lantiq: Tune the XWAY subtarget cflags
[openwrt/staging/yousong.git] / package / platform / lantiq / ltq-atm / src / ltq_atm.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 *******************************************************************************/
23
24 #define IFX_ATM_VER_MAJOR 1
25 #define IFX_ATM_VER_MID 0
26 #define IFX_ATM_VER_MINOR 26
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/version.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/ioctl.h>
36 #include <linux/atmdev.h>
37 #include <linux/platform_device.h>
38 #include <linux/of_device.h>
39 #include <linux/atm.h>
40 #include <linux/clk.h>
41 #include <linux/interrupt.h>
42 #ifdef CONFIG_XFRM
43 #include <net/xfrm.h>
44 #endif
45
46 #include <lantiq_soc.h>
47
48 #include "ifxmips_atm_core.h"
49
50 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
51 #define MODULE_PARM(a, b) module_param(a, int, 0)
52
53 /*!
54 \brief QSB cell delay variation due to concurrency
55 */
56 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
57 /*!
58 \brief QSB scheduler burst length
59 */
60 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
61 /*!
62 \brief QSB time step, all legal values are 1, 2, 4
63 */
64 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
65
66 /*!
67 \brief Write descriptor delay
68 */
69 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
70
71 /*!
72 \brief AAL5 padding byte ('~')
73 */
74 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
75 /*!
76 \brief Max frame size for RX
77 */
78 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
79 /*!
80 \brief Min frame size for RX
81 */
82 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
83 /*!
84 \brief Max frame size for TX
85 */
86 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
87 /*!
88 \brief Min frame size for TX
89 */
90 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
91 /*!
92 \brief Drop error packet in RX path
93 */
94 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
95
96 /*!
97 \brief Number of descriptors per DMA RX channel
98 */
99 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
100 /*!
101 \brief Number of descriptors per DMA TX channel
102 */
103 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
104 /*!
105 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
106 */
107 static int dma_rx_clp1_descriptor_threshold = 38;
108 /*@}*/
109
110 MODULE_PARM(qsb_tau, "i");
111 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
112 MODULE_PARM(qsb_srvm, "i");
113 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
114 MODULE_PARM(qsb_tstep, "i");
115 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
116
117 MODULE_PARM(write_descriptor_delay, "i");
118 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
119
120 MODULE_PARM(aal5_fill_pattern, "i");
121 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
122 MODULE_PARM(aal5r_max_packet_size, "i");
123 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
124 MODULE_PARM(aal5r_min_packet_size, "i");
125 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
126 MODULE_PARM(aal5s_max_packet_size, "i");
127 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
128 MODULE_PARM(aal5s_min_packet_size, "i");
129 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
130 MODULE_PARM(aal5r_drop_error_packet, "i");
131 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
132
133 MODULE_PARM(dma_rx_descriptor_length, "i");
134 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
135 MODULE_PARM(dma_tx_descriptor_length, "i");
136 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
137 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
138 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
139
140
141
142 /*
143 * ####################################
144 * Definition
145 * ####################################
146 */
147
148 #ifdef CONFIG_AMAZON_SE
149 #define ENABLE_LESS_CACHE_INV 1
150 #define LESS_CACHE_INV_LEN 96
151 #endif
152
153 #define DUMP_SKB_LEN ~0
154
155
156
157 /*
158 * ####################################
159 * Declaration
160 * ####################################
161 */
162
163 /*
164 * Network Operations
165 */
166 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
167 static int ppe_open(struct atm_vcc *);
168 static void ppe_close(struct atm_vcc *);
169 static int ppe_send(struct atm_vcc *, struct sk_buff *);
170 static int ppe_send_oam(struct atm_vcc *, void *, int);
171 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
172
173 /*
174 * ADSL LED
175 */
176 static inline void adsl_led_flash(void);
177
178 /*
179 * 64-bit operation used by MIB calculation
180 */
181 static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
182
183 /*
184 * buffer manage functions
185 */
186 static inline struct sk_buff* alloc_skb_rx(void);
187 static inline struct sk_buff* alloc_skb_tx(unsigned int);
188 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
189 static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
190 static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
191 static inline int get_tx_desc(unsigned int);
192 static struct sk_buff* skb_duplicate(struct sk_buff *);
193 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *);
194
195 /*
196 * mailbox handler and signal function
197 */
198 static inline void mailbox_oam_rx_handler(void);
199 static inline void mailbox_aal_rx_handler(void);
200 static irqreturn_t mailbox_irq_handler(int, void *);
201 static inline void mailbox_signal(unsigned int, int);
202 static void do_ppe_tasklet(unsigned long);
203 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
204
205 /*
206 * QSB & HTU setting functions
207 */
208 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
209 static void qsb_global_set(void);
210 static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
211 static inline void clear_htu_entry(unsigned int);
212 static void validate_oam_htu_entry(void);
213 static void invalidate_oam_htu_entry(void);
214
215 /*
216 * look up for connection ID
217 */
218 static inline int find_vpi(unsigned int);
219 static inline int find_vpivci(unsigned int, unsigned int);
220 static inline int find_vcc(struct atm_vcc *);
221
222 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
223
224 /*
225 * Init & clean-up functions
226 */
227 static inline void check_parameters(void);
228 static inline int init_priv_data(void);
229 static inline void clear_priv_data(void);
230 static inline void init_rx_tables(void);
231 static inline void init_tx_tables(void);
232
233 /*
234 * Exteranl Function
235 */
236 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
237 extern void ifx_push_oam(unsigned char *);
238 #else
239 static inline void ifx_push_oam(unsigned char *dummy) {}
240 #endif
241
242 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
243 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
244 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
245
246 extern int (*ifx_mei_atm_showtime_exit)(void);
247 extern int ifx_mei_atm_led_blink(void);
248 #else
