs >> 8);
1338 + hs >>= 1;
1339 + hs |= 0xFFFF; /* don't change it! It's required for Deflate */
1340 + if (hs > (1 << 24))
1341 + {
1342 + if (p->numHashBytes == 3)
1343 + hs = (1 << 24) - 1;
1344 + else
1345 + hs >>= 1;
1346 + }
1347 + }
1348 + p->hashMask = hs;
1349 + hs++;
1350 + if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
1351 + if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
1352 + if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
1353 + hs += p->fixedHashSize;
1354 + }
1355 +
1356 + {
1357 + UInt32 prevSize = p->hashSizeSum + p->numSons;
1358 + UInt32 newSize;
1359 + p->historySize = historySize;
1360 + p->hashSizeSum = hs;
1361 + p->cyclicBufferSize = newCyclicBufferSize;
1362 + p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
1363 + newSize = p->hashSizeSum + p->numSons;
1364 + if (p->hash != 0 && prevSize == newSize)
1365 + return 1;
1366 + MatchFinder_FreeThisClassMemory(p, alloc);
1367 + p->hash = AllocRefs(newSize, alloc);
1368 + if (p->hash != 0)
1369 + {
1370 + p->son = p->hash + p->hashSizeSum;
1371 + return 1;
1372 + }
1373 + }
1374 + }
1375 + MatchFinder_Free(p, alloc);
1376 + return 0;
1377 +}
1378 +
1379 +static void MatchFinder_SetLimits(CMatchFinder *p)
1380 +{
1381 + UInt32 limit = kMaxValForNormalize - p->pos;
1382 + UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
1383 + if (limit2 < limit)
1384 + limit = limit2;
1385 + limit2 = p->streamPos - p->pos;
1386 + if (limit2 <= p->keepSizeAfter)
1387 + {
1388 + if (limit2 > 0)
1389 + limit2 = 1;
1390 + }
1391 + else
1392 + limit2 -= p->keepSizeAfter;
1393 + if (limit2 < limit)
1394 + limit = limit2;
1395 + {
1396 + UInt32 lenLimit = p->streamPos - p->pos;
1397 + if (lenLimit > p->matchMaxLen)
1398 + lenLimit = p->matchMaxLen;
1399 + p->lenLimit = lenLimit;
1400 + }
1401 + p->posLimit = p->pos + limit;
1402 +}
1403 +
1404 +void MatchFinder_Init(CMatchFinder *p)
1405 +{
1406 + UInt32 i;
1407 + for (i = 0; i < p->hashSizeSum; i++)
1408 + p->hash[i] = kEmptyHashValue;
1409 + p->cyclicBufferPos = 0;
1410 + p->buffer = p->bufferBase;
1411 + p->pos = p->streamPos = p->cyclicBufferSize;
1412 + p->result = SZ_OK;
1413 + p->streamEndWasReached = 0;
1414 + MatchFinder_ReadBlock(p);
1415 + MatchFinder_SetLimits(p);
1416 +}
1417 +
1418 +static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
1419 +{
1420 + return (p->pos - p->historySize - 1) & kNormalizeMask;
1421 +}
1422 +
1423 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
1424 +{
1425 + UInt32 i;
1426 + for (i = 0; i < numItems; i++)
1427 + {
1428 + UInt32 value = items[i];
1429 + if (value <= subValue)
1430 + value = kEmptyHashValue;
1431 + else
1432 + value -= subValue;
1433 + items[i] = value;
1434 + }
1435 +}
1436 +
1437 +static void MatchFinder_Normalize(CMatchFinder *p)
1438 +{
1439 + UInt32 subValue = MatchFinder_GetSubValue(p);
1440 + MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
1441 + MatchFinder_ReduceOffsets(p, subValue);
1442 +}
1443 +
1444 +static void MatchFinder_CheckLimits(CMatchFinder *p)
1445 +{
1446 + if (p->pos == kMaxValForNormalize)
1447 + MatchFinder_Normalize(p);
1448 + if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
1449 + MatchFinder_CheckAndMoveAndRead(p);
1450 + if (p->cyclicBufferPos == p->cyclicBufferSize)
1451 + p->cyclicBufferPos = 0;
1452 + MatchFinder_SetLimits(p);
1453 +}
1454 +
1455 +static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1456 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1457 + UInt32 *distances, UInt32 maxLen)
1458 +{
1459 + son[_cyclicBufferPos] = curMatch;
1460 + for (;;)
1461 + {
1462 + UInt32 delta = pos - curMatch;
1463 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1464 + return distances;
1465 + {
1466 + const Byte *pb = cur - delta;
1467 + curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
1468 + if (pb[maxLen] == cur[maxLen] && *pb == *cur)
1469 + {
1470 + UInt32 len = 0;
1471 + while (++len != lenLimit)
1472 + if (pb[len] != cur[len])
1473 + break;
1474 + if (maxLen < len)
1475 + {
1476 + *distances++ = maxLen = len;
1477 + *distances++ = delta - 1;
1478 + if (len == lenLimit)
1479 + return distances;
1480 + }
1481 + }
1482 + }
1483 + }
1484 +}
1485 +
1486 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1487 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1488 + UInt32 *distances, UInt32 maxLen)
1489 +{
1490 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1491 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1492 + UInt32 len0 = 0, len1 = 0;
1493 + for (;;)
1494 + {
1495 + UInt32 delta = pos - curMatch;
1496 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1497 + {
1498 + *ptr0 = *ptr1 = kEmptyHashValue;
1499 + return distances;
1500 + }
1501 + {
1502 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1503 + const Byte *pb = cur - delta;
1504 + UInt32 len = (len0 < len1 ? len0 : len1);
1505 + if (pb[len] == cur[len])
1506 + {
1507 + if (++len != lenLimit && pb[len] == cur[len])
1508 + while (++len != lenLimit)
1509 + if (pb[len] != cur[len])
1510 + break;
1511 + if (maxLen < len)
1512 + {
1513 + *distances++ = maxLen = len;
1514 + *distances++ = delta - 1;
1515 + if (len == lenLimit)
1516 + {
1517 + *ptr1 = pair[0];
1518 + *ptr0 = pair[1];
1519 + return distances;
1520 + }
1521 + }
1522 + }
1523 + if (pb[len] < cur[len])
1524 + {
1525 + *ptr1 = curMatch;
1526 + ptr1 = pair + 1;
1527 + curMatch = *ptr1;
1528 + len1 = len;
1529 + }
1530 + else
1531 + {
1532 + *ptr0 = curMatch;
1533 + ptr0 = pair;
1534 + curMatch = *ptr0;
1535 + len0 = len;
1536 + }
1537 + }
1538 + }
1539 +}
1540 +
1541 +static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1542 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
1543 +{
1544 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1545 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1546 + UInt32 len0 = 0, len1 = 0;
1547 + for (;;)
1548 + {
1549 + UInt32 delta = pos - curMatch;
1550 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1551 + {
1552 + *ptr0 = *ptr1 = kEmptyHashValue;
1553 + return;
1554 + }
1555 + {
1556 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1557 + const Byte *pb = cur - delta;
1558 + UInt32 len = (len0 < len1 ? len0 : len1);
1559 + if (pb[len] == cur[len])
1560 + {
1561 + while (++len != lenLimit)
1562 + if (pb[len] != cur[len])
1563 + break;
1564 + {
1565 + if (len == lenLimit)
1566 + {
1567 + *ptr1 = pair[0];
1568 + *ptr0 = pair[1];
1569 + return;
1570 + }
1571 + }
1572 + }
1573 + if (pb[len] < cur[len])
1574 + {
1575 + *ptr1 = curMatch;
1576 + ptr1 = pair + 1;
1577 + curMatch = *ptr1;
1578 + len1 = len;
1579 + }
1580 + else
1581 + {
1582 + *ptr0 = curMatch;
1583 + ptr0 = pair;
1584 + curMatch = *ptr0;
1585 + len0 = len;
1586 + }
1587 + }
1588 + }
1589 +}
1590 +
1591 +#define MOVE_POS \
1592 + ++p->cyclicBufferPos; \
1593 + p->buffer++; \
1594 + if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
1595 +
1596 +#define MOVE_POS_RET MOVE_POS return offset;
1597 +
1598 +static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
1599 +
1600 +#define GET_MATCHES_HEADER2(minLen, ret_op) \
1601 + UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
1602 + lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
1603 + cur = p->buffer;
1604 +
1605 +#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
1606 +#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
1607 +
1608 +#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
1609 +
1610 +#define GET_MATCHES_FOOTER(offset, maxLen) \
1611 + offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
1612 + distances + offset, maxLen) - distances); MOVE_POS_RET;
1613 +
1614 +#define SKIP_FOOTER \
1615 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
1616 +
1617 +static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1618 +{
1619 + UInt32 offset;
1620 + GET_MATCHES_HEADER(2)
1621 + HASH2_CALC;
1622 + curMatch = p->hash[hashValue];
1623 + p->hash[hashValue] = p->pos;
1624 + offset = 0;
1625 + GET_MATCHES_FOOTER(offset, 1)
1626 +}
1627 +
1628 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1629 +{
1630 + UInt32 offset;
1631 + GET_MATCHES_HEADER(3)
1632 + HASH_ZIP_CALC;
1633 + curMatch = p->hash[hashValue];
1634 + p->hash[hashValue] = p->pos;
1635 + offset = 0;
1636 + GET_MATCHES_FOOTER(offset, 2)
1637 +}
1638 +
1639 +static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1640 +{
1641 + UInt32 hash2Value, delta2, maxLen, offset;
1642 + GET_MATCHES_HEADER(3)
1643 +
1644 + HASH3_CALC;
1645 +
1646 + delta2 = p->pos - p->hash[hash2Value];
1647 + curMatch = p->hash[kFix3HashSize + hashValue];
1648 +
1649 + p->hash[hash2Value] =
1650 + p->hash[kFix3HashSize + hashValue] = p->pos;
1651 +
1652 +
1653 + maxLen = 2;
1654 + offset = 0;
1655 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1656 + {
1657 + for (; maxLen != lenLimit; maxLen++)
1658 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1659 + break;
1660 + distances[0] = maxLen;
1661 + distances[1] = delta2 - 1;
1662 + offset = 2;
1663 + if (maxLen == lenLimit)
1664 + {
1665 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1666 + MOVE_POS_RET;
1667 + }
1668 + }
1669 + GET_MATCHES_FOOTER(offset, maxLen)
1670 +}
1671 +
1672 +static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1673 +{
1674 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1675 + GET_MATCHES_HEADER(4)
1676 +
1677 + HASH4_CALC;
1678 +
1679 + delta2 = p->pos - p->hash[ hash2Value];
1680 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1681 + curMatch = p->hash[kFix4HashSize + hashValue];
1682 +
1683 + p->hash[ hash2Value] =
1684 + p->hash[kFix3HashSize + hash3Value] =
1685 + p->hash[kFix4HashSize + hashValue] = p->pos;
1686 +
1687 + maxLen = 1;
1688 + offset = 0;
1689 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1690 + {
1691 + distances[0] = maxLen = 2;
1692 + distances[1] = delta2 - 1;
1693 + offset = 2;
1694 + }
1695 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1696 + {
1697 + maxLen = 3;
1698 + distances[offset + 1] = delta3 - 1;
1699 + offset += 2;
1700 + delta2 = delta3;
1701 + }
1702 + if (offset != 0)
1703 + {
1704 + for (; maxLen != lenLimit; maxLen++)
1705 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1706 + break;
1707 + distances[offset - 2] = maxLen;
1708 + if (maxLen == lenLimit)
1709 + {
1710 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1711 + MOVE_POS_RET;
1712 + }
1713 + }
1714 + if (maxLen < 3)
1715 + maxLen = 3;
1716 + GET_MATCHES_FOOTER(offset, maxLen)
1717 +}
1718 +
1719 +static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1720 +{
1721 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1722 + GET_MATCHES_HEADER(4)
1723 +
1724 + HASH4_CALC;
1725 +
1726 + delta2 = p->pos - p->hash[ hash2Value];
1727 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1728 + curMatch = p->hash[kFix4HashSize + hashValue];
1729 +
1730 + p->hash[ hash2Value] =
1731 + p->hash[kFix3HashSize + hash3Value] =
1732 + p->hash[kFix4HashSize + hashValue] = p->pos;
1733 +
1734 + maxLen = 1;
1735 + offset = 0;
1736 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1737 + {
1738 + distances[0] = maxLen = 2;
1739 + distances[1] = delta2 - 1;
1740 + offset = 2;
1741 + }
1742 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1743 + {
1744 + maxLen = 3;
1745 + distances[offset + 1] = delta3 - 1;
1746 + offset += 2;
1747 + delta2 = delta3;
1748 + }
1749 + if (offset != 0)
1750 + {
1751 + for (; maxLen != lenLimit; maxLen++)
1752 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1753 + break;
1754 + distances[offset - 2] = maxLen;
1755 + if (maxLen == lenLimit)
1756 + {
1757 + p->son[p->cyclicBufferPos] = curMatch;
1758 + MOVE_POS_RET;
1759 + }
1760 + }
1761 + if (maxLen < 3)
1762 + maxLen = 3;
1763 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1764 + distances + offset, maxLen) - (distances));
1765 + MOVE_POS_RET
1766 +}
1767 +
1768 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1769 +{
1770 + UInt32 offset;
1771 + GET_MATCHES_HEADER(3)
1772 + HASH_ZIP_CALC;
1773 + curMatch = p->hash[hashValue];
1774 + p->hash[hashValue] = p->pos;
1775 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1776 + distances, 2) - (distances));
1777 + MOVE_POS_RET
1778 +}
1779 +
1780 +static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1781 +{
1782 + do
1783 + {
1784 + SKIP_HEADER(2)
1785 + HASH2_CALC;
1786 + curMatch = p->hash[hashValue];
1787 + p->hash[hashValue] = p->pos;
1788 + SKIP_FOOTER
1789 + }
1790 + while (--num != 0);
1791 +}
1792 +
1793 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1794 +{
1795 + do
1796 + {
1797 + SKIP_HEADER(3)
1798 + HASH_ZIP_CALC;
1799 + curMatch = p->hash[hashValue];
1800 + p->hash[hashValue] = p->pos;
1801 + SKIP_FOOTER
1802 + }
1803 + while (--num != 0);
1804 +}
1805 +
1806 +static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1807 +{
1808 + do
1809 + {
1810 + UInt32 hash2Value;
1811 + SKIP_HEADER(3)
1812 + HASH3_CALC;
1813 + curMatch = p->hash[kFix3HashSize + hashValue];
1814 + p->hash[hash2Value] =
1815 + p->hash[kFix3HashSize + hashValue] = p->pos;
1816 + SKIP_FOOTER
1817 + }
1818 + while (--num != 0);
1819 +}
1820 +
1821 +static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1822 +{
1823 + do
1824 + {
1825 + UInt32 hash2Value, hash3Value;
1826 + SKIP_HEADER(4)
1827 + HASH4_CALC;
1828 + curMatch = p->hash[kFix4HashSize + hashValue];
1829 + p->hash[ hash2Value] =
1830 + p->hash[kFix3HashSize + hash3Value] = p->pos;
1831 + p->hash[kFix4HashSize + hashValue] = p->pos;
1832 + SKIP_FOOTER
1833 + }
1834 + while (--num != 0);
1835 +}
1836 +
1837 +static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1838 +{
1839 + do
1840 + {
1841 + UInt32 hash2Value, hash3Value;
1842 + SKIP_HEADER(4)
1843 + HASH4_CALC;
1844 + curMatch = p->hash[kFix4HashSize + hashValue];
1845 + p->hash[ hash2Value] =
1846 + p->hash[kFix3HashSize + hash3Value] =
1847 + p->hash[kFix4HashSize + hashValue] = p->pos;
1848 + p->son[p->cyclicBufferPos] = curMatch;
1849 + MOVE_POS
1850 + }
1851 + while (--num != 0);
1852 +}
1853 +
1854 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1855 +{
1856 + do
1857 + {
1858 + SKIP_HEADER(3)
1859 + HASH_ZIP_CALC;
1860 + curMatch = p->hash[hashValue];
