[omap]: switch the am335x-evmsk to the new wlcore bindings
[openwrt/svn-archive/archive.git] / target / linux / ramips / patches-3.10 / 0202-owrt-USB-adds-dwc_otg.patch
1 From 1a44a003bdaf917193114d0d40534496c39644ba Mon Sep 17 00:00:00 2001
2 From: John Crispin <blogic@openwrt.org>
3 Date: Fri, 15 Mar 2013 20:58:18 +0100
4 Subject: [PATCH 202/208] owrt: USB: adds dwc_otg
5
6 Signed-off-by: John Crispin <blogic@openwrt.org>
7 ---
8 drivers/usb/Kconfig | 2 +
9 drivers/usb/Makefile | 1 +
10 drivers/usb/dwc_otg/Kconfig | 24 +
11 drivers/usb/dwc_otg/Makefile | 25 +
12 drivers/usb/dwc_otg/dummy_audio.c | 1575 +++++++++++++
13 drivers/usb/dwc_otg/dwc_otg_attr.c | 966 ++++++++
14 drivers/usb/dwc_otg/dwc_otg_attr.h | 67 +
15 drivers/usb/dwc_otg/dwc_otg_cil.c | 3692 ++++++++++++++++++++++++++++++
16 drivers/usb/dwc_otg/dwc_otg_cil.h | 1098 +++++++++
17 drivers/usb/dwc_otg/dwc_otg_cil_intr.c | 750 ++++++
18 drivers/usb/dwc_otg/dwc_otg_driver.c | 1273 ++++++++++
19 drivers/usb/dwc_otg/dwc_otg_driver.h | 83 +
20 drivers/usb/dwc_otg/dwc_otg_hcd.c | 2852 +++++++++++++++++++++++
21 drivers/usb/dwc_otg/dwc_otg_hcd.h | 668 ++++++
22 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c | 1873 +++++++++++++++
23 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c | 684 ++++++
24 drivers/usb/dwc_otg/dwc_otg_pcd.c | 2523 ++++++++++++++++++++
25 drivers/usb/dwc_otg/dwc_otg_pcd.h | 248 ++
26 drivers/usb/dwc_otg/dwc_otg_pcd_intr.c | 3654 +++++++++++++++++++++++++++++
27 drivers/usb/dwc_otg/dwc_otg_regs.h | 2075 +++++++++++++++++
28 drivers/usb/dwc_otg/linux/dwc_otg_plat.h | 260 +++
29 21 files changed, 24393 insertions(+)
30 create mode 100644 drivers/usb/dwc_otg/Kconfig
31 create mode 100644 drivers/usb/dwc_otg/Makefile
32 create mode 100644 drivers/usb/dwc_otg/dummy_audio.c
33 create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.c
34 create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.h
35 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.c
36 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.h
37 create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil_intr.c
38 create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.c
39 create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.h
40 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.c
41 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.h
42 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
43 create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
44 create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd.c
45 create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd.h
46 create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd_intr.c
47 create mode 100644 drivers/usb/dwc_otg/dwc_otg_regs.h
48 create mode 100644 drivers/usb/dwc_otg/linux/dwc_otg_plat.h
49
50 --- a/drivers/usb/Kconfig
51 +++ b/drivers/usb/Kconfig
52 @@ -126,6 +126,8 @@ if USB
53
54 source "drivers/usb/core/Kconfig"
55
56 +source "drivers/usb/dwc_otg/Kconfig"
57 +
58 source "drivers/usb/mon/Kconfig"
59
60 source "drivers/usb/wusbcore/Kconfig"
61 --- a/drivers/usb/Makefile
62 +++ b/drivers/usb/Makefile
63 @@ -7,6 +7,7 @@
64 obj-$(CONFIG_USB) += core/
65
66 obj-$(CONFIG_USB_DWC3) += dwc3/
67 +obj-$(CONFIG_DWC_OTG) += dwc_otg/
68
69 obj-$(CONFIG_USB_MON) += mon/
70
71 --- /dev/null
72 +++ b/drivers/usb/dwc_otg/Kconfig
73 @@ -0,0 +1,24 @@
74 +config DWC_OTG
75 + tristate "Ralink RT305X DWC_OTG support"
76 + depends on SOC_RT305X
77 + ---help---
78 + This driver supports Ralink DWC_OTG
79 +
80 +choice
81 + prompt "USB Operation Mode"
82 + depends on DWC_OTG
83 + default DWC_OTG_HOST_ONLY
84 +
85 +config DWC_OTG_HOST_ONLY
86 + bool "HOST ONLY MODE"
87 + depends on DWC_OTG
88 +
89 +config DWC_OTG_DEVICE_ONLY
90 + bool "DEVICE ONLY MODE"
91 + depends on DWC_OTG
92 +
93 +endchoice
94 +
95 +config DWC_OTG_DEBUG
96 + bool "Enable debug mode"
97 + depends on DWC_OTG
98 --- /dev/null
99 +++ b/drivers/usb/dwc_otg/Makefile
100 @@ -0,0 +1,25 @@
101 +#
102 +# Makefile for DWC_otg Highspeed USB controller driver
103 +#
104 +
105 +ifeq ($(CONFIG_DWC_OTG_DEBUG),y)
106 +EXTRA_CFLAGS += -DDEBUG
107 +endif
108 +
109 +# Use one of the following flags to compile the software in host-only or
110 +# device-only mode.
111 +ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y)
112 +EXTRA_CFLAGS += -DDWC_HOST_ONLY
113 +EXTRA_CFLAGS += -DDWC_EN_ISOC
114 +endif
115 +
116 +ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y)
117 +EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
118 +endif
119 +
120 +obj-$(CONFIG_DWC_OTG) := dwc_otg.o
121 +
122 +dwc_otg-objs := dwc_otg_driver.o dwc_otg_attr.o
123 +dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o
124 +dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o
125 +dwc_otg-objs += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
126 --- /dev/null
127 +++ b/drivers/usb/dwc_otg/dummy_audio.c
128 @@ -0,0 +1,1575 @@
129 +/*
130 + * zero.c -- Gadget Zero, for USB development
131 + *
132 + * Copyright (C) 2003-2004 David Brownell
133 + * All rights reserved.
134 + *
135 + * Redistribution and use in source and binary forms, with or without
136 + * modification, are permitted provided that the following conditions
137 + * are met:
138 + * 1. Redistributions of source code must retain the above copyright
139 + * notice, this list of conditions, and the following disclaimer,
140 + * without modification.
141 + * 2. Redistributions in binary form must reproduce the above copyright
142 + * notice, this list of conditions and the following disclaimer in the
143 + * documentation and/or other materials provided with the distribution.
144 + * 3. The names of the above-listed copyright holders may not be used
145 + * to endorse or promote products derived from this software without
146 + * specific prior written permission.
147 + *
148 + * ALTERNATIVELY, this software may be distributed under the terms of the
149 + * GNU General Public License ("GPL") as published by the Free Software
150 + * Foundation, either version 2 of that License or (at your option) any
151 + * later version.
