ltq_atm: burn ifx_atm_alloc_tx with fire
[openwrt/staging/wigyori.git] / package / kernel / lantiq / ltq-atm / src / ltq_atm.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 **
23 ** Copyright 2017 Alexander Couzens <lynxis@fe80.eu>
24 *******************************************************************************/
25
26 #define IFX_ATM_VER_MAJOR 1
27 #define IFX_ATM_VER_MID 0
28 #define IFX_ATM_VER_MINOR 26
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/version.h>
33 #include <linux/types.h>
34 #include <linux/errno.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/ioctl.h>
38 #include <linux/atmdev.h>
39 #include <linux/platform_device.h>
40 #include <linux/of_device.h>
41 #include <linux/atm.h>
42 #include <linux/clk.h>
43 #include <linux/interrupt.h>
44 #ifdef CONFIG_XFRM
45 #include <net/xfrm.h>
46 #endif
47
48 #include <lantiq_soc.h>
49
50 #include "ifxmips_atm_core.h"
51
52 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
53 #define MODULE_PARM(a, b) module_param(a, int, 0)
54
55 /*!
56 \brief QSB cell delay variation due to concurrency
57 */
58 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
59 /*!
60 \brief QSB scheduler burst length
61 */
62 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
63 /*!
64 \brief QSB time step, all legal values are 1, 2, 4
65 */
66 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
67
68 /*!
69 \brief Write descriptor delay
70 */
71 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
72
73 /*!
74 \brief AAL5 padding byte ('~')
75 */
76 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
77 /*!
78 \brief Max frame size for RX
79 */
80 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
81 /*!
82 \brief Min frame size for RX
83 */
84 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
85 /*!
86 \brief Max frame size for TX
87 */
88 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
89 /*!
90 \brief Min frame size for TX
91 */
92 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
93 /*!
94 \brief Drop error packet in RX path
95 */
96 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
97
98 /*!
99 \brief Number of descriptors per DMA RX channel
100 */
101 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
102 /*!
103 \brief Number of descriptors per DMA TX channel
104 */
105 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
106 /*!
107 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
108 */
109 static int dma_rx_clp1_descriptor_threshold = 38;
110 /*@}*/
111
112 MODULE_PARM(qsb_tau, "i");
113 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
114 MODULE_PARM(qsb_srvm, "i");
115 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
116 MODULE_PARM(qsb_tstep, "i");
117 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
118
119 MODULE_PARM(write_descriptor_delay, "i");
120 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
121
122 MODULE_PARM(aal5_fill_pattern, "i");
123 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
124 MODULE_PARM(aal5r_max_packet_size, "i");
125 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
126 MODULE_PARM(aal5r_min_packet_size, "i");
127 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
128 MODULE_PARM(aal5s_max_packet_size, "i");
129 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
130 MODULE_PARM(aal5s_min_packet_size, "i");
131 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
132 MODULE_PARM(aal5r_drop_error_packet, "i");
133 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
134
135 MODULE_PARM(dma_rx_descriptor_length, "i");
136 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
137 MODULE_PARM(dma_tx_descriptor_length, "i");
138 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
139 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
140 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
141
142
143
144 /*
145 * ####################################
146 * Definition
147 * ####################################
148 */
149
150 #ifdef CONFIG_AMAZON_SE
151 #define ENABLE_LESS_CACHE_INV 1
152 #define LESS_CACHE_INV_LEN 96
153 #endif
154
155 #define DUMP_SKB_LEN ~0
156
157
158
159 /*
160 * ####################################
161 * Declaration
162 * ####################################
163 */
164
165 /*
166 * Network Operations
167 */
168 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
169 static int ppe_open(struct atm_vcc *);
170 static void ppe_close(struct atm_vcc *);
171 static int ppe_send(struct atm_vcc *, struct sk_buff *);
172 static int ppe_send_oam(struct atm_vcc *, void *, int);
173 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
174
175 /*
176 * ADSL LED
177 */
178 static inline void adsl_led_flash(void);
179
180 /*
181 * 64-bit operation used by MIB calculation
182 */
183 static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
184
185 /*
186 * buffer manage functions
187 */
188 static inline struct sk_buff* alloc_skb_rx(void);
189 static inline struct sk_buff* alloc_skb_tx(unsigned int);
190 static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
191 static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
192 static inline int get_tx_desc(unsigned int);
193
194 /*
195 * mailbox handler and signal function
196 */
197 static inline void mailbox_oam_rx_handler(void);
198 static inline void mailbox_aal_rx_handler(void);
199 static irqreturn_t mailbox_irq_handler(int, void *);
200 static inline void mailbox_signal(unsigned int, int);
201 static void do_ppe_tasklet(unsigned long);
202 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
203
204 /*
205 * QSB & HTU setting functions
206 */
207 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
208 static void qsb_global_set(void);
209 static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
210 static inline void clear_htu_entry(unsigned int);
211 static void validate_oam_htu_entry(void);
212 static void invalidate_oam_htu_entry(void);
213
214 /*
215 * look up for connection ID
216 */
217 static inline int find_vpi(unsigned int);
218 static inline int find_vpivci(unsigned int, unsigned int);
219 static inline int find_vcc(struct atm_vcc *);
220
221 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
222
223 /*
224 * Init & clean-up functions
225 */
226 static inline void check_parameters(void);
227 static inline int init_priv_data(void);
228 static inline void clear_priv_data(void);
229 static inline void init_rx_tables(void);
230 static inline void init_tx_tables(void);
231
232 /*
233 * Exteranl Function
234 */
235 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
236 extern void ifx_push_oam(unsigned char *);
237 #else
238 static inline void ifx_push_oam(unsigned char *dummy) {}
239 #endif
240
241 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
242 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
243 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
244
245 extern int (*ifx_mei_atm_showtime_exit)(void);
246 extern int ifx_mei_atm_led_blink(void);
247 #else
