Add rt2x00-mac80211 snapshot (#1916)
[openwrt/svn-archive/archive.git] / package / rt2x00 / src / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 Supported chipsets: RT2460, RT2560, RT2570,
25 rt2561, rt2561s, rt2661, rt2571W & rt2671.
26 */
27
28 /*
29 * Set enviroment defines for rt2x00.h
30 */
31 #define DRV_NAME "rt2x00lib"
32
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/version.h>
36 #include <linux/init.h>
37 #include <linux/delay.h>
38 #include <linux/etherdevice.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00dev.h"
42
43 /*
44 * Radio control handlers.
45 */
46 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
47 {
48 int status;
49
50 /*
51 * Don't enable the radio twice.
52 * or if the hardware button has been disabled.
53 */
54 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
55 (test_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags) &&
56 !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags)))
57 return 0;
58
59 status = rt2x00dev->ops->lib->set_device_state(
60 rt2x00dev, STATE_RADIO_ON);
61 if (status)
62 return status;
63
64 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
65
66 rt2x00lib_toggle_rx(rt2x00dev, 1);
67
68 ieee80211_start_queues(rt2x00dev->hw);
69
70 return 0;
71 }
72
73 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
74 {
75 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
76 return;
77
78 ieee80211_stop_queues(rt2x00dev->hw);
79
80 rt2x00lib_toggle_rx(rt2x00dev, 0);
81
82 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
83 }
84
85 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
86 {
87 /*
88 * When we are disabling the rx, we should also stop the link tuner.
89 */
90 if (!enable && work_pending(&rt2x00dev->link.work.work))
91 rt2x00_stop_link_tune(rt2x00dev);
92
93 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
94 enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF);
95
96 /*
97 * When we are enabling the rx, we should also start the link tuner.
98 */
99 if (enable)
100 rt2x00_start_link_tune(rt2x00dev);
101 }
102
103 static void rt2x00lib_link_tuner(struct work_struct *work)
104 {
105 struct rt2x00_dev *rt2x00dev =
106 container_of(work, struct rt2x00_dev, link.work.work);
107 int rssi;
108
109 /*
110 * Update promisc mode (this function will first check
111 * if updating is really required).
112 */
113 rt2x00lib_config_promisc(rt2x00dev, rt2x00dev->interface.promisc);
114
115 /*
116 * Cancel all link tuning if the eeprom has indicated
117 * it is not required.
118 */
119 if (test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
120 return;
121
122 /*
123 * Retrieve link quality.
124 * Also convert rssi to dBm using the max_rssi value.
125 */
126 rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
127 rssi -= rt2x00dev->hw->max_rssi;
128
129 rt2x00dev->ops->lib->link_tuner(rt2x00dev, rssi);
130
131 /*
132 * Increase tuner counter, and reschedule the next link tuner run.
133 */
134 rt2x00dev->link.count++;
135 queue_delayed_work(rt2x00dev->workqueue, &rt2x00dev->link.work,
136 LINK_TUNE_INTERVAL);
137 }
138
139 /*
140 * Config handlers
141 */
142 void rt2x00lib_config_type(struct rt2x00_dev *rt2x00dev, const int type)
143 {
144 if (!(is_interface_present(&rt2x00dev->interface) ^
145 test_bit(INTERFACE_ENABLED, &rt2x00dev->flags)) &&
146 !(is_monitor_present(&rt2x00dev->interface) ^
147 test_bit(INTERFACE_ENABLED_MONITOR, &rt2x00dev->flags)))
148 return;
149
150 rt2x00dev->ops->lib->config_type(rt2x00dev, type);
151
152 if (type != IEEE80211_IF_TYPE_MNTR) {
153 if (is_interface_present(&rt2x00dev->interface))
154 __set_bit(INTERFACE_ENABLED, &rt2x00dev->flags);
155 else
156 __clear_bit(INTERFACE_ENABLED, &rt2x00dev->flags);
157 } else {
158 if (is_monitor_present(&rt2x00dev->interface))
159 __set_bit(INTERFACE_ENABLED_MONITOR,
160 &rt2x00dev->flags);
161 else
162 __clear_bit(INTERFACE_ENABLED_MONITOR,
163 &rt2x00dev->flags);
164 }
165 }
166
167 void rt2x00lib_config_phymode(struct rt2x00_dev *rt2x00dev, const int phymode)
168 {
169 if (rt2x00dev->rx_status.phymode == phymode)
170 return;
171
172 rt2x00dev->ops->lib->config_phymode(rt2x00dev, phymode);
173
174 rt2x00dev->rx_status.phymode = phymode;
175 }
176
177 void rt2x00lib_config_channel(struct rt2x00_dev *rt2x00dev, const int value,
178 const int channel, const int freq, const int txpower)
179 {
180 if (channel == rt2x00dev->rx_status.channel)
181 return;
182
183 rt2x00dev->ops->lib->config_channel(rt2x00dev, value, channel, txpower);
184
185 INFO(rt2x00dev, "Switching channel. "
186 "RF1: 0x%08x, RF2: 0x%08x, RF3: 0x%08x, RF3: 0x%08x.\n",
187 rt2x00dev->rf1, rt2x00dev->rf2,
188 rt2x00dev->rf3, rt2x00dev->rf4);
189
190 rt2x00dev->rx_status.freq = freq;
191 rt2x00dev->rx_status.channel = channel;
192 }
193
194 void rt2x00lib_config_promisc(struct rt2x00_dev *rt2x00dev, const int promisc)
195 {
196 /*
197 * Monitor mode implies promisc mode enabled.