152 + *
153 + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
154 + * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
155 + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
156 + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
157 + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
158 + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
159 + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
160 + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
161 + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
162 + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
163 + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
164 + */
165 +
166 +
167 +/*
168 + * Gadget Zero only needs two bulk endpoints, and is an example of how you
169 + * can write a hardware-agnostic gadget driver running inside a USB device.
170 + *
171 + * Hardware details are visible (see CONFIG_USB_ZERO_* below) but don't
172 + * affect most of the driver.
173 + *
174 + * Use it with the Linux host/master side "usbtest" driver to get a basic
175 + * functional test of your device-side usb stack, or with "usb-skeleton".
176 + *
177 + * It supports two similar configurations. One sinks whatever the usb host
178 + * writes, and in return sources zeroes. The other loops whatever the host
179 + * writes back, so the host can read it. Module options include:
180 + *
181 + * buflen=N default N=4096, buffer size used
182 + * qlen=N default N=32, how many buffers in the loopback queue
183 + * loopdefault default false, list loopback config first
184 + *
185 + * Many drivers will only have one configuration, letting them be much
186 + * simpler if they also don't support high speed operation (like this
187 + * driver does).
188 + */
189 +
190 +#include <linux/config.h>
191 +#include <linux/module.h>
192 +#include <linux/kernel.h>
193 +#include <linux/delay.h>
194 +#include <linux/ioport.h>
195 +#include <linux/sched.h>
196 +#include <linux/slab.h>
197 +#include <linux/smp_lock.h>
198 +#include <linux/errno.h>
199 +#include <linux/init.h>
200 +#include <linux/timer.h>
201 +#include <linux/list.h>
202 +#include <linux/interrupt.h>
203 +#include <linux/uts.h>
204 +#include <linux/version.h>
205 +#include <linux/device.h>
206 +#include <linux/moduleparam.h>
207 +#include <linux/proc_fs.h>
208 +
209 +#include <asm/byteorder.h>
210 +#include <asm/io.h>
211 +#include <asm/irq.h>
212 +#include <asm/system.h>
213 +#include <asm/unaligned.h>
214 +
215 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
216 +# include <linux/usb/ch9.h>
217 +#else
218 +# include <linux/usb_ch9.h>
219 +#endif
220 +
221 +#include <linux/usb_gadget.h>
222 +
223 +
224 +/*-------------------------------------------------------------------------*/
225 +/*-------------------------------------------------------------------------*/
226 +
227 +
228 +static int utf8_to_utf16le(const char *s, u16 *cp, unsigned len)
229 +{
230 + int count = 0;
231 + u8 c;
232 + u16 uchar;
233 +
234 + /* this insists on correct encodings, though not minimal ones.
235 + * BUT it currently rejects legit 4-byte UTF-8 code points,
236 + * which need surrogate pairs. (Unicode 3.1 can use them.)
237 + */
238 + while (len != 0 && (c = (u8) *s++) != 0) {
239 + if (unlikely(c & 0x80)) {
240 + // 2-byte sequence:
241 + // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx
242 + if ((c & 0xe0) == 0xc0) {
243 + uchar = (c & 0x1f) << 6;
244 +
245 + c = (u8) *s++;
246 + if ((c & 0xc0) != 0xc0)
247 + goto fail;
248 + c &= 0x3f;
249 + uchar |= c;
250 +
251 + // 3-byte sequence (most CJKV characters):
252 + // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx
253 + } else if ((c & 0xf0) == 0xe0) {
254 + uchar = (c & 0x0f) << 12;
255 +
256 + c = (u8) *s++;
257 + if ((c & 0xc0) != 0xc0)
258 + goto fail;
259 + c &= 0x3f;
260 + uchar |= c << 6;
261 +
262 + c = (u8) *s++;
263 + if ((c & 0xc0) != 0xc0)
264 + goto fail;
265 + c &= 0x3f;
266 + uchar |= c;
267 +
268 + /* no bogus surrogates */
269 + if (0xd800 <= uchar && uchar <= 0xdfff)
270 + goto fail;
271 +
272 + // 4-byte sequence (surrogate pairs, currently rare):
273 + // 11101110wwwwzzzzyy + 110111yyyyxxxxxx
274 + // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
275 + // (uuuuu = wwww + 1)
276 + // FIXME accept the surrogate code points (only)
277 +
278 + } else
279 + goto fail;
280 + } else
281 + uchar = c;
282 + put_unaligned (cpu_to_le16 (uchar), cp++);
283 + count++;
284 + len--;
285 + }
286 + return count;
287 +fail:
288 + return -1;
289 +}
290 +
291 +
292 +/**
293 + * usb_gadget_get_string - fill out a string descriptor
294 + * @table: of c strings encoded using UTF-8
295 + * @id: string id, from low byte of wValue in get string descriptor
296 + * @buf: at least 256 bytes
297 + *
298 + * Finds the UTF-8 string matching the ID, and converts it into a
299 + * string descriptor in utf16-le.
300 + * Returns length of descriptor (always even) or negative errno
301 + *
302 + * If your driver needs stings in multiple languages, you'll probably
303 + * "switch (wIndex) { ... }" in your ep0 string descriptor logic,
304 + * using this routine after choosing which set of UTF-8 strings to use.
305 + * Note that US-ASCII is a strict subset of UTF-8; any string bytes with
306 + * the eighth bit set will be multibyte UTF-8 characters, not ISO-8859/1
307 + * characters (which are also widely used in C strings).
308 + */
309 +int
310 +usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf)
311 +{
312 + struct usb_string *s;
313 + int len;
314 +
315 + /* descriptor 0 has the language id */
316 + if (id == 0) {
317 + buf [0] = 4;
318 + buf [1] = USB_DT_STRING;
319 + buf [2] = (u8) table->language;
320 + buf [3] = (u8) (table->language >> 8);
321 + return 4;
322 + }
323 + for (s = table->strings; s && s->s; s++)
324 + if (s->id == id)
325 + break;
326 +
327 + /* unrecognized: stall. */
328 + if (!s || !s->s)
329 + return -EINVAL;
330 +
331 + /* string descriptors have length, tag, then UTF16-LE text */
332 + len = min ((size_t) 126, strlen (s->s));
333 + memset (buf + 2, 0, 2 * len); /* zero all the bytes */
334 + len = utf8_to_utf16le(s->s, (u16 *)&buf[2], len);
335 + if (len < 0)
336 + return -EINVAL;
337 + buf [0] = (len + 1) * 2;
338 + buf [1] = USB_DT_STRING;
339 + return buf [0];
340 +}
341 +
342 +
343 +/*-------------------------------------------------------------------------*/
344 +/*-------------------------------------------------------------------------*/
345 +
346 +
347 +/**
348 + * usb_descriptor_fillbuf - fill buffer with descriptors
349 + * @buf: Buffer to be filled
350 + * @buflen: Size of buf
351 + * @src: Array of descriptor pointers, terminated by null pointer.