249 static inline int ifx_mei_atm_led_blink(void) { return 0; }
250 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
251 {
252 if ( is_showtime != NULL )
253 *is_showtime = 0;
254 return 0;
255 }
256 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
257 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
258
259 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
260 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
261
262 #endif
263
264 static struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
265
266 static struct atm_priv_data g_atm_priv_data;
267
268 static struct atmdev_ops g_ifx_atm_ops = {
269 .open = ppe_open,
270 .close = ppe_close,
271 .ioctl = ppe_ioctl,
272 .send = ppe_send,
273 .send_oam = ppe_send_oam,
274 .change_qos = ppe_change_qos,
275 .owner = THIS_MODULE,
276 };
277
278 static int g_showtime = 0;
279 static void *g_xdata_addr = NULL;
280
281 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
282 {
283 int ret = 0;
284 atm_cell_ifEntry_t mib_cell;
285 atm_aal5_ifEntry_t mib_aal5;
286 atm_aal5_vcc_x_t mib_vcc;
287 unsigned int value;
288 int conn;
289
290 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
291 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
292 return -ENOTTY;
293
294 if ( _IOC_DIR(cmd) & _IOC_READ )
295 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
296 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
297 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
298 if ( ret )
299 return -EFAULT;
300
301 switch (cmd) {
302 case PPE_ATM_MIB_CELL: /* cell level MIB */
303 /* These MIB should be read at ARC side, now put zero only. */
304 mib_cell.ifHCInOctets_h = 0;
305 mib_cell.ifHCInOctets_l = 0;
306 mib_cell.ifHCOutOctets_h = 0;
307 mib_cell.ifHCOutOctets_l = 0;
308 mib_cell.ifInErrors = 0;
309 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
310 mib_cell.ifOutErrors = 0;
311
312 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
313 break;
314
315 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
316 value = WAN_MIB_TABLE->wrx_total_byte;
317 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
318 g_atm_priv_data.prev_wrx_total_byte = value;
319 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
320 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
321
322 value = WAN_MIB_TABLE->wtx_total_byte;
323 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
324 g_atm_priv_data.prev_wtx_total_byte = value;
325 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
326 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
327
328 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
329 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
330 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
331 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
332 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
333 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
334
335 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
336 break;
337
338 case PPE_ATM_MIB_VCC: /* VCC related MIB */
339 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
340 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
341 if (conn >= 0) {
342 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
343 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
344 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
345 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
346 } else
347 ret = -EINVAL;
348 break;
349
350 default:
351 ret = -ENOIOCTLCMD;
352 }
353
354 return ret;
355 }
356
357 static int ppe_open(struct atm_vcc *vcc)
358 {
359 int ret;
360 short vpi = vcc->vpi;
361 int vci = vcc->vci;
362 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
363 int conn;
364 int f_enable_irq = 0;
365
366 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
367 return -EPROTONOSUPPORT;
368
369 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
370 /* check bandwidth */
371 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
372 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
373 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
374 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
375 {
376 ret = -EINVAL;
377 goto PPE_OPEN_EXIT;
378 }
379 #endif
380
381 /* check existing vpi,vci */
382 conn = find_vpivci(vpi, vci);
383 if ( conn >= 0 ) {
384 ret = -EADDRINUSE;
385 goto PPE_OPEN_EXIT;
386 }
387
388 /* check whether it need to enable irq */
389 if ( g_atm_priv_data.conn_table == 0 )
390 f_enable_irq = 1;
391
392 /* allocate connection */
393 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
394 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
395 g_atm_priv_data.conn[conn].vcc = vcc;
396 break;
397 }
398 }
399 if ( conn == MAX_PVC_NUMBER ) {
400 ret = -EINVAL;
401 goto PPE_OPEN_EXIT;
402 }
403
404 /* reserve bandwidth */
405 switch ( vcc->qos.txtp.traffic_class ) {
406 case ATM_CBR:
407 case ATM_VBR_RT:
408 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
409 break;
410 case ATM_VBR_NRT:
411 port->tx_current_cell_rate += vcc->qos.txtp.scr;
412 break;
413 case ATM_UBR_PLUS:
414 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
415 break;
416 }
417
418 /* set qsb */
419 set_qsb(vcc, &vcc->qos, conn);
420
421 /* update atm_vcc structure */
422 vcc->itf = (int)vcc->dev->dev_data;
423 vcc->vpi = vpi;
424 vcc->vci = vci;
425 set_bit(ATM_VF_READY, &vcc->flags);
426
427 /* enable irq */
428 if ( f_enable_irq ) {
429 ifx_atm_alloc_tx = atm_alloc_tx;
430
431 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
432 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
433
434 enable_irq(PPE_MAILBOX_IGU1_INT);
435 }
436
437 /* set port */
438 WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
439
440 /* set htu entry */
441 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
442
443 ret = 0;
444
445 PPE_OPEN_EXIT:
446 return ret;
447 }
448
449 static void ppe_close(struct atm_vcc *vcc)
450 {
451 int conn;
452 struct port *port;
453 struct connection *connection;
454 if ( vcc == NULL )
455 return;
456
457 /* get connection id */
458 conn = find_vcc(vcc);
459 if ( conn < 0 ) {
460 pr_err("can't find vcc\n");
461 goto PPE_CLOSE_EXIT;
462 }
463 connection = &g_atm_priv_data.conn[conn];
464 port = &g_atm_priv_data.port[connection->port];
465
466 /* clear htu */
467 clear_htu_entry(conn);
468
469 /* release connection */
470 connection->vcc = NULL;
471 connection->aal5_vcc_crc_err = 0;
472 connection->aal5_vcc_oversize_sdu = 0;
473 clear_bit(conn, &g_atm_priv_data.conn_table);
474
475 /* disable irq */
476 if ( g_atm_priv_data.conn_table == 0 ) {
477 disable_irq(PPE_MAILBOX_IGU1_INT);
478 ifx_atm_alloc_tx = NULL;
479 }
480
481 /* release bandwidth */
482 switch ( vcc->qos.txtp.traffic_class )
483 {
484 case ATM_CBR:
485 case ATM_VBR_RT:
486 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
487 break;
488 case ATM_VBR_NRT:
489 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
490 break;
491 case ATM_UBR_PLUS:
492 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
493 break;
494 }
495
