add all source code from linksys/broadcom which is free, to cvs for better maintainen...
[openwrt/svn-archive/archive.git] / openwrt / package / linux / kernel-source / arch / mips / brcm-boards / bcm947xx / sbmips.c
1 /*
2 * BCM47XX Sonics SiliconBackplane MIPS core routines
3 *
4 * Copyright 2004, Broadcom Corporation
5 * All Rights Reserved.
6 *
7 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
8 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
9 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
10 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
11 *
12 * $Id$
13 */
14
15 #include <typedefs.h>
16 #include <osl.h>
17 #include <sbutils.h>
18 #include <bcmdevs.h>
19 #include <bcmnvram.h>
20 #include <bcmutils.h>
21 #include <hndmips.h>
22 #include <sbconfig.h>
23 #include <sbextif.h>
24 #include <sbchipc.h>
25 #include <sbmemc.h>
26
27 /*
28 * Memory segments (32bit kernel mode addresses)
29 */
30 #undef KUSEG
31 #undef KSEG0
32 #undef KSEG1
33 #undef KSEG2
34 #undef KSEG3
35 #define KUSEG 0x00000000
36 #define KSEG0 0x80000000
37 #define KSEG1 0xa0000000
38 #define KSEG2 0xc0000000
39 #define KSEG3 0xe0000000
40
41 /*
42 * Map an address to a certain kernel segment
43 */
44 #undef KSEG0ADDR
45 #undef KSEG1ADDR
46 #undef KSEG2ADDR
47 #undef KSEG3ADDR
48 #define KSEG0ADDR(a) (((a) & 0x1fffffff) | KSEG0)
49 #define KSEG1ADDR(a) (((a) & 0x1fffffff) | KSEG1)
50 #define KSEG2ADDR(a) (((a) & 0x1fffffff) | KSEG2)
51 #define KSEG3ADDR(a) (((a) & 0x1fffffff) | KSEG3)
52
53 /*
54 * The following macros are especially useful for __asm__
55 * inline assembler.
56 */
57 #ifndef __STR
58 #define __STR(x) #x
59 #endif
60 #ifndef STR
61 #define STR(x) __STR(x)
62 #endif
63
64 /* *********************************************************************
65 * CP0 Registers
66 ********************************************************************* */
67
68 #define C0_INX 0 /* CP0: TLB Index */
69 #define C0_RAND 1 /* CP0: TLB Random */
70 #define C0_TLBLO0 2 /* CP0: TLB EntryLo0 */
71 #define C0_TLBLO C0_TLBLO0 /* CP0: TLB EntryLo0 */
72 #define C0_TLBLO1 3 /* CP0: TLB EntryLo1 */
73 #define C0_CTEXT 4 /* CP0: Context */
74 #define C0_PGMASK 5 /* CP0: TLB PageMask */
75 #define C0_WIRED 6 /* CP0: TLB Wired */
76 #define C0_BADVADDR 8 /* CP0: Bad Virtual Address */
77 #define C0_COUNT 9 /* CP0: Count */
78 #define C0_TLBHI 10 /* CP0: TLB EntryHi */
79 #define C0_COMPARE 11 /* CP0: Compare */
80 #define C0_SR 12 /* CP0: Processor Status */
81 #define C0_STATUS C0_SR /* CP0: Processor Status */
82 #define C0_CAUSE 13 /* CP0: Exception Cause */
83 #define C0_EPC 14 /* CP0: Exception PC */
84 #define C0_PRID 15 /* CP0: Processor Revision Indentifier */
85 #define C0_CONFIG 16 /* CP0: Config */
86 #define C0_LLADDR 17 /* CP0: LLAddr */
87 #define C0_WATCHLO 18 /* CP0: WatchpointLo */
88 #define C0_WATCHHI 19 /* CP0: WatchpointHi */
89 #define C0_XCTEXT 20 /* CP0: XContext */
90 #define C0_DIAGNOSTIC 22 /* CP0: Diagnostic */
91 #define C0_BROADCOM C0_DIAGNOSTIC /* CP0: Broadcom Register */
92 #define C0_ECC 26 /* CP0: ECC */
93 #define C0_CACHEERR 27 /* CP0: CacheErr */
94 #define C0_TAGLO 28 /* CP0: TagLo */
95 #define C0_TAGHI 29 /* CP0: TagHi */
96 #define C0_ERREPC 30 /* CP0: ErrorEPC */
97
98 /*