198 * In all other instances, check if we need to toggle promisc mode.
199 */
200 if (is_monitor_present(&rt2x00dev->interface) &&
201 !test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags)) {
202 rt2x00dev->ops->lib->config_promisc(rt2x00dev, 1);
203 __set_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags);
204 }
205
206 if (test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags) != promisc) {
207 rt2x00dev->ops->lib->config_promisc(rt2x00dev, promisc);
208 __change_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags);
209 }
210 }
211
212 void rt2x00lib_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower)
213 {
214 if (txpower == rt2x00dev->tx_power)
215 return;
216
217 rt2x00dev->ops->lib->config_txpower(rt2x00dev, txpower);
218
219 rt2x00dev->tx_power = txpower;
220 }
221
222 void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
223 const int antenna_tx, const int antenna_rx)
224 {
225 if (rt2x00dev->rx_status.antenna == antenna_rx)
226 return;
227
228 rt2x00dev->ops->lib->config_antenna(rt2x00dev, antenna_tx, antenna_rx);
229
230 rt2x00dev->rx_status.antenna = antenna_rx;
231 }
232
233 /*
234 * Driver initialization handlers.
235 */
236 static void rt2x00lib_channel(struct ieee80211_channel *entry,
237 const int channel, const int tx_power, const int value)
238 {
239 entry->chan = channel;
240 if (channel <= 14)
241 entry->freq = 2407 + (5 * channel);
242 else
243 entry->freq = 5000 + (5 * channel);
244 entry->val = value;
245 entry->flag =
246 IEEE80211_CHAN_W_IBSS |
247 IEEE80211_CHAN_W_ACTIVE_SCAN |
248 IEEE80211_CHAN_W_SCAN;
249 entry->power_level = tx_power;
250 entry->antenna_max = 0xff;
251 }
252
253 static void rt2x00lib_rate(struct ieee80211_rate *entry,
254 const int rate,const int mask, const int plcp, const int flags)
255 {
256 entry->rate = rate;
257 entry->val =
258 DEVICE_SET_RATE_FIELD(rate, RATE) |
259 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
260 DEVICE_SET_RATE_FIELD(plcp, PLCP);
261 entry->flags = flags;
262 entry->val2 = entry->val;
263 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
264 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
265 entry->min_rssi_ack = 0;
266 entry->min_rssi_ack_delta = 0;
267 }
268
269 static int rt2x00lib_init_hw_modes(struct rt2x00_dev *rt2x00dev,
270 struct hw_mode_spec *spec)
271 {
272 struct ieee80211_hw *hw = rt2x00dev->hw;
273 struct ieee80211_hw_mode *hwmodes;
274 struct ieee80211_channel *channels;
275 struct ieee80211_rate *rates;
276 unsigned int i;
277 unsigned char tx_power;
278
279 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
280 if (!hwmodes)
281 goto exit;
282
283 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
284 if (!channels)
285 goto exit_free_modes;
286
287 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
288 if (!rates)
289 goto exit_free_channels;
290
291 /*
292 * Initialize Rate list.
