2.6.30: add lzma support to squashfs through pcomp
[openwrt/svn-archive/archive.git] / target / linux / generic-2.6 / patches-2.6.30 / 052-pcomp_lzma_support.patch
1 --- /dev/null
2 +++ b/crypto/unlzma.c
3 @@ -0,0 +1,710 @@
4 +/*
5 + * LZMA uncompresion module for pcomp
6 + * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
7 + *
8 + * Based on:
9 + * Initial Linux kernel adaptation
10 + * Copyright (C) 2006 Alain < alain@knaff.lu >
11 + *
12 + * Based on small lzma deflate implementation/Small range coder
13 + * implementation for lzma.
14 + * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
15 + *
16 + * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
17 + * Copyright (C) 1999-2005 Igor Pavlov
18 + *
19 + * This program is free software; you can redistribute it and/or modify it
20 + * under the terms of the GNU General Public License version 2 as published
21 + * by the Free Software Foundation.
22 + *
23 + * FIXME: the current implementation assumes that the caller will
24 + * not free any output buffers until the whole decompression has been
25 + * completed. This is necessary, because LZMA looks back at old output
26 + * instead of doing a separate dictionary allocation, which saves RAM.
27 + */
28 +
29 +#include <linux/init.h>
30 +#include <linux/module.h>
31 +#include <linux/vmalloc.h>
32 +#include <linux/interrupt.h>
33 +#include <linux/mm.h>
34 +#include <linux/net.h>
35 +#include <linux/slab.h>
36 +#include <linux/kthread.h>
37 +
38 +#include <crypto/internal/compress.h>
39 +#include "unlzma.h"
40 +
41 +static int instance = 0;
42 +
43 +struct unlzma_buffer {
44 + struct unlzma_buffer *last;
45 + int offset;
46 + int size;
47 + u8 *ptr;
48 +};
49 +
50 +struct unlzma_ctx {
51 + struct task_struct *thread;
52 + wait_queue_head_t next_req;
53 + struct mutex mutex;
54 + bool active;
55 + bool cancel;
56 +
57 + const u8 *next_in;
58 + int avail_in;
59 +
60 + u8 *next_out;
61 + int avail_out;
62 +
63 + /* reader state */
64 + u32 code;
65 + u32 range;
66 + u32 bound;
67 +
68 + /* writer state */
69 + u8 previous_byte;
70 + ssize_t pos;
71 + struct unlzma_buffer *head;
72 +
73 + /* cstate */
74 + int state;
75 + u32 rep0, rep1, rep2, rep3;
76 +
77 + u32 dict_size;
78 +
79 + void *workspace;
80 + int workspace_size;
81 +};
82 +
83 +static inline bool
84 +unlzma_should_stop(struct unlzma_ctx *ctx)
85 +{
86 + return unlikely(kthread_should_stop() || ctx->cancel);
87 +}
88 +
89 +static void
90 +unlzma_request_buffer(struct unlzma_ctx *ctx, int *avail)
91 +{
92 + mutex_unlock(&ctx->mutex);
93 + wait_event(ctx->next_req, unlzma_should_stop(ctx) || (*avail > 0));
94 + mutex_lock(&ctx->mutex);
95 +}
96 +
97 +static u8
98 +rc_read(struct unlzma_ctx *ctx)
99 +{
100 + if (unlikely(ctx->avail_in <= 0))
101 + unlzma_request_buffer(ctx, &ctx->avail_in);
102 +
103 + if (unlzma_should_stop(ctx))
104 + return 0;
105 +
106 + ctx->avail_in--;
107 + return *(ctx->next_in++);
108 +}
109 +
110 +
111 +static inline void
112 +rc_get_code(struct unlzma_ctx *ctx)
113 +{