496 /* wait for incoming packets to be processed by upper layers */
497 tasklet_unlock_wait(&g_dma_tasklet);
498
499 PPE_CLOSE_EXIT:
500 return;
501 }
502
503 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
504 {
505 int ret;
506 int conn;
507 int desc_base;
508 struct tx_descriptor reg_desc = {0};
509 struct sk_buff *new_skb;
510
511 if ( vcc == NULL || skb == NULL )
512 return -EINVAL;
513
514 skb_get(skb);
515 atm_free_tx_skb_vcc(skb, vcc);
516
517 conn = find_vcc(vcc);
518 if ( conn < 0 ) {
519 ret = -EINVAL;
520 goto FIND_VCC_FAIL;
521 }
522
523 if ( !g_showtime ) {
524 pr_debug("not in showtime\n");
525 ret = -EIO;
526 goto PPE_SEND_FAIL;
527 }
528
529 if ( vcc->qos.aal == ATM_AAL5 ) {
530 int byteoff;
531 int datalen;
532 struct tx_inband_header *header;
533
534 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
535 if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH )
536 new_skb = skb_duplicate(skb);
537 else
538 new_skb = skb_break_away_from_protocol(skb);
539 if ( new_skb == NULL ) {
540 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
541 ret = -ENOMEM;
542 goto PPE_SEND_FAIL;
543 }
544 dev_kfree_skb_any(skb);
545 skb = new_skb;
546
547 datalen = skb->len;
548 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
549
550 skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
551
552 header = (struct tx_inband_header *)skb->data;
553
554 /* setup inband trailer */
555 header->uu = 0;
556 header->cpi = 0;
557 header->pad = aal5_fill_pattern;
558 header->res1 = 0;
559
560 /* setup cell header */
561 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
562 header->pti = ATM_PTI_US0;
563 header->vci = vcc->vci;
564 header->vpi = vcc->vpi;
565 header->gfc = 0;
566
567 /* setup descriptor */
568 reg_desc.dataptr = (unsigned int)skb->data >> 2;
569 reg_desc.datalen = datalen;
570 reg_desc.byteoff = byteoff;
571 reg_desc.iscell = 0;
572 } else {
573 /* if data pointer is not aligned, allocate new sk_buff */
574 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
575 pr_err("skb->data not aligned\n");
576 new_skb = skb_duplicate(skb);
577 } else
578 new_skb = skb_break_away_from_protocol(skb);
579 if ( new_skb == NULL ) {
580 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
581 ret = -ENOMEM;
582 goto PPE_SEND_FAIL;
583 }
584 dev_kfree_skb_any(skb);
585 skb = new_skb;
586
587 reg_desc.dataptr = (unsigned int)skb->data >> 2;
588 reg_desc.datalen = skb->len;
589 reg_desc.byteoff = 0;
590 reg_desc.iscell = 1;
591 }
592
593 reg_desc.own = 1;
594 reg_desc.c = 1;
595 reg_desc.sop = reg_desc.eop = 1;
596
597 desc_base = get_tx_desc(conn);
598 if ( desc_base < 0 ) {
599 pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
600 ret = -EIO;
601 goto PPE_SEND_FAIL;
602 }
603
604 if ( vcc->stats )
605 atomic_inc(&vcc->stats->tx);
606 if ( vcc->qos.aal == ATM_AAL5 )
607 g_atm_priv_data.wtx_pdu++;
608
609 /* update descriptor send pointer */
610 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
611 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
612 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
613
614 /* write discriptor to memory and write back cache */
615 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
616 dma_cache_wback((unsigned long)skb->data, skb->len);
617
618 mailbox_signal(conn, 1);
619
620 adsl_led_flash();
621
622 return 0;
623
624 FIND_VCC_FAIL:
625 pr_err("FIND_VCC_FAIL\n");
626 g_atm_priv_data.wtx_err_pdu++;
627 dev_kfree_skb_any(skb);
628 return ret;
629
630 PPE_SEND_FAIL:
631 if ( vcc->qos.aal == ATM_AAL5 )
632 g_atm_priv_data.wtx_drop_pdu++;
633 if ( vcc->stats )
634 atomic_inc(&vcc->stats->tx_err);
635 dev_kfree_skb_any(skb);
636 return ret;
637 }
638
639 /* operation and maintainance */
640 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
641 {
642 int conn;
643 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
644 int desc_base;
645 struct sk_buff *skb;
646 struct tx_descriptor reg_desc = {0};
647
648 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
649 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
650 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
651 && find_vpi(uni_cell_header->vpi) < 0) )
652 {
653 g_atm_priv_data.wtx_err_oam++;
654 return -EINVAL;
655 }
656
657 if ( !g_showtime ) {
658 pr_err("not in showtime\n");
659 g_atm_priv_data.wtx_drop_oam++;
660 return -EIO;
661 }
662
663 conn = find_vcc(vcc);
664 if ( conn < 0 ) {
665 pr_err("FIND_VCC_FAIL\n");
666 g_atm_priv_data.wtx_drop_oam++;
667 return -EINVAL;
668 }
669
670 skb = alloc_skb_tx(CELL_SIZE);
671 if ( skb == NULL ) {
672 pr_err("ALLOC_SKB_TX_FAIL\n");
673 g_atm_priv_data.wtx_drop_oam++;
674 return -ENOMEM;
675 }
676 skb_put(skb, CELL_SIZE);
677 memcpy(skb->data, cell, CELL_SIZE);
678
679 reg_desc.dataptr = (unsigned int)skb->data >> 2;
680 reg_desc.datalen = CELL_SIZE;
681 reg_desc.byteoff = 0;
682 reg_desc.iscell = 1;
683
684 reg_desc.own = 1;
685 reg_desc.c = 1;
686 reg_desc.sop = reg_desc.eop = 1;
687
688 desc_base = get_tx_desc(conn);
689 if ( desc_base < 0 ) {
690 dev_kfree_skb_any(skb);
691 pr_err("ALLOC_TX_CONNECTION_FAIL\n");
692 g_atm_priv_data.wtx_drop_oam++;
693 return -EIO;
694 }
695
696 if ( vcc->stats )
697 atomic_inc(&vcc->stats->tx);
698
699 /* update descriptor send pointer */
700 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
701 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
702 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
703
704 /* write discriptor to memory and write back cache */
705 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
706 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
707
708 mailbox_signal(conn, 1);
709
710 g_atm_priv_data.wtx_oam++;
711 adsl_led_flash();
712
713 return 0;
714 }
715
716 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
717 {
718 int conn;
719
720 if ( vcc == NULL || qos == NULL )
721 return -EINVAL;
722
723 conn = find_vcc(vcc);
724 if ( conn < 0 )
725 return -EINVAL;
726
727 set_qsb(vcc, qos, conn);
728
729 return 0;
730 }
731
732 static inline void adsl_led_flash(void)
733 {
734 ifx_mei_atm_led_blink();
735 }
736
737 /*
738 * Description:
739 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
740 * Input:
741 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
742 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
743 * ret --- ppe_u64_t, pointer to a variable to hold result
744 * Output:
745 * none
746 */
747 static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
748 {
749 ret->l = opt1.l + opt2;
750 if ( ret->l < opt1.l || ret->l < opt2 )
751 ret->h++;
752 }
753
754 static inline struct sk_buff* alloc_skb_rx(void)
755 {
756 struct sk_buff *skb;
757
758 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
759 if ( skb != NULL ) {
760 /* must be burst length alignment */
761 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
762 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
763 /* pub skb in reserved area "skb->data - 4" */
764 *((struct sk_buff **)skb->data - 1) = skb;
765 /* write back and invalidate cache */
