[lantiq] cleanup patches
[openwrt/svn-archive/archive.git] / target / linux / lantiq / files / arch / mips / lantiq / xway / clk.c
1 /*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License version 2 as published
4 * by the Free Software Foundation.
5 *
6 * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
7 */
8
9 #include <linux/io.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/clk.h>
13
14 #include <asm/time.h>
15 #include <asm/irq.h>
16 #include <asm/div64.h>
17
18 #include <lantiq_soc.h>
19
20 #include "../clk.h"
21
22 static unsigned int ltq_ram_clocks[] = {
23 CLOCK_167M, CLOCK_133M, CLOCK_111M, CLOCK_83M };
24 #define DDR_HZ ltq_ram_clocks[ltq_cgu_r32(LTQ_CGU_SYS) & 0x3]
25
26 #define BASIC_FREQUENCY_1 35328000
27 #define BASIC_FREQUENCY_2 36000000
28 #define BASIS_REQUENCY_USB 12000000
29
30 #define GET_BITS(x, msb, lsb) \
31 (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb))
32
33 /* legacy xway clock */
34 #define LTQ_CGU_PLL0_CFG 0x0004
35 #define LTQ_CGU_PLL1_CFG 0x0008
36 #define LTQ_CGU_PLL2_CFG 0x000C
37 #define LTQ_CGU_SYS 0x0010
38 #define LTQ_CGU_UPDATE 0x0014
39 #define LTQ_CGU_IF_CLK 0x0018
40 #define LTQ_CGU_OSC_CON 0x001C
41 #define LTQ_CGU_SMD 0x0020
42 #define LTQ_CGU_CT1SR 0x0028
43 #define LTQ_CGU_CT2SR 0x002C
44 #define LTQ_CGU_PCMCR 0x0030
45 #define LTQ_CGU_PCI_CR 0x0034
46 #define LTQ_CGU_PD_PC 0x0038
47 #define LTQ_CGU_FMR 0x003C
48
49 #define CGU_PLL0_PHASE_DIVIDER_ENABLE \
50 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 31))
51 #define CGU_PLL0_BYPASS \
52 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 30))
53 #define CGU_PLL0_CFG_DSMSEL \
54 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 28))
55 #define CGU_PLL0_CFG_FRAC_EN \
56 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 27))
57 #define CGU_PLL1_SRC \
58 (ltq_cgu_r32(LTQ_CGU_PLL1_CFG) & (1 << 31))
59 #define CGU_PLL2_PHASE_DIVIDER_ENABLE \
60 (ltq_cgu_r32(LTQ_CGU_PLL2_CFG) & (1 << 20))
61 #define CGU_SYS_FPI_SEL (1 << 6)
62 #define CGU_SYS_DDR_SEL 0x3
63 #define CGU_PLL0_SRC (1 << 29)
64
65 #define CGU_PLL0_CFG_PLLK GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 26, 17)
66 #define CGU_PLL0_CFG_PLLN GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 12, 6)
67 #define CGU_PLL0_CFG_PLLM GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 5, 2)
68 #define CGU_PLL2_SRC GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL2_CFG), 18, 17)
69 #define CGU_PLL2_CFG_INPUT_DIV GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL2_CFG), 16, 13)
70
71 /* vr9 clock */
72 #define LTQ_CGU_SYS_VR9 0x0c
73 #define LTQ_CGU_IF_CLK_VR9 0x24
74
75
76 static unsigned int ltq_get_pll0_fdiv(void);
77
78 static inline unsigned int get_input_clock(int pll)
79 {
80 switch (pll) {
81 case 0:
82 if (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & CGU_PLL0_SRC)
83 return BASIS_REQUENCY_USB;
84 else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
85 return BASIC_FREQUENCY_1;
86 else
87 return BASIC_FREQUENCY_2;
88 case 1:
89 if (CGU_PLL1_SRC)
90 return BASIS_REQUENCY_USB;
91 else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
92 return BASIC_FREQUENCY_1;
93 else
94 return BASIC_FREQUENCY_2;
95 case 2:
96 switch (CGU_PLL2_SRC) {
97 case 0:
98 return ltq_get_pll0_fdiv();
99 case 1:
100 return CGU_PLL2_PHASE_DIVIDER_ENABLE ?
101 BASIC_FREQUENCY_1 :
102 BASIC_FREQUENCY_2;
103 case 2:
104 return BASIS_REQUENCY_USB;
105 }
106 default:
107 return 0;
108 }
109 }
110
111 static inline unsigned int cal_dsm(int pll, unsigned int num, unsigned int den)
112 {
113 u64 res, clock = get_input_clock(pll);
114
115 res = num * clock;
116 do_div(res, den);
117 return res;
118 }
119
120 static inline unsigned int mash_dsm(int pll, unsigned int M, unsigned int N,
121 unsigned int K)
122 {
123 unsigned int num = ((N + 1) << 10) + K;
124 unsigned int den = (M + 1) << 10;
125
126 return cal_dsm(pll, num, den);
127 }
128
129 static inline unsigned int ssff_dsm_1(int pll, unsigned int M, unsigned int N,
130 unsigned int K)
131 {
132 unsigned int num = ((N + 1) << 11) + K + 512;
133 unsigned int den = (M + 1) << 11;
134
135 return cal_dsm(pll, num, den);
136 }
137
138 static inline unsigned int ssff_dsm_2(int pll, unsigned int M, unsigned int N,
139 unsigned int K)
140 {
141 unsigned int num = K >= 512 ?