352 + *
353 + * Copies descriptors into the buffer, returning the length or a
354 + * negative error code if they can't all be copied. Useful when
355 + * assembling descriptors for an associated set of interfaces used
356 + * as part of configuring a composite device; or in other cases where
357 + * sets of descriptors need to be marshaled.
358 + */
359 +int
360 +usb_descriptor_fillbuf(void *buf, unsigned buflen,
361 + const struct usb_descriptor_header **src)
362 +{
363 + u8 *dest = buf;
364 +
365 + if (!src)
366 + return -EINVAL;
367 +
368 + /* fill buffer from src[] until null descriptor ptr */
369 + for (; 0 != *src; src++) {
370 + unsigned len = (*src)->bLength;
371 +
372 + if (len > buflen)
373 + return -EINVAL;
374 + memcpy(dest, *src, len);
375 + buflen -= len;
376 + dest += len;
377 + }
378 + return dest - (u8 *)buf;
379 +}
380 +
381 +
382 +/**
383 + * usb_gadget_config_buf - builts a complete configuration descriptor
384 + * @config: Header for the descriptor, including characteristics such
385 + * as power requirements and number of interfaces.
386 + * @desc: Null-terminated vector of pointers to the descriptors (interface,
387 + * endpoint, etc) defining all functions in this device configuration.
388 + * @buf: Buffer for the resulting configuration descriptor.
389 + * @length: Length of buffer. If this is not big enough to hold the
390 + * entire configuration descriptor, an error code will be returned.
391 + *
392 + * This copies descriptors into the response buffer, building a descriptor
393 + * for that configuration. It returns the buffer length or a negative
394 + * status code. The config.wTotalLength field is set to match the length
395 + * of the result, but other descriptor fields (including power usage and
396 + * interface count) must be set by the caller.
397 + *
398 + * Gadget drivers could use this when constructing a config descriptor
399 + * in response to USB_REQ_GET_DESCRIPTOR. They will need to patch the
400 + * resulting bDescriptorType value if USB_DT_OTHER_SPEED_CONFIG is needed.
401 + */
402 +int usb_gadget_config_buf(
403 + const struct usb_config_descriptor *config,
404 + void *buf,
405 + unsigned length,
406 + const struct usb_descriptor_header **desc
407 +)
408 +{
409 + struct usb_config_descriptor *cp = buf;
410 + int len;
411 +
412 + /* config descriptor first */
413 + if (length < USB_DT_CONFIG_SIZE || !desc)
414 + return -EINVAL;
415 + *cp = *config;
416 +
417 + /* then interface/endpoint/class/vendor/... */
418 + len = usb_descriptor_fillbuf(USB_DT_CONFIG_SIZE + (u8*)buf,
419 + length - USB_DT_CONFIG_SIZE, desc);
420 + if (len < 0)
421 + return len;
422 + len += USB_DT_CONFIG_SIZE;
423 + if (len > 0xffff)
424 + return -EINVAL;
425 +
426 + /* patch up the config descriptor */
427 + cp->bLength = USB_DT_CONFIG_SIZE;
428 + cp->bDescriptorType = USB_DT_CONFIG;
429 + cp->wTotalLength = cpu_to_le16(len);
430 + cp->bmAttributes |= USB_CONFIG_ATT_ONE;
431 + return len;
432 +}
433 +
434 +/*-------------------------------------------------------------------------*/
435 +/*-------------------------------------------------------------------------*/
436 +
437 +
438 +#define RBUF_LEN (1024*1024)
439 +static int rbuf_start;
440 +static int rbuf_len;
441 +static __u8 rbuf[RBUF_LEN];
442 +
443 +/*-------------------------------------------------------------------------*/
444 +
445 +#define DRIVER_VERSION "St Patrick's Day 2004"
446 +
447 +static const char shortname [] = "zero";
448 +static const char longname [] = "YAMAHA YST-MS35D USB Speaker ";
449 +
450 +static const char source_sink [] = "source and sink data";
451 +static const char loopback [] = "loop input to output";
452 +
453 +/*-------------------------------------------------------------------------*/
454 +
455 +/*
456 + * driver assumes self-powered hardware, and
457 + * has no way for users to trigger remote wakeup.
458 + *
459 + * this version autoconfigures as much as possible,
460 + * which is reasonable for most "bulk-only" drivers.
461 + */
462 +static const char *EP_IN_NAME; /* source */
463 +static const char *EP_OUT_NAME; /* sink */
464 +
465 +/*-------------------------------------------------------------------------*/
466 +
467 +/* big enough to hold our biggest descriptor */
468 +#define USB_BUFSIZ 512
469 +
470 +struct zero_dev {
471 + spinlock_t lock;
472 + struct usb_gadget *gadget;
473 + struct usb_request *req; /* for control responses */
474 +
475 + /* when configured, we have one of two configs:
476 + * - source data (in to host) and sink it (out from host)
477 + * - or loop it back (out from host back in to host)
478 + */
479 + u8 config;
480 + struct usb_ep *in_ep, *out_ep;
481 +
482 + /* autoresume timer */
483 + struct timer_list resume;
484 +};
485 +
486 +#define xprintk(d,level,fmt,args...) \
487 + dev_printk(level , &(d)->gadget->dev , fmt , ## args)
488 +
489 +#ifdef DEBUG
490 +#define DBG(dev,fmt,args...) \
491 + xprintk(dev , KERN_DEBUG , fmt , ## args)
492 +#else
493 +#define DBG(dev,fmt,args...) \
494 + do { } while (0)
495 +#endif /* DEBUG */
496 +
497 +#ifdef VERBOSE
498 +#define VDBG DBG
499 +#else
500 +#define VDBG(dev,fmt,args...) \
501 + do { } while (0)
502 +#endif /* VERBOSE */
503 +
504 +#define ERROR(dev,fmt,args...) \
505 + xprintk(dev , KERN_ERR , fmt , ## args)
506 +#define WARN(dev,fmt,args...) \
507 + xprintk(dev , KERN_WARNING , fmt , ## args)
508 +#define INFO(dev,fmt,args...) \
509 + xprintk(dev , KERN_INFO , fmt , ## args)
510 +
511 +/*-------------------------------------------------------------------------*/
512 +
513 +static unsigned buflen = 4096;
514 +static unsigned qlen = 32;
515 +static unsigned pattern = 0;
516 +
517 +module_param (buflen, uint, S_IRUGO|S_IWUSR);
518 +module_param (qlen, uint, S_IRUGO|S_IWUSR);
519 +module_param (pattern, uint, S_IRUGO|S_IWUSR);
520 +
521 +/*
522 + * if it's nonzero, autoresume says how many seconds to wait
523 + * before trying to wake up the host after suspend.
524 + */
525 +static unsigned autoresume = 0;
526 +module_param (autoresume, uint, 0);
527 +
528 +/*
529 + * Normally the "loopback" configuration is second (index 1) so
530 + * it's not the default. Here's where to change that order, to
531 + * work better with hosts where config changes are problematic.
532 + * Or controllers (like superh) that only support one config.