1861 + p->hash[hashValue] = p->pos;
1862 + p->son[p->cyclicBufferPos] = curMatch;
1863 + MOVE_POS
1864 + }
1865 + while (--num != 0);
1866 +}
1867 +
1868 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
1869 +{
1870 + vTable->Init = (Mf_Init_Func)MatchFinder_Init;
1871 + vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
1872 + vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
1873 + vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
1874 + if (!p->btMode)
1875 + {
1876 + vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
1877 + vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
1878 + }
1879 + else if (p->numHashBytes == 2)
1880 + {
1881 + vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
1882 + vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
1883 + }
1884 + else if (p->numHashBytes == 3)
1885 + {
1886 + vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
1887 + vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
1888 + }
1889 + else
1890 + {
1891 + vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
1892 + vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
1893 + }
1894 +}
1895 --- /dev/null
1896 +++ b/lib/lzma/LzmaDec.c
1897 @@ -0,0 +1,999 @@
1898 +/* LzmaDec.c -- LZMA Decoder
1899 +2009-09-20 : Igor Pavlov : Public domain */
1900 +
1901 +#include "LzmaDec.h"
1902 +
1903 +#include <string.h>
1904 +
1905 +#define kNumTopBits 24
1906 +#define kTopValue ((UInt32)1 << kNumTopBits)
1907 +
1908 +#define kNumBitModelTotalBits 11
1909 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
1910 +#define kNumMoveBits 5
1911 +
1912 +#define RC_INIT_SIZE 5
1913 +
1914 +#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
1915 +
1916 +#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1917 +#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
1918 +#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
1919 +#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
1920 + { UPDATE_0(p); i = (i + i); A0; } else \
1921 + { UPDATE_1(p); i = (i + i) + 1; A1; }
1922 +#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
1923 +
1924 +#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
1925 +#define TREE_DECODE(probs, limit, i) \
1926 + { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
1927 +
1928 +/* #define _LZMA_SIZE_OPT */
1929 +
1930 +#ifdef _LZMA_SIZE_OPT
1931 +#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
1932 +#else
1933 +#define TREE_6_DECODE(probs, i) \
1934 + { i = 1; \
1935 + TREE_GET_BIT(probs, i); \
1936 + TREE_GET_BIT(probs, i); \
1937 + TREE_GET_BIT(probs, i); \
1938 + TREE_GET_BIT(probs, i); \
1939 + TREE_GET_BIT(probs, i); \
1940 + TREE_GET_BIT(probs, i); \
1941 + i -= 0x40; }
1942 +#endif
1943 +
1944 +#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
1945 +
1946 +#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1947 +#define UPDATE_0_CHECK range = bound;
1948 +#define UPDATE_1_CHECK range -= bound; code -= bound;
1949 +#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
1950 + { UPDATE_0_CHECK; i = (i + i); A0; } else \
1951 + { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
1952 +#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
1953 +#define TREE_DECODE_CHECK(probs, limit, i) \
1954 + { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
1955 +
1956 +
1957 +#define kNumPosBitsMax 4
1958 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
1959 +
1960 +#define kLenNumLowBits 3
1961 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
1962 +#define kLenNumMidBits 3
1963 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
1964 +#define kLenNumHighBits 8
1965 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
1966 +
1967 +#define LenChoice 0
1968 +#define LenChoice2 (LenChoice + 1)
1969 +#define LenLow (LenChoice2 + 1)
1970 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
1971 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
1972 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
1973 +
1974 +
1975 +#define kNumStates 12
1976 +#define kNumLitStates 7
1977 +
1978 +#define kStartPosModelIndex 4
1979 +#define kEndPosModelIndex 14
1980 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
1981 +
1982 +#define kNumPosSlotBits 6
1983 +#define kNumLenToPosStates 4
1984 +
1985 +#define kNumAlignBits 4
1986 +#define kAlignTableSize (1 << kNumAlignBits)
1987 +
1988 +#define kMatchMinLen 2
1989 +#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
1990 +
1991 +#define IsMatch 0
1992 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
1993 +#define IsRepG0 (IsRep + kNumStates)
1994 +#define IsRepG1 (IsRepG0 + kNumStates)
1995 +#define IsRepG2 (IsRepG1 + kNumStates)
1996 +#define IsRep0Long (IsRepG2 + kNumStates)
1997 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
1998 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
1999 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
2000 +#define LenCoder (Align + kAlignTableSize)
2001 +#define RepLenCoder (LenCoder + kNumLenProbs)
2002 +#define Literal (RepLenCoder + kNumLenProbs)
2003 +
2004 +#define LZMA_BASE_SIZE 1846
2005 +#define LZMA_LIT_SIZE 768
2006 +
2007 +#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
2008 +
2009 +#if Literal != LZMA_BASE_SIZE
2010 +StopCompilingDueBUG
2011 +#endif
2012 +
2013 +#define LZMA_DIC_MIN (1 << 12)
2014 +
2015 +/* First LZMA-symbol is always decoded.
2016 +And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
2017 +Out:
2018 + Result:
2019 + SZ_OK - OK
2020 + SZ_ERROR_DATA - Error
2021 + p->remainLen:
2022 + < kMatchSpecLenStart : normal remain
2023 + = kMatchSpecLenStart : finished
2024 + = kMatchSpecLenStart + 1 : Flush marker
2025 + = kMatchSpecLenStart + 2 : State Init Marker
2026 +*/
2027 +
2028 +static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2029 +{
2030 + CLzmaProb *probs = p->probs;
2031 +
2032 + unsigned state = p->state;
2033 + UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
2034 + unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
2035 + unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
2036 + unsigned lc = p->prop.lc;
2037 +
2038 + Byte *dic = p->dic;
2039 + SizeT dicBufSize = p->dicBufSize;
2040 + SizeT dicPos = p->dicPos;
2041 +
2042 + UInt32 processedPos = p->processedPos;
2043 + UInt32 checkDicSize = p->checkDicSize;
2044 + unsigned len = 0;
2045 +
2046 + const Byte *buf = p->buf;
2047 + UInt32 range = p->range;
2048 + UInt32 code = p->code;
2049 +
2050 + do
2051 + {
2052 + CLzmaProb *prob;
2053 + UInt32 bound;
2054 + unsigned ttt;
2055 + unsigned posState = processedPos & pbMask;
2056 +
2057 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2058 + IF_BIT_0(prob)
2059 + {
2060 + unsigned symbol;
2061 + UPDATE_0(prob);
2062 + prob = probs + Literal;
2063 + if (checkDicSize != 0 || processedPos != 0)
2064 + prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
2065 + (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
2066 +
2067 + if (state < kNumLitStates)
2068 + {
2069 + state -= (state < 4) ? state : 3;
2070 + symbol = 1;
2071 + do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
2072 + }
2073 + else
2074 + {
2075 + unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2076 + unsigned offs = 0x100;
2077 + state -= (state < 10) ? 3 : 6;
2078 + symbol = 1;
2079 + do
2080 + {
2081 + unsigned bit;
2082 + CLzmaProb *probLit;
2083 + matchByte <<= 1;
2084 + bit = (matchByte & offs);
2085 + probLit = prob + offs + bit + symbol;
2086 + GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
2087 + }
2088 + while (symbol < 0x100);
2089 + }
2090 + dic[dicPos++] = (Byte)symbol;
2091 + processedPos++;
2092 + continue;
2093 + }
2094 + else
2095 + {
2096 + UPDATE_1(prob);
2097 + prob = probs + IsRep + state;
2098 + IF_BIT_0(prob)
2099 + {
2100 + UPDATE_0(prob);
2101 + state += kNumStates;
2102 + prob = probs + LenCoder;
2103 + }
2104 + else
2105 + {
2106 + UPDATE_1(prob);
2107 + if (checkDicSize == 0 && processedPos == 0)
2108 + return SZ_ERROR_DATA;
2109 + prob = probs + IsRepG0 + state;
2110 + IF_BIT_0(prob)
2111 + {
2112 + UPDATE_0(prob);
2113 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2114 + IF_BIT_0(prob)
2115 + {
2116 + UPDATE_0(prob);
2117 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2118 + dicPos++;
2119 + processedPos++;
2120 + state = state < kNumLitStates ? 9 : 11;
2121 + continue;
2122 + }
2123 + UPDATE_1(prob);
2124 + }
2125 + else
2126 + {
2127 + UInt32 distance;
2128 + UPDATE_1(prob);
2129 + prob = probs + IsRepG1 + state;
2130 + IF_BIT_0(prob)
2131 + {
2132 + UPDATE_0(prob);
2133 + distance = rep1;
2134 + }
2135 + else
2136 + {
2137 + UPDATE_1(prob);
2138 + prob = probs + IsRepG2 + state;
2139 + IF_BIT_0(prob)
2140 + {
2141 + UPDATE_0(prob);
2142 + distance = rep2;
2143 + }
2144 + else
2145 + {
2146 + UPDATE_1(prob);
2147 + distance = rep3;
2148 + rep3 = rep2;
2149 + }
2150 + rep2 = rep1;
2151 + }
2152 + rep1 = rep0;
2153 + rep0 = distance;
2154 + }
2155 + state = state < kNumLitStates ? 8 : 11;
2156 + prob = probs + RepLenCoder;
2157 + }
2158 + {
2159 + unsigned limit, offset;
2160 + CLzmaProb *probLen = prob + LenChoice;
2161 + IF_BIT_0(probLen)
2162 + {
2163 + UPDATE_0(probLen);
2164 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2165 + offset = 0;
2166 + limit = (1 << kLenNumLowBits);
2167 + }
2168 + else
2169 + {
2170 + UPDATE_1(probLen);
2171 + probLen = prob + LenChoice2;
2172 + IF_BIT_0(probLen)
2173 + {
2174 + UPDATE_0(probLen);
2175 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2176 + offset = kLenNumLowSymbols;
2177 + limit = (1 << kLenNumMidBits);
2178 + }
2179 + else
2180 + {
2181 + UPDATE_1(probLen);
2182 + probLen = prob + LenHigh;
2183 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2184 + limit = (1 << kLenNumHighBits);
2185 + }
2186 + }
2187 + TREE_DECODE(probLen, limit, len);
2188 + len += offset;
2189 + }
2190 +
2191 + if (state >= kNumStates)
2192 + {
2193 + UInt32 distance;
2194 + prob = probs + PosSlot +
2195 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
2196 + TREE_6_DECODE(prob, distance);
2197 + if (distance >= kStartPosModelIndex)
2198 + {
2199 + unsigned posSlot = (unsigned)distance;
2200 + int numDirectBits = (int)(((distance >> 1) - 1));
2201 + distance = (2 | (distance & 1));
2202 + if (posSlot < kEndPosModelIndex)
2203 + {
2204 + distance <<= numDirectBits;
2205 + prob = probs + SpecPos + distance - posSlot - 1;
2206 + {
2207 + UInt32 mask = 1;
2208 + unsigned i = 1;
2209 + do
2210 + {
2211 + GET_BIT2(prob + i, i, ; , distance |= mask);
2212 + mask <<= 1;
2213 + }
2214 + while (--numDirectBits != 0);
2215 + }
2216 + }
2217 + else
2218 + {
2219 + numDirectBits -= kNumAlignBits;
2220 + do
2221 + {
2222 + NORMALIZE
2223 + range >>= 1;
2224 +
2225 + {
2226 + UInt32 t;
2227 + code -= range;
2228 + t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
2229 + distance = (distance << 1) + (t + 1);
2230 + code += range & t;
2231 + }
2232 + /*
2233 + distance <<= 1;
2234 + if (code >= range)
2235 + {
2236 + code -= range;
2237 + distance |= 1;
2238 + }
2239 + */
2240 + }
2241 + while (--numDirectBits != 0);
2242 + prob = probs + Align;
2243 + distance <<= kNumAlignBits;
2244 + {
2245 + unsigned i = 1;
2246 + GET_BIT2(prob + i, i, ; , distance |= 1);
2247 + GET_BIT2(prob + i, i, ; , distance |= 2);
2248 + GET_BIT2(prob + i, i, ; , distance |= 4);
2249 + GET_BIT2(prob + i, i, ; , distance |= 8);
2250 + }
2251 + if (distance == (UInt32)0xFFFFFFFF)
2252 + {
2253 + len += kMatchSpecLenStart;
2254 + state -= kNumStates;
2255 + break;
2256 + }
2257 + }
2258 + }
2259 + rep3 = rep2;
2260 + rep2 = rep1;
2261 + rep1 = rep0;
2262 + rep0 = distance + 1;
2263 + if (checkDicSize == 0)
2264 + {
2265 + if (distance >= processedPos)
2266 + return SZ_ERROR_DATA;
2267 + }
2268 + else if (distance >= checkDicSize)
2269 + return SZ_ERROR_DATA;
2270 + state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
2271 + }
2272 +
2273 + len += kMatchMinLen;
2274 +
2275 + if (limit == dicPos)
2276 + return SZ_ERROR_DATA;
2277 + {
2278 + SizeT rem = limit - dicPos;
2279 + unsigned curLen = ((rem < len) ? (unsigned)rem : len);
2280 + SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
2281 +
2282 + processedPos += curLen;
2283 +
2284 + len -= curLen;
2285 + if (pos + curLen <= dicBufSize)
2286 + {
2287 + Byte *dest = dic + dicPos;
2288 + ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
2289 + const Byte *lim = dest + curLen;
2290 + dicPos += curLen;
2291 + do
2292 + *(dest) = (Byte)*(dest + src);
2293 + while (++dest != lim);
2294 + }
2295 + else
2296 + {
2297 + do
2298 + {
2299 + dic[dicPos++] = dic[pos];
2300 + if (++pos == dicBufSize)
2301 + pos = 0;
2302 + }
2303 + while (--curLen != 0);
2304 + }
2305 + }
2306 + }
2307 + }
2308 + while (dicPos < limit && buf < bufLimit);
2309 + NORMALIZE;
2310 + p->buf = buf;
2311 + p->range = range;
2312 + p->code = code;
2313 + p->remainLen = len;
2314 + p->dicPos = dicPos;
2315 + p->processedPos = processedPos;
2316 + p->reps[0] = rep0;
2317 + p->reps[1] = rep1;
2318 + p->reps[2] = rep2;
2319 + p->reps[3] = rep3;
2320 + p->state = state;
2321 +
2322 + return SZ_OK;
2323 +}
2324 +
2325 +static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
2326 +{
2327 + if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
2328 + {
2329 + Byte *dic = p->dic;
2330 + SizeT dicPos = p->dicPos;
2331 + SizeT dicBufSize = p->dicBufSize;
2332 + unsigned len = p->remainLen;
2333 + UInt32 rep0 = p->reps[0];
2334 + if (limit - dicPos < len)
2335 + len = (unsigned)(limit - dicPos);
2336 +
2337 + if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
2338 + p->checkDicSize = p->prop.dicSize;
2339 +
2340 + p->processedPos += len;
2341 + p->remainLen -= len;
2342 + while (len-- != 0)
2343 + {
2344 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2345 + dicPos++;
2346 + }
2347 + p->dicPos = dicPos;
2348 + }
2349 +}
2350 +
2351 +static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2352 +{
2353 + do
2354 + {
2355 + SizeT limit2 = limit;
2356 + if (p->checkDicSize == 0)
2357 + {
2358 + UInt32 rem = p->prop.dicSize - p->processedPos;
2359 + if (limit - p->dicPos > rem)
2360 + limit2 = p->dicPos + rem;
2361 + }
2362 + RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