99 * Macros to access the system control coprocessor
100 */
101
102 #define MFC0(source, sel) \
103 ({ \
104 int __res; \
105 __asm__ __volatile__( \
106 ".set\tnoreorder\n\t" \
107 ".set\tnoat\n\t" \
108 ".word\t"STR(0x40010000 | ((source)<<11) | (sel))"\n\t" \
109 "move\t%0,$1\n\t" \
110 ".set\tat\n\t" \
111 ".set\treorder" \
112 :"=r" (__res) \
113 : \
114 :"$1"); \
115 __res; \
116 })
117
118 #define MTC0(source, sel, value) \
119 do { \
120 __asm__ __volatile__( \
121 ".set\tnoreorder\n\t" \
122 ".set\tnoat\n\t" \
123 "move\t$1,%z0\n\t" \
124 ".word\t"STR(0x40810000 | ((source)<<11) | (sel))"\n\t" \
125 ".set\tat\n\t" \
126 ".set\treorder" \
127 : \
128 :"Jr" (value) \
129 :"$1"); \
130 } while (0)
131
132 /*
133 * R4x00 interrupt enable / cause bits
134 */
135 #undef IE_SW0
136 #undef IE_SW1
137 #undef IE_IRQ0
138 #undef IE_IRQ1
139 #undef IE_IRQ2
140 #undef IE_IRQ3
141 #undef IE_IRQ4
142 #undef IE_IRQ5
143 #define IE_SW0 (1<< 8)
144 #define IE_SW1 (1<< 9)
145 #define IE_IRQ0 (1<<10)
146 #define IE_IRQ1 (1<<11)
147 #define IE_IRQ2 (1<<12)
148 #define IE_IRQ3 (1<<13)
149 #define IE_IRQ4 (1<<14)
150 #define IE_IRQ5 (1<<15)
151
152 /*
153 * Bitfields in the R4xx0 cp0 status register
154 */
155 #define ST0_IE 0x00000001
156 #define ST0_EXL 0x00000002
157 #define ST0_ERL 0x00000004
158 #define ST0_KSU 0x00000018
159 # define KSU_USER 0x00000010
160 # define KSU_SUPERVISOR 0x00000008
161 # define KSU_KERNEL 0x00000000
162 #define ST0_UX 0x00000020
163 #define ST0_SX 0x00000040
164 #define ST0_KX 0x00000080
165 #define ST0_DE 0x00010000
166 #define ST0_CE 0x00020000
167
168 /*
169 * Status register bits available in all MIPS CPUs.
170 */
171 #define ST0_IM 0x0000ff00
172 #define ST0_CH 0x00040000
173 #define ST0_SR 0x00100000
174 #define ST0_TS 0x00200000
175 #define ST0_BEV 0x00400000
176 #define ST0_RE 0x02000000
177 #define ST0_FR 0x04000000
178 #define ST0_CU 0xf0000000
179 #define ST0_CU0 0x10000000
180 #define ST0_CU1 0x20000000
181 #define ST0_CU2 0x40000000
182 #define ST0_CU3 0x80000000
183 #define ST0_XX 0x80000000 /* MIPS IV naming */
184
185 /*
186 * Cache Operations
187 */
188
189 #ifndef Fill_I
190 #define Fill_I 0x14
191 #endif
192
193 #define cache_unroll(base,op) \
194 __asm__ __volatile__(" \
195 .set noreorder; \
196 .set mips3; \
197 cache %1, (%0); \
198 .set mips0; \
199 .set reorder" \
200 : \
201 : "r" (base), \
202 "i" (op));
203
204 /*
205 * These are the UART port assignments, expressed as offsets from the base
206 * register. These assignments should hold for any serial port based on
207 * a 8250, 16450, or 16550(A).
208 */
209
210 #define UART_MCR 4 /* Out: Modem Control Register */
211 #define UART_MSR 6 /* In: Modem Status Register */
212 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
213
214 /*
215 * Returns TRUE if an external UART exists at the given base
216 * register.
217 */
218 static bool
219 serial_exists(uint8 *regs)
220 {
221 uint8 save_mcr, status1;
222
223 save_mcr = R_REG(&regs[UART_MCR]);
224 W_REG(&regs[UART_MCR], UART_MCR_LOOP | 0x0a);
225 status1 = R_REG(&regs[UART_MSR]) & 0xf0;
226 W_REG(&regs[UART_MCR], save_mcr);
227
228 return (status1 == 0x90);
229 }
230
231 /*
232 * Initializes UART access. The callback function will be called once
233 * per found UART.