766 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
767 /* invalidate cache */
768 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
769 dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
770 #else
771 dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
772 #endif
773 }
774 return skb;
775 }
776
777 static inline struct sk_buff* alloc_skb_tx(unsigned int size)
778 {
779 struct sk_buff *skb;
780
781 /* allocate memory including header and padding */
782 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
783 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
784 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
785 /* must be burst length alignment */
786 if ( skb != NULL )
787 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
788 return skb;
789 }
790
791 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
792 {
793 int conn;
794 struct sk_buff *skb;
795
796 /* oversize packet */
797 if ( size > aal5s_max_packet_size ) {
798 pr_err("atm_alloc_tx: oversize packet\n");
799 return NULL;
800 }
801 /* send buffer overflow */
802 if ( sk_wmem_alloc_get(sk_atm(vcc)) && !atm_may_send(vcc, size) ) {
803 pr_err("atm_alloc_tx: send buffer overflow\n");
804 return NULL;
805 }
806 conn = find_vcc(vcc);
807 if ( conn < 0 ) {
808 pr_err("atm_alloc_tx: unknown VCC\n");
809 return NULL;
810 }
811
812 skb = dev_alloc_skb(size);
813 if ( skb == NULL ) {
814 pr_err("atm_alloc_tx: sk buffer is used up\n");
815 return NULL;
816 }
817
818 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
819
820 return skb;
821 }
822
823 static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
824 {
825 if ( vcc->pop != NULL )
826 vcc->pop(vcc, skb);
827 else
828 dev_kfree_skb_any(skb);
829 }
830
831 static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
832 {
833 unsigned int skb_dataptr;
834 struct sk_buff *skb;
835
836 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
837 skb = *(struct sk_buff **)skb_dataptr;
838
839 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
840 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
841
842 return skb;
843 }
844
845 static inline int get_tx_desc(unsigned int conn)
846 {
847 int desc_base = -1;
848 struct connection *p_conn = &g_atm_priv_data.conn[conn];
849
850 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
851 desc_base = p_conn->tx_desc_pos;
852 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
853 p_conn->tx_desc_pos = 0;
854 }
855
856 return desc_base;
857 }
858
859 static struct sk_buff* skb_duplicate(struct sk_buff *skb)
860 {
861 struct sk_buff *new_skb;
862
863 new_skb = alloc_skb_tx(skb->len);
864 if ( new_skb == NULL )
865 return NULL;
866
867 skb_put(new_skb, skb->len);
868 memcpy(new_skb->data, skb->data, skb->len);
869
870 return new_skb;
871 }
872
873 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *skb)
874 {
875 struct sk_buff *new_skb;
876
877 if ( skb_shared(skb) ) {
878 new_skb = skb_clone(skb, GFP_ATOMIC);
879 if ( new_skb == NULL )
880 return NULL;
881 } else
882 new_skb = skb_get(skb);
883
884 skb_dst_drop(new_skb);
885 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
886 nf_conntrack_put(new_skb->nfct);
887 new_skb->nfct = NULL;
888 nf_conntrack_put_reasm(new_skb->nfct_reasm);
889 new_skb->nfct_reasm = NULL;
890 #ifdef CONFIG_BRIDGE_NETFILTER
891 nf_bridge_put(new_skb->nf_bridge);
892 new_skb->nf_bridge = NULL;
893 #endif
894 #endif
895
896 return new_skb;
897 }
898
899 static inline void mailbox_oam_rx_handler(void)
900 {
901 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
902 struct rx_descriptor reg_desc;
903 struct uni_cell_header *header;
904 int conn;
905 struct atm_vcc *vcc;
906 unsigned int i;
907
908 for ( i = 0; i < vlddes; i++ ) {
909 unsigned int loop_count = 0;
910
911 do {
912 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
913 if ( ++loop_count == 1000 )
914 break;
915 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
916 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
917
918 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
919
920 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
921 conn = find_vpivci(header->vpi, header->vci);
922 else if ( header->vci == 0x03 || header->vci == 0x04 )
923 conn = find_vpi(header->vpi);
924 else
925 conn = -1;
926
927 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
928 vcc = g_atm_priv_data.conn[conn].vcc;
929
930 if ( vcc->push_oam != NULL )
931 vcc->push_oam(vcc, header);
932 else
933 ifx_push_oam((unsigned char *)header);
934
935 g_atm_priv_data.wrx_oam++;
936
937 adsl_led_flash();
938 } else
939 g_atm_priv_data.wrx_drop_oam++;
940
941 reg_desc.byteoff = 0;
942 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
943 reg_desc.own = 1;
944 reg_desc.c = 0;
945
946 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
947 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
948 g_atm_priv_data.oam_desc_pos = 0;
949
950 dma_cache_inv((unsigned long)header, CELL_SIZE);
951 mailbox_signal(RX_DMA_CH_OAM, 0);
952 }
953 }
954
955 static inline void mailbox_aal_rx_handler(void)
956 {
957 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
958 struct rx_descriptor reg_desc;
959 int conn;
960 struct atm_vcc *vcc;
961 struct sk_buff *skb, *new_skb;
962 struct rx_inband_trailer *trailer;
963 unsigned int i;
964
965 for ( i = 0; i < vlddes; i++ ) {
966 unsigned int loop_count = 0;
967
968 do {
969 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
970 if ( ++loop_count == 1000 )
971 break;
972 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
973 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
974
975 conn = reg_desc.id;
976
977 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
978 vcc = g_atm_priv_data.conn[conn].vcc;
979
980 skb = get_skb_rx_pointer(reg_desc.dataptr);
981
982 if ( reg_desc.err ) {
983 if ( vcc->qos.aal == ATM_AAL5 ) {
984 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
985 if ( trailer->stw_crc )
986 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
987 if ( trailer->stw_ovz )
988 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
989 g_atm_priv_data.wrx_drop_pdu++;
990 }
991 if ( vcc->stats ) {
992 atomic_inc(&vcc->stats->rx_drop);
993 atomic_inc(&vcc->stats->rx_err);
994 }
995 reg_desc.err = 0;
996 } else if ( atm_charge(vcc, skb->truesize) ) {
997 new_skb = alloc_skb_rx();
998 if ( new_skb != NULL ) {
999 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
1000 if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
1001 dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
1002 #endif
1003
1004 skb_reserve(skb, reg_desc.byteoff);
1005 skb_put(skb, reg_desc.datalen);
1006 ATM_SKB(skb)->vcc = vcc;
1007
1008 vcc->push(vcc, skb);
1009
1010 if ( vcc->qos.aal == ATM_AAL5 )
1011 g_atm_priv_data.wrx_pdu++;
1012 if ( vcc->stats )
1013 atomic_inc(&vcc->stats->rx);
1014 adsl_led_flash();
1015
1016 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1017 } else {
1018 atm_return(vcc, skb->truesize);
1019 if ( vcc->qos.aal == ATM_AAL5 )
1020 g_atm_priv_data.wrx_drop_pdu++;
1021 if ( vcc->stats )
