Add rt2x00-mac80211 snapshot (#1916)
[openwrt/svn-archive/archive.git] / package / rt2x00 / src / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 /*
28 * Set enviroment defines for rt2x00.h
29 */
30 #define DRV_NAME "rt2400pci"
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/version.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/etherdevice.h>
40 #include <linux/eeprom_93cx6.h>
41
42 #include <asm/io.h>
43
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2400pci.h"
47
48 /*
49 * Register access.
50 * All access to the CSR registers will go through the methods
51 * rt2x00pci_register_read and rt2x00pci_register_write.
52 * BBP and RF register require indirect register access,
53 * and use the CSR registers BBPCSR and RFCSR to achieve this.
54 * These indirect registers work with busy bits,
55 * and we will try maximal REGISTER_BUSY_COUNT times to access
56 * the register while taking a REGISTER_BUSY_DELAY us delay
57 * between each attampt. When the busy bit is still set at that time,
58 * the access attempt is considered to have failed,
59 * and we will print an error.
60 */
61 static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
62 {
63 u32 reg;
64 unsigned int i;
65
66 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
67 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
68 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
69 break;
70 udelay(REGISTER_BUSY_DELAY);
71 }
72
73 return reg;
74 }
75
76 static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
77 const u8 reg_id, const u8 value)
78 {
79 u32 reg;
80
81 /*
82 * Wait until the BBP becomes ready.
83 */
84 reg = rt2400pci_bbp_check(rt2x00dev);
85 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
86 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
87 return;
88 }
89
90 /*
91 * Write the data into the BBP.
92 */
93 reg = 0;
94 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
95 rt2x00_set_field32(&reg, BBPCSR_REGNUM, reg_id);
96 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
97 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
98
99 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
100 }
101
102 static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
103 const u8 reg_id, u8 *value)
104 {
105 u32 reg;
106
107 /*
108 * Wait until the BBP becomes ready.
109 */
110 reg = rt2400pci_bbp_check(rt2x00dev);
111 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
112 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
113 return;
114 }
115
116 /*
117 * Write the request into the BBP.
118 */
119 reg = 0;
120 rt2x00_set_field32(&reg, BBPCSR_REGNUM, reg_id);
121 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
122 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
123
124 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
125
126 /*
127 * Wait until the BBP becomes ready.
128 */
129 reg = rt2400pci_bbp_check(rt2x00dev);
130 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
131 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
132 *value = 0xff;
133 return;
134 }
135
136 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
137 }
138
139 static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
140 const u32 value)
141 {
142 u32 reg;
143 unsigned int i;
144
145 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
146 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
147 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
148 goto rf_write;
149 udelay(REGISTER_BUSY_DELAY);
150 }
151
152 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
153 return;
154
155 rf_write:
156 reg = 0;
157 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
158 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
159 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
160 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
161
162 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
163 }
164
165 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg,
173 CSR21_EEPROM_DATA_IN);
174 eeprom->reg_data_out = !!rt2x00_get_field32(reg,
175 CSR21_EEPROM_DATA_OUT);
176 eeprom->reg_data_clock = !!rt2x00_get_field32(reg,
177 CSR21_EEPROM_DATA_CLOCK);
178 eeprom->reg_chip_select = !!rt2x00_get_field32(reg,
179 CSR21_EEPROM_CHIP_SELECT);
180 }
181
182 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
183 {
184 struct rt2x00_dev *rt2x00dev = eeprom->data;
185 u32 reg = 0;
186
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN,
188 !!eeprom->reg_data_in);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT,
190 !!eeprom->reg_data_out);
191 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
192 !!eeprom->reg_data_clock);
193 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
194 !!eeprom->reg_chip_select);
195
196 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
197 }
198
199 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
200 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
201
202 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
203 const unsigned long word, void *data)
204 {
205 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
206 }
207
208 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
209 const unsigned long word, void *data)
210 {
211 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), *((u32*)data));
212 }
213
214 static void rt2400pci_read_eeprom(struct rt2x00_dev *rt2x00dev,
215 const unsigned long word, void *data)
216 {
217 rt2x00_eeprom_read(rt2x00dev, word, data);
218 }
219
220 static void rt2400pci_write_eeprom(struct rt2x00_dev *rt2x00dev,
221 const unsigned long word, void *data)
222 {
223 rt2x00_eeprom_write(rt2x00dev, word, *((u16*)data));
224 }
225
226 static void rt2400pci_read_bbp(struct rt2x00_dev *rt2x00dev,
227 const unsigned long word, void *data)
228 {
229 rt2400pci_bbp_read(rt2x00dev, word, data);
230 }
231
232 static void rt2400pci_write_bbp(struct rt2x00_dev *rt2x00dev,
233 const unsigned long word, void *data)
234 {
235 rt2400pci_bbp_write(rt2x00dev, word, *((u8*)data));
236 }
237
238 static const struct rt2x00debug rt2400pci_rt2x00debug = {
239 .owner = THIS_MODULE,
240 .reg_csr = {
241 .read = rt2400pci_read_csr,
242 .write = rt2400pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
245 },
246 .reg_eeprom = {
247 .read = rt2400pci_read_eeprom,
248 .write = rt2400pci_write_eeprom,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
251 },
252 .reg_bbp = {
253 .read = rt2400pci_read_bbp,
254 .write = rt2400pci_write_bbp,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
257 },
258 };
259 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
260
261 #ifdef CONFIG_RT2400PCI_RFKILL
262 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
263 {
264 u32 reg;
265
266 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
267 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
268 }
269 #endif /* CONFIG_RT2400PCI_RFKILL */
270
271 /*
272 * Configuration handlers.