2363 + if (p->processedPos >= p->prop.dicSize)
2364 + p->checkDicSize = p->prop.dicSize;
2365 + LzmaDec_WriteRem(p, limit);
2366 + }
2367 + while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
2368 +
2369 + if (p->remainLen > kMatchSpecLenStart)
2370 + {
2371 + p->remainLen = kMatchSpecLenStart;
2372 + }
2373 + return 0;
2374 +}
2375 +
2376 +typedef enum
2377 +{
2378 + DUMMY_ERROR, /* unexpected end of input stream */
2379 + DUMMY_LIT,
2380 + DUMMY_MATCH,
2381 + DUMMY_REP
2382 +} ELzmaDummy;
2383 +
2384 +static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
2385 +{
2386 + UInt32 range = p->range;
2387 + UInt32 code = p->code;
2388 + const Byte *bufLimit = buf + inSize;
2389 + CLzmaProb *probs = p->probs;
2390 + unsigned state = p->state;
2391 + ELzmaDummy res;
2392 +
2393 + {
2394 + CLzmaProb *prob;
2395 + UInt32 bound;
2396 + unsigned ttt;
2397 + unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
2398 +
2399 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2400 + IF_BIT_0_CHECK(prob)
2401 + {
2402 + UPDATE_0_CHECK
2403 +
2404 + /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
2405 +
2406 + prob = probs + Literal;
2407 + if (p->checkDicSize != 0 || p->processedPos != 0)
2408 + prob += (LZMA_LIT_SIZE *
2409 + ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
2410 + (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
2411 +
2412 + if (state < kNumLitStates)
2413 + {
2414 + unsigned symbol = 1;
2415 + do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
2416 + }
2417 + else
2418 + {
2419 + unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
2420 + ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
2421 + unsigned offs = 0x100;
2422 + unsigned symbol = 1;
2423 + do
2424 + {
2425 + unsigned bit;
2426 + CLzmaProb *probLit;
2427 + matchByte <<= 1;
2428 + bit = (matchByte & offs);
2429 + probLit = prob + offs + bit + symbol;
2430 + GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
2431 + }
2432 + while (symbol < 0x100);
2433 + }
2434 + res = DUMMY_LIT;
2435 + }
2436 + else
2437 + {
2438 + unsigned len;
2439 + UPDATE_1_CHECK;
2440 +
2441 + prob = probs + IsRep + state;
2442 + IF_BIT_0_CHECK(prob)
2443 + {
2444 + UPDATE_0_CHECK;
2445 + state = 0;
2446 + prob = probs + LenCoder;
2447 + res = DUMMY_MATCH;
2448 + }
2449 + else
2450 + {
2451 + UPDATE_1_CHECK;
2452 + res = DUMMY_REP;
2453 + prob = probs + IsRepG0 + state;
2454 + IF_BIT_0_CHECK(prob)
2455 + {
2456 + UPDATE_0_CHECK;
2457 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2458 + IF_BIT_0_CHECK(prob)
2459 + {
2460 + UPDATE_0_CHECK;
2461 + NORMALIZE_CHECK;
2462 + return DUMMY_REP;
2463 + }
2464 + else
2465 + {
2466 + UPDATE_1_CHECK;
2467 + }
2468 + }
2469 + else
2470 + {
2471 + UPDATE_1_CHECK;
2472 + prob = probs + IsRepG1 + state;
2473 + IF_BIT_0_CHECK(prob)
2474 + {
2475 + UPDATE_0_CHECK;
2476 + }
2477 + else
2478 + {
2479 + UPDATE_1_CHECK;
2480 + prob = probs + IsRepG2 + state;
2481 + IF_BIT_0_CHECK(prob)
2482 + {
2483 + UPDATE_0_CHECK;
2484 + }
2485 + else
2486 + {
2487 + UPDATE_1_CHECK;
2488 + }
2489 + }
2490 + }
2491 + state = kNumStates;
2492 + prob = probs + RepLenCoder;
2493 + }
2494 + {
2495 + unsigned limit, offset;
2496 + CLzmaProb *probLen = prob + LenChoice;
2497 + IF_BIT_0_CHECK(probLen)
2498 + {
2499 + UPDATE_0_CHECK;
2500 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2501 + offset = 0;
2502 + limit = 1 << kLenNumLowBits;
2503 + }
2504 + else
2505 + {
2506 + UPDATE_1_CHECK;
2507 + probLen = prob + LenChoice2;
2508 + IF_BIT_0_CHECK(probLen)
2509 + {
2510 + UPDATE_0_CHECK;
2511 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2512 + offset = kLenNumLowSymbols;
2513 + limit = 1 << kLenNumMidBits;
2514 + }
2515 + else
2516 + {
2517 + UPDATE_1_CHECK;
2518 + probLen = prob + LenHigh;
2519 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2520 + limit = 1 << kLenNumHighBits;
2521 + }
2522 + }
2523 + TREE_DECODE_CHECK(probLen, limit, len);
2524 + len += offset;
2525 + }
2526 +
2527 + if (state < 4)
2528 + {
2529 + unsigned posSlot;
2530 + prob = probs + PosSlot +
2531 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
2532 + kNumPosSlotBits);
2533 + TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
2534 + if (posSlot >= kStartPosModelIndex)
2535 + {
2536 + int numDirectBits = ((posSlot >> 1) - 1);
2537 +
2538 + /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
2539 +
2540 + if (posSlot < kEndPosModelIndex)
2541 + {
2542 + prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
2543 + }
2544 + else
2545 + {
2546 + numDirectBits -= kNumAlignBits;
2547 + do
2548 + {
2549 + NORMALIZE_CHECK
2550 + range >>= 1;
2551 + code -= range & (((code - range) >> 31) - 1);
2552 + /* if (code >= range) code -= range; */
2553 + }
2554 + while (--numDirectBits != 0);
2555 + prob = probs + Align;
2556 + numDirectBits = kNumAlignBits;
2557 + }
2558 + {
2559 + unsigned i = 1;
2560 + do
2561 + {
2562 + GET_BIT_CHECK(prob + i, i);
2563 + }
2564 + while (--numDirectBits != 0);
2565 + }
2566 + }
2567 + }
2568 + }
2569 + }
2570 + NORMALIZE_CHECK;
2571 + return res;
2572 +}
2573 +
2574 +
2575 +static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
2576 +{
2577 + p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
2578 + p->range = 0xFFFFFFFF;
2579 + p->needFlush = 0;
2580 +}
2581 +
2582 +void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
2583 +{
2584 + p->needFlush = 1;
2585 + p->remainLen = 0;
2586 + p->tempBufSize = 0;
2587 +
2588 + if (initDic)
2589 + {
2590 + p->processedPos = 0;
2591 + p->checkDicSize = 0;
2592 + p->needInitState = 1;
2593 + }
2594 + if (initState)
2595 + p->needInitState = 1;
2596 +}
2597 +
2598 +void LzmaDec_Init(CLzmaDec *p)
2599 +{
2600 + p->dicPos = 0;
2601 + LzmaDec_InitDicAndState(p, True, True);
2602 +}
2603 +
2604 +static void LzmaDec_InitStateReal(CLzmaDec *p)
2605 +{
2606 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
2607 + UInt32 i;
2608 + CLzmaProb *probs = p->probs;
2609 + for (i = 0; i < numProbs; i++)
2610 + probs[i] = kBitModelTotal >> 1;
2611 + p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
2612 + p->state = 0;
2613 + p->needInitState = 0;
2614 +}
2615 +
2616 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
2617 + ELzmaFinishMode finishMode, ELzmaStatus *status)
2618 +{
2619 + SizeT inSize = *srcLen;
2620 + (*srcLen) = 0;
2621 + LzmaDec_WriteRem(p, dicLimit);
2622 +
2623 + *status = LZMA_STATUS_NOT_SPECIFIED;
2624 +
2625 + while (p->remainLen != kMatchSpecLenStart)
2626 + {
2627 + int checkEndMarkNow;
2628 +
2629 + if (p->needFlush != 0)
2630 + {
2631 + for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
2632 + p->tempBuf[p->tempBufSize++] = *src++;
2633 + if (p->tempBufSize < RC_INIT_SIZE)
2634 + {
2635 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2636 + return SZ_OK;
2637 + }
2638 + if (p->tempBuf[0] != 0)
2639 + return SZ_ERROR_DATA;
2640 +
2641 + LzmaDec_InitRc(p, p->tempBuf);
2642 + p->tempBufSize = 0;
2643 + }
2644 +
2645 + checkEndMarkNow = 0;
2646 + if (p->dicPos >= dicLimit)
2647 + {
2648 + if (p->remainLen == 0 && p->code == 0)
2649 + {
2650 + *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
2651 + return SZ_OK;
2652 + }
2653 + if (finishMode == LZMA_FINISH_ANY)
2654 + {
2655 + *status = LZMA_STATUS_NOT_FINISHED;
2656 + return SZ_OK;
2657 + }
2658 + if (p->remainLen != 0)
2659 + {
2660 + *status = LZMA_STATUS_NOT_FINISHED;
2661 + return SZ_ERROR_DATA;
2662 + }
2663 + checkEndMarkNow = 1;
2664 + }
2665 +
2666 + if (p->needInitState)
2667 + LzmaDec_InitStateReal(p);
2668 +
2669 + if (p->tempBufSize == 0)
2670 + {
2671 + SizeT processed;
2672 + const Byte *bufLimit;
2673 + if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2674 + {
2675 + int dummyRes = LzmaDec_TryDummy(p, src, inSize);
2676 + if (dummyRes == DUMMY_ERROR)
2677 + {
2678 + memcpy(p->tempBuf, src, inSize);
2679 + p->tempBufSize = (unsigned)inSize;
2680 + (*srcLen) += inSize;
2681 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2682 + return SZ_OK;
2683 + }
2684 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2685 + {
2686 + *status = LZMA_STATUS_NOT_FINISHED;
2687 + return SZ_ERROR_DATA;
2688 + }
2689 + bufLimit = src;
2690 + }
2691 + else
2692 + bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
2693 + p->buf = src;
2694 + if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
2695 + return SZ_ERROR_DATA;
2696 + processed = (SizeT)(p->buf - src);
2697 + (*srcLen) += processed;
2698 + src += processed;
2699 + inSize -= processed;
2700 + }
2701 + else
2702 + {
2703 + unsigned rem = p->tempBufSize, lookAhead = 0;
2704 + while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
2705 + p->tempBuf[rem++] = src[lookAhead++];
2706 + p->tempBufSize = rem;
2707 + if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2708 + {
2709 + int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
2710 + if (dummyRes == DUMMY_ERROR)
2711 + {
2712 + (*srcLen) += lookAhead;
2713 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2714 + return SZ_OK;
2715 + }
2716 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2717 + {
2718 + *status = LZMA_STATUS_NOT_FINISHED;
2719 + return SZ_ERROR_DATA;
2720 + }
2721 + }
2722 + p->buf = p->tempBuf;
2723 + if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
2724 + return SZ_ERROR_DATA;
2725 + lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
2726 + (*srcLen) += lookAhead;
2727 + src += lookAhead;
2728 + inSize -= lookAhead;
2729 + p->tempBufSize = 0;
2730 + }
2731 + }
2732 + if (p->code == 0)
2733 + *status = LZMA_STATUS_FINISHED_WITH_MARK;
2734 + return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
2735 +}
2736 +
2737 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
2738 +{
2739 + SizeT outSize = *destLen;
2740 + SizeT inSize = *srcLen;
2741 + *srcLen = *destLen = 0;
2742 + for (;;)
2743 + {
2744 + SizeT inSizeCur = inSize, outSizeCur, dicPos;
2745 + ELzmaFinishMode curFinishMode;
2746 + SRes res;
2747 + if (p->dicPos == p->dicBufSize)
2748 + p->dicPos = 0;
2749 + dicPos = p->dicPos;
2750 + if (outSize > p->dicBufSize - dicPos)
2751 + {
2752 + outSizeCur = p->dicBufSize;
2753 + curFinishMode = LZMA_FINISH_ANY;
2754 + }
2755 + else
2756 + {
2757 + outSizeCur = dicPos + outSize;
2758 + curFinishMode = finishMode;
2759 + }
2760 +
2761 + res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
2762 + src += inSizeCur;
2763 + inSize -= inSizeCur;
2764 + *srcLen += inSizeCur;
2765 + outSizeCur = p->dicPos - dicPos;
2766 + memcpy(dest, p->dic + dicPos, outSizeCur);
2767 + dest += outSizeCur;
2768 + outSize -= outSizeCur;
2769 + *destLen += outSizeCur;
2770 + if (res != 0)
2771 + return res;
2772 + if (outSizeCur == 0 || outSize == 0)
2773 + return SZ_OK;
2774 + }
2775 +}
2776 +
2777 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
2778 +{
2779 + alloc->Free(alloc, p->probs);
2780 + p->probs = 0;
2781 +}
2782 +
2783 +static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
2784 +{
2785 + alloc->Free(alloc, p->dic);
2786 + p->dic = 0;
2787 +}
2788 +
2789 +void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
2790 +{
2791 + LzmaDec_FreeProbs(p, alloc);
2792 + LzmaDec_FreeDict(p, alloc);
2793 +}
2794 +
2795 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
2796 +{
2797 + UInt32 dicSize;
2798 + Byte d;
2799 +
2800 + if (size < LZMA_PROPS_SIZE)
2801 + return SZ_ERROR_UNSUPPORTED;
2802 + else
2803 + dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
2804 +
2805 + if (dicSize < LZMA_DIC_MIN)
2806 + dicSize = LZMA_DIC_MIN;
2807 + p->dicSize = dicSize;
2808 +
2809 + d = data[0];
2810 + if (d >= (9 * 5 * 5))
2811 + return SZ_ERROR_UNSUPPORTED;
2812 +
2813 + p->lc = d % 9;
2814 + d /= 9;
2815 + p->pb = d / 5;
2816 + p->lp = d % 5;
2817 +
2818 + return SZ_OK;
2819 +}
2820 +
2821 +static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
2822 +{
2823 + UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
2824 + if (p->probs == 0 || numProbs != p->numProbs)
2825 + {
2826 + LzmaDec_FreeProbs(p, alloc);
2827 + p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
2828 + p->numProbs = numProbs;
2829 + if (p->probs == 0)
2830 + return SZ_ERROR_MEM;
2831 + }
2832 + return SZ_OK;
2833 +}
2834 +
2835 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2836 +{
2837 + CLzmaProps propNew;
2838 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2839 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2840 + p->prop = propNew;
2841 + return SZ_OK;
2842 +}
2843 +
2844 +SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2845 +{
2846 + CLzmaProps propNew;
2847 + SizeT dicBufSize;
2848 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2849 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2850 + dicBufSize = propNew.dicSize;
2851 + if (p->dic == 0 || dicBufSize != p->dicBufSize)
2852 + {
2853 + LzmaDec_FreeDict(p, alloc);
2854 + p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
2855 + if (p->dic == 0)
2856 + {
2857 + LzmaDec_FreeProbs(p, alloc);
2858 + return SZ_ERROR_MEM;
2859 + }
2860 + }
2861 + p->dicBufSize = dicBufSize;
2862 + p->prop = propNew;
2863 + return SZ_OK;
2864 +}
2865 +
2866 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
2867 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
2868 + ELzmaStatus *status, ISzAlloc *alloc)
2869 +{
2870 + CLzmaDec p;
2871 + SRes res;
2872 + SizeT inSize = *srcLen;
2873 + SizeT outSize = *destLen;
2874 + *srcLen = *destLen = 0;
2875 + if (inSize < RC_INIT_SIZE)
2876 + return SZ_ERROR_INPUT_EOF;
2877 +
2878 + LzmaDec_Construct(&p);
2879 + res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
2880 + if (res != 0)
2881 + return res;
2882 + p.dic = dest;
2883 + p.dicBufSize = outSize;
2884 +
2885 + LzmaDec_Init(&p);
2886 +
2887 + *srcLen = inSize;
2888 + res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
2889 +
2890 + if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
2891 + res = SZ_ERROR_INPUT_EOF;
2892 +
2893 + (*destLen) = p.dicPos;
2894 + LzmaDec_FreeProbs(&p, alloc);
2895 + return res;
2896 +}
2897 --- /dev/null
2898 +++ b/lib/lzma/LzmaEnc.c
2899 @@ -0,0 +1,2271 @@
2900 +/* LzmaEnc.c -- LZMA Encoder
2901 +2009-11-24 : Igor Pavlov : Public domain */
2902 +
2903 +#include <string.h>