1022 atomic_inc(&vcc->stats->rx_drop);
1023 }
1024 } else {
1025 if ( vcc->qos.aal == ATM_AAL5 )
1026 g_atm_priv_data.wrx_drop_pdu++;
1027 if ( vcc->stats )
1028 atomic_inc(&vcc->stats->rx_drop);
1029 }
1030 } else {
1031 g_atm_priv_data.wrx_drop_pdu++;
1032 }
1033
1034 reg_desc.byteoff = 0;
1035 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1036 reg_desc.own = 1;
1037 reg_desc.c = 0;
1038
1039 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1040 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1041 g_atm_priv_data.aal_desc_pos = 0;
1042
1043 mailbox_signal(RX_DMA_CH_AAL, 0);
1044 }
1045 }
1046
1047 static void do_ppe_tasklet(unsigned long data)
1048 {
1049 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1050 mailbox_oam_rx_handler();
1051 mailbox_aal_rx_handler();
1052
1053 if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
1054 tasklet_schedule(&g_dma_tasklet);
1055 else
1056 enable_irq(PPE_MAILBOX_IGU1_INT);
1057 }
1058
1059 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1060 {
1061 if ( !*MBOX_IGU1_ISR )
1062 return IRQ_HANDLED;
1063
1064 disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
1065 tasklet_schedule(&g_dma_tasklet);
1066
1067 return IRQ_HANDLED;
1068 }
1069
1070 static inline void mailbox_signal(unsigned int queue, int is_tx)
1071 {
1072 int count = 1000;
1073
1074 if ( is_tx ) {
1075 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
1076 count--;
1077 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1078 } else {
1079 while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
1080 count--;
1081 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1082 }
1083
1084 ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
1085 }
1086
1087 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1088 {
1089 struct clk *fpi_clk = clk_get_fpi();
1090 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1091 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1092 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1093 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1094 unsigned int tmp;
1095
1096
1097 /*
1098 * Peak Cell Rate (PCR) Limiter
1099 */
1100 if ( qos->txtp.max_pcr == 0 )
1101 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1102 else {
1103 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1104 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1105 /* check if overflow takes place */
1106 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1107 }
1108
1109 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
1110 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1111 // Send packets to these two PVCs at same time, it trigger strange behavior.
1112 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1113 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1114 // To work around, create UBR always with max_pcr.
1115 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1116 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1117 int port = g_atm_priv_data.conn[queue].port;
1118 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1119
1120 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1121 if ( tmp > QSB_TP_TS_MAX )
1122 tmp = QSB_TP_TS_MAX;
1123 else if ( tmp < 1 )
1124 tmp = 1;
1125 qsb_queue_parameter_table.bit.tp = tmp;
1126 }
1127 #endif
1128
1129 /*
1130 * Weighted Fair Queueing Factor (WFQF)
1131 */
1132 switch ( qos->txtp.traffic_class ) {
1133 case ATM_CBR:
1134 case ATM_VBR_RT:
1135 /* real time queue gets weighted fair queueing bypass */
1136 qsb_queue_parameter_table.bit.wfqf = 0;
1137 break;
1138 case ATM_VBR_NRT:
1139 case ATM_UBR_PLUS:
1140 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1141 /* WFQF is maximum cell rate / garenteed cell rate */
1142 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1143 if ( qos->txtp.min_pcr == 0 )
1144 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1145 else {
1146 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1147 if ( tmp == 0 )
1148 qsb_queue_parameter_table.bit.wfqf = 1;
1149 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1150 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1151 else
1152 qsb_queue_parameter_table.bit.wfqf = tmp;
1153 }
1154 break;
1155 default:
1156 case ATM_UBR:
1157 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1158 }
1159
1160 /*
1161 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1162 */
1163 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1164 if ( qos->txtp.scr == 0 ) {
1165 /* disable shaper */
1166 qsb_queue_vbr_parameter_table.bit.taus = 0;
1167 qsb_queue_vbr_parameter_table.bit.ts = 0;
1168 } else {
1169 /* Cell Loss Priority (CLP) */
1170 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1171 /* CLP1 */
1172 qsb_queue_parameter_table.bit.vbr = 1;
1173 else
1174 /* CLP0 */
1175 qsb_queue_parameter_table.bit.vbr = 0;
1176 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1177 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1178 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1179 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1180 if ( tmp == 0 )
1181 qsb_queue_vbr_parameter_table.bit.taus = 1;
1182 else if ( tmp > QSB_TAUS_MAX )
1183 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1184 else
1185 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1186 }
1187 } else {
1188 qsb_queue_vbr_parameter_table.bit.taus = 0;
1189 qsb_queue_vbr_parameter_table.bit.ts = 0;
1190 }
1191
1192 /* Queue Parameter Table (QPT) */
1193 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1194 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1195 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1196 /* Queue VBR Paramter Table (QVPT) */
1197 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1198 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1199 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1200
1201 }
1202
1203 static void qsb_global_set(void)
1204 {
1205 struct clk *fpi_clk = clk_get_fpi();
1206 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1207 int i;
1208 unsigned int tmp1, tmp2, tmp3;
1209
1210 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1211 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1212 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1213
1214 /*
1215 * set SCT and SPT per port
1216 */
1217 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1218 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1219 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1220 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1221 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1222 /* carry over to integer part (?) */
1223 if ( tmp3 == (1 << 6) ) {
1224 tmp3 = 0;
1225 tmp2++;
1226 }
1227 if ( tmp2 == 0 )
1228 tmp2 = tmp3 = 1;
1229 /* 1. set mask */
1230 /* 2. write value to data transfer register */
1231 /* 3. start the tranfer */
1232 /* SCT (FracRate) */
1233 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1234 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1235 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1236 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