234 */
235 void
236 sb_serial_init(void *sbh, void (*add)(void *regs, uint irq, uint baud_base, uint reg_shift))
237 {
238 void *regs;
239 ulong base;
240 uint irq;
241 int i, n;
242
243 if ((regs = sb_setcore(sbh, SB_EXTIF, 0))) {
244 extifregs_t *eir = (extifregs_t *) regs;
245 sbconfig_t *sb;
246
247 /* Determine external UART register base */
248 sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF);
249 base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1)));
250
251 /* Determine IRQ */
252 irq = sb_irq(sbh);
253
254 /* Disable GPIO interrupt initially */
255 W_REG(&eir->gpiointpolarity, 0);
256 W_REG(&eir->gpiointmask, 0);
257
258 /* Search for external UARTs */
259 n = 2;
260 for (i = 0; i < 2; i++) {
261 regs = (void *) REG_MAP(base + (i * 8), 8);
262 if (serial_exists(regs)) {
263 /* Set GPIO 1 to be the external UART IRQ */
264 W_REG(&eir->gpiointmask, 2);
265 if (add)
266 add(regs, irq, 13500000, 0);
267 }
268 }
269
270 /* Add internal UART if enabled */
271 if (R_REG(&eir->corecontrol) & CC_UE)
272 if (add)
273 add((void *) &eir->uartdata, irq, sb_clock(sbh), 2);
274 } else if ((regs = sb_setcore(sbh, SB_CC, 0))) {
275 chipcregs_t *cc = (chipcregs_t *) regs;
276 uint32 rev, cap, pll, baud_base, div;
277
278 /* Determine core revision and capabilities */
279 rev = sb_corerev(sbh);
280 cap = R_REG(&cc->capabilities);
281 pll = cap & CAP_PLL_MASK;
282
283 /* Determine IRQ */
284 irq = sb_irq(sbh);
285
286 if (pll == PLL_TYPE1) {
287 /* PLL clock */
288 baud_base = sb_clock_rate(pll,
289 R_REG(&cc->clockcontrol_n),
290 R_REG(&cc->clockcontrol_m2));
291 div = 1;
292 } else if (rev >= 3) {
293 /* Internal backplane clock */
294 baud_base = sb_clock_rate(pll,
295 R_REG(&cc->clockcontrol_n),
296 R_REG(&cc->clockcontrol_sb));
297 div = 2; /* Minimum divisor */
298 W_REG(&cc->clkdiv, ((R_REG(&cc->clkdiv) & ~CLKD_UART) | div));
299 } else {
300 /* Fixed internal backplane clock */
301 baud_base = 88000000;
302 div = 48;
303 }
304
305 /* Clock source depends on strapping if UartClkOverride is unset */
306 if ((rev > 0) && ((R_REG(&cc->corecontrol) & CC_UARTCLKO) == 0)) {
307 if ((cap & CAP_UCLKSEL) == CAP_UINTCLK) {
308 /* Internal divided backplane clock */
309 baud_base /= div;
310 } else {
311 /* Assume external clock of 1.8432 MHz */
312 baud_base = 1843200;
313 }
314 }
315
316 /* Add internal UARTs */
317 n = cap & CAP_UARTS_MASK;
318 for (i = 0; i < n; i++) {
319 /* Register offset changed after revision 0 */
320 if (rev)
321 regs = (void *)((ulong) &cc->uart0data + (i * 256));
322 else
323 regs = (void *)((ulong) &cc->uart0data + (i * 8));
324
325 if (add)
326 add(regs, irq, baud_base, 0);
327 }
328 }
329 }
330
331 /* Returns the SB interrupt flag of the current core. */
332 uint32
333 sb_flag(void *sbh)
334 {
335 void *regs;
336 sbconfig_t *sb;
337
338 regs = sb_coreregs(sbh);
339 sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
340
341 return (R_REG(&sb->sbtpsflag) & SBTPS_NUM0_MASK);
342 }
343
344 static const uint32 sbips_int_mask[] = {
345 0,
346 SBIPS_INT1_MASK,
347 SBIPS_INT2_MASK,
348 SBIPS_INT3_MASK,
349 SBIPS_INT4_MASK
350 };
351
352 static const uint32 sbips_int_shift[] = {
353 0,
354 0,
355 SBIPS_INT2_SHIFT,
356 SBIPS_INT3_SHIFT,
357 SBIPS_INT4_SHIFT
358 };
359
360 /*
361 * Returns the MIPS IRQ assignment of the current core. If unassigned,
362 * 0 is returned.