2904 +
2905 +/* #define SHOW_STAT */
2906 +/* #define SHOW_STAT2 */
2907 +
2908 +#if defined(SHOW_STAT) || defined(SHOW_STAT2)
2909 +#include <stdio.h>
2910 +#endif
2911 +
2912 +#include "LzmaEnc.h"
2913 +
2914 +/* disable MT */
2915 +#define _7ZIP_ST
2916 +
2917 +#include "LzFind.h"
2918 +#ifndef _7ZIP_ST
2919 +#include "LzFindMt.h"
2920 +#endif
2921 +
2922 +#ifdef SHOW_STAT
2923 +static int ttt = 0;
2924 +#endif
2925 +
2926 +#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
2927 +
2928 +#define kBlockSize (9 << 10)
2929 +#define kUnpackBlockSize (1 << 18)
2930 +#define kMatchArraySize (1 << 21)
2931 +#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
2932 +
2933 +#define kNumMaxDirectBits (31)
2934 +
2935 +#define kNumTopBits 24
2936 +#define kTopValue ((UInt32)1 << kNumTopBits)
2937 +
2938 +#define kNumBitModelTotalBits 11
2939 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
2940 +#define kNumMoveBits 5
2941 +#define kProbInitValue (kBitModelTotal >> 1)
2942 +
2943 +#define kNumMoveReducingBits 4
2944 +#define kNumBitPriceShiftBits 4
2945 +#define kBitPrice (1 << kNumBitPriceShiftBits)
2946 +
2947 +void LzmaEncProps_Init(CLzmaEncProps *p)
2948 +{
2949 + p->level = 5;
2950 + p->dictSize = p->mc = 0;
2951 + p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
2952 + p->writeEndMark = 0;
2953 +}
2954 +
2955 +void LzmaEncProps_Normalize(CLzmaEncProps *p)
2956 +{
2957 + int level = p->level;
2958 + if (level < 0) level = 5;
2959 + p->level = level;
2960 + if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
2961 + if (p->lc < 0) p->lc = 3;
2962 + if (p->lp < 0) p->lp = 0;
2963 + if (p->pb < 0) p->pb = 2;
2964 + if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
2965 + if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
2966 + if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
2967 + if (p->numHashBytes < 0) p->numHashBytes = 4;
2968 + if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
2969 + if (p->numThreads < 0)
2970 + p->numThreads =
2971 + #ifndef _7ZIP_ST
2972 + ((p->btMode && p->algo) ? 2 : 1);
2973 + #else
2974 + 1;
2975 + #endif
2976 +}
2977 +
2978 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
2979 +{
2980 + CLzmaEncProps props = *props2;
2981 + LzmaEncProps_Normalize(&props);
2982 + return props.dictSize;
2983 +}
2984 +
2985 +/* #define LZMA_LOG_BSR */
2986 +/* Define it for Intel's CPU */
2987 +
2988 +
2989 +#ifdef LZMA_LOG_BSR
2990 +
2991 +#define kDicLogSizeMaxCompress 30
2992 +
2993 +#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
2994 +
2995 +UInt32 GetPosSlot1(UInt32 pos)
2996 +{
2997 + UInt32 res;
2998 + BSR2_RET(pos, res);
2999 + return res;
3000 +}
3001 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
3002 +#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
3003 +
3004 +#else
3005 +
3006 +#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
3007 +#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
3008 +
3009 +void LzmaEnc_FastPosInit(Byte *g_FastPos)
3010 +{
3011 + int c = 2, slotFast;
3012 + g_FastPos[0] = 0;
3013 + g_FastPos[1] = 1;
3014 +
3015 + for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
3016 + {
3017 + UInt32 k = (1 << ((slotFast >> 1) - 1));
3018 + UInt32 j;
3019 + for (j = 0; j < k; j++, c++)
3020 + g_FastPos[c] = (Byte)slotFast;
3021 + }
3022 +}
3023 +
3024 +#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
3025 + (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
3026 + res = p->g_FastPos[pos >> i] + (i * 2); }
3027 +/*
3028 +#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
3029 + p->g_FastPos[pos >> 6] + 12 : \
3030 + p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
3031 +*/
3032 +
3033 +#define GetPosSlot1(pos) p->g_FastPos[pos]
3034 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
3035 +#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
3036 +
3037 +#endif
3038 +
3039 +
3040 +#define LZMA_NUM_REPS 4
3041 +
3042 +typedef unsigned CState;
3043 +
3044 +typedef struct
3045 +{
3046 + UInt32 price;
3047 +
3048 + CState state;
3049 + int prev1IsChar;
3050 + int prev2;
3051 +
3052 + UInt32 posPrev2;
3053 + UInt32 backPrev2;
3054 +
3055 + UInt32 posPrev;
3056 + UInt32 backPrev;
3057 + UInt32 backs[LZMA_NUM_REPS];
3058 +} COptimal;
3059 +
3060 +#define kNumOpts (1 << 12)
3061 +
3062 +#define kNumLenToPosStates 4
3063 +#define kNumPosSlotBits 6
3064 +#define kDicLogSizeMin 0
3065 +#define kDicLogSizeMax 32
3066 +#define kDistTableSizeMax (kDicLogSizeMax * 2)
3067 +
3068 +
3069 +#define kNumAlignBits 4
3070 +#define kAlignTableSize (1 << kNumAlignBits)
3071 +#define kAlignMask (kAlignTableSize - 1)
3072 +
3073 +#define kStartPosModelIndex 4
3074 +#define kEndPosModelIndex 14
3075 +#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
3076 +
3077 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
3078 +
3079 +#ifdef _LZMA_PROB32
3080 +#define CLzmaProb UInt32
3081 +#else
3082 +#define CLzmaProb UInt16
3083 +#endif
3084 +
3085 +#define LZMA_PB_MAX 4
3086 +#define LZMA_LC_MAX 8
3087 +#define LZMA_LP_MAX 4
3088 +
3089 +#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
3090 +
3091 +
3092 +#define kLenNumLowBits 3
3093 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
3094 +#define kLenNumMidBits 3
3095 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
3096 +#define kLenNumHighBits 8
3097 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
3098 +
3099 +#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
3100 +
3101 +#define LZMA_MATCH_LEN_MIN 2
3102 +#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
3103 +
3104 +#define kNumStates 12
3105 +
3106 +typedef struct
3107 +{
3108 + CLzmaProb choice;
3109 + CLzmaProb choice2;
3110 + CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
3111 + CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
3112 + CLzmaProb high[kLenNumHighSymbols];
3113 +} CLenEnc;
3114 +
3115 +typedef struct
3116 +{
3117 + CLenEnc p;
3118 + UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
3119 + UInt32 tableSize;
3120 + UInt32 counters[LZMA_NUM_PB_STATES_MAX];
3121 +} CLenPriceEnc;
3122 +
3123 +typedef struct
3124 +{
3125 + UInt32 range;
3126 + Byte cache;
3127 + UInt64 low;
3128 + UInt64 cacheSize;
3129 + Byte *buf;
3130 + Byte *bufLim;
3131 + Byte *bufBase;
3132 + ISeqOutStream *outStream;
3133 + UInt64 processed;
3134 + SRes res;
3135 +} CRangeEnc;
3136 +
3137 +typedef struct
3138 +{
3139 + CLzmaProb *litProbs;
3140 +
3141 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3142 + CLzmaProb isRep[kNumStates];
3143 + CLzmaProb isRepG0[kNumStates];
3144 + CLzmaProb isRepG1[kNumStates];
3145 + CLzmaProb isRepG2[kNumStates];
3146 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3147 +
3148 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3149 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3150 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3151 +
3152 + CLenPriceEnc lenEnc;
3153 + CLenPriceEnc repLenEnc;
3154 +
3155 + UInt32 reps[LZMA_NUM_REPS];
3156 + UInt32 state;
3157 +} CSaveState;
3158 +
3159 +typedef struct
3160 +{
3161 + IMatchFinder matchFinder;
3162 + void *matchFinderObj;
3163 +
3164 + #ifndef _7ZIP_ST
3165 + Bool mtMode;
3166 + CMatchFinderMt matchFinderMt;
3167 + #endif
3168 +
3169 + CMatchFinder matchFinderBase;
3170 +
3171 + #ifndef _7ZIP_ST
3172 + Byte pad[128];
3173 + #endif
3174 +
3175 + UInt32 optimumEndIndex;
3176 + UInt32 optimumCurrentIndex;
3177 +
3178 + UInt32 longestMatchLength;
3179 + UInt32 numPairs;
3180 + UInt32 numAvail;
3181 + COptimal opt[kNumOpts];
3182 +
3183 + #ifndef LZMA_LOG_BSR
3184 + Byte g_FastPos[1 << kNumLogBits];
3185 + #endif
3186 +
3187 + UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
3188 + UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
3189 + UInt32 numFastBytes;
3190 + UInt32 additionalOffset;
3191 + UInt32 reps[LZMA_NUM_REPS];
3192 + UInt32 state;
3193 +
3194 + UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
3195 + UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
3196 + UInt32 alignPrices[kAlignTableSize];
3197 + UInt32 alignPriceCount;
3198 +
3199 + UInt32 distTableSize;
3200 +
3201 + unsigned lc, lp, pb;
3202 + unsigned lpMask, pbMask;
3203 +
3204 + CLzmaProb *litProbs;
3205 +
3206 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3207 + CLzmaProb isRep[kNumStates];
3208 + CLzmaProb isRepG0[kNumStates];
3209 + CLzmaProb isRepG1[kNumStates];
3210 + CLzmaProb isRepG2[kNumStates];
3211 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3212 +
3213 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3214 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3215 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3216 +
3217 + CLenPriceEnc lenEnc;
3218 + CLenPriceEnc repLenEnc;
3219 +
3220 + unsigned lclp;
3221 +
3222 + Bool fastMode;
3223 +
3224 + CRangeEnc rc;
3225 +
3226 + Bool writeEndMark;
3227 + UInt64 nowPos64;
3228 + UInt32 matchPriceCount;
3229 + Bool finished;
3230 + Bool multiThread;
3231 +
3232 + SRes result;
3233 + UInt32 dictSize;
3234 + UInt32 matchFinderCycles;
3235 +
3236 + int needInit;
3237 +
3238 + CSaveState saveState;
3239 +} CLzmaEnc;
3240 +
3241 +void LzmaEnc_SaveState(CLzmaEncHandle pp)
3242 +{
3243 + CLzmaEnc *p = (CLzmaEnc *)pp;
3244 + CSaveState *dest = &p->saveState;
3245 + int i;
3246 + dest->lenEnc = p->lenEnc;
3247 + dest->repLenEnc = p->repLenEnc;
3248 + dest->state = p->state;
3249 +
3250 + for (i = 0; i < kNumStates; i++)
3251 + {
3252 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3253 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3254 + }
3255 + for (i = 0; i < kNumLenToPosStates; i++)
3256 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3257 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3258 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3259 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3260 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3261 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3262 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3263 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3264 + memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
3265 +}
3266 +
3267 +void LzmaEnc_RestoreState(CLzmaEncHandle pp)
3268 +{
3269 + CLzmaEnc *dest = (CLzmaEnc *)pp;
3270 + const CSaveState *p = &dest->saveState;
3271 + int i;
3272 + dest->lenEnc = p->lenEnc;
3273 + dest->repLenEnc = p->repLenEnc;
3274 + dest->state = p->state;
3275 +
3276 + for (i = 0; i < kNumStates; i++)
3277 + {
3278 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3279 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3280 + }
3281 + for (i = 0; i < kNumLenToPosStates; i++)
3282 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3283 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3284 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3285 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3286 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3287 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3288 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3289 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3290 + memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
3291 +}
3292 +
3293 +SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
3294 +{
3295 + CLzmaEnc *p = (CLzmaEnc *)pp;
3296 + CLzmaEncProps props = *props2;
3297 + LzmaEncProps_Normalize(&props);
3298 +
3299 + if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
3300 + props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
3301 + return SZ_ERROR_PARAM;
3302 + p->dictSize = props.dictSize;
3303 + p->matchFinderCycles = props.mc;
3304 + {
3305 + unsigned fb = props.fb;
3306 + if (fb < 5)
3307 + fb = 5;
3308 + if (fb > LZMA_MATCH_LEN_MAX)
3309 + fb = LZMA_MATCH_LEN_MAX;
3310 + p->numFastBytes = fb;
3311 + }
3312 + p->lc = props.lc;
3313 + p->lp = props.lp;
3314 + p->pb = props.pb;
3315 + p->fastMode = (props.algo == 0);
3316 + p->matchFinderBase.btMode = props.btMode;
3317 + {
3318 + UInt32 numHashBytes = 4;
3319 + if (props.btMode)
3320 + {
3321 + if (props.numHashBytes < 2)
3322 + numHashBytes = 2;
3323 + else if (props.numHashBytes < 4)
3324 + numHashBytes = props.numHashBytes;
3325 + }
3326 + p->matchFinderBase.numHashBytes = numHashBytes;
3327 + }
3328 +
3329 + p->matchFinderBase.cutValue = props.mc;
3330 +
3331 + p->writeEndMark = props.writeEndMark;
3332 +
3333 + #ifndef _7ZIP_ST
3334 + /*
3335 + if (newMultiThread != _multiThread)
3336 + {
3337 + ReleaseMatchFinder();
3338 + _multiThread = newMultiThread;
3339 + }
3340 + */
3341 + p->multiThread = (props.numThreads > 1);
3342 + #endif
3343 +
3344 + return SZ_OK;
3345 +}
3346 +
3347 +static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
3348 +static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
3349 +static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
3350 +static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
3351 +
3352 +#define IsCharState(s) ((s) < 7)
3353 +
3354 +#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
3355 +
3356 +#define kInfinityPrice (1 << 30)
3357 +
3358 +static void RangeEnc_Construct(CRangeEnc *p)
3359 +{
3360 + p->outStream = 0;
3361 + p->bufBase = 0;
3362 +}
3363 +
3364 +#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
3365 +
3366 +#define RC_BUF_SIZE (1 << 16)
3367 +static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
3368 +{
3369 + if (p->bufBase == 0)
3370 + {
3371 + p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
3372 + if (p->bufBase == 0)
3373 + return 0;
3374 + p->bufLim = p->bufBase + RC_BUF_SIZE;
3375 + }
3376 + return 1;
3377 +}
3378 +
3379 +static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
3380 +{
3381 + alloc->Free(alloc, p->bufBase);
3382 + p->bufBase = 0;
3383 +}
3384 +
3385 +static void RangeEnc_Init(CRangeEnc *p)
3386 +{
3387 + /* Stream.Init(); */
3388 + p->low = 0;
3389 + p->range = 0xFFFFFFFF;
3390 + p->cacheSize = 1;
3391 + p->cache = 0;
3392 +
3393 + p->buf = p->bufBase;
3394 +
3395 + p->processed = 0;
3396 + p->res = SZ_OK;
3397 +}
3398 +
3399 +static void RangeEnc_FlushStream(CRangeEnc *p)
3400 +{
3401 + size_t num;
3402 + if (p->res != SZ_OK)
3403 + return;
3404 + num = p->buf - p->bufBase;