293 */
294 rt2x00lib_rate(&rates[0], 10, 0x001, 0x00, IEEE80211_RATE_CCK);
295 rt2x00lib_rate(&rates[1], 20, 0x003, 0x01, IEEE80211_RATE_CCK_2);
296 rt2x00lib_rate(&rates[2], 55, 0x007, 0x02, IEEE80211_RATE_CCK_2);
297 rt2x00lib_rate(&rates[3], 110, 0x00f, 0x03, IEEE80211_RATE_CCK_2);
298
299 if (spec->num_rates > 4) {
300 rt2x00lib_rate(&rates[4], 60, 0x01f, 0x0b, IEEE80211_RATE_OFDM);
301 rt2x00lib_rate(&rates[5], 90, 0x03f, 0x0f, IEEE80211_RATE_OFDM);
302 rt2x00lib_rate(&rates[6], 120, 0x07f, 0x0a, IEEE80211_RATE_OFDM);
303 rt2x00lib_rate(&rates[7], 180, 0x0ff, 0x0e, IEEE80211_RATE_OFDM);
304 rt2x00lib_rate(&rates[8], 240, 0x1ff, 0x09, IEEE80211_RATE_OFDM);
305 rt2x00lib_rate(&rates[9], 360, 0x3ff, 0x0d, IEEE80211_RATE_OFDM);
306 rt2x00lib_rate(&rates[10], 480, 0x7ff, 0x08, IEEE80211_RATE_OFDM);
307 rt2x00lib_rate(&rates[11], 540, 0xfff, 0x0c, IEEE80211_RATE_OFDM);
308 }
309
310 /*
311 * Initialize Channel list.
312 */
313 for (i = 0; i < 14; i++)
314 rt2x00lib_channel(&channels[i], i + 1,
315 spec->tx_power_bg[i], spec->chan_val_bg[i]);
316
317 if (spec->num_channels > 14) {
318 for (i = 14; i < spec->num_channels; i++) {
319 if (i < 22)
320 channels[i].chan = 36;
321 else if (i < 33)
322 channels[i].chan = 100;
323 else
324 channels[i].chan = 149;
325 channels[i].chan += ((i - 14) * 4);
326
327 if (spec->tx_power_a)
328 tx_power = spec->tx_power_a[i];
329 else
330 tx_power = spec->tx_power_default;
331
332 rt2x00lib_channel(&channels[i],
333 channels[i].chan, tx_power,
334 spec->chan_val_a[i]);
335 }
336 }
337
338 /*
339 * Intitialize 802.11b
340 * Rates: CCK.
341 * Channels: OFDM.
342 */
343 if (spec->num_modes > HWMODE_B) {
344 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
345 hwmodes[HWMODE_B].num_channels = 14;
346 hwmodes[HWMODE_B].num_rates = 4;
347 hwmodes[HWMODE_B].channels = channels;
348 hwmodes[HWMODE_B].rates = rates;
349 }
350
351 /*
352 * Intitialize 802.11g
353 * Rates: CCK, OFDM.
354 * Channels: OFDM.
355 */
356 if (spec->num_modes > HWMODE_G) {
357 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
358 hwmodes[HWMODE_G].num_channels = 14;
359 hwmodes[HWMODE_G].num_rates = spec->num_rates;
360 hwmodes[HWMODE_G].channels = channels;
361 hwmodes[HWMODE_G].rates = rates;
362 }
363
364 /*
365 * Intitialize 802.11a
366 * Rates: OFDM.
367 * Channels: OFDM, UNII, HiperLAN2.
368 */
369 if (spec->num_modes > HWMODE_A) {
370 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
371 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
372 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
373 hwmodes[HWMODE_A].channels = &channels[14];
374 hwmodes[HWMODE_A].rates = &rates[4];
375 }
376
377 if (spec->num_modes > HWMODE_G &&
378 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
379 goto exit_free_rates;
380
381 if (spec->num_modes > HWMODE_B &&
382 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
383 goto exit_free_rates;
384
385 if (spec->num_modes > HWMODE_A &&
386 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
387 goto exit_free_rates;
388
389 rt2x00dev->hwmodes = hwmodes;
390
391 return 0;
392
393 exit_free_rates:
394 kfree(rates);
395
396 exit_free_channels:
397 kfree(channels);
398
399 exit_free_modes:
400 kfree(hwmodes);
401
402 exit:
403 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
404 return -ENOMEM;
405 }
406
407 static void rt2x00lib_deinit_hw(struct rt2x00_dev *rt2x00dev)
408 {
409 if (test_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags))
410 ieee80211_unregister_hw(rt2x00dev->hw);
411
412 if (likely(rt2x00dev->hwmodes)) {
413 kfree(rt2x00dev->hwmodes->channels);
414 kfree(rt2x00dev->hwmodes->rates);
415 kfree(rt2x00dev->hwmodes);
416 rt2x00dev->hwmodes = NULL;
417 }
418 }
419
420 static int rt2x00lib_init_hw(struct rt2x00_dev *rt2x00dev)
421 {
422 struct hw_mode_spec *spec = &rt2x00dev->spec;
423 int status;
424
425 /*
426 * Initialize device.