363 */
364 uint
365 sb_irq(void *sbh)
366 {
367 uint idx;
368 void *regs;
369 sbconfig_t *sb;
370 uint32 flag, sbipsflag;
371 uint irq = 0;
372
373 flag = sb_flag(sbh);
374
375 idx = sb_coreidx(sbh);
376
377 if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
378 (regs = sb_setcore(sbh, SB_MIPS33, 0))) {
379 sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
380
381 /* sbipsflag specifies which core is routed to interrupts 1 to 4 */
382 sbipsflag = R_REG(&sb->sbipsflag);
383 for (irq = 1; irq <= 4; irq++) {
384 if (((sbipsflag & sbips_int_mask[irq]) >> sbips_int_shift[irq]) == flag)
385 break;
386 }
387 if (irq == 5)
388 irq = 0;
389 }
390
391 sb_setcoreidx(sbh, idx);
392
393 return irq;
394 }
395
396 /* Clears the specified MIPS IRQ. */
397 static void
398 sb_clearirq(void *sbh, uint irq)
399 {
400 void *regs;
401 sbconfig_t *sb;
402
403 if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
404 !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
405 ASSERT(regs);
406 sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
407
408 if (irq == 0)
409 W_REG(&sb->sbintvec, 0);
410 else
411 OR_REG(&sb->sbipsflag, sbips_int_mask[irq]);
412 }
413
414 /*
415 * Assigns the specified MIPS IRQ to the specified core. Shared MIPS
416 * IRQ 0 may be assigned more than once.
417 */
418 static void
419 sb_setirq(void *sbh, uint irq, uint coreid, uint coreunit)
420 {
421 void *regs;
422 sbconfig_t *sb;
423 uint32 flag;
424
425 regs = sb_setcore(sbh, coreid, coreunit);
426 ASSERT(regs);
427 flag = sb_flag(sbh);
428
429 if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
430 !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
431 ASSERT(regs);
432 sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
433
434 if (irq == 0)
435 OR_REG(&sb->sbintvec, 1 << flag);
436 else {
437 flag <<= sbips_int_shift[irq];
438 ASSERT(!(flag & ~sbips_int_mask[irq]));
439 flag |= R_REG(&sb->sbipsflag) & ~sbips_int_mask[irq];
440 W_REG(&sb->sbipsflag, flag);
441 }
442 }
443
444 /*
445 * Initializes clocks and interrupts. SB and NVRAM access must be
446 * initialized prior to calling.
447 */
448 void
449 sb_mips_init(void *sbh)
450 {
451 ulong hz, ns, tmp;
452 extifregs_t *eir;
453 chipcregs_t *cc;
454 char *value;
455 uint irq;
456
457 /* Figure out current SB clock speed */
458 if ((hz = sb_clock(sbh)) == 0)
459 hz = 100000000;
460 ns = 1000000000 / hz;
461
462 /* Setup external interface timing */
463 if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
464 /* Initialize extif so we can get to the LEDs and external UART */
465 W_REG(&eir->prog_config, CF_EN);
466
467 /* Set timing for the flash */
468 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
469 tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
470 tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
471 W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
472
473 /* Set programmable interface timing for external uart */
474 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
475 tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
476 tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
477 tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
478 W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
479 } else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