3405 + if (num != p->outStream->Write(p->outStream, p->bufBase, num))
3406 + p->res = SZ_ERROR_WRITE;
3407 + p->processed += num;
3408 + p->buf = p->bufBase;
3409 +}
3410 +
3411 +static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
3412 +{
3413 + if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
3414 + {
3415 + Byte temp = p->cache;
3416 + do
3417 + {
3418 + Byte *buf = p->buf;
3419 + *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
3420 + p->buf = buf;
3421 + if (buf == p->bufLim)
3422 + RangeEnc_FlushStream(p);
3423 + temp = 0xFF;
3424 + }
3425 + while (--p->cacheSize != 0);
3426 + p->cache = (Byte)((UInt32)p->low >> 24);
3427 + }
3428 + p->cacheSize++;
3429 + p->low = (UInt32)p->low << 8;
3430 +}
3431 +
3432 +static void RangeEnc_FlushData(CRangeEnc *p)
3433 +{
3434 + int i;
3435 + for (i = 0; i < 5; i++)
3436 + RangeEnc_ShiftLow(p);
3437 +}
3438 +
3439 +static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
3440 +{
3441 + do
3442 + {
3443 + p->range >>= 1;
3444 + p->low += p->range & (0 - ((value >> --numBits) & 1));
3445 + if (p->range < kTopValue)
3446 + {
3447 + p->range <<= 8;
3448 + RangeEnc_ShiftLow(p);
3449 + }
3450 + }
3451 + while (numBits != 0);
3452 +}
3453 +
3454 +static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
3455 +{
3456 + UInt32 ttt = *prob;
3457 + UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
3458 + if (symbol == 0)
3459 + {
3460 + p->range = newBound;
3461 + ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
3462 + }
3463 + else
3464 + {
3465 + p->low += newBound;
3466 + p->range -= newBound;
3467 + ttt -= ttt >> kNumMoveBits;
3468 + }
3469 + *prob = (CLzmaProb)ttt;
3470 + if (p->range < kTopValue)
3471 + {
3472 + p->range <<= 8;
3473 + RangeEnc_ShiftLow(p);
3474 + }
3475 +}
3476 +
3477 +static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
3478 +{
3479 + symbol |= 0x100;
3480 + do
3481 + {
3482 + RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
3483 + symbol <<= 1;
3484 + }
3485 + while (symbol < 0x10000);
3486 +}
3487 +
3488 +static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
3489 +{
3490 + UInt32 offs = 0x100;
3491 + symbol |= 0x100;
3492 + do
3493 + {
3494 + matchByte <<= 1;
3495 + RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
3496 + symbol <<= 1;
3497 + offs &= ~(matchByte ^ symbol);
3498 + }
3499 + while (symbol < 0x10000);
3500 +}
3501 +
3502 +void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
3503 +{
3504 + UInt32 i;
3505 + for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
3506 + {
3507 + const int kCyclesBits = kNumBitPriceShiftBits;
3508 + UInt32 w = i;
3509 + UInt32 bitCount = 0;
3510 + int j;
3511 + for (j = 0; j < kCyclesBits; j++)
3512 + {
3513 + w = w * w;
3514 + bitCount <<= 1;
3515 + while (w >= ((UInt32)1 << 16))
3516 + {
3517 + w >>= 1;
3518 + bitCount++;
3519 + }
3520 + }
3521 + ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
3522 + }
3523 +}
3524 +
3525 +
3526 +#define GET_PRICE(prob, symbol) \
3527 + p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3528 +
3529 +#define GET_PRICEa(prob, symbol) \
3530 + ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3531 +
3532 +#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
3533 +#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3534 +
3535 +#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
3536 +#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3537 +
3538 +static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
3539 +{
3540 + UInt32 price = 0;
3541 + symbol |= 0x100;
3542 + do
3543 + {
3544 + price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
3545 + symbol <<= 1;
3546 + }
3547 + while (symbol < 0x10000);
3548 + return price;
3549 +}
3550 +
3551 +static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
3552 +{
3553 + UInt32 price = 0;
3554 + UInt32 offs = 0x100;
3555 + symbol |= 0x100;
3556 + do
3557 + {
3558 + matchByte <<= 1;
3559 + price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
3560 + symbol <<= 1;
3561 + offs &= ~(matchByte ^ symbol);
3562 + }
3563 + while (symbol < 0x10000);
3564 + return price;
3565 +}
3566 +
3567 +
3568 +static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3569 +{
3570 + UInt32 m = 1;
3571 + int i;
3572 + for (i = numBitLevels; i != 0;)
3573 + {
3574 + UInt32 bit;
3575 + i--;
3576 + bit = (symbol >> i) & 1;
3577 + RangeEnc_EncodeBit(rc, probs + m, bit);
3578 + m = (m << 1) | bit;
3579 + }
3580 +}
3581 +
3582 +static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3583 +{
3584 + UInt32 m = 1;
3585 + int i;
3586 + for (i = 0; i < numBitLevels; i++)
3587 + {
3588 + UInt32 bit = symbol & 1;
3589 + RangeEnc_EncodeBit(rc, probs + m, bit);
3590 + m = (m << 1) | bit;
3591 + symbol >>= 1;
3592 + }
3593 +}
3594 +
3595 +static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3596 +{
3597 + UInt32 price = 0;
3598 + symbol |= (1 << numBitLevels);
3599 + while (symbol != 1)
3600 + {
3601 + price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
3602 + symbol >>= 1;
3603 + }
3604 + return price;
3605 +}
3606 +
3607 +static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3608 +{
3609 + UInt32 price = 0;
3610 + UInt32 m = 1;
3611 + int i;
3612 + for (i = numBitLevels; i != 0; i--)
3613 + {
3614 + UInt32 bit = symbol & 1;
3615 + symbol >>= 1;
3616 + price += GET_PRICEa(probs[m], bit);
3617 + m = (m << 1) | bit;
3618 + }
3619 + return price;
3620 +}
3621 +
3622 +
3623 +static void LenEnc_Init(CLenEnc *p)
3624 +{
3625 + unsigned i;
3626 + p->choice = p->choice2 = kProbInitValue;
3627 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
3628 + p->low[i] = kProbInitValue;
3629 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
3630 + p->mid[i] = kProbInitValue;
3631 + for (i = 0; i < kLenNumHighSymbols; i++)
3632 + p->high[i] = kProbInitValue;
3633 +}
3634 +
3635 +static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
3636 +{
3637 + if (symbol < kLenNumLowSymbols)
3638 + {
3639 + RangeEnc_EncodeBit(rc, &p->choice, 0);
3640 + RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
3641 + }
3642 + else
3643 + {
3644 + RangeEnc_EncodeBit(rc, &p->choice, 1);
3645 + if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
3646 + {
3647 + RangeEnc_EncodeBit(rc, &p->choice2, 0);
3648 + RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
3649 + }
3650 + else
3651 + {
3652 + RangeEnc_EncodeBit(rc, &p->choice2, 1);
3653 + RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
3654 + }
3655 + }
3656 +}
3657 +
3658 +static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
3659 +{
3660 + UInt32 a0 = GET_PRICE_0a(p->choice);
3661 + UInt32 a1 = GET_PRICE_1a(p->choice);
3662 + UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
3663 + UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
3664 + UInt32 i = 0;
3665 + for (i = 0; i < kLenNumLowSymbols; i++)
3666 + {
3667 + if (i >= numSymbols)
3668 + return;
3669 + prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
3670 + }
3671 + for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
3672 + {
3673 + if (i >= numSymbols)
3674 + return;
3675 + prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
3676 + }
3677 + for (; i < numSymbols; i++)
3678 + prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
3679 +}
3680 +
3681 +static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
3682 +{
3683 + LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
3684 + p->counters[posState] = p->tableSize;
3685 +}
3686 +
3687 +static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
3688 +{
3689 + UInt32 posState;
3690 + for (posState = 0; posState < numPosStates; posState++)
3691 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3692 +}
3693 +
3694 +static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
3695 +{
3696 + LenEnc_Encode(&p->p, rc, symbol, posState);
3697 + if (updatePrice)
3698 + if (--p->counters[posState] == 0)
3699 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3700 +}
3701 +
3702 +
3703 +
3704 +
3705 +static void MovePos(CLzmaEnc *p, UInt32 num)
3706 +{
3707 + #ifdef SHOW_STAT
3708 + ttt += num;
3709 + printf("\n MovePos %d", num);
3710 + #endif
3711 + if (num != 0)
3712 + {
3713 + p->additionalOffset += num;
3714 + p->matchFinder.Skip(p->matchFinderObj, num);
3715 + }
3716 +}
3717 +
3718 +static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
3719 +{
3720 + UInt32 lenRes = 0, numPairs;
3721 + p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3722 + numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
3723 + #ifdef SHOW_STAT
3724 + printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
3725 + ttt++;
3726 + {
3727 + UInt32 i;
3728 + for (i = 0; i < numPairs; i += 2)
3729 + printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
3730 + }
3731 + #endif
3732 + if (numPairs > 0)
3733 + {
3734 + lenRes = p->matches[numPairs - 2];
3735 + if (lenRes == p->numFastBytes)
3736 + {
3737 + const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3738 + UInt32 distance = p->matches[numPairs - 1] + 1;
3739 + UInt32 numAvail = p->numAvail;
3740 + if (numAvail > LZMA_MATCH_LEN_MAX)
3741 + numAvail = LZMA_MATCH_LEN_MAX;
3742 + {
3743 + const Byte *pby2 = pby - distance;
3744 + for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
3745 + }
3746 + }
3747 + }
3748 + p->additionalOffset++;
3749 + *numDistancePairsRes = numPairs;
3750 + return lenRes;
3751 +}
3752 +
3753 +
3754 +#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
3755 +#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
3756 +#define IsShortRep(p) ((p)->backPrev == 0)
3757 +
3758 +static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
3759 +{
3760 + return
3761 + GET_PRICE_0(p->isRepG0[state]) +
3762 + GET_PRICE_0(p->isRep0Long[state][posState]);
3763 +}
3764 +
3765 +static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
3766 +{
3767 + UInt32 price;
3768 + if (repIndex == 0)
3769 + {
3770 + price = GET_PRICE_0(p->isRepG0[state]);
3771 + price += GET_PRICE_1(p->isRep0Long[state][posState]);
3772 + }
3773 + else
3774 + {
3775 + price = GET_PRICE_1(p->isRepG0[state]);
3776 + if (repIndex == 1)
3777 + price += GET_PRICE_0(p->isRepG1[state]);
3778 + else
3779 + {
3780 + price += GET_PRICE_1(p->isRepG1[state]);
3781 + price += GET_PRICE(p->isRepG2[state], repIndex - 2);
3782 + }
3783 + }
3784 + return price;
3785 +}
3786 +
3787 +static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
3788 +{
3789 + return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
3790 + GetPureRepPrice(p, repIndex, state, posState);
3791 +}
3792 +
3793 +static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
3794 +{
3795 + UInt32 posMem = p->opt[cur].posPrev;
3796 + UInt32 backMem = p->opt[cur].backPrev;
3797 + p->optimumEndIndex = cur;
3798 + do
3799 + {
3800 + if (p->opt[cur].prev1IsChar)
3801 + {
3802 + MakeAsChar(&p->opt[posMem])
3803 + p->opt[posMem].posPrev = posMem - 1;
3804 + if (p->opt[cur].prev2)
3805 + {
3806 + p->opt[posMem - 1].prev1IsChar = False;
3807 + p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
3808 + p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
3809 + }
3810 + }
3811 + {
3812 + UInt32 posPrev = posMem;
3813 + UInt32 backCur = backMem;
3814 +
3815 + backMem = p->opt[posPrev].backPrev;
3816 + posMem = p->opt[posPrev].posPrev;
3817 +
3818 + p->opt[posPrev].backPrev = backCur;
3819 + p->opt[posPrev].posPrev = cur;
3820 + cur = posPrev;
3821 + }
3822 + }
3823 + while (cur != 0);
3824 + *backRes = p->opt[0].backPrev;
3825 + p->optimumCurrentIndex = p->opt[0].posPrev;
3826 + return p->optimumCurrentIndex;
3827 +}
3828 +
3829 +#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
3830 +
3831 +static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
3832 +{
3833 + UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
3834 + UInt32 matchPrice, repMatchPrice, normalMatchPrice;
3835 + UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
3836 + UInt32 *matches;
3837 + const Byte *data;
3838 + Byte curByte, matchByte;
3839 + if (p->optimumEndIndex != p->optimumCurrentIndex)
3840 + {
3841 + const COptimal *opt = &p->opt[p->optimumCurrentIndex];
3842 + UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
3843 + *backRes = opt->backPrev;
3844 + p->optimumCurrentIndex = opt->posPrev;
3845 + return lenRes;
3846 + }
3847 + p->optimumCurrentIndex = p->optimumEndIndex = 0;
3848 +
3849 + if (p->additionalOffset == 0)
3850 + mainLen = ReadMatchDistances(p, &numPairs);
3851 + else
3852 + {
3853 + mainLen = p->longestMatchLength;
3854 + numPairs = p->numPairs;
3855 + }
3856 +
3857 + numAvail = p->numAvail;
3858 + if (numAvail < 2)
3859 + {
3860 + *backRes = (UInt32)(-1);
3861 + return 1;
3862 + }
3863 + if (numAvail > LZMA_MATCH_LEN_MAX)
3864 + numAvail = LZMA_MATCH_LEN_MAX;
3865 +
3866 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3867 + repMaxIndex = 0;
3868 + for (i = 0; i < LZMA_NUM_REPS; i++)
3869 + {
3870 + UInt32 lenTest;
3871 + const Byte *data2;
3872 + reps[i] = p->reps[i];
3873 + data2 = data - (reps[i] + 1);
3874 + if (data[0] != data2[0] || data[1] != data2[1])
3875 + {
3876 + repLens[i] = 0;
3877 + continue;
3878 + }
3879 + for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
3880 + repLens[i] = lenTest;
3881 + if (lenTest > repLens[repMaxIndex])
3882 + repMaxIndex = i;
3883 + }
3884 + if (repLens[repMaxIndex] >= p->numFastBytes)
3885 + {
3886 + UInt32 lenRes;
3887 + *backRes = repMaxIndex;
3888 + lenRes = repLens[repMaxIndex];
3889 + MovePos(p, lenRes - 1);
3890 + return lenRes;
3891 + }
3892 +
3893 + matches = p->matches;
3894 + if (mainLen >= p->numFastBytes)
3895 + {
3896 + *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
3897 + MovePos(p, mainLen - 1);
3898 + return mainLen;
3899 + }
3900 + curByte = *data;
3901 + matchByte = *(data - (reps[0] + 1));
3902 +
3903 + if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
3904 + {
3905 + *backRes = (UInt32)-1;
3906 + return 1;
3907 + }
3908 +
3909 + p->opt[0].state = (CState)p->state;
3910 +
3911 + posState = (position & p->pbMask);
3912 +
3913 + {
3914 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3915 + p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
3916 + (!IsCharState(p->state) ?