114 + ctx->code = (ctx->code << 8) | rc_read(ctx);
115 +}
116 +
117 +static void
118 +rc_normalize(struct unlzma_ctx *ctx)
119 +{
120 + if (ctx->range < (1 << RC_TOP_BITS)) {
121 + ctx->range <<= 8;
122 + rc_get_code(ctx);
123 + }
124 +}
125 +
126 +static int
127 +rc_is_bit_0(struct unlzma_ctx *ctx, u16 *p)
128 +{
129 + rc_normalize(ctx);
130 + ctx->bound = *p * (ctx->range >> RC_MODEL_TOTAL_BITS);
131 + return ctx->code < ctx->bound;
132 +}
133 +
134 +static void
135 +rc_update_bit_0(struct unlzma_ctx *ctx, u16 *p)
136 +{
137 + ctx->range = ctx->bound;
138 + *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
139 +}
140 +
141 +static void
142 +rc_update_bit_1(struct unlzma_ctx *ctx, u16 *p)
143 +{
144 + ctx->range -= ctx->bound;
145 + ctx->code -= ctx->bound;
146 + *p -= *p >> RC_MOVE_BITS;
147 +}
148 +
149 +static bool
150 +rc_get_bit(struct unlzma_ctx *ctx, u16 *p, int *symbol)
151 +{
152 + if (rc_is_bit_0(ctx, p)) {
153 + rc_update_bit_0(ctx, p);
154 + *symbol *= 2;
155 + return 0;
156 + } else {
157 + rc_update_bit_1(ctx, p);
158 + *symbol = *symbol * 2 + 1;
159 + return 1;
160 + }
161 +}
162 +
163 +static int
164 +rc_direct_bit(struct unlzma_ctx *ctx)
165 +{
166 + rc_normalize(ctx);
167 + ctx->range >>= 1;
168 + if (ctx->code >= ctx->range) {
169 + ctx->code -= ctx->range;
170 + return 1;
171 + }
172 + return 0;
173 +}
174 +
175 +static void
176 +rc_bit_tree_decode(struct unlzma_ctx *ctx, u16 *p, int num_levels, int *symbol)
177 +{
178 + int i = num_levels;
179 +
180 + *symbol = 1;
181 + while (i--)
182 + rc_get_bit(ctx, p + *symbol, symbol);
183 + *symbol -= 1 << num_levels;
184 +}
185 +
186 +static u8
187 +peek_old_byte(struct unlzma_ctx *ctx, u32 offs)
188 +{
189 + struct unlzma_buffer *bh = ctx->head;
190 + u32 pos;
191 +
192 + pos = ctx->pos - offs;
193 + if (pos >= ctx->dict_size) {
194 + pos = (~pos % ctx->dict_size);
195 + }
196 +
197 + while (bh->offset > pos) {
198 + bh = bh->last;
199 + if (!bh)
200 + return 0;
201 + }
202 +
203 + pos -= bh->offset;
204 + if (pos > bh->size)
205 + return 0;
206 +
207 + return bh->ptr[pos];
208 +}
209 +
210 +static void
211 +get_buffer(struct unlzma_ctx *ctx)
212 +{
213 + struct unlzma_buffer *bh;
214 +
215 + bh = kzalloc(sizeof(struct unlzma_buffer), GFP_KERNEL);
216 + bh->ptr = ctx->next_out;
217 + bh->offset = ctx->pos;
218 + bh->last = ctx->head;
219 + bh->size = ctx->avail_out;
220 + ctx->head = bh;
221 +}
222 +
223 +static void
224 +write_byte(struct unlzma_ctx *ctx, u8 byte)
225 +{
226 + if (unlikely(ctx->avail_out <= 0)) {
227 + unlzma_request_buffer(ctx, &ctx->avail_out);
228 + get_buffer(ctx);
229 + }
230 +
231 + if (!ctx->avail_out)
232 + return;
233 +
234 + ctx->previous_byte = byte;
235 + *(ctx->next_out++) = byte;
236 + ctx->avail_out--;
237 + ctx->pos++;
238 +}
239 +
240 +
241 +static inline void
242 +copy_byte(struct unlzma_ctx *ctx, u32 offs)
243 +{
244 + write_byte(ctx, peek_old_byte(ctx, offs));
245 +}
246 +
247 +static void
248 +copy_bytes(struct unlzma_ctx *ctx, u32 rep0, int len)
249 +{
250 + do {