427 */
428 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->device);
429
430 /*
431 * Initialize MAC address.
432 */
433 if (!is_valid_ether_addr(spec->mac_addr)) {
434 ERROR(rt2x00dev, "Invalid MAC addr: " MAC_FMT ".\n",
435 MAC_ARG(spec->mac_addr));
436 return -EINVAL;
437 }
438
439 rt2x00dev->ops->lib->config_mac_addr(rt2x00dev, spec->mac_addr);
440 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, spec->mac_addr);
441
442 /*
443 * Initialize HW modes.
444 */
445 status = rt2x00lib_init_hw_modes(rt2x00dev, spec);
446 if (status)
447 return status;
448
449 /*
450 * Register HW.
451 */
452 status = ieee80211_register_hw(rt2x00dev->hw);
453 if (status) {
454 rt2x00lib_deinit_hw(rt2x00dev);
455 return status;
456 }
457
458 __set_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags);
459
460 return 0;
461 }
462
463 /*
464 * Initialization/uninitialization handlers.
465 */
466 static int rt2x00lib_alloc_ring(struct data_ring *ring,
467 const u16 max_entries, const u16 data_size, const u16 desc_size)
468 {
469 struct data_entry *entry;
470 unsigned int i;
471
472 ring->stats.limit = max_entries;
473 ring->data_size = data_size;
474 ring->desc_size = desc_size;
475
476 /*
477 * Allocate all ring entries.
478 */
479 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
480 if (!entry)
481 return -ENOMEM;
482
483 for (i = 0; i < ring->stats.limit; i++) {
484 entry[i].flags = 0;
485 entry[i].ring = ring;
486 entry[i].skb = NULL;
487 }
488
489 ring->entry = entry;
490
491 return 0;
492 }
493
494 static int rt2x00lib_allocate_rings(struct rt2x00_dev *rt2x00dev)
495 {
496 struct data_ring *ring;
497
498 /*
499 * Allocate the RX ring.
500 */
501 if (rt2x00lib_alloc_ring(rt2x00dev->rx,
502 RX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->rxd_size))
503 return -ENOMEM;
504
505 /*
506 * First allocate the TX rings.
507 */
508 txring_for_each(rt2x00dev, ring) {
509 if (rt2x00lib_alloc_ring(ring,
510 TX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
511 return -ENOMEM;
512 }
513
514 /*
515 * Allocate the BEACON ring.
516 */
517 if (rt2x00lib_alloc_ring(&rt2x00dev->bcn[0],
518 BEACON_ENTRIES, MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
519 return -ENOMEM;
520
521 /*
522 * Allocate the Atim ring.
523 */
524 if (test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags)) {
525 if (rt2x00lib_alloc_ring(&rt2x00dev->bcn[1],
526 ATIM_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
527 return -ENOMEM;
528 }
529
530 return 0;
531 }
532
533 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
534 {
535 struct data_ring *ring;
536
537 ring_for_each(rt2x00dev, ring) {
538 kfree(ring->entry);
539 ring->entry = NULL;
540 }
541 }
542
543 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
544 {
545 int status;
546
547 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
548 return 0;
549
550 /*
551 * Allocate all data rings.
552 */
553 status = rt2x00lib_allocate_rings(rt2x00dev);
554 if (status) {
555 ERROR(rt2x00dev, "DMA allocation failed.\n");
556 return status;
557 }
558
559 /*
560 * Initialize the device.
561 */
562 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
563 if (status)
564 goto exit;
565
566 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
567
568 /*
569 * Register the rfkill handler.