533 + */
534 +static int loopdefault = 0;
535 +
536 +module_param (loopdefault, bool, S_IRUGO|S_IWUSR);
537 +
538 +/*-------------------------------------------------------------------------*/
539 +
540 +/* Thanks to NetChip Technologies for donating this product ID.
541 + *
542 + * DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!!
543 + * Instead: allocate your own, using normal USB-IF procedures.
544 + */
545 +#ifndef CONFIG_USB_ZERO_HNPTEST
546 +#define DRIVER_VENDOR_NUM 0x0525 /* NetChip */
547 +#define DRIVER_PRODUCT_NUM 0xa4a0 /* Linux-USB "Gadget Zero" */
548 +#else
549 +#define DRIVER_VENDOR_NUM 0x1a0a /* OTG test device IDs */
550 +#define DRIVER_PRODUCT_NUM 0xbadd
551 +#endif
552 +
553 +/*-------------------------------------------------------------------------*/
554 +
555 +/*
556 + * DESCRIPTORS ... most are static, but strings and (full)
557 + * configuration descriptors are built on demand.
558 + */
559 +
560 +/*
561 +#define STRING_MANUFACTURER 25
562 +#define STRING_PRODUCT 42
563 +#define STRING_SERIAL 101
564 +*/
565 +#define STRING_MANUFACTURER 1
566 +#define STRING_PRODUCT 2
567 +#define STRING_SERIAL 3
568 +
569 +#define STRING_SOURCE_SINK 250
570 +#define STRING_LOOPBACK 251
571 +
572 +/*
573 + * This device advertises two configurations; these numbers work
574 + * on a pxa250 as well as more flexible hardware.
575 + */
576 +#define CONFIG_SOURCE_SINK 3
577 +#define CONFIG_LOOPBACK 2
578 +
579 +/*
580 +static struct usb_device_descriptor
581 +device_desc = {
582 + .bLength = sizeof device_desc,
583 + .bDescriptorType = USB_DT_DEVICE,
584 +
585 + .bcdUSB = __constant_cpu_to_le16 (0x0200),
586 + .bDeviceClass = USB_CLASS_VENDOR_SPEC,
587 +
588 + .idVendor = __constant_cpu_to_le16 (DRIVER_VENDOR_NUM),
589 + .idProduct = __constant_cpu_to_le16 (DRIVER_PRODUCT_NUM),
590 + .iManufacturer = STRING_MANUFACTURER,
591 + .iProduct = STRING_PRODUCT,
592 + .iSerialNumber = STRING_SERIAL,
593 + .bNumConfigurations = 2,
594 +};
595 +*/
596 +static struct usb_device_descriptor
597 +device_desc = {
598 + .bLength = sizeof device_desc,
599 + .bDescriptorType = USB_DT_DEVICE,
600 + .bcdUSB = __constant_cpu_to_le16 (0x0100),
601 + .bDeviceClass = USB_CLASS_PER_INTERFACE,
602 + .bDeviceSubClass = 0,
603 + .bDeviceProtocol = 0,
604 + .bMaxPacketSize0 = 64,
605 + .bcdDevice = __constant_cpu_to_le16 (0x0100),
606 + .idVendor = __constant_cpu_to_le16 (0x0499),
607 + .idProduct = __constant_cpu_to_le16 (0x3002),
608 + .iManufacturer = STRING_MANUFACTURER,
609 + .iProduct = STRING_PRODUCT,
610 + .iSerialNumber = STRING_SERIAL,
611 + .bNumConfigurations = 1,
612 +};
613 +
614 +static struct usb_config_descriptor
615 +z_config = {
616 + .bLength = sizeof z_config,
617 + .bDescriptorType = USB_DT_CONFIG,
618 +
619 + /* compute wTotalLength on the fly */
620 + .bNumInterfaces = 2,
621 + .bConfigurationValue = 1,
622 + .iConfiguration = 0,
623 + .bmAttributes = 0x40,
624 + .bMaxPower = 0, /* self-powered */
625 +};
626 +
627 +
628 +static struct usb_otg_descriptor
629 +otg_descriptor = {
630 + .bLength = sizeof otg_descriptor,
631 + .bDescriptorType = USB_DT_OTG,
632 +
633 + .bmAttributes = USB_OTG_SRP,
634 +};
635 +
636 +/* one interface in each configuration */
637 +#ifdef CONFIG_USB_GADGET_DUALSPEED
638 +
639 +/*
640 + * usb 2.0 devices need to expose both high speed and full speed
641 + * descriptors, unless they only run at full speed.
642 + *
643 + * that means alternate endpoint descriptors (bigger packets)
644 + * and a "device qualifier" ... plus more construction options
645 + * for the config descriptor.
646 + */
647 +
648 +static struct usb_qualifier_descriptor
649 +dev_qualifier = {
650 + .bLength = sizeof dev_qualifier,
651 + .bDescriptorType = USB_DT_DEVICE_QUALIFIER,
652 +
653 + .bcdUSB = __constant_cpu_to_le16 (0x0200),
654 + .bDeviceClass = USB_CLASS_VENDOR_SPEC,
655 +
656 + .bNumConfigurations = 2,
657 +};
658 +
659 +
660 +struct usb_cs_as_general_descriptor {
661 + __u8 bLength;
662 + __u8 bDescriptorType;
663 +
664 + __u8 bDescriptorSubType;
665 + __u8 bTerminalLink;
666 + __u8 bDelay;
667 + __u16 wFormatTag;
668 +} __attribute__ ((packed));
669 +
670 +struct usb_cs_as_format_descriptor {
671 + __u8 bLength;
672 + __u8 bDescriptorType;
673 +
674 + __u8 bDescriptorSubType;
675 + __u8 bFormatType;
676 + __u8 bNrChannels;
677 + __u8 bSubframeSize;
678 + __u8 bBitResolution;
679 + __u8 bSamfreqType;
680 + __u8 tLowerSamFreq[3];
681 + __u8 tUpperSamFreq[3];
682 +} __attribute__ ((packed));
683 +
684 +static const struct usb_interface_descriptor
685 +z_audio_control_if_desc = {
686 + .bLength = sizeof z_audio_control_if_desc,
687 + .bDescriptorType = USB_DT_INTERFACE,
688 + .bInterfaceNumber = 0,
689 + .bAlternateSetting = 0,
690 + .bNumEndpoints = 0,
691 + .bInterfaceClass = USB_CLASS_AUDIO,
692 + .bInterfaceSubClass = 0x1,
693 + .bInterfaceProtocol = 0,
694 + .iInterface = 0,
695 +};
696 +
697 +static const struct usb_interface_descriptor
698 +z_audio_if_desc = {
699 + .bLength = sizeof z_audio_if_desc,
700 + .bDescriptorType = USB_DT_INTERFACE,
701 + .bInterfaceNumber = 1,
702 + .bAlternateSetting = 0,
703 + .bNumEndpoints = 0,
704 + .bInterfaceClass = USB_CLASS_AUDIO,
705 + .bInterfaceSubClass = 0x2,
706 + .bInterfaceProtocol = 0,
707 + .iInterface = 0,
708 +};
709 +
710 +static const struct usb_interface_descriptor
711 +z_audio_if_desc2 = {
712 + .bLength = sizeof z_audio_if_desc,
713 + .bDescriptorType = USB_DT_INTERFACE,
714 + .bInterfaceNumber = 1,
715 + .bAlternateSetting = 1,
716 + .bNumEndpoints = 1,
717 + .bInterfaceClass = USB_CLASS_AUDIO,
718 + .bInterfaceSubClass = 0x2,
719 + .bInterfaceProtocol = 0,
720 + .iInterface = 0,
721 +};
722 +
723 +static const struct usb_cs_as_general_descriptor
724 +z_audio_cs_as_if_desc = {
725 + .bLength = 7,
726 + .bDescriptorType = 0x24,
727 +
728 + .bDescriptorSubType = 0x01,
729 + .bTerminalLink = 0x01,
730 + .bDelay = 0x0,