3917 + LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
3918 + LitEnc_GetPrice(probs, curByte, p->ProbPrices));
3919 + }
3920 +
3921 + MakeAsChar(&p->opt[1]);
3922 +
3923 + matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
3924 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
3925 +
3926 + if (matchByte == curByte)
3927 + {
3928 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
3929 + if (shortRepPrice < p->opt[1].price)
3930 + {
3931 + p->opt[1].price = shortRepPrice;
3932 + MakeAsShortRep(&p->opt[1]);
3933 + }
3934 + }
3935 + lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
3936 +
3937 + if (lenEnd < 2)
3938 + {
3939 + *backRes = p->opt[1].backPrev;
3940 + return 1;
3941 + }
3942 +
3943 + p->opt[1].posPrev = 0;
3944 + for (i = 0; i < LZMA_NUM_REPS; i++)
3945 + p->opt[0].backs[i] = reps[i];
3946 +
3947 + len = lenEnd;
3948 + do
3949 + p->opt[len--].price = kInfinityPrice;
3950 + while (len >= 2);
3951 +
3952 + for (i = 0; i < LZMA_NUM_REPS; i++)
3953 + {
3954 + UInt32 repLen = repLens[i];
3955 + UInt32 price;
3956 + if (repLen < 2)
3957 + continue;
3958 + price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
3959 + do
3960 + {
3961 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
3962 + COptimal *opt = &p->opt[repLen];
3963 + if (curAndLenPrice < opt->price)
3964 + {
3965 + opt->price = curAndLenPrice;
3966 + opt->posPrev = 0;
3967 + opt->backPrev = i;
3968 + opt->prev1IsChar = False;
3969 + }
3970 + }
3971 + while (--repLen >= 2);
3972 + }
3973 +
3974 + normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
3975 +
3976 + len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
3977 + if (len <= mainLen)
3978 + {
3979 + UInt32 offs = 0;
3980 + while (len > matches[offs])
3981 + offs += 2;
3982 + for (; ; len++)
3983 + {
3984 + COptimal *opt;
3985 + UInt32 distance = matches[offs + 1];
3986 +
3987 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
3988 + UInt32 lenToPosState = GetLenToPosState(len);
3989 + if (distance < kNumFullDistances)
3990 + curAndLenPrice += p->distancesPrices[lenToPosState][distance];
3991 + else
3992 + {
3993 + UInt32 slot;
3994 + GetPosSlot2(distance, slot);
3995 + curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
3996 + }
3997 + opt = &p->opt[len];
3998 + if (curAndLenPrice < opt->price)
3999 + {
4000 + opt->price = curAndLenPrice;
4001 + opt->posPrev = 0;
4002 + opt->backPrev = distance + LZMA_NUM_REPS;
4003 + opt->prev1IsChar = False;
4004 + }
4005 + if (len == matches[offs])
4006 + {
4007 + offs += 2;
4008 + if (offs == numPairs)
4009 + break;
4010 + }
4011 + }
4012 + }
4013 +
4014 + cur = 0;
4015 +
4016 + #ifdef SHOW_STAT2
4017 + if (position >= 0)
4018 + {
4019 + unsigned i;
4020 + printf("\n pos = %4X", position);
4021 + for (i = cur; i <= lenEnd; i++)
4022 + printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
4023 + }
4024 + #endif
4025 +
4026 + for (;;)
4027 + {
4028 + UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
4029 + UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
4030 + Bool nextIsChar;
4031 + Byte curByte, matchByte;
4032 + const Byte *data;
4033 + COptimal *curOpt;
4034 + COptimal *nextOpt;
4035 +
4036 + cur++;
4037 + if (cur == lenEnd)
4038 + return Backward(p, backRes, cur);
4039 +
4040 + newLen = ReadMatchDistances(p, &numPairs);
4041 + if (newLen >= p->numFastBytes)
4042 + {
4043 + p->numPairs = numPairs;
4044 + p->longestMatchLength = newLen;
4045 + return Backward(p, backRes, cur);
4046 + }
4047 + position++;
4048 + curOpt = &p->opt[cur];
4049 + posPrev = curOpt->posPrev;
4050 + if (curOpt->prev1IsChar)
4051 + {
4052 + posPrev--;
4053 + if (curOpt->prev2)
4054 + {
4055 + state = p->opt[curOpt->posPrev2].state;
4056 + if (curOpt->backPrev2 < LZMA_NUM_REPS)
4057 + state = kRepNextStates[state];
4058 + else
4059 + state = kMatchNextStates[state];
4060 + }
4061 + else
4062 + state = p->opt[posPrev].state;
4063 + state = kLiteralNextStates[state];
4064 + }
4065 + else
4066 + state = p->opt[posPrev].state;
4067 + if (posPrev == cur - 1)
4068 + {
4069 + if (IsShortRep(curOpt))
4070 + state = kShortRepNextStates[state];
4071 + else
4072 + state = kLiteralNextStates[state];
4073 + }
4074 + else
4075 + {
4076 + UInt32 pos;
4077 + const COptimal *prevOpt;
4078 + if (curOpt->prev1IsChar && curOpt->prev2)
4079 + {
4080 + posPrev = curOpt->posPrev2;
4081 + pos = curOpt->backPrev2;
4082 + state = kRepNextStates[state];
4083 + }
4084 + else
4085 + {
4086 + pos = curOpt->backPrev;
4087 + if (pos < LZMA_NUM_REPS)
4088 + state = kRepNextStates[state];
4089 + else
4090 + state = kMatchNextStates[state];
4091 + }
4092 + prevOpt = &p->opt[posPrev];
4093 + if (pos < LZMA_NUM_REPS)
4094 + {
4095 + UInt32 i;
4096 + reps[0] = prevOpt->backs[pos];
4097 + for (i = 1; i <= pos; i++)
4098 + reps[i] = prevOpt->backs[i - 1];
4099 + for (; i < LZMA_NUM_REPS; i++)
4100 + reps[i] = prevOpt->backs[i];
4101 + }
4102 + else
4103 + {
4104 + UInt32 i;
4105 + reps[0] = (pos - LZMA_NUM_REPS);
4106 + for (i = 1; i < LZMA_NUM_REPS; i++)
4107 + reps[i] = prevOpt->backs[i - 1];
4108 + }
4109 + }
4110 + curOpt->state = (CState)state;
4111 +
4112 + curOpt->backs[0] = reps[0];
4113 + curOpt->backs[1] = reps[1];
4114 + curOpt->backs[2] = reps[2];
4115 + curOpt->backs[3] = reps[3];
4116 +
4117 + curPrice = curOpt->price;
4118 + nextIsChar = False;
4119 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4120 + curByte = *data;
4121 + matchByte = *(data - (reps[0] + 1));
4122 +
4123 + posState = (position & p->pbMask);
4124 +
4125 + curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
4126 + {
4127 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
4128 + curAnd1Price +=
4129 + (!IsCharState(state) ?
