add the new ath9k driver (loads successfully on an AR9160 card, but still seems to...
[openwrt/svn-archive/archive.git] / package / ath9k / src / drivers / net / wireless / ath9k / rc.h
1 /*
2 * Copyright (c) 2004 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004 Video54 Technologies, Inc.
4 * Copyright (c) 2008 Atheros Communications Inc.
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #ifndef RC_H
20 #define RC_H
21
22 #include "ath9k.h"
23 /*
24 * Interface definitions for transmit rate control modules for the
25 * Atheros driver.
26 *
27 * A rate control module is responsible for choosing the transmit rate
28 * for each data frame. Management+control frames are always sent at
29 * a fixed rate.
30 *
31 * Only one module may be present at a time; the driver references
32 * rate control interfaces by symbol name. If multiple modules are
33 * to be supported we'll need to switch to a registration-based scheme
34 * as is currently done, for example, for authentication modules.
35 *
36 * An instance of the rate control module is attached to each device
37 * at attach time and detached when the device is destroyed. The module
38 * may associate data with each device and each node (station). Both
39 * sets of storage are opaque except for the size of the per-node storage
40 * which must be provided when the module is attached.
41 *
42 * The rate control module is notified for each state transition and
43 * station association/reassociation. Otherwise it is queried for a
44 * rate for each outgoing frame and provided status from each transmitted
45 * frame. Any ancillary processing is the responsibility of the module
46 * (e.g. if periodic processing is required then the module should setup
47 * it's own timer).
48 *
49 * In addition to the transmit rate for each frame the module must also
50 * indicate the number of attempts to make at the specified rate. If this
51 * number is != ATH_TXMAXTRY then an additional callback is made to setup
52 * additional transmit state. The rate control code is assumed to write
53 * this additional data directly to the transmit descriptor.
54 */
55
56 struct ath_softc;
57
58 #define TRUE 1
59 #define FALSE 0
60
61 #define ATH_RATE_MAX 30
62 #define MCS_SET_SIZE 128
63
64 enum ieee80211_fixed_rate_mode {
65 IEEE80211_FIXED_RATE_NONE = 0,
66 IEEE80211_FIXED_RATE_MCS = 1 /* HT rates */
67 };
68
69 /*
70 * Use the hal os glue code to get ms time
71 */
72 #define IEEE80211_RATE_IDX_ENTRY(val, idx) (((val&(0xff<<(idx*8)))>>(idx*8)))
73
74 #define SHORT_PRE 1
75 #define LONG_PRE 0
76
77 #define WLAN_PHY_HT_20_SS WLAN_RC_PHY_HT_20_SS
78 #define WLAN_PHY_HT_20_DS WLAN_RC_PHY_HT_20_DS
79 #define WLAN_PHY_HT_20_DS_HGI WLAN_RC_PHY_HT_20_DS_HGI
80 #define WLAN_PHY_HT_40_SS WLAN_RC_PHY_HT_40_SS
81 #define WLAN_PHY_HT_40_SS_HGI WLAN_RC_PHY_HT_40_SS_HGI
82 #define WLAN_PHY_HT_40_DS WLAN_RC_PHY_HT_40_DS
83 #define WLAN_PHY_HT_40_DS_HGI WLAN_RC_PHY_HT_40_DS_HGI
84
85 #define WLAN_PHY_OFDM PHY_OFDM
86 #define WLAN_PHY_CCK PHY_CCK
87
88 #define TRUE_20 0x2
89 #define TRUE_40 0x4
90 #define TRUE_2040 (TRUE_20|TRUE_40)
91 #define TRUE_ALL (TRUE_2040|TRUE)
92
93 enum {
94 WLAN_RC_PHY_HT_20_SS = 4,
95 WLAN_RC_PHY_HT_20_DS,
96 WLAN_RC_PHY_HT_40_SS,
97 WLAN_RC_PHY_HT_40_DS,
98 WLAN_RC_PHY_HT_20_SS_HGI,
99 WLAN_RC_PHY_HT_20_DS_HGI,
100 WLAN_RC_PHY_HT_40_SS_HGI,
101 WLAN_RC_PHY_HT_40_DS_HGI,
102 WLAN_RC_PHY_MAX
103 };
104
105 #define WLAN_RC_PHY_DS(_phy) ((_phy == WLAN_RC_PHY_HT_20_DS) \
106 || (_phy == WLAN_RC_PHY_HT_40_DS) \
107 || (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \
108 || (_phy == WLAN_RC_PHY_HT_40_DS_HGI))
109 #define WLAN_RC_PHY_40(_phy) ((_phy == WLAN_RC_PHY_HT_40_SS) \
110 || (_phy == WLAN_RC_PHY_HT_40_DS) \
111 || (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \
112 || (_phy == WLAN_RC_PHY_HT_40_DS_HGI))
113 #define WLAN_RC_PHY_SGI(_phy) ((_phy == WLAN_RC_PHY_HT_20_SS_HGI) \
114 || (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \
115 || (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \
116 || (_phy == WLAN_RC_PHY_HT_40_DS_HGI))
117
118 #define WLAN_RC_PHY_HT(_phy) (_phy >= WLAN_RC_PHY_HT_20_SS)
119
120 /* Returns the capflag mode */
121 #define WLAN_RC_CAP_MODE(capflag) (((capflag & WLAN_RC_HT_FLAG)? \
122 (capflag & WLAN_RC_40_FLAG)?TRUE_40:TRUE_20:\
123 TRUE))
124
125 /* Return TRUE if flag supports HT20 && client supports HT20 or
126 * return TRUE if flag supports HT40 && client supports HT40.