731 + .wFormatTag = __constant_cpu_to_le16 (0x0001)
732 +};
733 +
734 +
735 +static const struct usb_cs_as_format_descriptor
736 +z_audio_cs_as_format_desc = {
737 + .bLength = 0xe,
738 + .bDescriptorType = 0x24,
739 +
740 + .bDescriptorSubType = 2,
741 + .bFormatType = 1,
742 + .bNrChannels = 1,
743 + .bSubframeSize = 1,
744 + .bBitResolution = 8,
745 + .bSamfreqType = 0,
746 + .tLowerSamFreq = {0x7e, 0x13, 0x00},
747 + .tUpperSamFreq = {0xe2, 0xd6, 0x00},
748 +};
749 +
750 +static const struct usb_endpoint_descriptor
751 +z_iso_ep = {
752 + .bLength = 0x09,
753 + .bDescriptorType = 0x05,
754 + .bEndpointAddress = 0x04,
755 + .bmAttributes = 0x09,
756 + .wMaxPacketSize = 0x0038,
757 + .bInterval = 0x01,
758 + .bRefresh = 0x00,
759 + .bSynchAddress = 0x00,
760 +};
761 +
762 +static char z_iso_ep2[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
763 +
764 +// 9 bytes
765 +static char z_ac_interface_header_desc[] =
766 +{ 0x09, 0x24, 0x01, 0x00, 0x01, 0x2b, 0x00, 0x01, 0x01 };
767 +
768 +// 12 bytes
769 +static char z_0[] = {0x0c, 0x24, 0x02, 0x01, 0x01, 0x01, 0x00, 0x02,
770 + 0x03, 0x00, 0x00, 0x00};
771 +// 13 bytes
772 +static char z_1[] = {0x0d, 0x24, 0x06, 0x02, 0x01, 0x02, 0x15, 0x00,
773 + 0x02, 0x00, 0x02, 0x00, 0x00};
774 +// 9 bytes
775 +static char z_2[] = {0x09, 0x24, 0x03, 0x03, 0x01, 0x03, 0x00, 0x02,
776 + 0x00};
777 +
778 +static char za_0[] = {0x09, 0x04, 0x01, 0x02, 0x01, 0x01, 0x02, 0x00,
779 + 0x00};
780 +
781 +static char za_1[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
782 +
783 +static char za_2[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x01, 0x08, 0x00,
784 + 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
785 +
786 +static char za_3[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00,
787 + 0x00};
788 +
789 +static char za_4[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
790 +
791 +static char za_5[] = {0x09, 0x04, 0x01, 0x03, 0x01, 0x01, 0x02, 0x00,
792 + 0x00};
793 +
794 +static char za_6[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
795 +
796 +static char za_7[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x02, 0x10, 0x00,
797 + 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
798 +
799 +static char za_8[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00,
800 + 0x00};
801 +
802 +static char za_9[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
803 +
804 +static char za_10[] = {0x09, 0x04, 0x01, 0x04, 0x01, 0x01, 0x02, 0x00,
805 + 0x00};
806 +
807 +static char za_11[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
808 +
809 +static char za_12[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x02, 0x10, 0x00,
810 + 0x73, 0x13, 0x00, 0xe2, 0xd6, 0x00};
811 +
812 +static char za_13[] = {0x09, 0x05, 0x04, 0x09, 0xe0, 0x00, 0x01, 0x00,
813 + 0x00};
814 +
815 +static char za_14[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
816 +
817 +static char za_15[] = {0x09, 0x04, 0x01, 0x05, 0x01, 0x01, 0x02, 0x00,
818 + 0x00};
819 +
820 +static char za_16[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
821 +
822 +static char za_17[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x03, 0x14, 0x00,
823 + 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
824 +
825 +static char za_18[] = {0x09, 0x05, 0x04, 0x09, 0xa8, 0x00, 0x01, 0x00,
826 + 0x00};
827 +
828 +static char za_19[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
829 +
830 +static char za_20[] = {0x09, 0x04, 0x01, 0x06, 0x01, 0x01, 0x02, 0x00,
831 + 0x00};
832 +
833 +static char za_21[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
834 +
835 +static char za_22[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x03, 0x14, 0x00,
836 + 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
837 +
838 +static char za_23[] = {0x09, 0x05, 0x04, 0x09, 0x50, 0x01, 0x01, 0x00,
839 + 0x00};
840 +
841 +static char za_24[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
842 +
843 +
844 +
845 +static const struct usb_descriptor_header *z_function [] = {
846 + (struct usb_descriptor_header *) &z_audio_control_if_desc,
847 + (struct usb_descriptor_header *) &z_ac_interface_header_desc,
848 + (struct usb_descriptor_header *) &z_0,
849 + (struct usb_descriptor_header *) &z_1,
850 + (struct usb_descriptor_header *) &z_2,
851 + (struct usb_descriptor_header *) &z_audio_if_desc,
852 + (struct usb_descriptor_header *) &z_audio_if_desc2,
853 + (struct usb_descriptor_header *) &z_audio_cs_as_if_desc,
854 + (struct usb_descriptor_header *) &z_audio_cs_as_format_desc,
855 + (struct usb_descriptor_header *) &z_iso_ep,
856 + (struct usb_descriptor_header *) &z_iso_ep2,
857 + (struct usb_descriptor_header *) &za_0,
858 + (struct usb_descriptor_header *) &za_1,
859 + (struct usb_descriptor_header *) &za_2,
860 + (struct usb_descriptor_header *) &za_3,
861 + (struct usb_descriptor_header *) &za_4,
862 + (struct usb_descriptor_header *) &za_5,
863 + (struct usb_descriptor_header *) &za_6,
864 + (struct usb_descriptor_header *) &za_7,
865 + (struct usb_descriptor_header *) &za_8,
866 + (struct usb_descriptor_header *) &za_9,
867 + (struct usb_descriptor_header *) &za_10,
868 + (struct usb_descriptor_header *) &za_11,
869 + (struct usb_descriptor_header *) &za_12,
870 + (struct usb_descriptor_header *) &za_13,
871 + (struct usb_descriptor_header *) &za_14,
872 + (struct usb_descriptor_header *) &za_15,
873 + (struct usb_descriptor_header *) &za_16,
874 + (struct usb_descriptor_header *) &za_17,
875 + (struct usb_descriptor_header *) &za_18,
876 + (struct usb_descriptor_header *) &za_19,
877 + (struct usb_descriptor_header *) &za_20,
878 + (struct usb_descriptor_header *) &za_21,
879 + (struct usb_descriptor_header *) &za_22,
880 + (struct usb_descriptor_header *) &za_23,
881 + (struct usb_descriptor_header *) &za_24,
882 + NULL,
883 +};
884 +
885 +/* maxpacket and other transfer characteristics vary by speed. */