251 + copy_byte(ctx, rep0);
252 + len--;
253 + if (unlzma_should_stop(ctx))
254 + break;
255 + } while (len != 0);
256 +}
257 +
258 +static void
259 +process_bit0(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob,
260 + int lc, u32 literal_pos_mask)
261 +{
262 + int mi = 1;
263 + rc_update_bit_0(ctx, prob);
264 + prob = (p + LZMA_LITERAL +
265 + (LZMA_LIT_SIZE
266 + * (((ctx->pos & literal_pos_mask) << lc)
267 + + (ctx->previous_byte >> (8 - lc))))
268 + );
269 +
270 + if (ctx->state >= LZMA_NUM_LIT_STATES) {
271 + int match_byte = peek_old_byte(ctx, ctx->rep0);
272 + do {
273 + u16 bit;
274 + u16 *prob_lit;
275 +
276 + match_byte <<= 1;
277 + bit = match_byte & 0x100;
278 + prob_lit = prob + 0x100 + bit + mi;
279 + if (rc_get_bit(ctx, prob_lit, &mi) != !!bit)
280 + break;
281 + } while (mi < 0x100);
282 + }
283 + while (mi < 0x100) {
284 + u16 *prob_lit = prob + mi;
285 + rc_get_bit(ctx, prob_lit, &mi);
286 + }
287 + write_byte(ctx, mi);
288 + if (ctx->state < 4)
289 + ctx->state = 0;
290 + else if (ctx->state < 10)
291 + ctx->state -= 3;
292 + else
293 + ctx->state -= 6;
294 +}
295 +
296 +static void
297 +process_bit1(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob)
298 +{
299 + int offset;
300 + u16 *prob_len;
301 + int num_bits;
302 + int len;
303 +
304 + rc_update_bit_1(ctx, prob);
305 + prob = p + LZMA_IS_REP + ctx->state;
306 + if (rc_is_bit_0(ctx, prob)) {
307 + rc_update_bit_0(ctx, prob);
308 + ctx->rep3 = ctx->rep2;
309 + ctx->rep2 = ctx->rep1;
310 + ctx->rep1 = ctx->rep0;
311 + ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 0 : 3;
312 + prob = p + LZMA_LEN_CODER;
313 + } else {
314 + rc_update_bit_1(ctx, prob);
315 + prob = p + LZMA_IS_REP_G0 + ctx->state;
316 + if (rc_is_bit_0(ctx, prob)) {
317 + rc_update_bit_0(ctx, prob);
318 + prob = (p + LZMA_IS_REP_0_LONG
319 + + (ctx->state <<
320 + LZMA_NUM_POS_BITS_MAX) +
321 + pos_state);
322 + if (rc_is_bit_0(ctx, prob)) {
323 + rc_update_bit_0(ctx, prob);
324 +
325 + ctx->state = ctx->state < LZMA_NUM_LIT_STATES ?
326 + 9 : 11;
327 + copy_byte(ctx, ctx->rep0);
328 + return;
329 + } else {
330 + rc_update_bit_1(ctx, prob);
331 + }
332 + } else {
333 + u32 distance;
334 +
335 + rc_update_bit_1(ctx, prob);
336 + prob = p + LZMA_IS_REP_G1 + ctx->state;
337 + if (rc_is_bit_0(ctx, prob)) {
338 + rc_update_bit_0(ctx, prob);
339 + distance = ctx->rep1;
340 + } else {
341 + rc_update_bit_1(ctx, prob);
342 + prob = p + LZMA_IS_REP_G2 + ctx->state;
343 + if (rc_is_bit_0(ctx, prob)) {
344 + rc_update_bit_0(ctx, prob);
345 + distance = ctx->rep2;
346 + } else {
347 + rc_update_bit_1(ctx, prob);
348 + distance = ctx->rep3;
349 + ctx->rep3 = ctx->rep2;
350 + }
351 + ctx->rep2 = ctx->rep1;
352 + }
353 + ctx->rep1 = ctx->rep0;
354 + ctx->rep0 = distance;
355 + }
356 + ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 8 : 11;
357 + prob = p + LZMA_REP_LEN_CODER;
358 + }
359 +
360 + prob_len = prob + LZMA_LEN_CHOICE;
361 + if (rc_is_bit_0(ctx, prob_len)) {
362 + rc_update_bit_0(ctx, prob_len);