273 */
274 static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
275 {
276 u32 reg[2];
277
278 memset(&reg, 0, sizeof(reg));
279 memcpy(&reg, bssid, ETH_ALEN);
280
281 /*
282 * The BSSID is passed to us as an array of bytes,
283 * that array is little endian, so no need for byte ordering.
284 */
285 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
286 }
287
288 static void rt2400pci_config_promisc(struct rt2x00_dev *rt2x00dev,
289 const int promisc)
290 {
291 u32 reg;
292
293 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
294 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, !promisc);
295 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
296 }
297
298 static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, int type)
299 {
300 u32 reg;
301
302 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
303
304 /*
305 * Apply hardware packet filter.
306 */
307 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
308
309 if (!is_monitor_present(&rt2x00dev->interface) &&
310 (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
311 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 1);
312 else
313 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 0);
314
315 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 1);
316 if (is_monitor_present(&rt2x00dev->interface)) {
317 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 0);
318 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 0);
319 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 0);
320 } else {
321 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 1);
322 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 1);
323 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
324 }
325
326 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
327
328 /*
329 * Enable beacon config
330 */
331 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
332 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
333 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
334 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
335
336 /*
337 * Enable synchronisation.
338 */
339 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
340 if (is_interface_present(&rt2x00dev->interface)) {
341 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
342 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
343 }
344
345 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
346 if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
347 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
348 else if (type == IEEE80211_IF_TYPE_STA)
349 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
350 else if (is_monitor_present(&rt2x00dev->interface) &&
351 !is_interface_present(&rt2x00dev->interface))
352 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
353
354 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
355 }
356
357 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
358 const int value, const int channel, const int txpower)
359 {
360 u32 rf1 = rt2x00dev->rf1;
361 u32 rf2 = value;
362 u32 rf3 = rt2x00dev->rf3;
363
364 /*
365 * Switch on tuning bits.
366 */
367 rt2x00_set_field32(&rf1, RF1_TUNER, 1);
368 rt2x00_set_field32(&rf3, RF3_TUNER, 1);
369
370 rt2400pci_rf_write(rt2x00dev, rf1);
371 rt2400pci_rf_write(rt2x00dev, rf2);
372 rt2400pci_rf_write(rt2x00dev, rf3);
373
374 /*
375 * RF2420 chipset don't need any additional actions.
376 */
377 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
378 return;
379
380 /*
381 * For the RT2421 chipsets we need to write an invalid
382 * reference clock rate to activate auto_tune.
383 * After that we set the value back to the correct channel.
384 */
385 rt2400pci_rf_write(rt2x00dev, rf1);
386 rt2400pci_rf_write(rt2x00dev, 0x000c2a32);
387 rt2400pci_rf_write(rt2x00dev, rf3);
388
389 msleep(1);
390
391 rt2400pci_rf_write(rt2x00dev, rf1);
392 rt2400pci_rf_write(rt2x00dev, rf2);
393 rt2400pci_rf_write(rt2x00dev, rf3);
394
395 msleep(1);
396
397 /*
398 * Switch off tuning bits.
399 */
400 rt2x00_set_field32(&rf1, RF1_TUNER, 0);
401 rt2x00_set_field32(&rf3, RF3_TUNER, 0);
402
403 rt2400pci_rf_write(rt2x00dev, rf1);
404 rt2400pci_rf_write(rt2x00dev, rf3);
405
406 /*
407 * Update rf fields
408 */
409 rt2x00dev->rf1 = rf1;
410 rt2x00dev->rf2 = rf2;
411 rt2x00dev->rf3 = rf3;
412
413 /*
414 * Clear false CRC during channel switch.
415 */
416 rt2x00pci_register_read(rt2x00dev, CNT0, &rf1);
417 }
418
419 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
420 {
421 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
422 }
423
424 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
425 int antenna_tx, int antenna_rx)
426 {
427 u8 r1;
428 u8 r4;
429
430 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
431 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
432
433 /*
434 * Configure the TX antenna.
435 */
436 if (antenna_tx == ANTENNA_DIVERSITY)
437 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
438 else if (antenna_tx == ANTENNA_A)
439 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
440 else if (antenna_tx == ANTENNA_B)
441 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
442
443 /*
444 * Configure the RX antenna.