127 * This is used becos some rates overlap between HT20/HT40.
128 */
129
130 #define WLAN_RC_PHY_HT_VALID(flag, capflag) (((flag & TRUE_20) && !(capflag \
131 & WLAN_RC_40_FLAG)) || ((flag & TRUE_40) && \
132 (capflag & WLAN_RC_40_FLAG)))
133
134 #define WLAN_RC_DS_FLAG (0x01)
135 #define WLAN_RC_40_FLAG (0x02)
136 #define WLAN_RC_SGI_FLAG (0x04)
137 #define WLAN_RC_HT_FLAG (0x08)
138
139 /* Index into the rate table */
140 #define INIT_RATE_MAX_20 23
141 #define INIT_RATE_MAX_40 40
142
143 #define RATE_TABLE_SIZE 64
144
145 /* XXX: Convert to kdoc */
146 struct ath_rate_table {
147 int rate_cnt;
148 struct {
149 int valid; /* Valid for use in rate control */
150 int valid_single_stream;/* Valid for use in rate control
151 for single stream operation */
152 u_int8_t phy; /* CCK/OFDM/TURBO/XR */
153 u_int32_t ratekbps; /* Rate in Kbits per second */
154 u_int32_t user_ratekbps; /* User rate in KBits per second */
155 u_int8_t ratecode; /* rate that goes into
156 hw descriptors */
157 u_int8_t short_preamble; /* Mask for enabling short preamble
158 in rate code for CCK */
159 u_int8_t dot11rate; /* Value that goes into supported
160 rates info element of MLME */
161 u_int8_t ctrl_rate; /* Index of next lower basic rate,
162 used for duration computation */
163 int8_t rssi_ack_validmin; /* Rate control related */
164 int8_t rssi_ack_deltamin; /* Rate control related */
165 u_int8_t base_index; /* base rate index */
166 u_int8_t cw40index; /* 40cap rate index */
167 u_int8_t sgi_index; /* shortgi rate index */
168 u_int8_t ht_index; /* shortgi rate index */
169 u_int32_t max_4ms_framelen; /* Maximum frame length(bytes)
170 for 4ms tx duration */
171 } info[RATE_TABLE_SIZE];
172 u_int32_t probe_interval; /* interval for ratectrl to
173 probe for other rates */
174 u_int32_t rssi_reduce_interval; /* interval for ratectrl
175 to reduce RSSI */
176 u_int8_t initial_ratemax; /* the initial ratemax value used
177 in ath_rc_sib_update() */
178 };
179
180 #define ATH_RC_PROBE_ALLOWED 0x00000001
181 #define ATH_RC_MINRATE_LASTRATE 0x00000002
182 #define ATH_RC_SHORT_PREAMBLE 0x00000004
183
184 struct ath_rc_series {
185 u_int8_t rix;
186 u_int8_t tries;
187 u_int8_t flags;
188 u_int32_t max_4ms_framelen;
189 };
190
191 /* rcs_flags definition */
192 #define ATH_RC_DS_FLAG 0x01
193 #define ATH_RC_CW40_FLAG 0x02 /* CW 40 */
194 #define ATH_RC_SGI_FLAG 0x04 /* Short Guard Interval */
195 #define ATH_RC_HT_FLAG 0x08 /* HT */
196 #define ATH_RC_RTSCTS_FLAG 0x10 /* RTS-CTS */
197
198 /*
199 * State structures for new rate adaptation code
200 */
201 #define MAX_TX_RATE_TBL 64
202 #define MAX_TX_RATE_PHY 48
203
204 struct ath_tx_ratectrl_state {
205 int8_t rssi_thres; /* required rssi for this rate (dB) */
206 u_int8_t per; /* recent estimate of packet error rate (%) */
207 };
208
209 struct ath_tx_ratectrl {
210 struct ath_tx_ratectrl_state state[MAX_TX_RATE_TBL]; /* state */
211 int8_t rssi_last; /* last ack rssi */
212 int8_t rssi_last_lookup; /* last ack rssi used for lookup */
213 int8_t rssi_last_prev; /* previous last ack rssi */
214 int8_t rssi_last_prev2; /* 2nd previous last ack rssi */
215 int32_t rssi_sum_cnt; /* count of rssi_sum for averaging */
216 int32_t rssi_sum_rate; /* rate that we are averaging */
217 int32_t rssi_sum; /* running sum of rssi for averaging */
218 u_int32_t valid_txrate_mask; /* mask of valid rates */
219 u_int8_t rate_table_size; /* rate table size */