886 +#define ep_desc(g,hs,fs) (((g)->speed==USB_SPEED_HIGH)?(hs):(fs))
887 +
888 +#else
889 +
890 +/* if there's no high speed support, maxpacket doesn't change. */
891 +#define ep_desc(g,hs,fs) fs
892 +
893 +#endif /* !CONFIG_USB_GADGET_DUALSPEED */
894 +
895 +static char manufacturer [40];
896 +//static char serial [40];
897 +static char serial [] = "Ser 00 em";
898 +
899 +/* static strings, in UTF-8 */
900 +static struct usb_string strings [] = {
901 + { STRING_MANUFACTURER, manufacturer, },
902 + { STRING_PRODUCT, longname, },
903 + { STRING_SERIAL, serial, },
904 + { STRING_LOOPBACK, loopback, },
905 + { STRING_SOURCE_SINK, source_sink, },
906 + { } /* end of list */
907 +};
908 +
909 +static struct usb_gadget_strings stringtab = {
910 + .language = 0x0409, /* en-us */
911 + .strings = strings,
912 +};
913 +
914 +/*
915 + * config descriptors are also handcrafted. these must agree with code
916 + * that sets configurations, and with code managing interfaces and their
917 + * altsettings. other complexity may come from:
918 + *
919 + * - high speed support, including "other speed config" rules
920 + * - multiple configurations
921 + * - interfaces with alternate settings
922 + * - embedded class or vendor-specific descriptors
923 + *
924 + * this handles high speed, and has a second config that could as easily
925 + * have been an alternate interface setting (on most hardware).
926 + *
927 + * NOTE: to demonstrate (and test) more USB capabilities, this driver
928 + * should include an altsetting to test interrupt transfers, including
929 + * high bandwidth modes at high speed. (Maybe work like Intel's test
930 + * device?)
931 + */
932 +static int
933 +config_buf (struct usb_gadget *gadget, u8 *buf, u8 type, unsigned index)
934 +{
935 + int len;
936 + const struct usb_descriptor_header **function;
937 +
938 + function = z_function;
939 + len = usb_gadget_config_buf (&z_config, buf, USB_BUFSIZ, function);
940 + if (len < 0)
941 + return len;
942 + ((struct usb_config_descriptor *) buf)->bDescriptorType = type;
943 + return len;
944 +}
945 +
946 +/*-------------------------------------------------------------------------*/
947 +
948 +static struct usb_request *
949 +alloc_ep_req (struct usb_ep *ep, unsigned length)
950 +{
951 + struct usb_request *req;
952 +
953 + req = usb_ep_alloc_request (ep, GFP_ATOMIC);
954 + if (req) {
955 + req->length = length;
956 + req->buf = usb_ep_alloc_buffer (ep, length,
957 + &req->dma, GFP_ATOMIC);
958 + if (!req->buf) {
959 + usb_ep_free_request (ep, req);
960 + req = NULL;
961 + }
962 + }
963 + return req;
964 +}
965 +
966 +static void free_ep_req (struct usb_ep *ep, struct usb_request *req)
967 +{
968 + if (req->buf)
969 + usb_ep_free_buffer (ep, req->buf, req->dma, req->length);
970 + usb_ep_free_request (ep, req);
971 +}
972 +
973 +/*-------------------------------------------------------------------------*/
974 +
975 +/* optionally require specific source/sink data patterns */
976 +
977 +static int
978 +check_read_data (
979 + struct zero_dev *dev,
980 + struct usb_ep *ep,
981 + struct usb_request *req
982 +)
983 +{
984 + unsigned i;
985 + u8 *buf = req->buf;
986 +
987 + for (i = 0; i < req->actual; i++, buf++) {
988 + switch (pattern) {
989 + /* all-zeroes has no synchronization issues */
990 + case 0:
991 + if (*buf == 0)
992 + continue;
993 + break;
994 + /* mod63 stays in sync with short-terminated transfers,
995 + * or otherwise when host and gadget agree on how large
996 + * each usb transfer request should be. resync is done
997 + * with set_interface or set_config.
998 + */
999 + case 1:
1000 + if (*buf == (u8)(i % 63))
1001 + continue;
1002 + break;
1003 + }
1004 + ERROR (dev, "bad OUT byte, buf [%d] = %d\n", i, *buf);
1005 + usb_ep_set_halt (ep);
1006 + return -EINVAL;
1007 + }
1008 + return 0;
1009 +}
1010 +
1011 +/*-------------------------------------------------------------------------*/
1012 +
1013 +static void zero_reset_config (struct zero_dev *dev)
1014 +{
1015 + if (dev->config == 0)
1016 + return;
1017 +
1018 + DBG (dev, "reset config\n");
1019 +
1020 + /* just disable endpoints, forcing completion of pending i/o.
1021 + * all our completion handlers free their requests in this case.
1022 + */
1023 + if (dev->in_ep) {
1024 + usb_ep_disable (dev->in_ep);
1025 + dev->in_ep = NULL;
1026 + }
1027 + if (dev->out_ep) {
1028 + usb_ep_disable (dev->out_ep);
1029 + dev->out_ep = NULL;
1030 + }
1031 + dev->config = 0;
1032 + del_timer (&dev->resume);
1033 +}
1034 +
1035 +#define _write(f, buf, sz) (f->f_op->write(f, buf, sz, &f->f_pos))
1036 +
1037 +static void
1038 +zero_isoc_complete (struct usb_ep *ep, struct usb_request *req)
1039 +{
1040 + struct zero_dev *dev = ep->driver_data;
1041 + int status = req->status;
1042 + int i, j;
1043 +
1044 + switch (status) {
1045 +
1046 + case 0: /* normal completion? */
1047 + //printk ("\nzero ---------------> isoc normal completion %d bytes\n", req->actual);
1048 + for (i=0, j=rbuf_start; i<req->actual; i++) {
1049 + //printk ("%02x ", ((__u8*)req->buf)[i]);
1050 + rbuf[j] = ((__u8*)req->buf)[i];
1051 + j++;
1052 + if (j >= RBUF_LEN) j=0;
1053 + }
1054 + rbuf_start = j;
1055 + //printk ("\n\n");
1056 +
1057 + if (rbuf_len < RBUF_LEN) {
1058 + rbuf_len += req->actual;
1059 + if (rbuf_len > RBUF_LEN) {
1060 + rbuf_len = RBUF_LEN;
1061 + }
1062 + }
1063 +
1064 + break;
1065 +
1066 + /* this endpoint is normally active while we're configured */
1067 + case -ECONNABORTED: /* hardware forced ep reset */
1068 + case -ECONNRESET: /* request dequeued */
1069 + case -ESHUTDOWN: /* disconnect from host */
1070 + VDBG (dev, "%s gone (%d), %d/%d\n", ep->name, status,
1071 + req->actual, req->length);
1072 + if (ep == dev->out_ep)
1073 + check_read_data (dev, ep, req);
1074 + free_ep_req (ep, req);
1075 + return;
1076 +
1077 + case -EOVERFLOW: /* buffer overrun on read means that
1078 + * we didn't provide a big enough
1079 + * buffer.