445 */
446 if (antenna_rx == ANTENNA_DIVERSITY)
447 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
448 else if (antenna_rx == ANTENNA_A)
449 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
450 else if (antenna_rx == ANTENNA_B)
451 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
452
453 rt2400pci_bbp_write(rt2x00dev, 4, r4);
454 rt2400pci_bbp_write(rt2x00dev, 1, r1);
455 }
456
457 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
458 struct ieee80211_tx_queue_params *params)
459 {
460 u32 reg;
461
462 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
463 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
464 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
465 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
466 }
467
468 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
469 int short_slot_time, int beacon_int)
470 {
471 u32 reg;
472
473 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
474 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
475 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
476 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
477
478 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
479 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
480 rt2x00_set_field32(&reg, CSR18_PIFS,
481 short_slot_time ? SHORT_PIFS : PIFS);
482 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
483
484 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
485 rt2x00_set_field32(&reg, CSR19_DIFS,
486 short_slot_time ? SHORT_DIFS : DIFS);
487 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
488 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
489
490 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
491 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
492 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
493 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
494
495 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
496 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
497 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
498 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
499 }
500
501 static void rt2400pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
502 {
503 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
504 u32 reg;
505 u32 preamble;
506 u16 value;
507
508 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE)
509 ? SHORT_PREAMBLE : PREAMBLE;
510
511 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATE;
512 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
513
514 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
515 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
516 SHORT_DIFS : DIFS) +
517 PLCP + preamble + get_duration(ACK_SIZE, 10);
518 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
519 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
520 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
521 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
522
523 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
524
525 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
526 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
527 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
528 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
529 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
530
531 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
532 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
533 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
534 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
535 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
536
537 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
538 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
539 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
540 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
541 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
542
543 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
544 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
545 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
546 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
547 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
548 }
549
550 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
551 const int phymode)
552 {
553 struct ieee80211_hw_mode *mode;
554 struct ieee80211_rate *rate;
555
556 rt2x00dev->curr_hwmode = HWMODE_B;
557
558 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
559 rate = &mode->rates[mode->num_rates - 1];
560
561 rt2400pci_config_rate(rt2x00dev, rate->val2);
562 }
563
564 static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
565 {
566 u32 reg[2];
567
568 memset(&reg, 0, sizeof(reg));
569 memcpy(&reg, addr, ETH_ALEN);
570
571 /*
572 * The MAC address is passed to us as an array of bytes,
573 * that array is little endian, so no need for byte ordering.
574 */
575 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
576 }
577
578 /*
579 * LED functions.
580 */
581 static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
582 {
583 u32 reg;
584
585 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
586
587 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
588 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
589
590 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
591 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
592 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
593 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
594 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
595 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
596 } else {
597 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
598 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
599 }
600
601 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
602 }
603
604 static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
605 {
606 u32 reg;
607
608 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
609 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
610 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
611 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
612 }
613
614 /*
615 * Link tuning
616 */
617 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev, int rssi)
618 {
619 u8 reg;
620 char false_cca_delta;
621
622 /*
623 * The link tuner should not run longer then 60 seconds,
624 * and should run once every 2 seconds.
625 */
626 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count % 1))
627 return;
628
629 /*
630 * Read false CCA counter.
631 */
632 rt2400pci_bbp_read(rt2x00dev, 39, &reg);
633
634 /*
635 * Determine difference with previous CCA counter.
636 */
637 false_cca_delta = reg - rt2x00dev->link.false_cca;
638 rt2x00dev->link.false_cca = reg;
639
640 /*
641 * Check if the difference is higher than the
642 * threshold and if so, tune the link.
643 */
644 if (false_cca_delta >= 8) {
645 /*
646 * Read and update RX AGC VGC.
647 */
648 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
649 reg += 2;
650 if (reg < 0x20)
651 rt2400pci_bbp_write(rt2x00dev, 13, reg);
652 }
653 }
654
655 /*
656 * Initialization functions.
657 */
658 static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
659 {
660 struct data_desc *rxd;
661 unsigned int i;
662 u32 word;
663
664 memset(rt2x00dev->rx->data_addr, 0x00,
665 rt2x00_get_ring_size(rt2x00dev->rx));
666
667 for (i = 0; i < rt2x00dev->rx->stats.limit; i++) {
668 rxd = rt2x00dev->rx->entry[i].priv;
669
670 rt2x00_desc_read(rxd, 2, &word);
671 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
672 rt2x00dev->rx->data_size);
673 rt2x00_desc_write(rxd, 2, word);
674
675 rt2x00_desc_read(rxd, 1, &word);
676 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
677 rt2x00dev->rx->entry[i].data_dma);
678 rt2x00_desc_write(rxd, 1, word);
679
680 rt2x00_desc_read(rxd, 0, &word);
681 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
682 rt2x00_desc_write(rxd, 0, word);
683 }
684
685 rt2x00_ring_index_clear(rt2x00dev->rx);
686 }
687
688 static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev,
689 const int queue)
690 {
691 struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue);
692 struct data_desc *txd;
693 unsigned int i;
694 u32 word;
695
696 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
697
698 for (i = 0; i < ring->stats.limit; i++) {
699 txd = ring->entry[i].priv;
700
701 rt2x00_desc_read(txd, 1, &word);
702 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
703 ring->entry[i].data_dma);
704 rt2x00_desc_write(txd, 1, word);
705
706 rt2x00_desc_read(txd, 2, &word);
707 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
708 ring->data_size);
709 rt2x00_desc_write(txd, 2, word);
710
711 rt2x00_desc_read(txd, 0, &word);
712 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
713 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
714 rt2x00_desc_write(txd, 0, word);
715 }
716
717 rt2x00_ring_index_clear(ring);
718 }
719
720 static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
721 {
722 u32 reg;
723
724 /*
725 * Initialize rings.