480 /* Set timing for the flash */
481 tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
482 tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */
483 tmp |= CEIL(120, ns); /* W0 = 120nS */
484 W_REG(&cc->flash_waitcount, tmp);
485
486 W_REG(&cc->pcmcia_memwait, tmp);
487 }
488
489 /* Chip specific initialization */
490 switch (sb_chip(sbh)) {
491 case BCM4710_DEVICE_ID:
492 /* Clear interrupt map */
493 for (irq = 0; irq <= 4; irq++)
494 sb_clearirq(sbh, irq);
495 sb_setirq(sbh, 0, SB_CODEC, 0);
496 sb_setirq(sbh, 0, SB_EXTIF, 0);
497 sb_setirq(sbh, 2, SB_ENET, 1);
498 sb_setirq(sbh, 3, SB_ILINE20, 0);
499 sb_setirq(sbh, 4, SB_PCI, 0);
500 ASSERT(eir);
501 value = nvram_get("et0phyaddr");
502 if (value && !strcmp(value, "31")) {
503 /* Enable internal UART */
504 W_REG(&eir->corecontrol, CC_UE);
505 /* Give USB its own interrupt */
506 sb_setirq(sbh, 1, SB_USB, 0);
507 } else {
508 /* Disable internal UART */
509 W_REG(&eir->corecontrol, 0);
510 /* Give Ethernet its own interrupt */
511 sb_setirq(sbh, 1, SB_ENET, 0);
512 sb_setirq(sbh, 0, SB_USB, 0);
513 }
514 break;
515 case BCM4310_DEVICE_ID:
516 MTC0(C0_BROADCOM, 0, MFC0(C0_BROADCOM, 0) & ~(1 << 22));
517 break;
518 }
519 }
520
521 uint32
522 sb_mips_clock(void *sbh)
523 {
524 extifregs_t *eir;
525 chipcregs_t *cc;
526 uint32 n, m;
527 uint idx;
528 uint32 pll_type, rate = 0;
529
530 /* get index of the current core */
531 idx = sb_coreidx(sbh);
532 pll_type = PLL_TYPE1;
533
534 /* switch to extif or chipc core */
535 if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
536 n = R_REG(&eir->clockcontrol_n);
537 m = R_REG(&eir->clockcontrol_sb);
538 } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
539 pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
540 n = R_REG(&cc->clockcontrol_n);
541 if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4))
542 m = R_REG(&cc->clockcontrol_mips);
543 else if (pll_type == PLL_TYPE3) {
544 rate = 200000000;
545 goto out;
546 } else
547 m = R_REG(&cc->clockcontrol_sb);
548 } else
549 goto out;
550
551 /* calculate rate */
552 rate = sb_clock_rate(pll_type, n, m);
553
554 out:
555 /* switch back to previous core */
556 sb_setcoreidx(sbh, idx);
557
558 return rate;
559 }
560
561 static void
562 icache_probe(int *size, int *lsize)
563 {
564 uint32 config1;
565 uint sets, ways;
566
567 config1 = MFC0(C0_CONFIG, 1);
568
569 /* Instruction Cache Size = Associativity * Line Size * Sets Per Way */
570 if ((*lsize = ((config1 >> 19) & 7)))
571 *lsize = 2 << *lsize;
572 sets = 64 << ((config1 >> 22) & 7);
573 ways = 1 + ((config1 >> 16) & 7);
574 *size = *lsize * sets * ways;
575 }
576
577 #define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)
578
579 static void
580 handler(void)
581 {
582 /* Step 11 */
583 __asm__ (
584 ".set\tmips32\n\t"
585 "ssnop\n\t"
586 "ssnop\n\t"
587 /* Disable interrupts */
588 /* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
589 "mfc0 $15, $12\n\t"
590 "and $15, $15, -31746\n\t"
591 "mtc0 $15, $12\n\t"
592 "eret\n\t"
593 "nop\n\t"
594 "nop\n\t"
595 ".set\tmips0"
596 );
597 }
598
599 /* The following MUST come right after handler() */
600 static void
601 afterhandler(void)
602 {
603 }
604
605 /*
606 * Set the MIPS, backplane and PCI clocks as closely as possible.