363 + prob_len = (prob + LZMA_LEN_LOW
364 + + (pos_state <<
365 + LZMA_LEN_NUM_LOW_BITS));
366 + offset = 0;
367 + num_bits = LZMA_LEN_NUM_LOW_BITS;
368 + } else {
369 + rc_update_bit_1(ctx, prob_len);
370 + prob_len = prob + LZMA_LEN_CHOICE_2;
371 + if (rc_is_bit_0(ctx, prob_len)) {
372 + rc_update_bit_0(ctx, prob_len);
373 + prob_len = (prob + LZMA_LEN_MID
374 + + (pos_state <<
375 + LZMA_LEN_NUM_MID_BITS));
376 + offset = 1 << LZMA_LEN_NUM_LOW_BITS;
377 + num_bits = LZMA_LEN_NUM_MID_BITS;
378 + } else {
379 + rc_update_bit_1(ctx, prob_len);
380 + prob_len = prob + LZMA_LEN_HIGH;
381 + offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
382 + + (1 << LZMA_LEN_NUM_MID_BITS));
383 + num_bits = LZMA_LEN_NUM_HIGH_BITS;
384 + }
385 + }
386 +
387 + rc_bit_tree_decode(ctx, prob_len, num_bits, &len);
388 + len += offset;
389 +
390 + if (ctx->state < 4) {
391 + int pos_slot;
392 +
393 + ctx->state += LZMA_NUM_LIT_STATES;
394 + prob =
395 + p + LZMA_POS_SLOT +
396 + ((len <
397 + LZMA_NUM_LEN_TO_POS_STATES ? len :
398 + LZMA_NUM_LEN_TO_POS_STATES - 1)
399 + << LZMA_NUM_POS_SLOT_BITS);
400 + rc_bit_tree_decode(ctx, prob,
401 + LZMA_NUM_POS_SLOT_BITS,
402 + &pos_slot);
403 + if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
404 + int i, mi;
405 + num_bits = (pos_slot >> 1) - 1;
406 + ctx->rep0 = 2 | (pos_slot & 1);
407 + if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
408 + ctx->rep0 <<= num_bits;
409 + prob = p + LZMA_SPEC_POS +
410 + ctx->rep0 - pos_slot - 1;
411 + } else {
412 + num_bits -= LZMA_NUM_ALIGN_BITS;
413 + while (num_bits--)
414 + ctx->rep0 = (ctx->rep0 << 1) |
415 + rc_direct_bit(ctx);
416 + prob = p + LZMA_ALIGN;
417 + ctx->rep0 <<= LZMA_NUM_ALIGN_BITS;
418 + num_bits = LZMA_NUM_ALIGN_BITS;
419 + }
420 + i = 1;
421 + mi = 1;
422 + while (num_bits--) {
423 + if (rc_get_bit(ctx, prob + mi, &mi))
424 + ctx->rep0 |= i;
425 + i <<= 1;
426 + }
427 + } else
428 + ctx->rep0 = pos_slot;
429 + if (++(ctx->rep0) == 0)
430 + return;
431 + }
432 +
433 + len += LZMA_MATCH_MIN_LEN;
434 +
435 + copy_bytes(ctx, ctx->rep0, len);
436 +}
437 +
438 +
439 +static int
440 +do_unlzma(struct unlzma_ctx *ctx)
441 +{
442 + u8 hdr_buf[sizeof(struct lzma_header)];
443 + struct lzma_header *header = (struct lzma_header *)hdr_buf;
444 + u32 pos_state_mask;
445 + u32 literal_pos_mask;
446 + int lc, pb, lp;
447 + int num_probs;
448 + int i, mi;
449 + u16 *p;
450 +
451 + for (i = 0; i < sizeof(struct lzma_header); i++) {
452 + hdr_buf[i] = rc_read(ctx);
453 + }
454 +
455 + ctx->pos = 0;
456 + get_buffer(ctx);
457 + ctx->active = true;
458 + ctx->state = 0;
459 + ctx->rep0 = ctx->rep1 = ctx->rep2 = ctx->rep3 = 1;
460 +
461 + ctx->previous_byte = 0;
462 + ctx->code = 0;
463 + ctx->range = 0xFFFFFFFF;
464 +
465 + ctx->dict_size = le32_to_cpu(header->dict_size);
466 +
467 + if (header->pos >= (9 * 5 * 5))
468 + return -1;
469 +
470 + mi = 0;
471 + lc = header->pos;
472 + while (lc >= 9) {
473 + mi++;
474 + lc -= 9;
475 + }
476 + pb = 0;
477 + lp = mi;
478 + while (lp >= 5) {
479 + pb++;