570 */
571 status = rt2x00lib_register_rfkill(rt2x00dev);
572 if (status)
573 goto exit_unitialize;
574
575 return 0;
576
577 exit_unitialize:
578 rt2x00lib_uninitialize(rt2x00dev);
579
580 exit:
581 rt2x00lib_free_rings(rt2x00dev);
582
583 return status;
584 }
585
586 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
587 {
588 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
589 return;
590
591 /*
592 * Flush out all pending work.
593 */
594 flush_workqueue(rt2x00dev->workqueue);
595
596 /*
597 * Unregister rfkill.
598 */
599 rt2x00lib_unregister_rfkill(rt2x00dev);
600
601 /*
602 * Allow the HW to uninitialize.
603 */
604 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
605
606 /*
607 * Free allocated datarings.
608 */
609 rt2x00lib_free_rings(rt2x00dev);
610 }
611
612 /*
613 * driver allocation handlers.
614 */
615 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
616 {
617 struct data_ring *ring;
618 unsigned int ring_num;
619
620 /*
621 * We need the following rings:
622 * RX: 1
623 * TX: hw->queues
624 * Beacon: 1
625 * Atim: 1 (if supported)
626 */
627 ring_num = 2 + rt2x00dev->hw->queues +
628 test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
629
630 ring = kzalloc(sizeof(*ring) * ring_num, GFP_KERNEL);
631 if (!ring) {
632 ERROR(rt2x00dev, "Ring allocation failed.\n");
633 return -ENOMEM;
634 }
635
636 /*
637 * Initialize pointers
638 */
639 rt2x00dev->rx = &ring[0];
640 rt2x00dev->tx = &ring[1];
641 rt2x00dev->bcn = &ring[1 + rt2x00dev->hw->queues];
642
643 /*
644 * Initialize ring parameters.
645 * cw_min: 2^5 = 32.
646 * cw_max: 2^10 = 1024.
647 */
648 ring_for_each(rt2x00dev, ring) {
649 ring->rt2x00dev = rt2x00dev;
650 ring->tx_params.aifs = 2;
651 ring->tx_params.cw_min = 5;
652 ring->tx_params.cw_max = 10;
653 }
654
655 return 0;
656 }
657
658 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
659 {
660 int retval = -ENOMEM;
661
662 /*
663 * Create workqueue.
664 */
665 rt2x00dev->workqueue = create_singlethread_workqueue(DRV_NAME);
666 if (!rt2x00dev->workqueue)
667 goto exit;
668
669 /*
670 * Let the driver probe the device to detect the capabilities.
671 */
672 retval = rt2x00dev->ops->lib->init_hw(rt2x00dev);
673 if (retval) {
674 ERROR(rt2x00dev, "Failed to allocate device.\n");
675 goto exit;
676 }
677
678 /*
679 * Initialize configuration work.
680 */
681 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
682
683 /*
684 * Reset current working type.
685 */
686 rt2x00dev->interface.type = -EINVAL;
687
688 /*
689 * Allocate ring array.
690 */
691 retval = rt2x00lib_alloc_rings(rt2x00dev);
692 if (retval)
693 goto exit;
694
695 /*
696 * Initialize ieee80211 structure.
697 */
698 retval = rt2x00lib_init_hw(rt2x00dev);
699 if (retval) {
700 ERROR(rt2x00dev, "Failed to initialize hw.\n");
701 goto exit;
702 }
703
704 /*
705 * Allocatie rfkill.
706 */
707 retval = rt2x00lib_allocate_rfkill(rt2x00dev);
708 if (retval)
709 goto exit;
710
711 /*
712 * Open the debugfs entry.
713 */
714 rt2x00debug_register(rt2x00dev);
715
716 /*
717 * Check if we need to load the firmware.
718 */
719 if (test_bit(FIRMWARE_REQUIRED, &rt2x00dev->flags)) {
720 /*
721 * Request firmware and wait with further
722 * initializing of the card until the firmware
723 * has been loaded.
724 */
725 retval = rt2x00lib_load_firmware(rt2x00dev);
726 if (retval)
727 goto exit;
728 }
729
730 return 0;
731
732 exit:
733 rt2x00lib_remove_dev(rt2x00dev);
734
735 return retval;
736 }
737 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
738
739 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
740 {
741 /*
742 * Disable radio.
743 */
744 rt2x00lib_disable_radio(rt2x00dev);
745
746 /*
747 * Uninitialize device.