4130 + LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
4131 + LitEnc_GetPrice(probs, curByte, p->ProbPrices));
4132 + }
4133 +
4134 + nextOpt = &p->opt[cur + 1];
4135 +
4136 + if (curAnd1Price < nextOpt->price)
4137 + {
4138 + nextOpt->price = curAnd1Price;
4139 + nextOpt->posPrev = cur;
4140 + MakeAsChar(nextOpt);
4141 + nextIsChar = True;
4142 + }
4143 +
4144 + matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
4145 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
4146 +
4147 + if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
4148 + {
4149 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
4150 + if (shortRepPrice <= nextOpt->price)
4151 + {
4152 + nextOpt->price = shortRepPrice;
4153 + nextOpt->posPrev = cur;
4154 + MakeAsShortRep(nextOpt);
4155 + nextIsChar = True;
4156 + }
4157 + }
4158 + numAvailFull = p->numAvail;
4159 + {
4160 + UInt32 temp = kNumOpts - 1 - cur;
4161 + if (temp < numAvailFull)
4162 + numAvailFull = temp;
4163 + }
4164 +
4165 + if (numAvailFull < 2)
4166 + continue;
4167 + numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
4168 +
4169 + if (!nextIsChar && matchByte != curByte) /* speed optimization */
4170 + {
4171 + /* try Literal + rep0 */
4172 + UInt32 temp;
4173 + UInt32 lenTest2;
4174 + const Byte *data2 = data - (reps[0] + 1);
4175 + UInt32 limit = p->numFastBytes + 1;
4176 + if (limit > numAvailFull)
4177 + limit = numAvailFull;
4178 +
4179 + for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
4180 + lenTest2 = temp - 1;
4181 + if (lenTest2 >= 2)
4182 + {
4183 + UInt32 state2 = kLiteralNextStates[state];
4184 + UInt32 posStateNext = (position + 1) & p->pbMask;
4185 + UInt32 nextRepMatchPrice = curAnd1Price +
4186 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4187 + GET_PRICE_1(p->isRep[state2]);
4188 + /* for (; lenTest2 >= 2; lenTest2--) */
4189 + {
4190 + UInt32 curAndLenPrice;
4191 + COptimal *opt;
4192 + UInt32 offset = cur + 1 + lenTest2;
4193 + while (lenEnd < offset)
4194 + p->opt[++lenEnd].price = kInfinityPrice;
4195 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4196 + opt = &p->opt[offset];
4197 + if (curAndLenPrice < opt->price)
4198 + {
4199 + opt->price = curAndLenPrice;
4200 + opt->posPrev = cur + 1;
4201 + opt->backPrev = 0;
4202 + opt->prev1IsChar = True;
4203 + opt->prev2 = False;
4204 + }
4205 + }
4206 + }
4207 + }
4208 +
4209 + startLen = 2; /* speed optimization */
4210 + {
4211 + UInt32 repIndex;
4212 + for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
4213 + {
4214 + UInt32 lenTest;
4215 + UInt32 lenTestTemp;
4216 + UInt32 price;
4217 + const Byte *data2 = data - (reps[repIndex] + 1);
4218 + if (data[0] != data2[0] || data[1] != data2[1])
4219 + continue;
4220 + for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
4221 + while (lenEnd < cur + lenTest)
4222 + p->opt[++lenEnd].price = kInfinityPrice;
4223 + lenTestTemp = lenTest;
4224 + price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
4225 + do
4226 + {
4227 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
4228 + COptimal *opt = &p->opt[cur + lenTest];
4229 + if (curAndLenPrice < opt->price)
4230 + {
4231 + opt->price = curAndLenPrice;
4232 + opt->posPrev = cur;
4233 + opt->backPrev = repIndex;
4234 + opt->prev1IsChar = False;
4235 + }
4236 + }
4237 + while (--lenTest >= 2);
4238 + lenTest = lenTestTemp;
4239 +
4240 + if (repIndex == 0)
4241 + startLen = lenTest + 1;
4242 +
4243 + /* if (_maxMode) */
4244 + {
4245 + UInt32 lenTest2 = lenTest + 1;
4246 + UInt32 limit = lenTest2 + p->numFastBytes;
4247 + UInt32 nextRepMatchPrice;
4248 + if (limit > numAvailFull)
4249 + limit = numAvailFull;
4250 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4251 + lenTest2 -= lenTest + 1;
4252 + if (lenTest2 >= 2)
4253 + {
4254 + UInt32 state2 = kRepNextStates[state];
4255 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4256 + UInt32 curAndLenCharPrice =
4257 + price + p->repLenEnc.prices[posState][lenTest - 2] +
4258 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4259 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4260 + data[lenTest], data2[lenTest], p->ProbPrices);
4261 + state2 = kLiteralNextStates[state2];
4262 + posStateNext = (position + lenTest + 1) & p->pbMask;
4263 + nextRepMatchPrice = curAndLenCharPrice +
4264 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4265 + GET_PRICE_1(p->isRep[state2]);
4266 +
4267 + /* for (; lenTest2 >= 2; lenTest2--) */
4268 + {
4269 + UInt32 curAndLenPrice;
4270 + COptimal *opt;
4271 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4272 + while (lenEnd < offset)
4273 + p->opt[++lenEnd].price = kInfinityPrice;
4274 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4275 + opt = &p->opt[offset];
4276 + if (curAndLenPrice < opt->price)
4277 + {
4278 + opt->price = curAndLenPrice;
4279 + opt->posPrev = cur + lenTest + 1;
4280 + opt->backPrev = 0;
4281 + opt->prev1IsChar = True;
4282 + opt->prev2 = True;
4283 + opt->posPrev2 = cur;
4284 + opt->backPrev2 = repIndex;
4285 + }
4286 + }
4287 + }
4288 + }
4289 + }
4290 + }
4291 + /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
4292 + if (newLen > numAvail)
4293 + {
4294 + newLen = numAvail;
4295 + for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
4296 + matches[numPairs] = newLen;
4297 + numPairs += 2;
4298 + }
4299 + if (newLen >= startLen)
4300 + {
4301 + UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
4302 + UInt32 offs, curBack, posSlot;
4303 + UInt32 lenTest;
4304 + while (lenEnd < cur + newLen)
4305 + p->opt[++lenEnd].price = kInfinityPrice;
4306 +
4307 + offs = 0;
4308 + while (startLen > matches[offs])
4309 + offs += 2;
4310 + curBack = matches[offs + 1];
4311 + GetPosSlot2(curBack, posSlot);
4312 + for (lenTest = /*2*/ startLen; ; lenTest++)
4313 + {
4314 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
4315 + UInt32 lenToPosState = GetLenToPosState(lenTest);
4316 + COptimal *opt;
4317 + if (curBack < kNumFullDistances)
4318 + curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
4319 + else
4320 + curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
4321 +
4322 + opt = &p->opt[cur + lenTest];
4323 + if (curAndLenPrice < opt->price)
4324 + {
4325 + opt->price = curAndLenPrice;
4326 + opt->posPrev = cur;
4327 + opt->backPrev = curBack + LZMA_NUM_REPS;
4328 + opt->prev1IsChar = False;
4329 + }
4330 +
4331 + if (/*_maxMode && */lenTest == matches[offs])
4332 + {
4333 + /* Try Match + Literal + Rep0 */
4334 + const Byte *data2 = data - (curBack + 1);
4335 + UInt32 lenTest2 = lenTest + 1;
4336 + UInt32 limit = lenTest2 + p->numFastBytes;
4337 + UInt32 nextRepMatchPrice;
4338 + if (limit > numAvailFull)
4339 + limit = numAvailFull;
4340 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4341 + lenTest2 -= lenTest + 1;
4342 + if (lenTest2 >= 2)
4343 + {
4344 + UInt32 state2 = kMatchNextStates[state];
4345 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4346 + UInt32 curAndLenCharPrice = curAndLenPrice +
4347 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4348 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4349 + data[lenTest], data2[lenTest], p->ProbPrices);
4350 + state2 = kLiteralNextStates[state2];
4351 + posStateNext = (posStateNext + 1) & p->pbMask;
4352 + nextRepMatchPrice = curAndLenCharPrice +
4353 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4354 + GET_PRICE_1(p->isRep[state2]);
4355 +
4356 + /* for (; lenTest2 >= 2; lenTest2--) */
4357 + {
4358 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4359 + UInt32 curAndLenPrice;
4360 + COptimal *opt;
4361 + while (lenEnd < offset)
4362 + p->opt[++lenEnd].price = kInfinityPrice;
4363 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4364 + opt = &p->opt[offset];
4365 + if (curAndLenPrice < opt->price)
4366 + {
4367 + opt->price = curAndLenPrice;
4368 + opt->posPrev = cur + lenTest + 1;
4369 + opt->backPrev = 0;
4370 + opt->prev1IsChar = True;
4371 + opt->prev2 = True;
4372 + opt->posPrev2 = cur;
4373 + opt->backPrev2 = curBack + LZMA_NUM_REPS;
4374 + }
4375 + }
4376 + }
4377 + offs += 2;
4378 + if (offs == numPairs)
4379 + break;
4380 + curBack = matches[offs + 1];
4381 + if (curBack >= kNumFullDistances)
4382 + GetPosSlot2(curBack, posSlot);
4383 + }
4384 + }
4385 + }
4386 + }
4387 +}
4388 +
4389 +#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
4390 +
4391 +static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
4392 +{
4393 + UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
4394 + const Byte *data;
4395 + const UInt32 *matches;
4396 +
4397 + if (p->additionalOffset == 0)
4398 + mainLen = ReadMatchDistances(p, &numPairs);
4399 + else
4400 + {
4401 + mainLen = p->longestMatchLength;
4402 + numPairs = p->numPairs;
4403 + }
4404 +
4405 + numAvail = p->numAvail;
4406 + *backRes = (UInt32)-1;
4407 + if (numAvail < 2)
4408 + return 1;
4409 + if (numAvail > LZMA_MATCH_LEN_MAX)
4410 + numAvail = LZMA_MATCH_LEN_MAX;
4411 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4412 +
4413 + repLen = repIndex = 0;
4414 + for (i = 0; i < LZMA_NUM_REPS; i++)
4415 + {
4416 + UInt32 len;
4417 + const Byte *data2 = data - (p->reps[i] + 1);
4418 + if (data[0] != data2[0] || data[1] != data2[1])
4419 + continue;
4420 + for (len = 2; len < numAvail && data[len] == data2[len]; len++);
4421 + if (len >= p->numFastBytes)
4422 + {
4423 + *backRes = i;
4424 + MovePos(p, len - 1);
4425 + return len;
4426 + }
4427 + if (len > repLen)
4428 + {
4429 + repIndex = i;
4430 + repLen = len;
4431 + }
4432 + }
4433 +
4434 + matches = p->matches;
4435 + if (mainLen >= p->numFastBytes)
4436 + {
4437 + *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
4438 + MovePos(p, mainLen - 1);
4439 + return mainLen;
4440 + }
4441 +
4442 + mainDist = 0; /* for GCC */
4443 + if (mainLen >= 2)
4444 + {
4445 + mainDist = matches[numPairs - 1];
4446 + while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
4447 + {
4448 + if (!ChangePair(matches[numPairs - 3], mainDist))
4449 + break;
4450 + numPairs -= 2;
4451 + mainLen = matches[numPairs - 2];
4452 + mainDist = matches[numPairs - 1];
4453 + }
4454 + if (mainLen == 2 && mainDist >= 0x80)
4455 + mainLen = 1;
4456 + }
4457 +
4458 + if (repLen >= 2 && (
4459 + (repLen + 1 >= mainLen) ||
4460 + (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
4461 + (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
4462 + {
4463 + *backRes = repIndex;
4464 + MovePos(p, repLen - 1);
4465 + return repLen;
4466 + }
4467 +
4468 + if (mainLen < 2 || numAvail <= 2)
4469 + return 1;
4470 +
4471 + p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
4472 + if (p->longestMatchLength >= 2)
4473 + {
4474 + UInt32 newDistance = matches[p->numPairs - 1];
4475 + if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
4476 + (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
4477 + (p->longestMatchLength > mainLen + 1) ||
4478 + (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
4479 + return 1;
4480 + }
4481 +
4482 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4483 + for (i = 0; i < LZMA_NUM_REPS; i++)
4484 + {
4485 + UInt32 len, limit;
4486 + const Byte *data2 = data - (p->reps[i] + 1);
4487 + if (data[0] != data2[0] || data[1] != data2[1])
4488 + continue;
4489 + limit = mainLen - 1;
4490 + for (len = 2; len < limit && data[len] == data2[len]; len++);
4491 + if (len >= limit)
4492 + return 1;
4493 + }
4494 + *backRes = mainDist + LZMA_NUM_REPS;
4495 + MovePos(p, mainLen - 2);
4496 + return mainLen;
4497 +}
4498 +
4499 +static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
4500 +{
4501 + UInt32 len;
4502 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4503 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4504 + p->state = kMatchNextStates[p->state];
4505 + len = LZMA_MATCH_LEN_MIN;
4506 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4507 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
4508 + RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
4509 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
4510 +}
4511 +
4512 +static SRes CheckErrors(CLzmaEnc *p)
4513 +{
4514 + if (p->result != SZ_OK)
4515 + return p->result;
4516 + if (p->rc.res != SZ_OK)
4517 + p->result = SZ_ERROR_WRITE;
4518 + if (p->matchFinderBase.result != SZ_OK)
4519 + p->result = SZ_ERROR_READ;
4520 + if (p->result != SZ_OK)
4521 + p->finished = True;
4522 + return p->result;
4523 +}
4524 +
4525 +static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
4526 +{
4527 + /* ReleaseMFStream(); */
4528 + p->finished = True;
4529 + if (p->writeEndMark)
4530 + WriteEndMarker(p, nowPos & p->pbMask);
4531 + RangeEnc_FlushData(&p->rc);
4532 + RangeEnc_FlushStream(&p->rc);
4533 + return CheckErrors(p);
4534 +}
4535 +
4536 +static void FillAlignPrices(CLzmaEnc *p)
4537 +{
4538 + UInt32 i;
4539 + for (i = 0; i < kAlignTableSize; i++)
4540 + p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
4541 + p->alignPriceCount = 0;
4542 +}
4543 +
4544 +static void FillDistancesPrices(CLzmaEnc *p)
4545 +{
4546 + UInt32 tempPrices[kNumFullDistances];
4547 + UInt32 i, lenToPosState;
4548 + for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
4549 + {
4550 + UInt32 posSlot = GetPosSlot1(i);
4551 + UInt32 footerBits = ((posSlot >> 1) - 1);
4552 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4553 + tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
4554 + }
4555 +
4556 + for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
4557 + {
4558 + UInt32 posSlot;
4559 + const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
4560 + UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
4561 + for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
4562 + posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
4563 + for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
4564 + posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
4565 +
4566 + {
4567 + UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
4568 + UInt32 i;
4569 + for (i = 0; i < kStartPosModelIndex; i++)
4570 + distancesPrices[i] = posSlotPrices[i];
4571 + for (; i < kNumFullDistances; i++)
4572 + distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
4573 + }
4574 + }
4575 + p->matchPriceCount = 0;
4576 +}
4577 +
4578 +void LzmaEnc_Construct(CLzmaEnc *p)
4579 +{
4580 + RangeEnc_Construct(&p->rc);
4581 + MatchFinder_Construct(&p->matchFinderBase);
4582 + #ifndef _7ZIP_ST
4583 + MatchFinderMt_Construct(&p->matchFinderMt);
4584 + p->matchFinderMt.MatchFinder = &p->matchFinderBase;
4585 + #endif
4586 +
4587 + {
4588 + CLzmaEncProps props;
4589 + LzmaEncProps_Init(&props);
4590 + LzmaEnc_SetProps(p, &props);
4591 + }
4592 +
4593 + #ifndef LZMA_LOG_BSR
4594 + LzmaEnc_FastPosInit(p->g_FastPos);
4595 + #endif
4596 +
4597 + LzmaEnc_InitPriceTables(p->ProbPrices);
4598 + p->litProbs = 0;
4599 + p->saveState.litProbs = 0;
4600 +}
4601 +
4602 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
4603 +{
4604 + void *p;
4605 + p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
4606 + if (p != 0)
4607 + LzmaEnc_Construct((CLzmaEnc *)p);
4608 + return p;
4609 +}
4610 +
4611 +void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
4612 +{
4613 + alloc->Free(alloc, p->litProbs);
4614 + alloc->Free(alloc, p->saveState.litProbs);
4615 + p->litProbs = 0;
4616 + p->saveState.litProbs = 0;
4617 +}
4618 +
4619 +void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
4620 +{
4621 + #ifndef _7ZIP_ST
4622 + MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
4623 + #endif
4624 + MatchFinder_Free(&p->matchFinderBase, allocBig);
4625 + LzmaEnc_FreeLits(p, alloc);
4626 + RangeEnc_Free(&p->rc, alloc);
4627 +}
4628 +
4629 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
4630 +{