607 */
608 bool
609 sb_mips_setclock(void *sbh, uint32 mipsclock, uint32 sbclock, uint32 pciclock)
610 {
611 extifregs_t *eir = NULL;
612 chipcregs_t *cc = NULL;
613 mipsregs_t *mipsr = NULL;
614 volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci;
615 uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm, new_ratio;
616 uint32 pll_type, sync_mode;
617 uint idx, i;
618 typedef struct {
619 uint32 mipsclock;
620 uint16 n;
621 uint32 sb;
622 uint32 pci33;
623 uint32 pci25;
624 } n3m_table_t;
625 static n3m_table_t type1_table[] = {
626 { 96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011 }, /* 96.000 32.000 24.000 */
627 { 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011 }, /* 100.000 33.333 25.000 */
628 { 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009 }, /* 104.000 31.200 24.960 */
629 { 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802 }, /* 108.000 32.400 24.923 */
630 { 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403 }, /* 112.000 32.000 24.889 */
631 { 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011 }, /* 115.200 32.000 24.000 */
632 { 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011 }, /* 120.000 30.000 24.000 */
633 { 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009 }, /* 124.800 31.200 24.960 */
634 { 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305 }, /* 128.000 32.000 24.000 */
635 { 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305 }, /* 132.000 33.000 24.750 */
636 { 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603 }, /* 136.000 32.640 24.727 */
637 { 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02 }, /* 140.000 30.000 24.706 */
638 { 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021 }, /* 144.000 30.857 24.686 */
639 { 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605 }, /* 150.857 33.000 24.000 */
640 { 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02 }, /* 152.000 32.571 24.000 */
641 { 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009 }, /* 156.000 31.200 24.960 */
642 { 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309 }, /* 160.000 32.000 24.000 */
643 { 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603 }, /* 163.200 32.640 24.727 */
644 { 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403 }, /* 168.000 32.000 24.889 */
645 { 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602 }, /* 176.000 33.000 24.000 */
646 };
647 typedef struct {
648 uint32 mipsclock;
649 uint32 sbclock;
650 uint16 n;
651 uint32 sb;
652 uint32 pci33;
653 uint32 m2;
654 uint32 m3;
655 uint32 ratio;
656 uint32 ratio_parm;
657 } n4m_table_t;
658
659 static n4m_table_t type2_table[] = {
660 { 180000000, 80000000, 0x0403, 0x01010000, 0x01020300, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
661 { 180000000, 90000000, 0x0403, 0x01000100, 0x01020300, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
662 { 200000000, 100000000, 0x0303, 0x01000000, 0x01000600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
663 { 211200000, 105600000, 0x0902, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
664 { 220800000, 110400000, 0x1500, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
665 { 230400000, 115200000, 0x0604, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
666 { 234000000, 104000000, 0x0b01, 0x01010000, 0x01010700, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
667 { 240000000, 120000000, 0x0803, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
668 { 252000000, 126000000, 0x0504, 0x01000100, 0x01020500, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
669 { 264000000, 132000000, 0x0903, 0x01000200, 0x01020700, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
670 { 270000000, 120000000, 0x0703, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
671 { 276000000, 122666666, 0x1500, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
672 { 280000000, 140000000, 0x0503, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
673 { 288000000, 128000000, 0x0604, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
674 { 288000000, 144000000, 0x0404, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
675 { 300000000, 133333333, 0x0803, 0x01010000, 0x01020600, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