748 */
749 rt2x00lib_uninitialize(rt2x00dev);
750
751 /*
752 * Close debugfs entry.
753 */
754 rt2x00debug_deregister(rt2x00dev);
755
756 /*
757 * Free rfkill
758 */
759 rt2x00lib_free_rfkill(rt2x00dev);
760
761 /*
762 * Free ieee80211_hw memory.
763 */
764 rt2x00lib_deinit_hw(rt2x00dev);
765
766 /*
767 * Free workqueue.
768 */
769 if (likely(rt2x00dev->workqueue)) {
770 destroy_workqueue(rt2x00dev->workqueue);
771 rt2x00dev->workqueue = NULL;
772 }
773
774 /*
775 * Free ring structures.
776 */
777 kfree(rt2x00dev->rx);
778 rt2x00dev->rx = NULL;
779 rt2x00dev->tx = NULL;
780 rt2x00dev->bcn = NULL;
781
782 /*
783 * Free EEPROM memory.
784 */
785 kfree(rt2x00dev->eeprom);
786 rt2x00dev->eeprom = NULL;
787 }
788 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
789
790 /*
791 * Device state handlers
792 */
793 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev,
794 pm_message_t state)
795 {
796 int retval;
797
798 NOTICE(rt2x00dev, "Going to sleep.\n");
799
800 rt2x00lib_disable_radio(rt2x00dev);
801
802 /*
803 * Set device mode to sleep for power management.
804 */
805 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
806 if (retval)
807 return retval;
808
809 rt2x00lib_remove_dev(rt2x00dev);
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
814
815 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
816 {
817 int retval;
818
819 NOTICE(rt2x00dev, "Waking up.\n");
820
821 retval = rt2x00lib_probe_dev(rt2x00dev);
822 if (retval) {
823 ERROR(rt2x00dev, "Failed to allocate device.\n");
824 return retval;
825 }
826
827 /*
828 * Set device mode to awake for power management.
829 */
830 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE);
831 if (retval)
832 return retval;
833
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
837
838 /*
839 * Interrupt context handlers.
840 */
841 void rt2x00lib_txdone(struct data_entry *entry,
842 const int status, const int retry)
843 {
844 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
845 struct ieee80211_tx_status *tx_status = &entry->tx_status;
846 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
847
848 /*
849 * Update TX statistics.
850 */
851 tx_status->flags = 0;
852 tx_status->ack_signal = 0;
853 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
854 tx_status->retry_count = retry;
855
856 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
857 if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY)
858 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
859 else
860 stats->dot11ACKFailureCount++;
861 }
862
863 tx_status->queue_length = entry->ring->stats.limit;
864 tx_status->queue_number = tx_status->control.queue;
865
866 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
867 if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY)
868 stats->dot11RTSSuccessCount++;
869 else
870 stats->dot11RTSFailureCount++;
871 }
872
873 /*
874 * Send the tx_status to mac80211,
875 * that method also cleans up the skb structure.
876 */
877 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
878
879 entry->skb = NULL;
880 }
881 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
882
883 void rt2x00lib_rxdone(struct data_entry *entry, char *data,
884 const int size, const int signal, const int rssi, const int ofdm)
885 {
886 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
887 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
888 struct ieee80211_hw_mode *mode;
889 struct ieee80211_rate *rate;
890 struct sk_buff *skb;
891 unsigned int i;
892 int val = 0;
893
894 /*
895 * Update RX statistics.
896 */
897 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
898 for (i = 0; i < mode->num_rates; i++) {
899 rate = &mode->rates[i];
900
901 /*
902 * When frame was received with an OFDM bitrate,
903 * the signal is the PLCP value. If it was received with
904 * a CCK bitrate the signal is the rate in 0.5kbit/s.
905 */
906 if (!ofdm)
907 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
908 else
909 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
910
911 if (val == signal) {
912 /*
913 * Check for preamble bit.
914 */
915 if (signal & 0x08)
916 val = rate->val2;
917 val = rate->val;
918 break;
919 }
920 }
921
922 rx_status->rate = val;
923 rx_status->ssi = rssi;
924 rx_status->noise = rt2x00dev->link.curr_noise;
925 rt2x00_update_link_rssi(&rt2x00dev->link, rssi);
926
927 /*
928 * Let's allocate a sk_buff where we can store the received data in,
929 * note that if data is NULL, we still have to allocate a sk_buff
930 * but that we should use that to replace the sk_buff which is already
931 * inside the entry.