480 + lp -= 5;
481 + }
482 + pos_state_mask = (1 << pb) - 1;
483 + literal_pos_mask = (1 << lp) - 1;
484 +
485 + if (ctx->dict_size == 0)
486 + ctx->dict_size = 1;
487 +
488 + num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
489 + if (ctx->workspace_size < num_probs * sizeof(*p)) {
490 + if (ctx->workspace)
491 + vfree(ctx->workspace);
492 + ctx->workspace = vmalloc(num_probs * sizeof(*p));
493 + }
494 + p = (u16 *) ctx->workspace;
495 + if (!p)
496 + return -1;
497 +
498 + num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
499 + for (i = 0; i < num_probs; i++)
500 + p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
501 +
502 + for (i = 0; i < 5; i++)
503 + rc_get_code(ctx);
504 +
505 + while (1) {
506 + int pos_state = ctx->pos & pos_state_mask;
507 + u16 *prob = p + LZMA_IS_MATCH +
508 + (ctx->state << LZMA_NUM_POS_BITS_MAX) + pos_state;
509 + if (rc_is_bit_0(ctx, prob))
510 + process_bit0(ctx, p, pos_state, prob,
511 + lc, literal_pos_mask);
512 + else {
513 + process_bit1(ctx, p, pos_state, prob);
514 + if (ctx->rep0 == 0)
515 + break;
516 + }
517 + if (unlzma_should_stop(ctx))
518 + break;
519 + }
520 +
521 + return ctx->pos;
522 +}
523 +
524 +
525 +static void
526 +unlzma_reset_buf(struct unlzma_ctx *ctx)
527 +{
528 + ctx->avail_in = 0;
529 + ctx->next_in = NULL;
530 + ctx->avail_out = 0;
531 + ctx->next_out = NULL;
532 +}
533 +
534 +static int
535 +unlzma_thread(void *data)
536 +{
537 + struct unlzma_ctx *ctx = data;
538 +
539 + mutex_lock(&ctx->mutex);
540 + do {
541 + if (do_unlzma(ctx) < 0)
542 + ctx->pos = 0;
543 + unlzma_reset_buf(ctx);
544 + ctx->cancel = false;
545 + ctx->active = false;
546 + while (ctx->head) {
547 + struct unlzma_buffer *bh = ctx->head;
548 + ctx->head = bh->last;
549 + kfree(bh);
550 + }
551 + } while (!kthread_should_stop());
552 + mutex_unlock(&ctx->mutex);
553 + return 0;
554 +}
555 +
556 +
557 +static int
558 +unlzma_init(struct crypto_tfm *tfm)
559 +{
560 + return 0;
561 +}
562 +
563 +static void
564 +unlzma_cancel(struct unlzma_ctx *ctx)
565 +{
566 + unlzma_reset_buf(ctx);
567 +
568 + if (!ctx->active)
569 + return;
570 +
571 + ctx->cancel = true;
572 + do {
573 + mutex_unlock(&ctx->mutex);
574 + wake_up(&ctx->next_req);
575 + schedule();
576 + mutex_lock(&ctx->mutex);
577 + } while (ctx->cancel);
578 +}
579 +
580 +
581 +static void
582 +unlzma_exit(struct crypto_tfm *tfm)
583 +{
584 + struct unlzma_ctx *ctx = crypto_tfm_ctx(tfm);
585 +
586 + if (ctx->thread) {
587 + unlzma_cancel(ctx);
588 + kthread_stop(ctx->thread);
589 + ctx->thread = NULL;
590 + }
591 +}
592 +
593 +static int
594 +unlzma_decompress_setup(struct crypto_pcomp *tfm, void *p, unsigned int len)
595 +{
596 + struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
597 + int ret = 0;
598 +
599 + if (ctx->thread)
600 + return 0;
601 +
602 + mutex_init(&ctx->mutex);
603 + init_waitqueue_head(&ctx->next_req);
604 + ctx->thread = kthread_run(unlzma_thread, ctx, "unlzma/%d", instance++);
605 + if (IS_ERR(ctx->thread)) {
606 + ret = PTR_ERR(ctx->thread);