248 static inline int ifx_mei_atm_led_blink(void) { return 0; }
249 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
250 {
251 if ( is_showtime != NULL )
252 *is_showtime = 0;
253 return 0;
254 }
255 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
256 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
257
258 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
259 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
260
261 #endif
262
263 static struct atm_priv_data g_atm_priv_data;
264
265 static struct atmdev_ops g_ifx_atm_ops = {
266 .open = ppe_open,
267 .close = ppe_close,
268 .ioctl = ppe_ioctl,
269 .send = ppe_send,
270 .send_oam = ppe_send_oam,
271 .change_qos = ppe_change_qos,
272 .owner = THIS_MODULE,
273 };
274
275 static int g_showtime = 0;
276 static void *g_xdata_addr = NULL;
277
278 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
279 {
280 int ret = 0;
281 atm_cell_ifEntry_t mib_cell;
282 atm_aal5_ifEntry_t mib_aal5;
283 atm_aal5_vcc_x_t mib_vcc;
284 unsigned int value;
285 int conn;
286
287 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
288 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
289 return -ENOTTY;
290
291 if ( _IOC_DIR(cmd) & _IOC_READ )
292 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
293 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
294 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
295 if ( ret )
296 return -EFAULT;
297
298 switch (cmd) {
299 case PPE_ATM_MIB_CELL: /* cell level MIB */
300 /* These MIB should be read at ARC side, now put zero only. */
301 mib_cell.ifHCInOctets_h = 0;
302 mib_cell.ifHCInOctets_l = 0;
303 mib_cell.ifHCOutOctets_h = 0;
304 mib_cell.ifHCOutOctets_l = 0;
305 mib_cell.ifInErrors = 0;
306 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
307 mib_cell.ifOutErrors = 0;
308
309 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
310 break;
311
312 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
313 value = WAN_MIB_TABLE->wrx_total_byte;
314 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
315 g_atm_priv_data.prev_wrx_total_byte = value;
316 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
317 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
318
319 value = WAN_MIB_TABLE->wtx_total_byte;
320 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
321 g_atm_priv_data.prev_wtx_total_byte = value;
322 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
323 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
324
325 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
326 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
327 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
328 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
329 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
330 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
331
332 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
333 break;
334
335 case PPE_ATM_MIB_VCC: /* VCC related MIB */
336 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
337 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
338 if (conn >= 0) {
339 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
340 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
341 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
342 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
343 } else
344 ret = -EINVAL;
345 break;
346
347 default:
348 ret = -ENOIOCTLCMD;
349 }
350
351 return ret;
352 }
353
354 static int ppe_open(struct atm_vcc *vcc)
355 {
356 int ret;
357 short vpi = vcc->vpi;
358 int vci = vcc->vci;
359 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
360 int conn;
361 int f_enable_irq = 0;
362
363 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
364 return -EPROTONOSUPPORT;
365
366 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
367 /* check bandwidth */
368 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
369 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
370 #if 0
371 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
372 #endif
373 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
374 {
375 ret = -EINVAL;
376 goto PPE_OPEN_EXIT;
377 }
378 #endif
379
380 /* check existing vpi,vci */
381 conn = find_vpivci(vpi, vci);
382 if ( conn >= 0 ) {
383 ret = -EADDRINUSE;
384 goto PPE_OPEN_EXIT;
385 }
386
387 /* check whether it need to enable irq */
388 if ( g_atm_priv_data.conn_table == 0 )
389 f_enable_irq = 1;
390
391 /* allocate connection */
392 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
393 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
394 g_atm_priv_data.conn[conn].vcc = vcc;
395 break;
396 }
397 }
398 if ( conn == MAX_PVC_NUMBER ) {
399 ret = -EINVAL;
400 goto PPE_OPEN_EXIT;
401 }
402
403 /* reserve bandwidth */
404 switch ( vcc->qos.txtp.traffic_class ) {
405 case ATM_CBR:
406 case ATM_VBR_RT:
407 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
408 break;
409 case ATM_VBR_NRT:
410 #if 0
411 port->tx_current_cell_rate += vcc->qos.txtp.scr;
412 #endif
413 break;
414 case ATM_UBR_PLUS:
415 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
416 break;
417 }
418
419 /* set qsb */
420 set_qsb(vcc, &vcc->qos, conn);
421
422 /* update atm_vcc structure */
423 vcc->itf = (int)vcc->dev->dev_data;
424 vcc->vpi = vpi;
425 vcc->vci = vci;
426 set_bit(ATM_VF_READY, &vcc->flags);
427
428 /* enable irq */
429 if ( f_enable_irq ) {
430 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
431 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
432
433 enable_irq(PPE_MAILBOX_IGU1_INT);
434 }
435
436 /* set port */
437 WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
438
439 /* set htu entry */
440 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
441
442 *MBOX_IGU1_ISRC |= (1 << (conn + FIRST_QSB_QID + 16));
443 *MBOX_IGU1_IER |= (1 << (conn + FIRST_QSB_QID + 16));
444
445 ret = 0;
446
447 PPE_OPEN_EXIT:
448 return ret;
449 }
450
451 static void ppe_close(struct atm_vcc *vcc)
452 {
453 int conn;
454 struct port *port;
455 struct connection *connection;
456 if ( vcc == NULL )
457 return;
458
459 /* get connection id */
460 conn = find_vcc(vcc);
461 if ( conn < 0 ) {
462 pr_err("can't find vcc\n");
463 goto PPE_CLOSE_EXIT;
464 }
465 connection = &g_atm_priv_data.conn[conn];
466 port = &g_atm_priv_data.port[connection->port];
467
468 /* clear htu */
469 clear_htu_entry(conn);
470
471 /* release connection */
472 connection->vcc = NULL;
473 connection->aal5_vcc_crc_err = 0;
474 connection->aal5_vcc_oversize_sdu = 0;
475 clear_bit(conn, &g_atm_priv_data.conn_table);
476
477 /* disable irq */
478 if ( g_atm_priv_data.conn_table == 0 )
479 disable_irq(PPE_MAILBOX_IGU1_INT);
480
481 /* release bandwidth */
482 switch ( vcc->qos.txtp.traffic_class )
483 {
484 case ATM_CBR:
485 case ATM_VBR_RT:
486 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
487 break;
488 case ATM_VBR_NRT:
489 #if 0
490 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
491 #endif
492 break;
493 case ATM_UBR_PLUS:
494 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