1080 + */
1081 + default:
1082 +#if 1
1083 + DBG (dev, "%s complete --> %d, %d/%d\n", ep->name,
1084 + status, req->actual, req->length);
1085 +#endif
1086 + case -EREMOTEIO: /* short read */
1087 + break;
1088 + }
1089 +
1090 + status = usb_ep_queue (ep, req, GFP_ATOMIC);
1091 + if (status) {
1092 + ERROR (dev, "kill %s: resubmit %d bytes --> %d\n",
1093 + ep->name, req->length, status);
1094 + usb_ep_set_halt (ep);
1095 + /* FIXME recover later ... somehow */
1096 + }
1097 +}
1098 +
1099 +static struct usb_request *
1100 +zero_start_isoc_ep (struct usb_ep *ep, int gfp_flags)
1101 +{
1102 + struct usb_request *req;
1103 + int status;
1104 +
1105 + req = alloc_ep_req (ep, 512);
1106 + if (!req)
1107 + return NULL;
1108 +
1109 + req->complete = zero_isoc_complete;
1110 +
1111 + status = usb_ep_queue (ep, req, gfp_flags);
1112 + if (status) {
1113 + struct zero_dev *dev = ep->driver_data;
1114 +
1115 + ERROR (dev, "start %s --> %d\n", ep->name, status);
1116 + free_ep_req (ep, req);
1117 + req = NULL;
1118 + }
1119 +
1120 + return req;
1121 +}
1122 +
1123 +/* change our operational config. this code must agree with the code
1124 + * that returns config descriptors, and altsetting code.
1125 + *
1126 + * it's also responsible for power management interactions. some
1127 + * configurations might not work with our current power sources.
1128 + *
1129 + * note that some device controller hardware will constrain what this
1130 + * code can do, perhaps by disallowing more than one configuration or
1131 + * by limiting configuration choices (like the pxa2xx).
1132 + */
1133 +static int
1134 +zero_set_config (struct zero_dev *dev, unsigned number, int gfp_flags)
1135 +{
1136 + int result = 0;
1137 + struct usb_gadget *gadget = dev->gadget;
1138 + const struct usb_endpoint_descriptor *d;
1139 + struct usb_ep *ep;
1140 +
1141 + if (number == dev->config)
1142 + return 0;
1143 +
1144 + zero_reset_config (dev);
1145 +
1146 + gadget_for_each_ep (ep, gadget) {
1147 +
1148 + if (strcmp (ep->name, "ep4") == 0) {
1149 +
1150 + d = (struct usb_endpoint_descripter *)&za_23; // isoc ep desc for audio i/f alt setting 6
1151 + result = usb_ep_enable (ep, d);
1152 +
1153 + if (result == 0) {
1154 + ep->driver_data = dev;
1155 + dev->in_ep = ep;
1156 +
1157 + if (zero_start_isoc_ep (ep, gfp_flags) != 0) {
1158 +
1159 + dev->in_ep = ep;
1160 + continue;
1161 + }
1162 +
1163 + usb_ep_disable (ep);
1164 + result = -EIO;
1165 + }
1166 + }
1167 +
1168 + }
1169 +
1170 + dev->config = number;
1171 + return result;
1172 +}
1173 +
1174 +/*-------------------------------------------------------------------------*/
1175 +
1176 +static void zero_setup_complete (struct usb_ep *ep, struct usb_request *req)
1177 +{
1178 + if (req->status || req->actual != req->length)
1179 + DBG ((struct zero_dev *) ep->driver_data,
1180 + "setup complete --> %d, %d/%d\n",
1181 + req->status, req->actual, req->length);
1182 +}
1183 +
1184 +/*
1185 + * The setup() callback implements all the ep0 functionality that's
1186 + * not handled lower down, in hardware or the hardware driver (like
1187 + * device and endpoint feature flags, and their status). It's all
1188 + * housekeeping for the gadget function we're implementing. Most of
1189 + * the work is in config-specific setup.
1190 + */
1191 +static int
1192 +zero_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1193 +{
1194 + struct zero_dev *dev = get_gadget_data (gadget);
1195 + struct usb_request *req = dev->req;
1196 + int value = -EOPNOTSUPP;
1197 +
1198 + /* usually this stores reply data in the pre-allocated ep0 buffer,
1199 + * but config change events will reconfigure hardware.
1200 + */
1201 + req->zero = 0;
1202 + switch (ctrl->bRequest) {
1203 +
1204 + case USB_REQ_GET_DESCRIPTOR:
1205 +
1206 + switch (ctrl->wValue >> 8) {
1207 +
1208 + case USB_DT_DEVICE:
1209 + value = min (ctrl->wLength, (u16) sizeof device_desc);
1210 + memcpy (req->buf, &device_desc, value);
1211 + break;
1212 +#ifdef CONFIG_USB_GADGET_DUALSPEED
1213 + case USB_DT_DEVICE_QUALIFIER:
1214 + if (!gadget->is_dualspeed)
1215 + break;
1216 + value = min (ctrl->wLength, (u16) sizeof dev_qualifier);
1217 + memcpy (req->buf, &dev_qualifier, value);
1218 + break;
1219 +
1220 + case USB_DT_OTHER_SPEED_CONFIG:
1221 + if (!gadget->is_dualspeed)
1222 + break;
1223 + // FALLTHROUGH
1224 +#endif /* CONFIG_USB_GADGET_DUALSPEED */
1225 + case USB_DT_CONFIG:
1226 + value = config_buf (gadget, req->buf,
1227 + ctrl->wValue >> 8,
1228 + ctrl->wValue & 0xff);
1229 + if (value >= 0)
1230 + value = min (ctrl->wLength, (u16) value);
1231 + break;
1232 +
1233 + case USB_DT_STRING:
1234 + /* wIndex == language code.