1237 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1238 QSB_RAMAC_TESEL_SET(i & 0x01);
1239 /* SPT (SBV + PN + IntRage) */
1240 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1241 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1242 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1243 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
1244 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1245 QSB_RAMAC_TESEL_SET(i & 0x01);
1246 }
1247 }
1248 }
1249
1250 static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1251 {
1252 struct htu_entry htu_entry = {
1253 res1: 0x00,
1254 clp: is_retx ? 0x01 : 0x00,
1255 pid: g_atm_priv_data.conn[queue].port & 0x01,
1256 vpi: vpi,
1257 vci: vci,
1258 pti: 0x00,
1259 vld: 0x01};
1260
1261 struct htu_mask htu_mask = {
1262 set: 0x01,
1263 clp: 0x01,
1264 pid_mask: 0x02,
1265 vpi_mask: 0x00,
1266 vci_mask: 0x0000,
1267 pti_mask: 0x03, // 0xx, user data
1268 clear: 0x00};
1269
1270 struct htu_result htu_result = {
1271 res1: 0x00,
1272 cellid: queue,
1273 res2: 0x00,
1274 type: aal5 ? 0x00 : 0x01,
1275 ven: 0x01,
1276 res3: 0x00,
1277 qid: queue};
1278
1279 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1280 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1281 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1282 }
1283
1284 static inline void clear_htu_entry(unsigned int queue)
1285 {
1286 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1287 }
1288
1289 static void validate_oam_htu_entry(void)
1290 {
1291 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1292 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1293 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1294 }
1295
1296 static void invalidate_oam_htu_entry(void)
1297 {
1298 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1299 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1300 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1301 }
1302
1303 static inline int find_vpi(unsigned int vpi)
1304 {
1305 int i;
1306 unsigned int bit;
1307
1308 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1309 if ( (g_atm_priv_data.conn_table & bit) != 0
1310 && g_atm_priv_data.conn[i].vcc != NULL
1311 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1312 return i;
1313 }
1314
1315 return -1;
1316 }
1317
1318 static inline int find_vpivci(unsigned int vpi, unsigned int vci)
1319 {
1320 int i;
1321 unsigned int bit;
1322
1323 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1324 if ( (g_atm_priv_data.conn_table & bit) != 0
1325 && g_atm_priv_data.conn[i].vcc != NULL
1326 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1327 && vci == g_atm_priv_data.conn[i].vcc->vci )
1328 return i;
1329 }
1330
1331 return -1;
1332 }
1333
1334 static inline int find_vcc(struct atm_vcc *vcc)
1335 {
1336 int i;
1337 unsigned int bit;
1338
1339 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1340 if ( (g_atm_priv_data.conn_table & bit) != 0
1341 && g_atm_priv_data.conn[i].vcc == vcc )
1342 return i;
1343 }
1344
1345 return -1;
1346 }
1347
1348 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
1349 {
1350 int len = 0;
1351 unsigned int major, minor;
1352
1353 ops->fw_ver(&major, &minor);
1354
1355 len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1356 len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
1357
1358 return len;
1359 }
1360
1361 static inline void check_parameters(void)
1362 {
1363 /* Please refer to Amazon spec 15.4 for setting these values. */
1364 if ( qsb_tau < 1 )
1365 qsb_tau = 1;
1366 if ( qsb_tstep < 1 )
1367 qsb_tstep = 1;
1368 else if ( qsb_tstep > 4 )
1369 qsb_tstep = 4;
1370 else if ( qsb_tstep == 3 )
1371 qsb_tstep = 2;
1372
1373 /* There is a delay between PPE write descriptor and descriptor is */
1374 /* really stored in memory. Host also has this delay when writing */
1375 /* descriptor. So PPE will use this value to determine if the write */
1376 /* operation makes effect. */
1377 if ( write_descriptor_delay < 0 )
1378 write_descriptor_delay = 0;
1379
1380 if ( aal5_fill_pattern < 0 )
1381 aal5_fill_pattern = 0;
1382 else
1383 aal5_fill_pattern &= 0xFF;
1384
1385 /* Because of the limitation of length field in descriptors, the packet */
1386 /* size could not be larger than 64K minus overhead size. */
1387 if ( aal5r_max_packet_size < 0 )
1388 aal5r_max_packet_size = 0;
1389 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1390 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1391 if ( aal5r_min_packet_size < 0 )
1392 aal5r_min_packet_size = 0;
1393 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1394 aal5r_min_packet_size = aal5r_max_packet_size;
1395 if ( aal5s_max_packet_size < 0 )
1396 aal5s_max_packet_size = 0;
1397 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1398 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1399 if ( aal5s_min_packet_size < 0 )
1400 aal5s_min_packet_size = 0;
1401 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1402 aal5s_min_packet_size = aal5s_max_packet_size;
1403
1404 if ( dma_rx_descriptor_length < 2 )
1405 dma_rx_descriptor_length = 2;
1406 if ( dma_tx_descriptor_length < 2 )
1407 dma_tx_descriptor_length = 2;
1408 if ( dma_rx_clp1_descriptor_threshold < 0 )
1409 dma_rx_clp1_descriptor_threshold = 0;
1410 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1411 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1412
1413 if ( dma_tx_descriptor_length < 2 )
1414 dma_tx_descriptor_length = 2;
1415 }
1416
1417 static inline int init_priv_data(void)
1418 {
1419 void *p;
1420 int i;
1421 struct rx_descriptor rx_desc = {0};
1422 struct sk_buff *skb;
1423 volatile struct tx_descriptor *p_tx_desc;
1424 struct sk_buff **ppskb;
1425
1426 // clear atm private data structure
1427 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
1428
1429 // allocate memory for RX (AAL) descriptors
1430 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1431 if ( p == NULL )
1432 return -1;
1433 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1434 g_atm_priv_data.aal_desc_base = p;
1435 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1436 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
1437
1438 // allocate memory for RX (OAM) descriptors
1439 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1440 if ( p == NULL )
1441 return -1;
1442 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1443 g_atm_priv_data.oam_desc_base = p;
1444 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1445 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
1446
1447 // allocate memory for RX (OAM) buffer
1448 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
1449 if ( p == NULL )
1450 return -1;
1451 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
1452 g_atm_priv_data.oam_buf_base = p;
1453 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
1454 g_atm_priv_data.oam_buf = p;
1455
1456 // allocate memory for TX descriptors