495 break;
496 }
497
498 /* wait for incoming packets to be processed by upper layers */
499 tasklet_unlock_wait(&g_dma_tasklet);
500
501 PPE_CLOSE_EXIT:
502 return;
503 }
504
505 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
506 {
507 int ret;
508 int conn;
509 int desc_base;
510 int byteoff;
511 int required;
512 /* the len of the data without offset and header */
513 int datalen;
514 unsigned long flags;
515 struct tx_descriptor reg_desc = {0};
516 struct tx_inband_header *header;
517
518 if ( vcc == NULL || skb == NULL )
519 return -EINVAL;
520
521
522 conn = find_vcc(vcc);
523 if ( conn < 0 ) {
524 ret = -EINVAL;
525 goto FIND_VCC_FAIL;
526 }
527
528 if ( !g_showtime ) {
529 pr_debug("not in showtime\n");
530 ret = -EIO;
531 goto PPE_SEND_FAIL;
532 }
533
534 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
535 required = sizeof(*header) + byteoff;
536 if (!skb_clone_writable(skb, required)) {
537 int expand_by = 0;
538 int ret;
539
540 if (skb_headroom(skb) < required)
541 expand_by = required - skb_headroom(skb);
542
543 ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
544 if (ret) {
545 printk("pskb_expand_head failed.\n");
546 atm_free_tx_skb_vcc(skb, vcc);
547 return ret;
548 }
549 }
550
551 datalen = skb->len;
552 header = (void *)skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
553
554
555 if ( vcc->qos.aal == ATM_AAL5 ) {
556 /* setup inband trailer */
557 header->uu = 0;
558 header->cpi = 0;
559 header->pad = aal5_fill_pattern;
560 header->res1 = 0;
561
562 /* setup cell header */
563 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
564 header->pti = ATM_PTI_US0;
565 header->vci = vcc->vci;
566 header->vpi = vcc->vpi;
567 header->gfc = 0;
568
569 /* setup descriptor */
570 reg_desc.dataptr = (unsigned int)skb->data >> 2;
571 reg_desc.datalen = datalen;
572 reg_desc.byteoff = byteoff;
573 reg_desc.iscell = 0;
574 } else {
575 reg_desc.dataptr = (unsigned int)skb->data >> 2;
576 reg_desc.datalen = skb->len;
577 reg_desc.byteoff = byteoff;
578 reg_desc.iscell = 1;
579 }
580
581 reg_desc.own = 1;
582 reg_desc.c = 1;
583 reg_desc.sop = reg_desc.eop = 1;
584
585 spin_lock_irqsave(&g_atm_priv_data.conn[conn].lock, flags);
586 desc_base = get_tx_desc(conn);
587 if ( desc_base < 0 ) {
588 spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
589 pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
590 ret = -EIO;
591 goto PPE_SEND_FAIL;
592 }
593 /* update descriptor send pointer */
594 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
595 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
596 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
597
598 spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
599
600 if ( vcc->stats )
601 atomic_inc(&vcc->stats->tx);
602 if ( vcc->qos.aal == ATM_AAL5 )
603 g_atm_priv_data.wtx_pdu++;
604 /* write discriptor to memory and write back cache */
605 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
606 dma_cache_wback((unsigned long)skb->data, skb->len);
607
608 mailbox_signal(conn, 1);
609
610 adsl_led_flash();
611
612 return 0;
613
614 FIND_VCC_FAIL:
615 pr_err("FIND_VCC_FAIL\n");
616 g_atm_priv_data.wtx_err_pdu++;
617 dev_kfree_skb_any(skb);
618 return ret;
619
620 PPE_SEND_FAIL:
621 if ( vcc->qos.aal == ATM_AAL5 )
622 g_atm_priv_data.wtx_drop_pdu++;
623 if ( vcc->stats )
624 atomic_inc(&vcc->stats->tx_err);
625 dev_kfree_skb_any(skb);
626 return ret;
627 }
628
629 /* operation and maintainance */
630 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
631 {
632 int conn;
633 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
634 int desc_base;
635 struct sk_buff *skb;
636 struct tx_descriptor reg_desc = {0};
637
638 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
639 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
640 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
641 && find_vpi(uni_cell_header->vpi) < 0) )
642 {
643 g_atm_priv_data.wtx_err_oam++;
644 return -EINVAL;
645 }
646
647 if ( !g_showtime ) {
648 pr_err("not in showtime\n");
649 g_atm_priv_data.wtx_drop_oam++;
650 return -EIO;
651 }
652
653 conn = find_vcc(vcc);
654 if ( conn < 0 ) {
655 pr_err("FIND_VCC_FAIL\n");
656 g_atm_priv_data.wtx_drop_oam++;
657 return -EINVAL;
658 }
659
660 skb = alloc_skb_tx(CELL_SIZE);
661 if ( skb == NULL ) {
662 pr_err("ALLOC_SKB_TX_FAIL\n");
663 g_atm_priv_data.wtx_drop_oam++;
664 return -ENOMEM;
665 }
666 skb_put(skb, CELL_SIZE);
667 memcpy(skb->data, cell, CELL_SIZE);
668
669 reg_desc.dataptr = (unsigned int)skb->data >> 2;
670 reg_desc.datalen = CELL_SIZE;
671 reg_desc.byteoff = 0;
672 reg_desc.iscell = 1;
673
674 reg_desc.own = 1;
675 reg_desc.c = 1;
676 reg_desc.sop = reg_desc.eop = 1;
677
678 desc_base = get_tx_desc(conn);
679 if ( desc_base < 0 ) {
680 dev_kfree_skb_any(skb);
681 pr_err("ALLOC_TX_CONNECTION_FAIL\n");
682 g_atm_priv_data.wtx_drop_oam++;
683 return -EIO;
684 }
685
686 if ( vcc->stats )
687 atomic_inc(&vcc->stats->tx);
688
689 /* update descriptor send pointer */
690 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
691 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
692 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
693
694 /* write discriptor to memory and write back cache */
695 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
696 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
697
698 mailbox_signal(conn, 1);
699
700 g_atm_priv_data.wtx_oam++;
701 adsl_led_flash();
702
703 return 0;
704 }
705
706 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
707 {
708 int conn;
709
710 if ( vcc == NULL || qos == NULL )
711 return -EINVAL;
712
713 conn = find_vcc(vcc);
714 if ( conn < 0 )
715 return -EINVAL;
716
717 set_qsb(vcc, qos, conn);
718
719 return 0;
720 }
721
722 static inline void adsl_led_flash(void)
723 {
724 ifx_mei_atm_led_blink();
725 }
726
727 /*
728 * Description:
729 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
730 * Input:
731 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
732 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
733 * ret --- ppe_u64_t, pointer to a variable to hold result
734 * Output:
735 * none
736 */
737 static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
738 {
739 ret->l = opt1.l + opt2;
740 if ( ret->l < opt1.l || ret->l < opt2 )
741 ret->h++;
742 }
743
744 static inline struct sk_buff* alloc_skb_rx(void)
745 {
746 struct sk_buff *skb;
747
748 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
749 if ( skb != NULL ) {
750 /* must be burst length alignment */
751 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
752 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
753 /* pub skb in reserved area "skb->data - 4" */
754 *((struct sk_buff **)skb->data - 1) = skb;
755 /* write back and invalidate cache */
756 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
757 /* invalidate cache */
758 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
759 dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