726 */
727 rt2400pci_init_rxring(rt2x00dev);
728 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
729 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
730 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
731 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
732
733 /*
734 * Initialize registers.
735 */
736 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
737 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
738 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
739 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
740 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
741 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
742 rt2x00dev->bcn[1].stats.limit);
743 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
744 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
745 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
746
747 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
748 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
749 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
750 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
751
752 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
753 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
754 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
755 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
756
757 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
758 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
759 rt2x00dev->bcn[1].data_dma);
760 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
761
762 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
763 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
764 rt2x00dev->bcn[0].data_dma);
765 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
766
767 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
768 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE,
769 rt2x00dev->rx->desc_size);
770 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD,
771 rt2x00dev->rx->stats.limit);
772 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
773
774 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
775 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
776 rt2x00dev->rx->data_dma);
777 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
778
779 return 0;
780 }
781
782 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
783 {
784 u32 reg;
785
786 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
787 return -EBUSY;
788
789 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
790
791 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
792 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
793 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
794 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
795
796 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
797 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
798 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
799 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
800 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
801
802 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
803 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
804 (rt2x00dev->rx->data_size / 128));
805 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
806
807 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
808
809 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
810 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
811
812 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
813 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
814 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
815
816 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
817 /*
818 * Tx power.
819 */
820 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3);
821 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
822 /*
823 * Signal.
824 */
825 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32);
826 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
827 /*
828 * Rssi.
829 */
830 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36);
831 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
832 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
833
834 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
835 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
836 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
837 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
838 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
839 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
840
841 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
842 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
843 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
844 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
845 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
846
847 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
848 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
849 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
850 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
851
852 /*
853 * We must clear the FCS and FIFO error count.
854 * These registers are cleared on read,
855 * so we may pass a useless variable to store the value.
856 */
857 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
858 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
859
860 return 0;
861 }
862
863 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
864 {
865 unsigned int i;
866 u16 eeprom;
867 u8 reg_id;
868 u8 value;
869
870 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
871 rt2400pci_bbp_read(rt2x00dev, 0, &value);
872 if ((value != 0xff) && (value != 0x00))
873 goto continue_csr_init;
874 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
875 udelay(REGISTER_BUSY_DELAY);
876 }
877
878 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
879 return -EACCES;
880
881 continue_csr_init:
882 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
883 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
884 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
885 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
886 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
887 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
888 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
889 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
890 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
891 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
892 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
893 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
894 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
895 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
896 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
897
898 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
899 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
900 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
901
902 if (eeprom != 0xffff && eeprom != 0x0000) {
903 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
904 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
905 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
906 reg_id, value);
907 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
908 }
909 }
910 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
911
912 return 0;
913 }
914
915 /*
916 * Device state switch handlers.
917 */
918 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
919 enum dev_state state)
920 {
921 u32 reg;
922
923 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
924 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
925 state == STATE_RADIO_RX_OFF);
926 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
927 }
928
929 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
930 {
931 u32 reg;
932
933 /*
934 * Initialize all registers.
935 */
936 if (rt2400pci_init_rings(rt2x00dev) ||
937 rt2400pci_init_registers(rt2x00dev) ||
938 rt2400pci_init_bbp(rt2x00dev)) {
939 ERROR(rt2x00dev, "Register initialization failed.\n");
940 return -EIO;
941 }
942
943 /*
944 * Clear interrupts.
945 */
946 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
947 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
948
949 /*
950 * Enable interrupts.
951 */
952 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
953 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, 0);
954 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
955 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
956 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
957 rt2x00_set_field32(&reg, CSR8_RXDONE, 0);
958 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
959
960 /*
961 * Enable LED
962 */
963 rt2400pci_enable_led(rt2x00dev);
964
965 return 0;
966 }
967
968 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
969 {
970 u32 reg;
971
972 /*
973 * Disable LED
974 */
975 rt2400pci_disable_led(rt2x00dev);
976
977 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
978
979 /*
980 * Disable synchronisation.
981 */
982 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
983
984 /*
985 * Cancel RX and TX.
986 */
987 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
988 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
989 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
990
991 /*
992 * Disable interrupts.
993 */
994 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
995 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, 1);
996 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 1);
997 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 1);
998 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 1);
999 rt2x00_set_field32(&reg, CSR8_RXDONE, 1);
1000 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1001 }
1002
1003 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1004 enum dev_state state)
1005 {
1006 u32 reg;
1007 unsigned int i;
1008 char put_to_sleep;
1009 char bbp_state;
1010 char rf_state;
1011
1012 put_to_sleep = (state != STATE_AWAKE);
1013
1014 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1015 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1016 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1017 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1018 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1019 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1020
1021 /*
1022 * Device is not guaranteed to be in the requested state yet.