932 */
933 skb = dev_alloc_skb(size + NET_IP_ALIGN);
934 if (!skb)
935 return;
936
937 skb_reserve(skb, NET_IP_ALIGN);
938 skb_put(skb, size);
939
940 if (data) {
941 memcpy(skb->data, data, size);
942 entry->skb = skb;
943 skb = NULL;
944 }
945
946 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
947 entry->skb = skb;
948 }
949 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
950
951 /*
952 * TX descriptor initializer
953 */
954 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
955 struct data_entry *entry, struct data_desc *txd,
956 struct ieee80211_hdr *ieee80211hdr, unsigned int length,
957 struct ieee80211_tx_control *control)
958 {
959 struct data_entry_desc desc;
960 int tx_rate;
961 int bitrate;
962 int duration;
963 int residual;
964 u16 frame_control;
965 u16 seq_ctrl;
966
967 /*
968 * Identify queue
969 */
970 if (control->queue < rt2x00dev->hw->queues)
971 desc.queue = control->queue;
972 else
973 desc.queue = 15;
974
975 /*
976 * Read required fields from ieee80211 header.
977 */
978 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
979 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
980
981 tx_rate = control->tx_rate;
982
983 /*
984 * Check if this is a rts frame
985 */
986 if (is_rts_frame(frame_control)) {
987 __set_bit(ENTRY_TXD_RTS_FRAME, &entry->flags);
988 if (control->rts_cts_rate)
989 tx_rate = control->rts_cts_rate;
990 }
991
992 /*
993 * Check for OFDM
994 */
995 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATE)
996 __set_bit(ENTRY_TXD_OFDM_RATE, &entry->flags);
997
998 /*
999 * Check if more fragments are pending
1000 */
1001 if (ieee80211_get_morefrag(ieee80211hdr))
1002 __set_bit(ENTRY_TXD_MORE_FRAG, &entry->flags);
1003
1004 /*
1005 * Check if this is a new sequence
1006 */
1007 if ((seq_ctrl & IEEE80211_SCTL_FRAG) == 0)
1008 __set_bit(ENTRY_TXD_NEW_SEQ, &entry->flags);
1009
1010 /*
1011 * Beacons and probe responses require the tsf timestamp
1012 * to be inserted into the frame.
1013 */
1014 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
1015 is_probe_resp(frame_control))
1016 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags);
1017
1018 /*
1019 * Check if ACK is required
1020 */
1021 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
1022 __set_bit(ENTRY_TXD_REQ_ACK, &entry->flags);
1023
1024 /*
1025 * Determine with what IFS priority this frame should be send.
1026 * Set ifs to IFS_SIFS when the this is not the first fragment,
1027 * or this fragment came after RTS/CTS.
1028 */
1029 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
1030 test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags))
1031 desc.ifs = IFS_SIFS;
1032 else
1033 desc.ifs = IFS_BACKOFF;
1034
1035 /*
1036 * How the length should be processed depends
1037 * on if we are working with OFDM rates or not.
1038 */
1039 if (test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags)) {
1040 residual = 0;
1041 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
1042 desc.length_low = ((length + FCS_LEN) & 0x3f);
1043
1044 } else {
1045 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
1046
1047 /*
1048 * Convert length to microseconds.
1049 */
1050 residual = get_duration_res(length + FCS_LEN, bitrate);
1051 duration = get_duration(length + FCS_LEN, bitrate);
1052
1053 if (residual != 0)
1054 duration++;
1055
1056 desc.length_high = duration >> 8;
1057 desc.length_low = duration & 0xff;
1058 }
1059
1060 /*
1061 * Create the signal and service values.
1062 */
1063 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
1064 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
1065 desc.signal |= 0x08;
1066
1067 desc.service = 0x04;
1068 if (residual <= (8 % 11))
1069 desc.service |= 0x80;
1070
1071 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry, txd, &desc,
1072 ieee80211hdr, length, control);
1073 }
1074 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
1075
1076 /*
1077 * rt2x00lib module information.
1078 */
1079 MODULE_AUTHOR(DRV_PROJECT);
1080 MODULE_VERSION(DRV_VERSION);
1081 MODULE_DESCRIPTION("rt2x00 library");
1082 MODULE_LICENSE("GPL");