760 #else
761 dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
762 #endif
763 }
764 return skb;
765 }
766
767 static inline struct sk_buff* alloc_skb_tx(unsigned int size)
768 {
769 struct sk_buff *skb;
770
771 /* allocate memory including header and padding */
772 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
773 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
774 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
775 /* must be burst length alignment */
776 if ( skb != NULL )
777 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
778 return skb;
779 }
780
781 static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
782 {
783 if ( vcc->pop != NULL )
784 vcc->pop(vcc, skb);
785 else
786 dev_kfree_skb_any(skb);
787 }
788
789 static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
790 {
791 unsigned int skb_dataptr;
792 struct sk_buff *skb;
793
794 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
795 skb = *(struct sk_buff **)skb_dataptr;
796
797 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
798 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
799
800 return skb;
801 }
802
803 static inline int get_tx_desc(unsigned int conn)
804 {
805 int desc_base = -1;
806 struct connection *p_conn = &g_atm_priv_data.conn[conn];
807
808 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
809 desc_base = p_conn->tx_desc_pos;
810 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
811 p_conn->tx_desc_pos = 0;
812 }
813
814 return desc_base;
815 }
816
817 static void free_tx_ring(unsigned int queue)
818 {
819 unsigned long flags;
820 int i;
821 struct connection *conn = &g_atm_priv_data.conn[queue];
822 struct sk_buff *skb;
823
824 if (!conn)
825 return;
826
827 spin_lock_irqsave(&conn->lock, flags);
828
829 for (i = 0; i < dma_tx_descriptor_length; i++) {
830 if (conn->tx_desc[i].own == 0 && conn->tx_skb[i] != NULL) {
831 skb = conn->tx_skb[i];
832 conn->tx_skb[i] = NULL;
833 atm_free_tx_skb_vcc(skb, ATM_SKB(skb)->vcc);
834 }
835 }
836 spin_unlock_irqrestore(&conn->lock, flags);
837 }
838
839 static void mailbox_tx_handler(unsigned int queue_bitmap)
840 {
841 int i;
842 int bit;
843
844 /* only get valid queues */
845 queue_bitmap &= g_atm_priv_data.conn_table;
846
847 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
848 if (queue_bitmap & bit)
849 free_tx_ring(i);
850 }
851 }
852
853 static inline void mailbox_oam_rx_handler(void)
854 {
855 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
856 struct rx_descriptor reg_desc;
857 struct uni_cell_header *header;
858 int conn;
859 struct atm_vcc *vcc;
860 unsigned int i;
861
862 for ( i = 0; i < vlddes; i++ ) {
863 unsigned int loop_count = 0;
864
865 do {
866 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
867 if ( ++loop_count == 1000 )
868 break;
869 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
870 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
871
872 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
873
874 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
875 conn = find_vpivci(header->vpi, header->vci);
876 else if ( header->vci == 0x03 || header->vci == 0x04 )
877 conn = find_vpi(header->vpi);
878 else
879 conn = -1;
880
881 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
882 vcc = g_atm_priv_data.conn[conn].vcc;
883
884 if ( vcc->push_oam != NULL )
885 vcc->push_oam(vcc, header);
886 else
887 ifx_push_oam((unsigned char *)header);
888
889 g_atm_priv_data.wrx_oam++;
890
891 adsl_led_flash();
892 } else
893 g_atm_priv_data.wrx_drop_oam++;
894
895 reg_desc.byteoff = 0;
896 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
897 reg_desc.own = 1;
898 reg_desc.c = 0;
899
900 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
901 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
902 g_atm_priv_data.oam_desc_pos = 0;
903
904 dma_cache_inv((unsigned long)header, CELL_SIZE);
905 mailbox_signal(RX_DMA_CH_OAM, 0);
906 }
907 }
908
909 static inline void mailbox_aal_rx_handler(void)
910 {
911 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
912 struct rx_descriptor reg_desc;
913 int conn;
914 struct atm_vcc *vcc;
915 struct sk_buff *skb, *new_skb;
916 struct rx_inband_trailer *trailer;
917 unsigned int i;
918
919 for ( i = 0; i < vlddes; i++ ) {
920 unsigned int loop_count = 0;
921
922 do {
923 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
924 if ( ++loop_count == 1000 )
925 break;
926 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
927 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
928
929 conn = reg_desc.id;
930
931 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
932 vcc = g_atm_priv_data.conn[conn].vcc;
933
934 skb = get_skb_rx_pointer(reg_desc.dataptr);
935
936 if ( reg_desc.err ) {
937 if ( vcc->qos.aal == ATM_AAL5 ) {
938 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
939 if ( trailer->stw_crc )
940 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
941 if ( trailer->stw_ovz )
942 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
943 g_atm_priv_data.wrx_drop_pdu++;
944 }
945 if ( vcc->stats ) {
946 atomic_inc(&vcc->stats->rx_drop);
947 atomic_inc(&vcc->stats->rx_err);
948 }
949 reg_desc.err = 0;
950 } else if ( atm_charge(vcc, skb->truesize) ) {
951 new_skb = alloc_skb_rx();
952 if ( new_skb != NULL ) {
953 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
954 if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
955 dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
956 #endif
957
958 skb_reserve(skb, reg_desc.byteoff);
959 skb_put(skb, reg_desc.datalen);
960 ATM_SKB(skb)->vcc = vcc;
961
962 vcc->push(vcc, skb);
963
964 if ( vcc->qos.aal == ATM_AAL5 )
965 g_atm_priv_data.wrx_pdu++;
966 if ( vcc->stats )
967 atomic_inc(&vcc->stats->rx);
968 adsl_led_flash();
969
970 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
971 } else {
972 atm_return(vcc, skb->truesize);
973 if ( vcc->qos.aal == ATM_AAL5 )
974 g_atm_priv_data.wrx_drop_pdu++;
975 if ( vcc->stats )
976 atomic_inc(&vcc->stats->rx_drop);
977 }
978 } else {
979 if ( vcc->qos.aal == ATM_AAL5 )
980 g_atm_priv_data.wrx_drop_pdu++;
981 if ( vcc->stats )
982 atomic_inc(&vcc->stats->rx_drop);
983 }
984 } else {
985 g_atm_priv_data.wrx_drop_pdu++;
986 }
987
988 reg_desc.byteoff = 0;
989 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
990 reg_desc.own = 1;
991 reg_desc.c = 0;
992
993 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
994 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
995 g_atm_priv_data.aal_desc_pos = 0;
996
997 mailbox_signal(RX_DMA_CH_AAL, 0);
998 }
999 }
1000
1001 static void do_ppe_tasklet(unsigned long data)
1002 {
1003 unsigned int irqs = *MBOX_IGU1_ISR;
1004 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1005
1006 if (irqs & (1 << RX_DMA_CH_AAL))
1007 mailbox_aal_rx_handler();
1008 if (irqs & (1 << RX_DMA_CH_OAM))
1009 mailbox_oam_rx_handler();
1010
1011 /* any valid tx irqs */
1012 if ((irqs >> (FIRST_QSB_QID + 16)) & g_atm_priv_data.conn_table)