607 + ctx->thread = NULL;
608 + }
609 +
610 + return ret;
611 +}
612 +
613 +static int
614 +unlzma_decompress_init(struct crypto_pcomp *tfm)
615 +{
616 + struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
617 +
618 + ctx->pos = 0;
619 + return 0;
620 +}
621 +
622 +static void
623 +unlzma_wait_complete(struct unlzma_ctx *ctx, bool finish)
624 +{
625 + do {
626 + mutex_unlock(&ctx->mutex);
627 + wake_up(&ctx->next_req);
628 + schedule();
629 + mutex_lock(&ctx->mutex);
630 + } while (ctx->active && (ctx->avail_in > 0) && (ctx->avail_out > 0));
631 +}
632 +
633 +static int
634 +unlzma_decompress_update(struct crypto_pcomp *tfm, struct comp_request *req)
635 +{
636 + struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
637 + size_t pos = 0;
638 +
639 + mutex_lock(&ctx->mutex);
640 + if (!ctx->active && !req->avail_in)
641 + goto out;
642 +
643 + pos = ctx->pos;
644 + ctx->next_in = req->next_in;
645 + ctx->avail_in = req->avail_in;
646 + ctx->next_out = req->next_out;
647 + ctx->avail_out = req->avail_out;
648 +
649 + unlzma_wait_complete(ctx, false);
650 +
651 + req->next_in = ctx->next_in;
652 + req->avail_in = ctx->avail_in;
653 + req->next_out = ctx->next_out;
654 + req->avail_out = ctx->avail_out;
655 + pos = ctx->pos - pos;
656 +
657 +out:
658 + mutex_unlock(&ctx->mutex);
659 + return pos;
660 +}
661 +
662 +static int
663 +unlzma_decompress_final(struct crypto_pcomp *tfm, struct comp_request *req)
664 +{
665 + struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
666 + int ret = 0;
667 +
668 + /* cancel pending operation */
669 + mutex_lock(&ctx->mutex);
670 + if (ctx->active) {
671 + // ret = -EINVAL;
672 + unlzma_cancel(ctx);
673 + }
674 + ctx->pos = 0;
675 + mutex_unlock(&ctx->mutex);
676 + return ret;
677 +}
678 +
679 +
680 +static struct pcomp_alg unlzma_alg = {
681 + .decompress_setup = unlzma_decompress_setup,
682 + .decompress_init = unlzma_decompress_init,
683 + .decompress_update = unlzma_decompress_update,
684 + .decompress_final = unlzma_decompress_final,
685 +
686 + .base = {
687 + .cra_name = "lzma",
688 + .cra_flags = CRYPTO_ALG_TYPE_PCOMPRESS,
689 + .cra_ctxsize = sizeof(struct unlzma_ctx),
690 + .cra_module = THIS_MODULE,
691 + .cra_init = unlzma_init,
692 + .cra_exit = unlzma_exit,
693 + }
694 +};
695 +
696 +static int __init
697 +unlzma_mod_init(void)
698 +{
699 + return crypto_register_pcomp(&unlzma_alg);
700 +}
701 +
702 +static void __exit
703 +unlzma_mod_exit(void)
704 +{
705 + crypto_unregister_pcomp(&unlzma_alg);
706 +}
707 +
708 +module_init(unlzma_mod_init);
709 +module_exit(unlzma_mod_exit);
710 +
711 +MODULE_LICENSE("GPL");
712 +MODULE_DESCRIPTION("LZMA Decompression Algorithm");
713 +MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
714 --- a/crypto/Kconfig
715 +++ b/crypto/Kconfig
716 @@ -728,6 +728,12 @@ config CRYPTO_ZLIB
717 help
718 This is the zlib algorithm.
719
720 +config CRYPTO_UNLZMA
721 + tristate "LZMA decompression"
722 + select CRYPTO_PCOMP
723 + help
724 + This is the lzma decompression module.