1023 * We must wait until the register indicates that the
1024 * device has entered the correct state.
1025 */
1026 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1027 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1028 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1029 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1030 if (bbp_state == state && rf_state == state)
1031 return 0;
1032 msleep(10);
1033 }
1034
1035 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1036 "current device state: bbp %d and rf %d.\n",
1037 state, bbp_state, rf_state);
1038
1039 return -EBUSY;
1040 }
1041
1042 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1043 enum dev_state state)
1044 {
1045 int retval = 0;
1046
1047 switch (state) {
1048 case STATE_RADIO_ON:
1049 retval = rt2400pci_enable_radio(rt2x00dev);
1050 break;
1051 case STATE_RADIO_OFF:
1052 rt2400pci_disable_radio(rt2x00dev);
1053 break;
1054 case STATE_RADIO_RX_ON:
1055 case STATE_RADIO_RX_OFF:
1056 rt2400pci_toggle_rx(rt2x00dev, state);
1057 break;
1058 case STATE_DEEP_SLEEP:
1059 case STATE_SLEEP:
1060 case STATE_STANDBY:
1061 case STATE_AWAKE:
1062 retval = rt2400pci_set_state(rt2x00dev, state);
1063 break;
1064 default:
1065 retval = -ENOTSUPP;
1066 break;
1067 }
1068
1069 return retval;
1070 }
1071
1072 /*
1073 * TX descriptor initialization
1074 */
1075 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1076 struct data_entry *entry, struct data_desc *txd,
1077 struct data_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr,
1078 unsigned int length, struct ieee80211_tx_control *control)
1079 {
1080 u32 word;
1081 u32 signal = 0;
1082 u32 service = 0;
1083 u32 length_high = 0;
1084 u32 length_low = 0;
1085
1086 /*
1087 * The PLCP values should be treated as if they
1088 * were BBP values.
1089 */
1090 rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1091 rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1092 rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1093
1094 rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1095 rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1096 rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1097
1098 rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1099 rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1100 rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1101
1102 rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1103 rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1104 rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1105
1106 /*
1107 * Start writing the descriptor words.
1108 */
1109 rt2x00_desc_read(txd, 2, &word);
1110 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1111 rt2x00_desc_write(txd, 2, word);
1112
1113 rt2x00_desc_read(txd, 3, &word);
1114 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1115 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1116 rt2x00_desc_write(txd, 3, word);
1117
1118 rt2x00_desc_read(txd, 4, &word);
1119 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1120 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1121 rt2x00_desc_write(txd, 4, word);
1122
1123 rt2x00_desc_read(txd, 0, &word);
1124 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1125 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1126 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1127 test_bit(ENTRY_TXD_MORE_FRAG, &entry->flags));
1128 rt2x00_set_field32(&word, TXD_W0_ACK,
1129 test_bit(ENTRY_TXD_REQ_ACK, &entry->flags));
1130 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1131 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags));
1132 rt2x00_set_field32(&word, TXD_W0_RTS,
1133 test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags));
1134 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1135 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 0);
1136 rt2x00_desc_write(txd, 0, word);
1137 }
1138
1139 /*
1140 * TX data initialization
1141 */
1142 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, int queue)
1143 {
1144 u32 reg;
1145
1146 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1147 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1148 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1149 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1150 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1151 }
1152 return;
1153 }
1154
1155 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1156 if (queue == IEEE80211_TX_QUEUE_DATA0)
1157 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1158 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1159 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1160 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1161 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1162 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1163 }
1164
1165 /*
1166 * Interrupt functions.
1167 */
1168 static void rt2400pci_rxdone(struct rt2x00_dev *rt2x00dev)
1169 {
1170 struct data_ring *ring = rt2x00dev->rx;
1171 struct data_entry *entry;
1172 struct data_desc *rxd;
1173 u32 word0;
1174 u32 word2;
1175 int signal;
1176 int rssi;
1177 u16 size;
1178
1179 while (1) {
1180 entry = rt2x00_get_data_entry(ring);
1181 rxd = entry->priv;
1182 rt2x00_desc_read(rxd, 0, &word0);
1183 rt2x00_desc_read(rxd, 2, &word2);
1184
1185 if (rt2x00_get_field32(word0, RXD_W0_OWNER_NIC))
1186 break;
1187
1188 /*
1189 * TODO: Don't we need to keep statistics
1190 * updated about events like CRC and physical errors?
1191 */
1192 if (rt2x00_get_field32(word0, RXD_W0_CRC) ||
1193 rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1194 goto skip_entry;
1195
1196 /*
1197 * Obtain the status about this packet.
1198 */
1199 size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1200 signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1201 rssi = rt2x00_get_field32(word2, RXD_W2_RSSI);
1202
1203 /*
1204 * Send the packet to upper layer.