676 { 300000000, 150000000, 0x0803, 0x01000100, 0x01020600, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }
677 };
678
679 static n4m_table_t type4_table[] = {
680 { 192000000, 96000000, 0x0702, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
681 { 200000000, 100000000, 0x0009, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
682 { 216000000, 108000000, 0x0111, 0x11020005, 0x01030303, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
683 { 228000000, 101333333, 0x0e02, 0x11030003, 0x11210005, 0x11030305, 0x04000005, 0x94, 0x012a00a9 },
684 { 228000000, 114000000, 0x0e02, 0x11020005, 0x11210005, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
685 { 240000000, 120000000, 0x0109, 0x11030002, 0x01050203, 0x11030002, 0x04000003, 0x21, 0x0aaa0555 },
686 { 252000000, 126000000, 0x0203, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
687 { 264000000, 132000000, 0x0602, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
688 { 272000000, 116571428, 0x0c02, 0x04000021, 0x02000909, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
689 { 280000000, 120000000, 0x0209, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
690 { 288000000, 123428571, 0x0111, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
691 { 300000000, 120000000, 0x0009, 0x04000009, 0x01030203, 0x02000902, 0x04000002, 0x52, 0x02520129 }
692 };
693 uint icache_size, ic_lsize;
694 ulong start, end, dst;
695 bool ret = FALSE;
696
697 /* get index of the current core */
698 idx = sb_coreidx(sbh);
699
700 /* switch to extif or chipc core */
701 if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
702 pll_type = PLL_TYPE1;
703 clockcontrol_n = &eir->clockcontrol_n;
704 clockcontrol_sb = &eir->clockcontrol_sb;
705 clockcontrol_pci = &eir->clockcontrol_pci;
706 } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
707 pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
708 clockcontrol_n = &cc->clockcontrol_n;
709 clockcontrol_sb = &cc->clockcontrol_sb;
710 clockcontrol_pci = &cc->clockcontrol_pci;
711 } else
712 goto done;
713
714 /* Store the current clock register values */
715 orig_n = R_REG(clockcontrol_n);
716 orig_sb = R_REG(clockcontrol_sb);
717 orig_pci = R_REG(clockcontrol_pci);
718
719 if (pll_type == PLL_TYPE1) {
720 /* Keep the current PCI clock if not specified */
721 if (pciclock == 0) {
722 pciclock = sb_clock_rate(pll_type, R_REG(clockcontrol_n), R_REG(clockcontrol_pci));
723 pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
724 }
725
726 /* Search for the closest MIPS clock less than or equal to a preferred value */
727 for (i = 0; i < ARRAYSIZE(type1_table); i++) {
728 ASSERT(type1_table[i].mipsclock ==
729 sb_clock_rate(pll_type, type1_table[i].n, type1_table[i].sb));
730 if (type1_table[i].mipsclock > mipsclock)
731 break;
732 }
733 if (i == 0) {
734 ret = FALSE;
735 goto done;
736 } else {
737 ret = TRUE;
738 i--;
739 }
740 ASSERT(type1_table[i].mipsclock <= mipsclock);
741
742 /* No PLL change */
743 if ((orig_n == type1_table[i].n) &&
744 (orig_sb == type1_table[i].sb) &&
745 (orig_pci == type1_table[i].pci33))
746 goto done;
747
748 /* Set the PLL controls */
749 W_REG(clockcontrol_n, type1_table[i].n);
750 W_REG(clockcontrol_sb, type1_table[i].sb);
751 if (pciclock == 25000000)
752 W_REG(clockcontrol_pci, type1_table[i].pci25);
753 else
754 W_REG(clockcontrol_pci, type1_table[i].pci33);
755
756 /* Reset */
757 sb_watchdog(sbh, 1);
758 while (1);
759 } else if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) {
760 n4m_table_t *table = (pll_type == PLL_TYPE2) ? type2_table : type4_table;
761 uint tabsz = (pll_type == PLL_TYPE2) ? ARRAYSIZE(type2_table) : ARRAYSIZE(type4_table);
762
763 ASSERT(cc);
764
765 /* Store the current clock register values */
766 orig_m2 = R_REG(&cc->clockcontrol_m2);
767 orig_mips = R_REG(&cc->clockcontrol_mips);
768 orig_ratio_parm = 0;
769
770 /* Look up current ratio */
771 for (i = 0; i < tabsz; i++) {
772 if ((orig_n == table[i].n) &&
773 (orig_sb == table[i].sb) &&
774 (orig_pci == table[i].pci33) &&
775 (orig_m2 == table[i].m2) &&
776 (orig_mips == table[i].m3)) {
777 orig_ratio_parm = table[i].ratio_parm;
778 break;
779 }
780 }
781
782 /* Search for the closest MIPS clock greater or equal to a preferred value */
783 for (i = 0; i < tabsz; i++) {