142 ((N + 1) << 12) + K - 512 : ((N + 1) << 12) + K + 3584;
143 unsigned int den = (M + 1) << 12;
144
145 return cal_dsm(pll, num, den);
146 }
147
148 static inline unsigned int dsm(int pll, unsigned int M, unsigned int N,
149 unsigned int K, unsigned int dsmsel, unsigned int phase_div_en)
150 {
151 if (!dsmsel)
152 return mash_dsm(pll, M, N, K);
153 else if (!phase_div_en)
154 return mash_dsm(pll, M, N, K);
155 else
156 return ssff_dsm_2(pll, M, N, K);
157 }
158
159 static inline unsigned int ltq_get_pll0_fosc(void)
160 {
161 if (CGU_PLL0_BYPASS)
162 return get_input_clock(0);
163 else
164 return !CGU_PLL0_CFG_FRAC_EN
165 ? dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, 0,
166 CGU_PLL0_CFG_DSMSEL,
167 CGU_PLL0_PHASE_DIVIDER_ENABLE)
168 : dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN,
169 CGU_PLL0_CFG_PLLK, CGU_PLL0_CFG_DSMSEL,
170 CGU_PLL0_PHASE_DIVIDER_ENABLE);
171 }
172
173 static unsigned int ltq_get_pll0_fdiv(void)
174 {
175 unsigned int div = CGU_PLL2_CFG_INPUT_DIV + 1;
176
177 return (ltq_get_pll0_fosc() + (div >> 1)) / div;
178 }
179
180 unsigned long ltq_danube_io_region_clock(void)
181 {
182 unsigned int ret = ltq_get_pll0_fosc();
183
184 switch (ltq_cgu_r32(LTQ_CGU_SYS) & 0x3) {
185 default:
186 case 0:
187 return (ret + 1) / 2;
188 case 1:
189 return (ret * 2 + 2) / 5;
190 case 2:
191 return (ret + 1) / 3;
192 case 3:
193 return (ret + 2) / 4;
194 }
195 }
196
197 unsigned long ltq_danube_fpi_bus_clock(int fpi)
198 {
199 unsigned long ret = ltq_danube_io_region_clock();
200
201 if ((fpi == 2) && (ltq_cgu_r32(LTQ_CGU_SYS) & CGU_SYS_FPI_SEL))
202 ret >>= 1;
203 return ret;
204 }
205
206 unsigned long ltq_danube_fpi_hz(void)
207 {
208 unsigned long ddr_clock = DDR_HZ;
209
210 if (ltq_cgu_r32(LTQ_CGU_SYS) & 0x40)
211 return ddr_clock >> 1;
212 return ddr_clock;
213 }
214
215 unsigned long ltq_danube_cpu_hz(void)
216 {
217 switch (ltq_cgu_r32(LTQ_CGU_SYS) & 0xc) {
218 case 0:
219 return CLOCK_333M;
220 case 4:
221 return DDR_HZ;
222 case 8:
223 return DDR_HZ << 1;
224 default:
225 return DDR_HZ >> 1;
226 }
227 }
228
229 unsigned long ltq_ar9_sys_hz(void)
230 {
231 if (((ltq_cgu_r32(LTQ_CGU_SYS) >> 3) & 0x3) == 0x2)
232 return CLOCK_393M;
233 return CLOCK_333M;
234 }
235
236 unsigned long ltq_ar9_fpi_hz(void)
237 {
238 unsigned long sys = ltq_ar9_sys_hz();
239
240 if (ltq_cgu_r32(LTQ_CGU_SYS) & BIT(0))
241 return sys;
242 return sys >> 1;
243 }
244
245 unsigned long ltq_ar9_cpu_hz(void)
246 {
247 if (ltq_cgu_r32(LTQ_CGU_SYS) & BIT(2))
248 return ltq_ar9_fpi_hz();
249 else
250 return ltq_ar9_sys_hz();
251 }
252
253 unsigned long ltq_vr9_cpu_hz(void)
254 {
255 unsigned int cpu_sel;
256 unsigned long clk;
257
258 cpu_sel = (ltq_cgu_r32(LTQ_CGU_SYS_VR9) >> 4) & 0xf;
259
260 switch (cpu_sel) {
261 case 0:
262 clk = CLOCK_600M;
263 break;
264 case 1:
265 clk = CLOCK_500M;
266 break;
267 case 2:
268 clk = CLOCK_393M;
269 break;
270 case 3:
271 clk = CLOCK_333M;
272 break;
273 case 5:
274 case 6:
275 clk = CLOCK_196_608M;
276 break;
277 case 7:
278 clk = CLOCK_167M;
279 break;
280 case 4:
281 case 8:
282 case 9:
283 clk = CLOCK_125M;
284 break;
285 default:
286 clk = 0;
287 break;
288 }
289
290 return clk;
291 }
292
293 unsigned long ltq_vr9_fpi_hz(void)
294 {
295 unsigned int ocp_sel, cpu_clk;
296 unsigned long clk;
297
298 cpu_clk = ltq_vr9_cpu_hz();
299 ocp_sel = ltq_cgu_r32(LTQ_CGU_SYS_VR9) & 0x3;
300
301 switch (ocp_sel) {
302 case 0:
303 /* OCP ratio 1 */
304 clk = cpu_clk;
305 break;
306 case 2:
307 /* OCP ratio 2 */
308 clk = cpu_clk / 2;
309 break;
310 case 3:
311 /* OCP ratio 2.5 */
312 clk = (cpu_clk * 2) / 5;
313 break;
314 case 4:
315 /* OCP ratio 3 */
316 clk = cpu_clk / 3;
317 break;
318 default:
319 clk = 0;
320 break;
321 }
322
323 return clk;
324 }
325
326 unsigned long ltq_vr9_fpi_bus_clock(int fpi)
327 {
328 return ltq_vr9_fpi_hz();
329 }