1205 */
1206 rt2x00lib_rxdone(entry, entry->data_addr, size,
1207 signal, rssi, 0);
1208
1209 skip_entry:
1210 if (test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags)) {
1211 rt2x00_set_field32(&word0, RXD_W0_OWNER_NIC, 1);
1212 rt2x00_desc_write(rxd, 0, word0);
1213 }
1214
1215 rt2x00_ring_index_inc(ring);
1216 }
1217 }
1218
1219 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1220 {
1221 struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue);
1222 struct data_entry *entry;
1223 struct data_desc *txd;
1224 u32 word;
1225 int tx_status;
1226 int retry;
1227
1228 while (!rt2x00_ring_empty(ring)) {
1229 entry = rt2x00_get_data_entry_done(ring);
1230 txd = entry->priv;
1231 rt2x00_desc_read(txd, 0, &word);
1232
1233 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1234 !rt2x00_get_field32(word, TXD_W0_VALID))
1235 break;
1236
1237 /*
1238 * Obtain the status about this packet.
1239 */
1240 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1241 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1242
1243 rt2x00lib_txdone(entry, tx_status, retry);
1244
1245 /*
1246 * Make this entry available for reuse.
1247 */
1248 entry->flags = 0;
1249 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1250 rt2x00_desc_write(txd, 0, word);
1251 rt2x00_ring_index_done_inc(ring);
1252 }
1253
1254 /*
1255 * If the data ring was full before the txdone handler
1256 * we must make sure the packet queue in the mac80211 stack
1257 * is reenabled when the txdone handler has finished.
1258 */
1259 entry = ring->entry;
1260 if (!rt2x00_ring_full(ring))
1261 ieee80211_wake_queue(rt2x00dev->hw,
1262 entry->tx_status.control.queue);
1263 }
1264
1265 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1266 {
1267 struct rt2x00_dev *rt2x00dev = dev_instance;
1268 u32 reg;
1269
1270 /*
1271 * Get the interrupt sources & saved to local variable.
1272 * Write register value back to clear pending interrupts.
1273 */
1274 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1275 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1276
1277 if (!reg)
1278 return IRQ_NONE;
1279
1280 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1281 return IRQ_HANDLED;
1282
1283 /*
1284 * Handle interrupts, walk through all bits
1285 * and run the tasks, the bits are checked in order of
1286 * priority.
1287 */
1288
1289 /*
1290 * 1 - Beacon timer expired interrupt.
1291 */
1292 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1293 rt2x00pci_beacondone(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
1294
1295 /*
1296 * 2 - Rx ring done interrupt.
1297 */
1298 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1299 rt2400pci_rxdone(rt2x00dev);
1300
1301 /*
1302 * 3 - Atim ring transmit done interrupt.
1303 */
1304 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1305 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1306
1307 /*
1308 * 4 - Priority ring transmit done interrupt.
1309 */
1310 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1311 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1312
1313 /*
1314 * 5 - Tx ring transmit done interrupt.
1315 */
1316 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1317 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1318
1319 return IRQ_HANDLED;
1320 }
1321
1322 /*
1323 * Device initialization functions.
1324 */
1325 static int rt2400pci_alloc_eeprom(struct rt2x00_dev *rt2x00dev)
1326 {
1327 struct eeprom_93cx6 eeprom;
1328 u32 reg;
1329 u16 word;
1330
1331 /*
1332 * Allocate the eeprom memory, check the eeprom width
1333 * and copy the entire eeprom into this allocated memory.
1334 */
1335 rt2x00dev->eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL);
1336 if (!rt2x00dev->eeprom)
1337 return -ENOMEM;
1338
1339 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1340
1341 eeprom.data = rt2x00dev;
1342 eeprom.register_read = rt2400pci_eepromregister_read;
1343 eeprom.register_write = rt2400pci_eepromregister_write;
1344 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1345 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1346 eeprom.reg_data_in = 0;
1347 eeprom.reg_data_out = 0;
1348 eeprom.reg_data_clock = 0;
1349 eeprom.reg_chip_select = 0;
1350
1351 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1352 EEPROM_SIZE / sizeof(u16));
1353
1354 /*
1355 * Start validation of the data that has been read.
1356 */
1357 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1358 if (word == 0xffff) {
1359 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1360 return -EINVAL;
1361 }
1362
1363 return 0;
1364 }
1365
1366 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1367 {
1368 u32 reg;
1369 u16 value;
1370 u16 eeprom;
1371
1372 /*
1373 * Read EEPROM word for configuration.
1374 */
1375 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1376
1377 /*
1378 * Identify RF chipset.
1379 */
1380 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1381 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1382 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1383
1384 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1385 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1386 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1387 return -ENODEV;
1388 }
1389
1390 /*
1391 * Identify default antenna configuration.
1392 */
1393 rt2x00dev->hw->conf.antenna_sel_tx = rt2x00_get_field16(eeprom,
1394 EEPROM_ANTENNA_TX_DEFAULT);
1395 rt2x00dev->hw->conf.antenna_sel_rx = rt2x00_get_field16(eeprom,
1396 EEPROM_ANTENNA_RX_DEFAULT);
1397
1398 /*
1399 * Store led mode, for correct led behaviour.