1457 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1458 if ( p == NULL )
1459 return -1;
1460 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
1461 g_atm_priv_data.tx_desc_base = p;
1462
1463 // allocate memory for TX skb pointers
1464 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
1465 if ( p == NULL )
1466 return -1;
1467 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
1468 g_atm_priv_data.tx_skb_base = p;
1469
1470 // setup RX (AAL) descriptors
1471 rx_desc.own = 1;
1472 rx_desc.c = 0;
1473 rx_desc.sop = 1;
1474 rx_desc.eop = 1;
1475 rx_desc.byteoff = 0;
1476 rx_desc.id = 0;
1477 rx_desc.err = 0;
1478 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1479 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1480 skb = alloc_skb_rx();
1481 if ( skb == NULL )
1482 return -1;
1483 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
1484 g_atm_priv_data.aal_desc[i] = rx_desc;
1485 }
1486
1487 // setup RX (OAM) descriptors
1488 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
1489 rx_desc.own = 1;
1490 rx_desc.c = 0;
1491 rx_desc.sop = 1;
1492 rx_desc.eop = 1;
1493 rx_desc.byteoff = 0;
1494 rx_desc.id = 0;
1495 rx_desc.err = 0;
1496 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1497 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
1498 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
1499 g_atm_priv_data.oam_desc[i] = rx_desc;
1500 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
1501 }
1502
1503 // setup TX descriptors and skb pointers
1504 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1505 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
1506 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1507 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
1508 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
1509 }
1510
1511 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1512 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
1513
1514 return 0;
1515 }
1516
1517 static inline void clear_priv_data(void)
1518 {
1519 int i, j;
1520 struct sk_buff *skb;
1521
1522 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1523 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
1524 for ( j = 0; j < dma_tx_descriptor_length; j++ )
1525 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
1526 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
1527 }
1528 }
1529
1530 if ( g_atm_priv_data.tx_skb_base != NULL )
1531 kfree(g_atm_priv_data.tx_skb_base);
1532
1533 if ( g_atm_priv_data.tx_desc_base != NULL )
1534 kfree(g_atm_priv_data.tx_desc_base);
1535
1536 if ( g_atm_priv_data.oam_buf_base != NULL )
1537 kfree(g_atm_priv_data.oam_buf_base);
1538
1539 if ( g_atm_priv_data.oam_desc_base != NULL )
1540 kfree(g_atm_priv_data.oam_desc_base);
1541
1542 if ( g_atm_priv_data.aal_desc_base != NULL ) {
1543 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1544 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
1545 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
1546 dev_kfree_skb_any(skb);
1547 }
1548 }
1549 kfree(g_atm_priv_data.aal_desc_base);
1550 }
1551 }
1552
1553 static inline void init_rx_tables(void)
1554 {
1555 int i;
1556 struct wrx_queue_config wrx_queue_config = {0};
1557 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
1558 struct htu_entry htu_entry = {0};
1559 struct htu_result htu_result = {0};
1560 struct htu_mask htu_mask = {
1561 set: 0x01,
1562 clp: 0x01,
1563 pid_mask: 0x00,
1564 vpi_mask: 0x00,
1565 vci_mask: 0x00,
1566 pti_mask: 0x00,
1567 clear: 0x00
1568 };
1569
1570 /*
1571 * General Registers
1572 */
1573 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
1574 #ifndef CONFIG_AMAZON_SE
1575 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
1576 #endif
1577 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
1578 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
1579 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
1580
1581 /*
1582 * WRX Queue Configuration Table
1583 */
1584 wrx_queue_config.uumask = 0xFF;
1585 wrx_queue_config.cpimask = 0xFF;
1586 wrx_queue_config.uuexp = 0;
1587 wrx_queue_config.cpiexp = 0;
1588 wrx_queue_config.mfs = aal5r_max_packet_size;
1589 wrx_queue_config.oversize = aal5r_max_packet_size;
1590 wrx_queue_config.undersize = aal5r_min_packet_size;
1591 wrx_queue_config.errdp = aal5r_drop_error_packet;
1592 wrx_queue_config.dmach = RX_DMA_CH_AAL;
1593 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
1594 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
1595 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
1596
1597 /*
1598 * WRX DMA Channel Configuration Table
1599 */
1600 wrx_dma_channel_config.chrl = 0;
1601 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
1602 wrx_dma_channel_config.mode = 0;
1603 wrx_dma_channel_config.rlcfg = 0;
1604
1605 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
1606 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
1607 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
1608
1609 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
1610 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
1611 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
1612
1613 /*
1614 * HTU Tables
1615 */
1616 for (i = 0; i < MAX_PVC_NUMBER; i++) {
1617 htu_result.qid = (unsigned int)i;
1618
1619 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1620 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1621 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
1622 }
1623
1624 /* OAM HTU Entry */
1625 htu_entry.vci = 0x03;
1626 htu_mask.pid_mask = 0x03;
1627 htu_mask.vpi_mask = 0xFF;
1628 htu_mask.vci_mask = 0x0000;
1629 htu_mask.pti_mask = 0x07;
1630 htu_result.cellid = OAM_RX_QUEUE;
1631 htu_result.type = 1;
1632 htu_result.ven = 1;
1633 htu_result.qid = OAM_RX_QUEUE;
1634 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
1635 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
1636 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
1637 htu_entry.vci = 0x04;
1638 htu_result.cellid = OAM_RX_QUEUE;
1639 htu_result.type = 1;
1640 htu_result.ven = 1;
1641 htu_result.qid = OAM_RX_QUEUE;
1642 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
1643 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
1644 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
1645 htu_entry.vci = 0x00;
1646 htu_entry.pti = 0x04;
1647 htu_mask.vci_mask = 0xFFFF;
1648 htu_mask.pti_mask = 0x01;
1649 htu_result.cellid = OAM_RX_QUEUE;
1650 htu_result.type = 1;
1651 htu_result.ven = 1;
1652 htu_result.qid = OAM_RX_QUEUE;
1653 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
1654 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
1655 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
1656 }
1657
1658 static inline void init_tx_tables(void)
1659 {
1660 int i;
1661 struct wtx_queue_config wtx_queue_config = {0};
1662 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
1663 struct wtx_port_config wtx_port_config = {
1664 res1: 0,
1665 qid: 0,
1666 qsben: 1
1667 };
1668
1669 /*
1670 * General Registers
1671 */
1672 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