725 +
726 config CRYPTO_LZO
727 tristate "LZO compression algorithm"
728 select CRYPTO_ALGAPI
729 --- a/crypto/Makefile
730 +++ b/crypto/Makefile
731 @@ -73,6 +73,7 @@ obj-$(CONFIG_CRYPTO_SEED) += seed.o
732 obj-$(CONFIG_CRYPTO_SALSA20) += salsa20_generic.o
733 obj-$(CONFIG_CRYPTO_DEFLATE) += deflate.o
734 obj-$(CONFIG_CRYPTO_ZLIB) += zlib.o
735 +obj-$(CONFIG_CRYPTO_UNLZMA) += unlzma.o
736 obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += michael_mic.o
737 obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
738 obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o
739 --- /dev/null
740 +++ b/crypto/unlzma.h
741 @@ -0,0 +1,80 @@
742 +/* LZMA uncompresion module for pcomp
743 + * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
744 + *
745 + * Based on:
746 + * Initial Linux kernel adaptation
747 + * Copyright (C) 2006 Alain < alain@knaff.lu >
748 + *
749 + * Based on small lzma deflate implementation/Small range coder
750 + * implementation for lzma.
751 + * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
752 + *
753 + * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
754 + * Copyright (C) 1999-2005 Igor Pavlov
755 + *
756 + * This program is free software; you can redistribute it and/or modify it
757 + * under the terms of the GNU General Public License version 2 as published
758 + * by the Free Software Foundation.
759 + */
760 +#ifndef __UNLZMA_H
761 +#define __UNLZMA_H
762 +
763 +struct lzma_header {
764 + __u8 pos;
765 + __le32 dict_size;
766 +} __attribute__ ((packed)) ;
767 +
768 +
769 +#define RC_TOP_BITS 24
770 +#define RC_MOVE_BITS 5
771 +#define RC_MODEL_TOTAL_BITS 11
772 +
773 +#define LZMA_BASE_SIZE 1846
774 +#define LZMA_LIT_SIZE 768
775 +
776 +#define LZMA_NUM_POS_BITS_MAX 4
777 +
778 +#define LZMA_LEN_NUM_LOW_BITS 3
779 +#define LZMA_LEN_NUM_MID_BITS 3
780 +#define LZMA_LEN_NUM_HIGH_BITS 8
781 +
782 +#define LZMA_LEN_CHOICE 0
783 +#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
784 +#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
785 +#define LZMA_LEN_MID (LZMA_LEN_LOW \
786 + + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
787 +#define LZMA_LEN_HIGH (LZMA_LEN_MID \
788 + +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
789 +#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
790 +
791 +#define LZMA_NUM_STATES 12
792 +#define LZMA_NUM_LIT_STATES 7
793 +
794 +#define LZMA_START_POS_MODEL_INDEX 4
795 +#define LZMA_END_POS_MODEL_INDEX 14
796 +#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
797 +
798 +#define LZMA_NUM_POS_SLOT_BITS 6
799 +#define LZMA_NUM_LEN_TO_POS_STATES 4
800 +
801 +#define LZMA_NUM_ALIGN_BITS 4
802 +
803 +#define LZMA_MATCH_MIN_LEN 2
804 +
805 +#define LZMA_IS_MATCH 0
806 +#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
807 +#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
808 +#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
809 +#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
810 +#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
811 +#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
812 + + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
813 +#define LZMA_SPEC_POS (LZMA_POS_SLOT \
814 + +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
815 +#define LZMA_ALIGN (LZMA_SPEC_POS \
816 + + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
817 +#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
818 +#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
819 +#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
820 +
821 +#endif