1400 */
1401 rt2x00dev->led_mode = rt2x00_get_field16(eeprom,
1402 EEPROM_ANTENNA_LED_MODE);
1403
1404 /*
1405 * Detect if this device has an hardware controlled radio.
1406 */
1407 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1408 __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1409
1410 /*
1411 * Check if the BBP tuning should be enabled.
1412 */
1413 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1414 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1415
1416 return 0;
1417 }
1418
1419 /*
1420 * RF value list for RF2420 & RF2421
1421 * Supports: 2.4 GHz
1422 */
1423 static const u32 rf_vals_bg[] = {
1424 0x000c1fda, 0x000c1fee, 0x000c2002, 0x000c2016, 0x000c202a,
1425 0x000c203e, 0x000c2052, 0x000c2066, 0x000c207a, 0x000c208e,
1426 0x000c20a2, 0x000c20b6, 0x000c20ca, 0x000c20fa
1427 };
1428
1429 static void rt2400pci_init_hw_mode(struct rt2x00_dev *rt2x00dev)
1430 {
1431 struct hw_mode_spec *spec = &rt2x00dev->spec;
1432 u8 *txpower;
1433 unsigned int i;
1434
1435 /*
1436 * Initialize all hw fields.
1437 */
1438 rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON |
1439 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1440 IEEE80211_HW_WEP_INCLUDE_IV |
1441 IEEE80211_HW_DATA_NULLFUNC_ACK |
1442 IEEE80211_HW_NO_TKIP_WMM_HWACCEL |
1443 IEEE80211_HW_MONITOR_DURING_OPER;
1444 rt2x00dev->hw->extra_tx_headroom = 0;
1445 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1446 rt2x00dev->hw->max_noise = MAX_RX_NOISE;
1447 rt2x00dev->hw->queues = 2;
1448
1449 /*
1450 * This device supports ATIM
1451 */
1452 __set_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
1453
1454 /*
1455 * Set device specific, but channel independent RF values.
1456 */
1457 rt2x00dev->rf1 = 0x00022058;
1458 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
1459 rt2x00dev->rf3 = 0x00000111;
1460 else
1461 rt2x00dev->rf3 = 0x00000101;
1462
1463 /*
1464 * Convert tx_power array in eeprom.
1465 */
1466 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1467 for (i = 0; i < 14; i++)
1468 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1469
1470 /*
1471 * Initialize hw_mode information.
1472 */
1473 spec->mac_addr = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1474 spec->num_modes = 1;
1475 spec->num_rates = 4;
1476 spec->num_channels = 14;
1477 spec->tx_power_a = NULL;
1478 spec->tx_power_bg = txpower;
1479 spec->tx_power_default = DEFAULT_TXPOWER;
1480 spec->chan_val_a = NULL;
1481 spec->chan_val_bg = rf_vals_bg;
1482 }
1483
1484 static int rt2400pci_init_hw(struct rt2x00_dev *rt2x00dev)
1485 {
1486 int retval;
1487
1488 /*
1489 * Allocate eeprom data.
1490 */
1491 retval = rt2400pci_alloc_eeprom(rt2x00dev);
1492 if (retval)
1493 return retval;
1494
1495 retval = rt2400pci_init_eeprom(rt2x00dev);
1496 if (retval)
1497 return retval;
1498
1499 /*
1500 * Initialize hw specifications.
1501 */
1502 rt2400pci_init_hw_mode(rt2x00dev);
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * IEEE80211 stack callback functions.
1509 */
1510 static int rt2400pci_get_stats(struct ieee80211_hw *hw,
1511 struct ieee80211_low_level_stats *stats)
1512 {
1513 struct rt2x00_dev *rt2x00dev = hw->priv;
1514 u32 reg;
1515
1516 /*
1517 * Update FCS error count from register.
1518 * The dot11ACKFailureCount, dot11RTSFailureCount and
1519 * dot11RTSSuccessCount are updated in interrupt time.
1520 */
1521 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1522 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
1523 rt2x00_get_field32(reg, CNT0_FCS_ERROR);
1524
1525 memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats));
1526
1527 return 0;
1528 }
1529
1530 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1531 u32 short_retry, u32 long_retry)
1532 {
1533 struct rt2x00_dev *rt2x00dev = hw->priv;
1534 u32 reg;
1535
1536 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1537 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1538 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1539 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1540
1541 return 0;
1542 }
1543
1544 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1545 int queue, const struct ieee80211_tx_queue_params *params)
1546 {
1547 struct rt2x00_dev *rt2x00dev = hw->priv;
1548
1549 /*
1550 * We don't support variating cw_min and cw_max variables
1551 * per queue. So by default we only configure the TX queue,
1552 * and ignore all other configurations.
1553 */
1554 if (queue != IEEE80211_TX_QUEUE_DATA0)
1555 return -EINVAL;
1556
1557 if (rt2x00lib_conf_tx(hw, queue, params))
1558 return -EINVAL;
1559
1560 /*
1561 * Write configuration to register.