1013 mailbox_tx_handler(irqs >> (FIRST_QSB_QID + 16));
1014
1015 if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
1016 tasklet_schedule(&g_dma_tasklet);
1017 else if (*MBOX_IGU1_ISR >> (FIRST_QSB_QID + 16)) /* TX queue */
1018 tasklet_schedule(&g_dma_tasklet);
1019 else
1020 enable_irq(PPE_MAILBOX_IGU1_INT);
1021 }
1022
1023 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1024 {
1025 if ( !*MBOX_IGU1_ISR )
1026 return IRQ_HANDLED;
1027
1028 disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
1029 tasklet_schedule(&g_dma_tasklet);
1030
1031 return IRQ_HANDLED;
1032 }
1033
1034 static inline void mailbox_signal(unsigned int queue, int is_tx)
1035 {
1036 int count = 1000;
1037
1038 if ( is_tx ) {
1039 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
1040 count--;
1041 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1042 } else {
1043 while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
1044 count--;
1045 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1046 }
1047
1048 ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
1049 }
1050
1051 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1052 {
1053 struct clk *fpi_clk = clk_get_fpi();
1054 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1055 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1056 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1057 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1058 unsigned int tmp;
1059
1060
1061 /*
1062 * Peak Cell Rate (PCR) Limiter
1063 */
1064 if ( qos->txtp.max_pcr == 0 )
1065 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1066 else {
1067 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1068 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1069 /* check if overflow takes place */
1070 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1071 }
1072
1073 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
1074 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1075 // Send packets to these two PVCs at same time, it trigger strange behavior.
1076 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1077 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1078 // To work around, create UBR always with max_pcr.
1079 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1080 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1081 int port = g_atm_priv_data.conn[queue].port;
1082 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1083
1084 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1085 if ( tmp > QSB_TP_TS_MAX )
1086 tmp = QSB_TP_TS_MAX;
1087 else if ( tmp < 1 )
1088 tmp = 1;
1089 qsb_queue_parameter_table.bit.tp = tmp;
1090 }
1091 #endif
1092
1093 /*
1094 * Weighted Fair Queueing Factor (WFQF)
1095 */
1096 switch ( qos->txtp.traffic_class ) {
1097 case ATM_CBR:
1098 case ATM_VBR_RT:
1099 /* real time queue gets weighted fair queueing bypass */
1100 qsb_queue_parameter_table.bit.wfqf = 0;
1101 break;
1102 case ATM_VBR_NRT:
1103 case ATM_UBR_PLUS:
1104 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1105 /* WFQF is maximum cell rate / garenteed cell rate */
1106 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1107 if ( qos->txtp.min_pcr == 0 )
1108 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1109 else {
1110 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1111 if ( tmp == 0 )
1112 qsb_queue_parameter_table.bit.wfqf = 1;
1113 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1114 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1115 else
1116 qsb_queue_parameter_table.bit.wfqf = tmp;
1117 }
1118 break;
1119 default:
1120 case ATM_UBR:
1121 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1122 }
1123
1124 /*
1125 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1126 */
1127 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1128 #if 0
1129 if ( qos->txtp.scr == 0 ) {
1130 #endif
1131 /* disable shaper */
1132 qsb_queue_vbr_parameter_table.bit.taus = 0;
1133 qsb_queue_vbr_parameter_table.bit.ts = 0;
1134 #if 0
1135 } else {
1136 /* Cell Loss Priority (CLP) */
1137 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1138 /* CLP1 */
1139 qsb_queue_parameter_table.bit.vbr = 1;
1140 else
1141 /* CLP0 */
1142 qsb_queue_parameter_table.bit.vbr = 0;
1143 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1144 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1145 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1146 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1147 if ( tmp == 0 )
1148 qsb_queue_vbr_parameter_table.bit.taus = 1;
1149 else if ( tmp > QSB_TAUS_MAX )
1150 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1151 else
1152 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1153 }
1154 #endif
1155 } else {
1156 qsb_queue_vbr_parameter_table.bit.taus = 0;
1157 qsb_queue_vbr_parameter_table.bit.ts = 0;
1158 }
1159
1160 /* Queue Parameter Table (QPT) */
1161 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1162 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1163 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1164 /* Queue VBR Paramter Table (QVPT) */
1165 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1166 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1167 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1168
1169 }
1170
1171 static void qsb_global_set(void)
1172 {
1173 struct clk *fpi_clk = clk_get_fpi();
1174 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1175 int i;
1176 unsigned int tmp1, tmp2, tmp3;
1177
1178 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1179 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1180 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1181
1182 /*
1183 * set SCT and SPT per port
1184 */
1185 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1186 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1187 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1188 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1189 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1190 /* carry over to integer part (?) */
1191 if ( tmp3 == (1 << 6) ) {
1192 tmp3 = 0;
1193 tmp2++;
1194 }
1195 if ( tmp2 == 0 )
1196 tmp2 = tmp3 = 1;
1197 /* 1. set mask */
1198 /* 2. write value to data transfer register */
1199 /* 3. start the tranfer */
1200 /* SCT (FracRate) */
1201 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1202 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1203 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1204 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
1205 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1206 QSB_RAMAC_TESEL_SET(i & 0x01);
1207 /* SPT (SBV + PN + IntRage) */
1208 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1209 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1210 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1211 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
1212 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1213 QSB_RAMAC_TESEL_SET(i & 0x01);
1214 }
1215 }
1216 }