784 ASSERT(table[i].mipsclock ==
785 sb_clock_rate(pll_type, table[i].n, table[i].m3));
786 if ((mipsclock <= table[i].mipsclock) &&
787 ((sbclock == 0) || (sbclock <= table[i].sbclock)))
788 break;
789 }
790 if (i == tabsz) {
791 ret = FALSE;
792 goto done;
793 } else {
794 ret = TRUE;
795 }
796
797 /* No PLL change */
798 if ((orig_n == table[i].n) &&
799 (orig_sb == table[i].sb) &&
800 (orig_pci == table[i].pci33) &&
801 (orig_m2 == table[i].m2) &&
802 (orig_mips == table[i].m3))
803 goto done;
804
805 /* Set the PLL controls */
806 W_REG(clockcontrol_n, table[i].n);
807 W_REG(clockcontrol_sb, table[i].sb);
808 W_REG(clockcontrol_pci, table[i].pci33);
809 W_REG(&cc->clockcontrol_m2, table[i].m2);
810 W_REG(&cc->clockcontrol_mips, table[i].m3);
811
812 /* No ratio change */
813 if (orig_ratio_parm == table[i].ratio_parm)
814 goto end_fill;
815
816 new_ratio = table[i].ratio_parm;
817
818 icache_probe(&icache_size, &ic_lsize);
819
820 /* Preload the code into the cache */
821 start = ((ulong) &&start_fill) & ~(ic_lsize - 1);
822 end = ((ulong) &&end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
823 while (start < end) {
824 cache_unroll(start, Fill_I);
825 start += ic_lsize;
826 }
827
828 /* Copy the handler */
829 start = (ulong) &handler;
830 end = (ulong) &afterhandler;
831 dst = KSEG1ADDR(0x180);
832 for (i = 0; i < (end - start); i += 4)
833 *((ulong *)(dst + i)) = *((ulong *)(start + i));
834
835 /* Preload handler into the cache one line at a time */
836 for (i = 0; i < (end - start); i += 4)
837 cache_unroll(dst + i, Fill_I);
838
839 /* Clear BEV bit */
840 MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);
841
842 /* Enable interrupts */
843 MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));
844
845 /* Enable MIPS timer interrupt */
846 if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
847 !(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
848 ASSERT(mipsr);
849 W_REG(&mipsr->intmask, 1);
850
851 start_fill:
852 /* step 1, set clock ratios */
853 MTC0(C0_BROADCOM, 3, new_ratio);
854 MTC0(C0_BROADCOM, 1, 8);
855
856 /* step 2: program timer intr */
857 W_REG(&mipsr->timer, 100);
858 (void) R_REG(&mipsr->timer);
859
860 /* step 3, switch to async */
861 sync_mode = MFC0(C0_BROADCOM, 4);
862 MTC0(C0_BROADCOM, 4, 1 << 22);
863
864 /* step 4, set cfg active */
865 MTC0(C0_BROADCOM, 2, 0x9);
866
867
868 /* steps 5 & 6 */
869 __asm__ __volatile__ (
870 ".set\tmips3\n\t"
871 "wait\n\t"
872 ".set\tmips0"
873 );
874
875 /* step 7, clear cfg_active */
876 MTC0(C0_BROADCOM, 2, 0);
877
878 /* Additional Step: set back to orig sync mode */
879 MTC0(C0_BROADCOM, 4, sync_mode);
880
881 /* step 8, fake soft reset */
882 MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | 4);
883
884 end_fill:
885 /* step 9 set watchdog timer */
886 sb_watchdog(sbh, 20);
887 (void) R_REG(&cc->chipid);
888
889 /* step 11 */
890 __asm__ __volatile__ (
891 ".set\tmips3\n\t"
892 "sync\n\t"
893 "wait\n\t"
894 ".set\tmips0"
895 );
896 while (1);
897 }
898
899 done:
900 /* switch back to previous core */
901 sb_setcoreidx(sbh, idx);
902
903 return ret;
904 }
905
906
907 /* returns the ncdl value to be programmed into sdram_ncdl for calibration */
908 uint32
909 sb_memc_get_ncdl(void *sbh)
910 {
911 sbmemcregs_t *memc;
912 uint32 ret = 0;
913 uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
914 uint idx, rev;
915
916 idx = sb_coreidx(sbh);
917
918 memc = (sbmemcregs_t *)sb_setcore(sbh, SB_MEMC, 0);
919 if (memc == 0)
920 goto out;
921
922 rev = sb_corerev(sbh);
923
924 config = R_REG(&memc->config);
925 wr = R_REG(&memc->wrncdlcor);
926 rd = R_REG(&memc->rdncdlcor);
927 misc = R_REG(&memc->miscdlyctl);
928 dqsg = R_REG(&memc->dqsgatencdl);
929
930 rd &= MEMC_RDNCDLCOR_RD_MASK;
931 wr &= MEMC_WRNCDLCOR_WR_MASK;
932 dqsg &= MEMC_DQSGATENCDL_G_MASK;
933
934 if (config & MEMC_CONFIG_DDR) {
935 ret = (wr << 16) | (rd << 8) | dqsg;
936 } else {
937 if (rev > 0)
938 cd = rd;
939 else
940 cd = (rd == MEMC_CD_THRESHOLD) ? rd : (wr + MEMC_CD_THRESHOLD);
941 sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
942 sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
943 ret = (sm << 16) | (sd << 8) | cd;
944 }
945
946 out:
947 /* switch back to previous core */
948 sb_setcoreidx(sbh, idx);
949
950 return ret;
951 }