1673 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
1674 *CFG_WRDES_DELAY = write_descriptor_delay;
1675
1676 /*
1677 * WTX Port Configuration Table
1678 */
1679 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1680 *WTX_PORT_CONFIG(i) = wtx_port_config;
1681
1682 /*
1683 * WTX Queue Configuration Table
1684 */
1685 wtx_queue_config.qsben = 1;
1686 wtx_queue_config.sbid = 0;
1687 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
1688 wtx_queue_config.qsb_vcid = i;
1689 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
1690 }
1691
1692 /*
1693 * WTX DMA Channel Configuration Table
1694 */
1695 wtx_dma_channel_config.mode = 0;
1696 wtx_dma_channel_config.deslen = 0;
1697 wtx_dma_channel_config.desba = 0;
1698 for ( i = 0; i < FIRST_QSB_QID; i++ )
1699 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1700 /* normal connection */
1701 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
1702 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
1703 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
1704 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1705 }
1706 }
1707
1708 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
1709 {
1710 int i, j;
1711
1712 ASSERT(port_cell != NULL, "port_cell is NULL");
1713 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
1714
1715 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
1716 if ( port_cell->tx_link_rate[j] > 0 )
1717 break;
1718 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
1719 g_atm_priv_data.port[i].tx_max_cell_rate =
1720 port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
1721
1722 qsb_global_set();
1723
1724 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
1725 if ( g_atm_priv_data.conn[i].vcc != NULL )
1726 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
1727
1728 // TODO: ReTX set xdata_addr
1729 g_xdata_addr = xdata_addr;
1730
1731 g_showtime = 1;
1732
1733 #if defined(CONFIG_VR9)
1734 IFX_REG_W32(0x0F, UTP_CFG);
1735 #endif
1736
1737 printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
1738 g_atm_priv_data.port[0].tx_max_cell_rate,
1739 g_atm_priv_data.port[1].tx_max_cell_rate,
1740 (unsigned int)g_xdata_addr);
1741
1742 return 0;
1743 }
1744
1745 static int atm_showtime_exit(void)
1746 {
1747 if ( !g_showtime )
1748 return -1;
1749
1750 #if defined(CONFIG_VR9)
1751 IFX_REG_W32(0x00, UTP_CFG);
1752 #endif
1753 g_showtime = 0;
1754 g_xdata_addr = NULL;
1755 printk("leave showtime\n");
1756 return 0;
1757 }
1758
1759 extern struct ltq_atm_ops ar9_ops;
1760 extern struct ltq_atm_ops vr9_ops;
1761 extern struct ltq_atm_ops danube_ops;
1762 extern struct ltq_atm_ops ase_ops;
1763
1764 static const struct of_device_id ltq_atm_match[] = {
1765 #ifdef CONFIG_DANUBE
1766 { .compatible = "lantiq,ppe-danube", .data = &danube_ops },
1767 #elif defined CONFIG_AMAZON_SE
1768 { .compatible = "lantiq,ppe-ase", .data = &ase_ops },
1769 #elif defined CONFIG_AR9
1770 { .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
1771 #elif defined CONFIG_VR9
1772 { .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
1773 #endif
1774 {},
1775 };
1776 MODULE_DEVICE_TABLE(of, ltq_atm_match);
1777
1778 static int ltq_atm_probe(struct platform_device *pdev)
1779 {
1780 const struct of_device_id *match;
1781 struct ltq_atm_ops *ops = NULL;
1782 int ret;
1783 int port_num;
1784 struct port_cell_info port_cell = {0};
1785 int i, j;
1786 char ver_str[256];
1787
1788 match = of_match_device(ltq_atm_match, &pdev->dev);
1789 if (!match) {
1790 dev_err(&pdev->dev, "failed to find matching device\n");
1791 return -ENOENT;
1792 }
1793 ops = (struct ltq_atm_ops *) match->data;
1794
1795 check_parameters();
1796
1797 ret = init_priv_data();
1798 if ( ret != 0 ) {
1799 pr_err("INIT_PRIV_DATA_FAIL\n");
1800 goto INIT_PRIV_DATA_FAIL;
1801 }
1802
1803 ops->init();
1804 init_rx_tables();
1805 init_tx_tables();
1806
1807 /* create devices */
1808 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
1809 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
1810 if ( !g_atm_priv_data.port[port_num].dev ) {
1811 pr_err("failed to register atm device %d!\n", port_num);
1812 ret = -EIO;
1813 goto ATM_DEV_REGISTER_FAIL;
1814 } else {
1815 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
1816 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
1817 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
1818 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
1819 }
1820 }
1821
1822 /* register interrupt handler */
1823 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
1824 if ( ret ) {
1825 if ( ret == -EBUSY ) {
1826 pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
1827 } else {
1828 pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
1829 }
1830 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
1831 }
1832 disable_irq(PPE_MAILBOX_IGU1_INT);
1833
1834
1835 ret = ops->start(0);
1836 if ( ret ) {
1837 pr_err("ifx_pp32_start fail!\n");
1838 goto PP32_START_FAIL;
1839 }
1840
1841 port_cell.port_num = ATM_PORT_NUMBER;
1842 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
1843 if ( g_showtime ) {
1844 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1845 if ( port_cell.tx_link_rate[i] != 0 )
1846 break;
1847 for ( j = 0; j < ATM_PORT_NUMBER; j++ )
1848 g_atm_priv_data.port[j].tx_max_cell_rate =
1849 port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
1850 }
1851
1852 qsb_global_set();
1853 validate_oam_htu_entry();
1854
1855 ifx_mei_atm_showtime_enter = atm_showtime_enter;
1856 ifx_mei_atm_showtime_exit = atm_showtime_exit;
1857
1858 ifx_atm_version(ops, ver_str);
1859 printk(KERN_INFO "%s", ver_str);
1860 platform_set_drvdata(pdev, ops);
1861 printk("ifxmips_atm: ATM init succeed\n");
1862
1863 return 0;
1864
1865 PP32_START_FAIL:
1866 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1867 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
1868 ATM_DEV_REGISTER_FAIL:
1869 while ( port_num-- > 0 )
1870 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1871 INIT_PRIV_DATA_FAIL:
1872 clear_priv_data();
1873 printk("ifxmips_atm: ATM init failed\n");
1874 return ret;
1875 }
1876
1877 static int ltq_atm_remove(struct platform_device *pdev)
1878 {
1879 int port_num;
1880 struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
1881
1882 ifx_mei_atm_showtime_enter = NULL;
1883 ifx_mei_atm_showtime_exit = NULL;
1884
1885 invalidate_oam_htu_entry();
1886
1887 ops->stop(0);
1888
1889 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1890
1891 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1892 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1893
1894 ops->shutdown();
1895
1896 clear_priv_data();
1897
1898 return 0;
1899 }
1900
1901 static struct platform_driver ltq_atm_driver = {
1902 .probe = ltq_atm_probe,
1903 .remove = ltq_atm_remove,
1904 .driver = {
1905 .name = "atm",
1906 .owner = THIS_MODULE,
1907 .of_match_table = ltq_atm_match,
1908 },
1909 };
1910
1911 module_platform_driver(ltq_atm_driver);
1912
1913 MODULE_LICENSE("Dual BSD/GPL");