1217
1218 static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1219 {
1220 struct htu_entry htu_entry = {
1221 res1: 0x00,
1222 clp: is_retx ? 0x01 : 0x00,
1223 pid: g_atm_priv_data.conn[queue].port & 0x01,
1224 vpi: vpi,
1225 vci: vci,
1226 pti: 0x00,
1227 vld: 0x01};
1228
1229 struct htu_mask htu_mask = {
1230 set: 0x01,
1231 clp: 0x01,
1232 pid_mask: 0x02,
1233 vpi_mask: 0x00,
1234 vci_mask: 0x0000,
1235 pti_mask: 0x03, // 0xx, user data
1236 clear: 0x00};
1237
1238 struct htu_result htu_result = {
1239 res1: 0x00,
1240 cellid: queue,
1241 res2: 0x00,
1242 type: aal5 ? 0x00 : 0x01,
1243 ven: 0x01,
1244 res3: 0x00,
1245 qid: queue};
1246
1247 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1248 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1249 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1250 }
1251
1252 static inline void clear_htu_entry(unsigned int queue)
1253 {
1254 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1255 }
1256
1257 static void validate_oam_htu_entry(void)
1258 {
1259 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1260 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1261 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1262 }
1263
1264 static void invalidate_oam_htu_entry(void)
1265 {
1266 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1267 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1268 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1269 }
1270
1271 static inline int find_vpi(unsigned int vpi)
1272 {
1273 int i;
1274 unsigned int bit;
1275
1276 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1277 if ( (g_atm_priv_data.conn_table & bit) != 0
1278 && g_atm_priv_data.conn[i].vcc != NULL
1279 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1280 return i;
1281 }
1282
1283 return -1;
1284 }
1285
1286 static inline int find_vpivci(unsigned int vpi, unsigned int vci)
1287 {
1288 int i;
1289 unsigned int bit;
1290
1291 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1292 if ( (g_atm_priv_data.conn_table & bit) != 0
1293 && g_atm_priv_data.conn[i].vcc != NULL
1294 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1295 && vci == g_atm_priv_data.conn[i].vcc->vci )
1296 return i;
1297 }
1298
1299 return -1;
1300 }
1301
1302 static inline int find_vcc(struct atm_vcc *vcc)
1303 {
1304 int i;
1305 unsigned int bit;
1306
1307 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1308 if ( (g_atm_priv_data.conn_table & bit) != 0
1309 && g_atm_priv_data.conn[i].vcc == vcc )
1310 return i;
1311 }
1312
1313 return -1;
1314 }
1315
1316 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
1317 {
1318 int len = 0;
1319 unsigned int major, minor;
1320
1321 ops->fw_ver(&major, &minor);
1322
1323 len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1324 len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
1325
1326 return len;
1327 }
1328
1329 static inline void check_parameters(void)
1330 {
1331 /* Please refer to Amazon spec 15.4 for setting these values. */
1332 if ( qsb_tau < 1 )
1333 qsb_tau = 1;
1334 if ( qsb_tstep < 1 )
1335 qsb_tstep = 1;
1336 else if ( qsb_tstep > 4 )
1337 qsb_tstep = 4;
1338 else if ( qsb_tstep == 3 )
1339 qsb_tstep = 2;
1340
1341 /* There is a delay between PPE write descriptor and descriptor is */
1342 /* really stored in memory. Host also has this delay when writing */
1343 /* descriptor. So PPE will use this value to determine if the write */
1344 /* operation makes effect. */
1345 if ( write_descriptor_delay < 0 )
1346 write_descriptor_delay = 0;
1347
1348 if ( aal5_fill_pattern < 0 )
1349 aal5_fill_pattern = 0;
1350 else
1351 aal5_fill_pattern &= 0xFF;
1352
1353 /* Because of the limitation of length field in descriptors, the packet */
1354 /* size could not be larger than 64K minus overhead size. */
1355 if ( aal5r_max_packet_size < 0 )
1356 aal5r_max_packet_size = 0;
1357 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1358 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1359 if ( aal5r_min_packet_size < 0 )
1360 aal5r_min_packet_size = 0;
1361 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1362 aal5r_min_packet_size = aal5r_max_packet_size;
1363 if ( aal5s_max_packet_size < 0 )
1364 aal5s_max_packet_size = 0;
1365 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1366 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1367 if ( aal5s_min_packet_size < 0 )
1368 aal5s_min_packet_size = 0;
1369 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1370 aal5s_min_packet_size = aal5s_max_packet_size;
1371
1372 if ( dma_rx_descriptor_length < 2 )
1373 dma_rx_descriptor_length = 2;
1374 if ( dma_tx_descriptor_length < 2 )
1375 dma_tx_descriptor_length = 2;
1376 if ( dma_rx_clp1_descriptor_threshold < 0 )
1377 dma_rx_clp1_descriptor_threshold = 0;
1378 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1379 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1380
1381 if ( dma_tx_descriptor_length < 2 )
1382 dma_tx_descriptor_length = 2;
1383 }
1384
1385 static inline int init_priv_data(void)
1386 {
1387 void *p;
1388 int i;
1389 struct rx_descriptor rx_desc = {0};
1390 struct sk_buff *skb;
1391 volatile struct tx_descriptor *p_tx_desc;
1392 struct sk_buff **ppskb;
1393
1394 // clear atm private data structure
1395 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
1396
1397 // allocate memory for RX (AAL) descriptors
1398 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1399 if ( p == NULL )
1400 return -1;
1401 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1402 g_atm_priv_data.aal_desc_base = p;
1403 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1404 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
1405
1406 // allocate memory for RX (OAM) descriptors
1407 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1408 if ( p == NULL )
1409 return -1;
1410 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1411 g_atm_priv_data.oam_desc_base = p;
1412 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1413 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
1414
1415 // allocate memory for RX (OAM) buffer
1416 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
1417 if ( p == NULL )
1418 return -1;
1419 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
1420 g_atm_priv_data.oam_buf_base = p;
1421 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
1422 g_atm_priv_data.oam_buf = p;
1423
1424 // allocate memory for TX descriptors
1425 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1426 if ( p == NULL )
1427 return -1;
1428 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
1429 g_atm_priv_data.tx_desc_base = p;
1430
1431 // allocate memory for TX skb pointers
1432 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
1433 if ( p == NULL )
1434 return -1;
1435 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
1436 g_atm_priv_data.tx_skb_base = p;
1437
1438 // setup RX (AAL) descriptors
1439 rx_desc.own = 1;
1440 rx_desc.c = 0;
1441 rx_desc.sop = 1;
1442 rx_desc.eop = 1;