4631 + LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
4632 + alloc->Free(alloc, p);
4633 +}
4634 +
4635 +static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
4636 +{
4637 + UInt32 nowPos32, startPos32;
4638 + if (p->needInit)
4639 + {
4640 + p->matchFinder.Init(p->matchFinderObj);
4641 + p->needInit = 0;
4642 + }
4643 +
4644 + if (p->finished)
4645 + return p->result;
4646 + RINOK(CheckErrors(p));
4647 +
4648 + nowPos32 = (UInt32)p->nowPos64;
4649 + startPos32 = nowPos32;
4650 +
4651 + if (p->nowPos64 == 0)
4652 + {
4653 + UInt32 numPairs;
4654 + Byte curByte;
4655 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4656 + return Flush(p, nowPos32);
4657 + ReadMatchDistances(p, &numPairs);
4658 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
4659 + p->state = kLiteralNextStates[p->state];
4660 + curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
4661 + LitEnc_Encode(&p->rc, p->litProbs, curByte);
4662 + p->additionalOffset--;
4663 + nowPos32++;
4664 + }
4665 +
4666 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
4667 + for (;;)
4668 + {
4669 + UInt32 pos, len, posState;
4670 +
4671 + if (p->fastMode)
4672 + len = GetOptimumFast(p, &pos);
4673 + else
4674 + len = GetOptimum(p, nowPos32, &pos);
4675 +
4676 + #ifdef SHOW_STAT2
4677 + printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
4678 + #endif
4679 +
4680 + posState = nowPos32 & p->pbMask;
4681 + if (len == 1 && pos == (UInt32)-1)
4682 + {
4683 + Byte curByte;
4684 + CLzmaProb *probs;
4685 + const Byte *data;
4686 +
4687 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
4688 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4689 + curByte = *data;
4690 + probs = LIT_PROBS(nowPos32, *(data - 1));
4691 + if (IsCharState(p->state))
4692 + LitEnc_Encode(&p->rc, probs, curByte);
4693 + else
4694 + LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
4695 + p->state = kLiteralNextStates[p->state];
4696 + }
4697 + else
4698 + {
4699 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4700 + if (pos < LZMA_NUM_REPS)
4701 + {
4702 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
4703 + if (pos == 0)
4704 + {
4705 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
4706 + RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
4707 + }
4708 + else
4709 + {
4710 + UInt32 distance = p->reps[pos];
4711 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
4712 + if (pos == 1)
4713 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
4714 + else
4715 + {
4716 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
4717 + RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
4718 + if (pos == 3)
4719 + p->reps[3] = p->reps[2];
4720 + p->reps[2] = p->reps[1];
4721 + }
4722 + p->reps[1] = p->reps[0];
4723 + p->reps[0] = distance;
4724 + }
4725 + if (len == 1)
4726 + p->state = kShortRepNextStates[p->state];
4727 + else
4728 + {
4729 + LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4730 + p->state = kRepNextStates[p->state];
4731 + }
4732 + }
4733 + else
4734 + {
4735 + UInt32 posSlot;
4736 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4737 + p->state = kMatchNextStates[p->state];
4738 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4739 + pos -= LZMA_NUM_REPS;
4740 + GetPosSlot(pos, posSlot);
4741 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
4742 +
4743 + if (posSlot >= kStartPosModelIndex)
4744 + {
4745 + UInt32 footerBits = ((posSlot >> 1) - 1);
4746 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4747 + UInt32 posReduced = pos - base;
4748 +
4749 + if (posSlot < kEndPosModelIndex)
4750 + RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
4751 + else
4752 + {
4753 + RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
4754 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
4755 + p->alignPriceCount++;
4756 + }
4757 + }
4758 + p->reps[3] = p->reps[2];
4759 + p->reps[2] = p->reps[1];
4760 + p->reps[1] = p->reps[0];
4761 + p->reps[0] = pos;
4762 + p->matchPriceCount++;
4763 + }
4764 + }
4765 + p->additionalOffset -= len;
4766 + nowPos32 += len;
4767 + if (p->additionalOffset == 0)
4768 + {
4769 + UInt32 processed;
4770 + if (!p->fastMode)
4771 + {
4772 + if (p->matchPriceCount >= (1 << 7))
4773 + FillDistancesPrices(p);
4774 + if (p->alignPriceCount >= kAlignTableSize)
4775 + FillAlignPrices(p);
4776 + }
4777 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4778 + break;
4779 + processed = nowPos32 - startPos32;
4780 + if (useLimits)
4781 + {
4782 + if (processed + kNumOpts + 300 >= maxUnpackSize ||
4783 + RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
4784 + break;
4785 + }
4786 + else if (processed >= (1 << 15))
4787 + {
4788 + p->nowPos64 += nowPos32 - startPos32;
4789 + return CheckErrors(p);
4790 + }
4791 + }
4792 + }
4793 + p->nowPos64 += nowPos32 - startPos32;
4794 + return Flush(p, nowPos32);
4795 +}
4796 +
4797 +#define kBigHashDicLimit ((UInt32)1 << 24)
4798 +
4799 +static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4800 +{
4801 + UInt32 beforeSize = kNumOpts;
4802 + Bool btMode;
4803 + if (!RangeEnc_Alloc(&p->rc, alloc))
4804 + return SZ_ERROR_MEM;
4805 + btMode = (p->matchFinderBase.btMode != 0);
4806 + #ifndef _7ZIP_ST
4807 + p->mtMode = (p->multiThread && !p->fastMode && btMode);
4808 + #endif
4809 +
4810 + {
4811 + unsigned lclp = p->lc + p->lp;
4812 + if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
4813 + {
4814 + LzmaEnc_FreeLits(p, alloc);
4815 + p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4816 + p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4817 + if (p->litProbs == 0 || p->saveState.litProbs == 0)
4818 + {
4819 + LzmaEnc_FreeLits(p, alloc);
4820 + return SZ_ERROR_MEM;
4821 + }
4822 + p->lclp = lclp;
4823 + }
4824 + }
4825 +
4826 + p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
4827 +
4828 + if (beforeSize + p->dictSize < keepWindowSize)
4829 + beforeSize = keepWindowSize - p->dictSize;
4830 +
4831 + #ifndef _7ZIP_ST
4832 + if (p->mtMode)
4833 + {
4834 + RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
4835 + p->matchFinderObj = &p->matchFinderMt;
4836 + MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
4837 + }
4838 + else
4839 + #endif
4840 + {
4841 + if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
4842 + return SZ_ERROR_MEM;
4843 + p->matchFinderObj = &p->matchFinderBase;
4844 + MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
4845 + }
4846 + return SZ_OK;
4847 +}
4848 +
4849 +void LzmaEnc_Init(CLzmaEnc *p)
4850 +{
4851 + UInt32 i;
4852 + p->state = 0;
4853 + for (i = 0 ; i < LZMA_NUM_REPS; i++)
4854 + p->reps[i] = 0;
4855 +
4856 + RangeEnc_Init(&p->rc);
4857 +
4858 +
4859 + for (i = 0; i < kNumStates; i++)
4860 + {
4861 + UInt32 j;
4862 + for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
4863 + {
4864 + p->isMatch[i][j] = kProbInitValue;
4865 + p->isRep0Long[i][j] = kProbInitValue;
4866 + }
4867 + p->isRep[i] = kProbInitValue;
4868 + p->isRepG0[i] = kProbInitValue;
4869 + p->isRepG1[i] = kProbInitValue;
4870 + p->isRepG2[i] = kProbInitValue;
4871 + }
4872 +
4873 + {
4874 + UInt32 num = 0x300 << (p->lp + p->lc);
4875 + for (i = 0; i < num; i++)
4876 + p->litProbs[i] = kProbInitValue;
4877 + }
4878 +
4879 + {
4880 + for (i = 0; i < kNumLenToPosStates; i++)
4881 + {
4882 + CLzmaProb *probs = p->posSlotEncoder[i];
4883 + UInt32 j;
4884 + for (j = 0; j < (1 << kNumPosSlotBits); j++)
4885 + probs[j] = kProbInitValue;
4886 + }
4887 + }
4888 + {
4889 + for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
4890 + p->posEncoders[i] = kProbInitValue;
4891 + }
4892 +
4893 + LenEnc_Init(&p->lenEnc.p);
4894 + LenEnc_Init(&p->repLenEnc.p);
4895 +
4896 + for (i = 0; i < (1 << kNumAlignBits); i++)
4897 + p->posAlignEncoder[i] = kProbInitValue;
4898 +
4899 + p->optimumEndIndex = 0;
4900 + p->optimumCurrentIndex = 0;
4901 + p->additionalOffset = 0;
4902 +
4903 + p->pbMask = (1 << p->pb) - 1;
4904 + p->lpMask = (1 << p->lp) - 1;
4905 +}
4906 +
4907 +void LzmaEnc_InitPrices(CLzmaEnc *p)
4908 +{
4909 + if (!p->fastMode)
4910 + {
4911 + FillDistancesPrices(p);
4912 + FillAlignPrices(p);
4913 + }
4914 +
4915 + p->lenEnc.tableSize =
4916 + p->repLenEnc.tableSize =
4917 + p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
4918 + LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
4919 + LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
4920 +}
4921 +
4922 +static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4923 +{
4924 + UInt32 i;
4925 + for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
4926 + if (p->dictSize <= ((UInt32)1 << i))
4927 + break;
4928 + p->distTableSize = i * 2;
4929 +
4930 + p->finished = False;
4931 + p->result = SZ_OK;
4932 + RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
4933 + LzmaEnc_Init(p);
4934 + LzmaEnc_InitPrices(p);
4935 + p->nowPos64 = 0;
4936 + return SZ_OK;
4937 +}
4938 +
4939 +static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
4940 + ISzAlloc *alloc, ISzAlloc *allocBig)
4941 +{
4942 + CLzmaEnc *p = (CLzmaEnc *)pp;
4943 + p->matchFinderBase.stream = inStream;
4944 + p->needInit = 1;
4945 + p->rc.outStream = outStream;
4946 + return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
4947 +}
4948 +
4949 +SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
4950 + ISeqInStream *inStream, UInt32 keepWindowSize,
4951 + ISzAlloc *alloc, ISzAlloc *allocBig)
4952 +{
4953 + CLzmaEnc *p = (CLzmaEnc *)pp;
4954 + p->matchFinderBase.stream = inStream;
4955 + p->needInit = 1;
4956 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4957 +}
4958 +
4959 +static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
4960 +{
4961 + p->matchFinderBase.directInput = 1;
4962 + p->matchFinderBase.bufferBase = (Byte *)src;
4963 + p->matchFinderBase.directInputRem = srcLen;
4964 +}
4965 +
4966 +SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
4967 + UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4968 +{
4969 + CLzmaEnc *p = (CLzmaEnc *)pp;
4970 + LzmaEnc_SetInputBuf(p, src, srcLen);
4971 + p->needInit = 1;
4972 +
4973 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4974 +}
4975 +
4976 +void LzmaEnc_Finish(CLzmaEncHandle pp)
4977 +{
4978 + #ifndef _7ZIP_ST
4979 + CLzmaEnc *p = (CLzmaEnc *)pp;
4980 + if (p->mtMode)
4981 + MatchFinderMt_ReleaseStream(&p->matchFinderMt);
4982 + #else
4983 + pp = pp;
4984 + #endif
4985 +}
4986 +
4987 +typedef struct
4988 +{
4989 + ISeqOutStream funcTable;
4990 + Byte *data;
4991 + SizeT rem;
4992 + Bool overflow;
4993 +} CSeqOutStreamBuf;
4994 +
4995 +static size_t MyWrite(void *pp, const void *data, size_t size)
4996 +{
4997 + CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
4998 + if (p->rem < size)
4999 + {
5000 + size = p->rem;
5001 + p->overflow = True;
5002 + }
5003 + memcpy(p->data, data, size);
5004 + p->rem -= size;
5005 + p->data += size;
5006 + return size;
5007 +}
5008 +
5009 +
5010 +UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
5011 +{
5012 + const CLzmaEnc *p = (CLzmaEnc *)pp;
5013 + return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
5014 +}
5015 +
5016 +const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
5017 +{
5018 + const CLzmaEnc *p = (CLzmaEnc *)pp;
5019 + return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
5020 +}
5021 +
5022 +SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
5023 + Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
5024 +{
5025 + CLzmaEnc *p = (CLzmaEnc *)pp;
5026 + UInt64 nowPos64;
5027 + SRes res;
5028 + CSeqOutStreamBuf outStream;
5029 +
5030 + outStream.funcTable.Write = MyWrite;
5031 + outStream.data = dest;
5032 + outStream.rem = *destLen;
5033 + outStream.overflow = False;
5034 +
5035 + p->writeEndMark = False;
5036 + p->finished = False;
5037 + p->result = SZ_OK;
5038 +
5039 + if (reInit)
5040 + LzmaEnc_Init(p);
5041 + LzmaEnc_InitPrices(p);
5042 + nowPos64 = p->nowPos64;
5043 + RangeEnc_Init(&p->rc);
5044 + p->rc.outStream = &outStream.funcTable;
5045 +
5046 + res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
5047 +
5048 + *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
5049 + *destLen -= outStream.rem;
5050 + if (outStream.overflow)
5051 + return SZ_ERROR_OUTPUT_EOF;
5052 +
5053 + return res;
5054 +}
5055 +
5056 +static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
5057 +{
5058 + SRes res = SZ_OK;
5059 +
5060 + #ifndef _7ZIP_ST
5061 + Byte allocaDummy[0x300];
5062 + int i = 0;
5063 + for (i = 0; i < 16; i++)
5064 + allocaDummy[i] = (Byte)i;
5065 + #endif
5066 +
5067 + for (;;)
5068 + {
5069 + res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
5070 + if (res != SZ_OK || p->finished != 0)
5071 + break;
5072 + if (progress != 0)
5073 + {
5074 + res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
5075 + if (res != SZ_OK)
5076 + {
5077 + res = SZ_ERROR_PROGRESS;
5078 + break;
5079 + }
5080 + }
5081 + }
5082 + LzmaEnc_Finish(p);
5083 + return res;
5084 +}
5085 +
5086 +SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
5087 + ISzAlloc *alloc, ISzAlloc *allocBig)
5088 +{
5089 + RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
5090 + return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
5091 +}
5092 +
5093 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
5094 +{
5095 + CLzmaEnc *p = (CLzmaEnc *)pp;
5096 + int i;
5097 + UInt32 dictSize = p->dictSize;
5098 + if (*size < LZMA_PROPS_SIZE)
5099 + return SZ_ERROR_PARAM;
5100 + *size = LZMA_PROPS_SIZE;
5101 + props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
5102 +
5103 + for (i = 11; i <= 30; i++)
5104 + {
5105 + if (dictSize <= ((UInt32)2 << i))
5106 + {
5107 + dictSize = (2 << i);
5108 + break;
5109 + }
5110 + if (dictSize <= ((UInt32)3 << i))
5111 + {
5112 + dictSize = (3 << i);
5113 + break;
5114 + }
5115 + }
5116 +
5117 + for (i = 0; i < 4; i++)
5118 + props[1 + i] = (Byte)(dictSize >> (8 * i));
5119 + return SZ_OK;
5120 +}
5121 +
5122 +SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
5123 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
5124 +{
5125 + SRes res;
5126 + CLzmaEnc *p = (CLzmaEnc *)pp;
5127 +
5128 + CSeqOutStreamBuf outStream;
5129 +
5130 + LzmaEnc_SetInputBuf(p, src, srcLen);
5131 +
5132 + outStream.funcTable.Write = MyWrite;
5133 + outStream.data = dest;
5134 + outStream.rem = *destLen;
5135 + outStream.overflow = False;
5136 +
5137 + p->writeEndMark = writeEndMark;
5138 +
5139 + p->rc.outStream = &outStream.funcTable;
5140 + res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
5141 + if (res == SZ_OK)
5142 + res = LzmaEnc_Encode2(p, progress);
5143 +
5144 + *destLen -= outStream.rem;
5145 + if (outStream.overflow)
5146 + return SZ_ERROR_OUTPUT_EOF;
5147 + return res;
5148 +}
5149 +
5150 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
5151 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
5152 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
5153 +{
5154 + CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
5155 + SRes res;
5156 + if (p == 0)
5157 + return SZ_ERROR_MEM;
5158 +
5159 + res = LzmaEnc_SetProps(p, props);
5160 + if (res == SZ_OK)
5161 + {
5162 + res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
5163 + if (res == SZ_OK)
5164 + res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
5165 + writeEndMark, progress, alloc, allocBig);
5166 + }
5167 +
5168 + LzmaEnc_Destroy(p, alloc, allocBig);
5169 + return res;
5170 +}
5171 --- /dev/null
5172 +++ b/lib/lzma/Makefile
5173 @@ -0,0 +1,7 @@
5174 +lzma_compress-objs := LzFind.o LzmaEnc.o
5175 +lzma_decompress-objs := LzmaDec.o
5176 +
5177 +obj-$(CONFIG_LZMA_COMPRESS) += lzma_compress.o
5178 +obj-$(CONFIG_LZMA_DECOMPRESS) += lzma_decompress.o
5179 +
5180 +EXTRA_CFLAGS += -Iinclude/linux -Iinclude/linux/lzma -include types.h