1562 */
1563 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1564
1565 return 0;
1566 }
1567
1568 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1569 {
1570 struct rt2x00_dev *rt2x00dev = hw->priv;
1571 u64 tsf;
1572 u32 reg;
1573
1574 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1575 tsf = (u64)rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1576 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1577 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1578
1579 return tsf;
1580 }
1581
1582 static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1583 {
1584 struct rt2x00_dev *rt2x00dev = hw->priv;
1585
1586 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1587 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1588 }
1589
1590 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1591 {
1592 struct rt2x00_dev *rt2x00dev = hw->priv;
1593 u32 reg;
1594
1595 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1596 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1597 }
1598
1599 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1600 .tx = rt2x00lib_tx,
1601 .reset = rt2x00lib_reset,
1602 .open = rt2x00lib_open,
1603 .stop = rt2x00lib_stop,
1604 .add_interface = rt2x00lib_add_interface,
1605 .remove_interface = rt2x00lib_remove_interface,
1606 .config = rt2x00lib_config,
1607 .config_interface = rt2x00lib_config_interface,
1608 .set_multicast_list = rt2x00lib_set_multicast_list,
1609 .get_stats = rt2400pci_get_stats,
1610 .set_retry_limit = rt2400pci_set_retry_limit,
1611 .conf_tx = rt2400pci_conf_tx,
1612 .get_tx_stats = rt2x00lib_get_tx_stats,
1613 .get_tsf = rt2400pci_get_tsf,
1614 .reset_tsf = rt2400pci_reset_tsf,
1615 .beacon_update = rt2x00pci_beacon_update,
1616 .tx_last_beacon = rt2400pci_tx_last_beacon,
1617 };
1618
1619 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1620 .irq_handler = rt2400pci_interrupt,
1621 .init_hw = rt2400pci_init_hw,
1622 .initialize = rt2x00pci_initialize,
1623 .uninitialize = rt2x00pci_uninitialize,
1624 .set_device_state = rt2400pci_set_device_state,
1625 #ifdef CONFIG_RT2400PCI_RFKILL
1626 .rfkill_poll = rt2400pci_rfkill_poll,
1627 #endif /* CONFIG_RT2400PCI_RFKILL */
1628 .link_tuner = rt2400pci_link_tuner,
1629 .write_tx_desc = rt2400pci_write_tx_desc,
1630 .write_tx_data = rt2x00pci_write_tx_data,
1631 .kick_tx_queue = rt2400pci_kick_tx_queue,
1632 .config_type = rt2400pci_config_type,
1633 .config_phymode = rt2400pci_config_phymode,
1634 .config_channel = rt2400pci_config_channel,
1635 .config_mac_addr = rt2400pci_config_mac_addr,
1636 .config_bssid = rt2400pci_config_bssid,
1637 .config_promisc = rt2400pci_config_promisc,
1638 .config_txpower = rt2400pci_config_txpower,
1639 .config_antenna = rt2400pci_config_antenna,
1640 .config_duration = rt2400pci_config_duration,
1641 };
1642
1643 static const struct rt2x00_ops rt2400pci_ops = {
1644 .name = DRV_NAME,
1645 .rxd_size = RXD_DESC_SIZE,
1646 .txd_size = TXD_DESC_SIZE,
1647 .lib = &rt2400pci_rt2x00_ops,
1648 .hw = &rt2400pci_mac80211_ops,
1649 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1650 .debugfs = &rt2400pci_rt2x00debug,
1651 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1652 };
1653
1654 /*
1655 * RT2400pci module information.
1656 */
1657 static struct pci_device_id rt2400pci_device_table[] = {
1658 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1659 { 0, }
1660 };
1661
1662 MODULE_AUTHOR(DRV_PROJECT);
1663 MODULE_VERSION(DRV_VERSION);
1664 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1665 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1666 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1667 MODULE_LICENSE("GPL");
1668
1669 static struct pci_driver rt2400pci_driver = {
1670 .name = DRV_NAME,
1671 .id_table = rt2400pci_device_table,
1672 .probe = rt2x00pci_probe,
1673 .remove = __devexit_p(rt2x00pci_remove),
1674 #ifdef CONFIG_PM
1675 .suspend = rt2x00pci_suspend,
1676 .resume = rt2x00pci_resume,
1677 #endif /* CONFIG_PM */
1678 };
1679
1680 static int __init rt2400pci_init(void)
1681 {
1682 printk(KERN_INFO "Loading module: %s - %s by %s.\n",
1683 DRV_NAME, DRV_VERSION, DRV_PROJECT);
1684 return pci_register_driver(&rt2400pci_driver);
1685 }
1686
1687 static void __exit rt2400pci_exit(void)
1688 {
1689 printk(KERN_INFO "Unloading module: %s.\n", DRV_NAME);
1690 pci_unregister_driver(&rt2400pci_driver);
1691 }
1692
1693 module_init(rt2400pci_init);
1694 module_exit(rt2400pci_exit);