1443 rx_desc.byteoff = 0;
1444 rx_desc.id = 0;
1445 rx_desc.err = 0;
1446 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1447 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1448 skb = alloc_skb_rx();
1449 if ( skb == NULL )
1450 return -1;
1451 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
1452 g_atm_priv_data.aal_desc[i] = rx_desc;
1453 }
1454
1455 // setup RX (OAM) descriptors
1456 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
1457 rx_desc.own = 1;
1458 rx_desc.c = 0;
1459 rx_desc.sop = 1;
1460 rx_desc.eop = 1;
1461 rx_desc.byteoff = 0;
1462 rx_desc.id = 0;
1463 rx_desc.err = 0;
1464 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1465 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
1466 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
1467 g_atm_priv_data.oam_desc[i] = rx_desc;
1468 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
1469 }
1470
1471 // setup TX descriptors and skb pointers
1472 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1473 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
1474 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1475 spin_lock_init(&g_atm_priv_data.conn[i].lock);
1476 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
1477 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
1478 }
1479
1480 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1481 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
1482
1483 return 0;
1484 }
1485
1486 static inline void clear_priv_data(void)
1487 {
1488 int i, j;
1489 struct sk_buff *skb;
1490
1491 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1492 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
1493 for ( j = 0; j < dma_tx_descriptor_length; j++ )
1494 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
1495 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
1496 }
1497 }
1498
1499 if ( g_atm_priv_data.tx_skb_base != NULL )
1500 kfree(g_atm_priv_data.tx_skb_base);
1501
1502 if ( g_atm_priv_data.tx_desc_base != NULL )
1503 kfree(g_atm_priv_data.tx_desc_base);
1504
1505 if ( g_atm_priv_data.oam_buf_base != NULL )
1506 kfree(g_atm_priv_data.oam_buf_base);
1507
1508 if ( g_atm_priv_data.oam_desc_base != NULL )
1509 kfree(g_atm_priv_data.oam_desc_base);
1510
1511 if ( g_atm_priv_data.aal_desc_base != NULL ) {
1512 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1513 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
1514 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
1515 dev_kfree_skb_any(skb);
1516 }
1517 }
1518 kfree(g_atm_priv_data.aal_desc_base);
1519 }
1520 }
1521
1522 static inline void init_rx_tables(void)
1523 {
1524 int i;
1525 struct wrx_queue_config wrx_queue_config = {0};
1526 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
1527 struct htu_entry htu_entry = {0};
1528 struct htu_result htu_result = {0};
1529 struct htu_mask htu_mask = {
1530 set: 0x01,
1531 clp: 0x01,
1532 pid_mask: 0x00,
1533 vpi_mask: 0x00,
1534 vci_mask: 0x00,
1535 pti_mask: 0x00,
1536 clear: 0x00
1537 };
1538
1539 /*
1540 * General Registers
1541 */
1542 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
1543 #ifndef CONFIG_AMAZON_SE
1544 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
1545 #endif
1546 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
1547 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
1548 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
1549
1550 /*
1551 * WRX Queue Configuration Table
1552 */
1553 wrx_queue_config.uumask = 0xFF;
1554 wrx_queue_config.cpimask = 0xFF;
1555 wrx_queue_config.uuexp = 0;
1556 wrx_queue_config.cpiexp = 0;
1557 wrx_queue_config.mfs = aal5r_max_packet_size;
1558 wrx_queue_config.oversize = aal5r_max_packet_size;
1559 wrx_queue_config.undersize = aal5r_min_packet_size;
1560 wrx_queue_config.errdp = aal5r_drop_error_packet;
1561 wrx_queue_config.dmach = RX_DMA_CH_AAL;
1562 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
1563 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
1564 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
1565
1566 /*
1567 * WRX DMA Channel Configuration Table
1568 */
1569 wrx_dma_channel_config.chrl = 0;
1570 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
1571 wrx_dma_channel_config.mode = 0;
1572 wrx_dma_channel_config.rlcfg = 0;
1573
1574 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
1575 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
1576 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
1577
1578 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
1579 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
1580 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
1581
1582 /*
1583 * HTU Tables
1584 */
1585 for (i = 0; i < MAX_PVC_NUMBER; i++) {
1586 htu_result.qid = (unsigned int)i;
1587
1588 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1589 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1590 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
1591 }
1592
1593 /* OAM HTU Entry */
1594 htu_entry.vci = 0x03;
1595 htu_mask.pid_mask = 0x03;
1596 htu_mask.vpi_mask = 0xFF;
1597 htu_mask.vci_mask = 0x0000;
1598 htu_mask.pti_mask = 0x07;
1599 htu_result.cellid = OAM_RX_QUEUE;
1600 htu_result.type = 1;
1601 htu_result.ven = 1;
1602 htu_result.qid = OAM_RX_QUEUE;
1603 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
1604 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
1605 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
1606 htu_entry.vci = 0x04;
1607 htu_result.cellid = OAM_RX_QUEUE;
1608 htu_result.type = 1;
1609 htu_result.ven = 1;
1610 htu_result.qid = OAM_RX_QUEUE;
1611 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
1612 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
1613 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
1614 htu_entry.vci = 0x00;
1615 htu_entry.pti = 0x04;
1616 htu_mask.vci_mask = 0xFFFF;
1617 htu_mask.pti_mask = 0x01;
1618 htu_result.cellid = OAM_RX_QUEUE;
1619 htu_result.type = 1;
1620 htu_result.ven = 1;
1621 htu_result.qid = OAM_RX_QUEUE;
1622 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
1623 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
1624 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
1625 }
1626
1627 static inline void init_tx_tables(void)
1628 {
1629 int i;
1630 struct wtx_queue_config wtx_queue_config = {0};
1631 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
1632 struct wtx_port_config wtx_port_config = {
1633 res1: 0,
1634 qid: 0,
1635 qsben: 1
1636 };
1637
1638 /*
1639 * General Registers
1640 */
1641 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
1642 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
1643 *CFG_WRDES_DELAY = write_descriptor_delay;
1644
1645 /*
1646 * WTX Port Configuration Table
1647 */
1648 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1649 *WTX_PORT_CONFIG(i) = wtx_port_config;
1650
1651 /*
1652 * WTX Queue Configuration Table
1653 */
1654 wtx_queue_config.qsben = 1;
1655 wtx_queue_config.sbid = 0;