220 u_int8_t rate_max; /* max rate that has recently worked */
221 u_int8_t probe_rate; /* rate we are probing at */
222 u_int32_t rssi_time; /* msec timestamp for last ack rssi */
223 u_int32_t rssi_down_time; /* msec timestamp for last down step */
224 u_int32_t probe_time; /* msec timestamp for last probe */
225 u_int8_t hw_maxretry_pktcnt; /* num packets since we got
226 HW max retry error */
227 u_int8_t max_valid_rate; /* maximum number of valid rate */
228 u_int8_t valid_rate_index[MAX_TX_RATE_TBL]; /* valid rate index */
229 u_int32_t per_down_time; /* msec timstamp for last
230 PER down step */
231
232 /* 11n state */
233 u_int8_t valid_phy_ratecnt[WLAN_RC_PHY_MAX]; /* valid rate count */
234 u_int8_t valid_phy_rateidx[WLAN_RC_PHY_MAX][MAX_TX_RATE_TBL];
235 u_int8_t rc_phy_mode;
236 u_int8_t rate_max_phy; /* Phy index for the max rate */
237 u_int32_t rate_max_lastused; /* msec timstamp of when we
238 last used rateMaxPhy */
239 u_int32_t probe_interval; /* interval for ratectrl to probe
240 for other rates */
241 };
242
243 struct ath_rateset {
244 u_int8_t rs_nrates;
245 u_int8_t rs_rates[ATH_RATE_MAX];
246 };
247
248 /* per-device state */
249 struct ath_rate_softc {
250 /* phy tables that contain rate control data */
251 const void *hw_rate_table[WIRELESS_MODE_MAX];
252 int fixedrix; /* -1 or index of fixed rate */
253 };
254
255 /* per-node state */
256 struct ath_rate_node {
257 struct ath_tx_ratectrl tx_ratectrl; /* rate control state proper */
258 u_int32_t prev_data_rix; /* rate idx of last data frame */
259
260 /* map of rate ix -> negotiated rate set ix */
261 u_int8_t rixmap[MAX_TX_RATE_TBL];
262
263 /* map of ht rate ix -> negotiated rate set ix */
264 u_int8_t ht_rixmap[MAX_TX_RATE_TBL];
265
266 u_int8_t ht_cap; /* ht capabilities */
267 u_int8_t ant_tx; /* current transmit antenna */
268
269 u_int8_t single_stream; /* When TRUE, only single
270 stream Tx possible */
271 struct ath_rateset neg_rates; /* Negotiated rates */
272 struct ath_rateset neg_ht_rates; /* Negotiated HT rates */
273 struct ath_rate_softc *asc; /* back pointer to atheros softc */
274 struct ath_vap *avp; /* back pointer to vap */
275 };
276
277 /* Driver data of ieee80211_tx_info */
278 struct ath_tx_info_priv {
279 struct ath_rc_series rcs[4];
280 struct ath_tx_status tx;
281 int n_frames;
282 int n_bad_frames;
283 u_int8_t min_rate;
284 };
285
286 /*
287 * Attach/detach a rate control module.
288 */
289 struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah);
290 void ath_rate_detach(struct ath_rate_softc *asc);
291
292 /*
293 * Update/reset rate control state for 802.11 state transitions.
294 * Important mostly as the analog to ath_rate_newassoc when operating
295 * in station mode.
296 */
297 void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp, int up);
298
299 /*
300 * Return the tx rate series.
301 */
302 void ath_rate_findrate(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv,
303 int num_tries, int num_rates,
304 unsigned int rcflag, struct ath_rc_series[],
305 int *is_probe, int isretry);
306 /*
307 * Return rate index for given Dot11 Rate.
308 */
309 u_int8_t ath_rate_findrateix(struct ath_softc *sc,
310 u_int8_t dot11_rate);
311
312 /* Routines to register/unregister rate control algorithm */
313 int ath_rate_control_register(void);
314 void ath_rate_control_unregister(void);
315
316 #endif /* RC_H */