1656 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
1657 wtx_queue_config.qsb_vcid = i;
1658 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
1659 }
1660
1661 /*
1662 * WTX DMA Channel Configuration Table
1663 */
1664 wtx_dma_channel_config.mode = 0;
1665 wtx_dma_channel_config.deslen = 0;
1666 wtx_dma_channel_config.desba = 0;
1667 for ( i = 0; i < FIRST_QSB_QID; i++ )
1668 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1669 /* normal connection */
1670 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
1671 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
1672 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
1673 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1674 }
1675 }
1676
1677 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
1678 {
1679 int i, j, port_num;
1680
1681 ASSERT(port_cell != NULL, "port_cell is NULL");
1682 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
1683
1684 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
1685 if ( port_cell->tx_link_rate[j] > 0 )
1686 break;
1687 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
1688 g_atm_priv_data.port[i].tx_max_cell_rate =
1689 port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
1690
1691 qsb_global_set();
1692
1693 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
1694 if ( g_atm_priv_data.conn[i].vcc != NULL )
1695 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
1696
1697 // TODO: ReTX set xdata_addr
1698 g_xdata_addr = xdata_addr;
1699
1700 g_showtime = 1;
1701
1702 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1703 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_FOUND);
1704
1705 #if defined(CONFIG_VR9)
1706 IFX_REG_W32(0x0F, UTP_CFG);
1707 #endif
1708
1709 printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
1710 g_atm_priv_data.port[0].tx_max_cell_rate,
1711 g_atm_priv_data.port[1].tx_max_cell_rate,
1712 (unsigned int)g_xdata_addr);
1713
1714 return 0;
1715 }
1716
1717 static int atm_showtime_exit(void)
1718 {
1719 int port_num;
1720
1721 if ( !g_showtime )
1722 return -1;
1723
1724 #if defined(CONFIG_VR9)
1725 IFX_REG_W32(0x00, UTP_CFG);
1726 #endif
1727
1728 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1729 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1730
1731 g_showtime = 0;
1732 g_xdata_addr = NULL;
1733 printk("leave showtime\n");
1734 return 0;
1735 }
1736
1737 extern struct ltq_atm_ops ar9_ops;
1738 extern struct ltq_atm_ops vr9_ops;
1739 extern struct ltq_atm_ops danube_ops;
1740 extern struct ltq_atm_ops ase_ops;
1741
1742 static const struct of_device_id ltq_atm_match[] = {
1743 #ifdef CONFIG_DANUBE
1744 { .compatible = "lantiq,ppe-danube", .data = &danube_ops },
1745 #elif defined CONFIG_AMAZON_SE
1746 { .compatible = "lantiq,ppe-ase", .data = &ase_ops },
1747 #elif defined CONFIG_AR9
1748 { .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
1749 #elif defined CONFIG_VR9
1750 { .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
1751 #endif
1752 {},
1753 };
1754 MODULE_DEVICE_TABLE(of, ltq_atm_match);
1755
1756 static int ltq_atm_probe(struct platform_device *pdev)
1757 {
1758 const struct of_device_id *match;
1759 struct ltq_atm_ops *ops = NULL;
1760 int ret;
1761 int port_num;
1762 struct port_cell_info port_cell = {0};
1763 char ver_str[256];
1764
1765 match = of_match_device(ltq_atm_match, &pdev->dev);
1766 if (!match) {
1767 dev_err(&pdev->dev, "failed to find matching device\n");
1768 return -ENOENT;
1769 }
1770 ops = (struct ltq_atm_ops *) match->data;
1771
1772 check_parameters();
1773
1774 ret = init_priv_data();
1775 if ( ret != 0 ) {
1776 pr_err("INIT_PRIV_DATA_FAIL\n");
1777 goto INIT_PRIV_DATA_FAIL;
1778 }
1779
1780 ops->init();
1781 init_rx_tables();
1782 init_tx_tables();
1783
1784 /* create devices */
1785 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
1786 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
1787 if ( !g_atm_priv_data.port[port_num].dev ) {
1788 pr_err("failed to register atm device %d!\n", port_num);
1789 ret = -EIO;
1790 goto ATM_DEV_REGISTER_FAIL;
1791 } else {
1792 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
1793 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
1794 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
1795 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
1796
1797 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
1798 atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
1799 #endif
1800 }
1801 }
1802
1803 /* register interrupt handler */
1804 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
1805 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, 0, "atm_mailbox_isr", &g_atm_priv_data);
1806 #else
1807 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
1808 #endif
1809 if ( ret ) {
1810 if ( ret == -EBUSY ) {
1811 pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
1812 } else {
1813 pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
1814 }
1815 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
1816 }
1817 disable_irq(PPE_MAILBOX_IGU1_INT);
1818
1819
1820 ret = ops->start(0);
1821 if ( ret ) {
1822 pr_err("ifx_pp32_start fail!\n");
1823 goto PP32_START_FAIL;
1824 }
1825
1826 port_cell.port_num = ATM_PORT_NUMBER;
1827 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
1828 if ( g_showtime ) {
1829 atm_showtime_enter(&port_cell, &g_xdata_addr);
1830 } else {
1831 qsb_global_set();
1832 }
1833
1834 validate_oam_htu_entry();
1835
1836 ifx_mei_atm_showtime_enter = atm_showtime_enter;
1837 ifx_mei_atm_showtime_exit = atm_showtime_exit;
1838
1839 ifx_atm_version(ops, ver_str);
1840 printk(KERN_INFO "%s", ver_str);
1841 platform_set_drvdata(pdev, ops);
1842 printk("ifxmips_atm: ATM init succeed\n");
1843
1844 return 0;
1845
1846 PP32_START_FAIL:
1847 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1848 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
1849 ATM_DEV_REGISTER_FAIL:
1850 while ( port_num-- > 0 )
1851 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1852 INIT_PRIV_DATA_FAIL:
1853 clear_priv_data();
1854 printk("ifxmips_atm: ATM init failed\n");
1855 return ret;
1856 }
1857
1858 static int ltq_atm_remove(struct platform_device *pdev)
1859 {
1860 int port_num;
1861 struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
1862
1863 ifx_mei_atm_showtime_enter = NULL;
1864 ifx_mei_atm_showtime_exit = NULL;
1865
1866 invalidate_oam_htu_entry();
1867
1868 ops->stop(0);
1869
1870 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1871
1872 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1873 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1874
1875 ops->shutdown();
1876
1877 clear_priv_data();
1878
1879 return 0;
1880 }
1881
1882 static struct platform_driver ltq_atm_driver = {
1883 .probe = ltq_atm_probe,
1884 .remove = ltq_atm_remove,
1885 .driver = {
1886 .name = "atm",
1887 .owner = THIS_MODULE,
1888 .of_match_table = ltq_atm_match,
1889 },
1890 };
1891
1892 module_platform_driver(ltq_atm_driver);
1893
1894 MODULE_LICENSE("Dual BSD/GPL");