1235 + * this driver only handles one language, you can
1236 + * add string tables for other languages, using
1237 + * any UTF-8 characters
1238 + */
1239 + value = usb_gadget_get_string (&stringtab,
1240 + ctrl->wValue & 0xff, req->buf);
1241 + if (value >= 0) {
1242 + value = min (ctrl->wLength, (u16) value);
1243 + }
1244 + break;
1245 + }
1246 + break;
1247 +
1248 + /* currently two configs, two speeds */
1249 + case USB_REQ_SET_CONFIGURATION:
1250 + if (ctrl->bRequestType != 0)
1251 + goto unknown;
1252 +
1253 + spin_lock (&dev->lock);
1254 + value = zero_set_config (dev, ctrl->wValue, GFP_ATOMIC);
1255 + spin_unlock (&dev->lock);
1256 + break;
1257 + case USB_REQ_GET_CONFIGURATION:
1258 + if (ctrl->bRequestType != USB_DIR_IN)
1259 + goto unknown;
1260 + *(u8 *)req->buf = dev->config;
1261 + value = min (ctrl->wLength, (u16) 1);
1262 + break;
1263 +
1264 + /* until we add altsetting support, or other interfaces,
1265 + * only 0/0 are possible. pxa2xx only supports 0/0 (poorly)
1266 + * and already killed pending endpoint I/O.
1267 + */
1268 + case USB_REQ_SET_INTERFACE:
1269 +
1270 + if (ctrl->bRequestType != USB_RECIP_INTERFACE)
1271 + goto unknown;
1272 + spin_lock (&dev->lock);
1273 + if (dev->config) {
1274 + u8 config = dev->config;
1275 +
1276 + /* resets interface configuration, forgets about
1277 + * previous transaction state (queued bufs, etc)
1278 + * and re-inits endpoint state (toggle etc)
1279 + * no response queued, just zero status == success.
1280 + * if we had more than one interface we couldn't
1281 + * use this "reset the config" shortcut.
1282 + */
1283 + zero_reset_config (dev);
1284 + zero_set_config (dev, config, GFP_ATOMIC);
1285 + value = 0;
1286 + }
1287 + spin_unlock (&dev->lock);
1288 + break;
1289 + case USB_REQ_GET_INTERFACE:
1290 + if ((ctrl->bRequestType == 0x21) && (ctrl->wIndex == 0x02)) {
1291 + value = ctrl->wLength;
1292 + break;
1293 + }
1294 + else {
1295 + if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE))
1296 + goto unknown;
1297 + if (!dev->config)
1298 + break;
1299 + if (ctrl->wIndex != 0) {
1300 + value = -EDOM;
1301 + break;
1302 + }
1303 + *(u8 *)req->buf = 0;
1304 + value = min (ctrl->wLength, (u16) 1);
1305 + }
1306 + break;
1307 +
1308 + /*
1309 + * These are the same vendor-specific requests supported by
1310 + * Intel's USB 2.0 compliance test devices. We exceed that
1311 + * device spec by allowing multiple-packet requests.
1312 + */
1313 + case 0x5b: /* control WRITE test -- fill the buffer */
1314 + if (ctrl->bRequestType != (USB_DIR_OUT|USB_TYPE_VENDOR))
1315 + goto unknown;
1316 + if (ctrl->wValue || ctrl->wIndex)
1317 + break;
1318 + /* just read that many bytes into the buffer */
1319 + if (ctrl->wLength > USB_BUFSIZ)
1320 + break;
1321 + value = ctrl->wLength;
1322 + break;
1323 + case 0x5c: /* control READ test -- return the buffer */
1324 + if (ctrl->bRequestType != (USB_DIR_IN|USB_TYPE_VENDOR))
1325 + goto unknown;
1326 + if (ctrl->wValue || ctrl->wIndex)
1327 + break;
1328 + /* expect those bytes are still in the buffer; send back */
1329 + if (ctrl->wLength > USB_BUFSIZ
1330 + || ctrl->wLength != req->length)
1331 + break;
1332 + value = ctrl->wLength;
1333 + break;
1334 +
1335 + case 0x01: // SET_CUR
1336 + case 0x02:
1337 + case 0x03:
1338 + case 0x04:
1339 + case 0x05:
1340 + value = ctrl->wLength;
1341 + break;
1342 + case 0x81:
1343 + switch (ctrl->wValue) {
1344 + case 0x0201:
1345 + case 0x0202:
1346 + ((u8*)req->buf)[0] = 0x00;
1347 + ((u8*)req->buf)[1] = 0xe3;
1348 + break;
1349 + case 0x0300:
1350 + case 0x0500:
1351 + ((u8*)req->buf)[0] = 0x00;
1352 + break;
1353 + }
1354 + //((u8*)req->buf)[0] = 0x81;
1355 + //((u8*)req->buf)[1] = 0x81;
1356 + value = ctrl->wLength;
1357 + break;
1358 + case 0x82:
1359 + switch (ctrl->wValue) {
1360 + case 0x0201:
1361 + case 0x0202:
1362 + ((u8*)req->buf)[0] = 0x00;
1363 + ((u8*)req->buf)[1] = 0xc3;
1364 + break;
1365 + case 0x0300:
1366 + case 0x0500:
1367 + ((u8*)req->buf)[0] = 0x00;
1368 + break;
1369 + }
1370 + //((u8*)req->buf)[0] = 0x82;
1371 + //((u8*)req->buf)[1] = 0x82;
1372 + value = ctrl->wLength;
1373 + break;
1374 + case 0x83:
1375 + switch (ctrl->wValue) {
1376 + case 0x0201:
1377 + case 0x0202:
1378 + ((u8*)req->buf)[0] = 0x00;
1379 + ((u8*)req->buf)[1] = 0x00;
1380 + break;
1381 + case 0x0300:
1382 + ((u8*)req->buf)[0] = 0x60;
1383 + break;
1384 + case 0x0500:
1385 + ((u8*)req->buf)[0] = 0x18;
1386 + break;
1387 + }
1388 + //((u8*)req->buf)[0] = 0x83;
1389 + //((u8*)req->buf)[1] = 0x83;
1390 + value = ctrl->wLength;
1391 + break;
1392 + case 0x84:
1393 + switch (ctrl->wValue) {
1394 + case 0x0201:
1395 + case 0x0202:
1396 + ((u8*)req->buf)[0] = 0x00;
1397 + ((u8*)req->buf)[1] = 0x01;
1398 + break;
1399 + case 0x0300:
1400 + case 0x0500:
1401 + ((u8*)req->buf)[0] = 0x08;
1402 + break;
1403 + }
1404 + //((u8*)req->buf)[0] = 0x84;
1405 + //((u8*)req->buf)[1] = 0x84;
1406 + value = ctrl->wLength;
1407 + break;
1408 + case 0x85:
1409 + ((u8*)req->buf)[0] = 0x85;
1410 + ((u8*)req->buf)[1] = 0x85;
1411 + value = ctrl->wLength;
1412 + break;
1413 +
1414 +
1415 + default:
1416 +unknown:
1417 + printk("unknown control req%02x.%02x v%04x i%04x l%d\n",
1418 + ctrl->bRequestType, ctrl->bRequest,
1419 + ctrl->wValue, ctrl->wIndex, ctrl->wLength);
1420 + }
1421 +
1422 + /* respond with data transfer before status phase? */
1423 + if (value >= 0) {
1424 + req->length = value;
1425 + req->zero = value < ctrl->wLength
1426 + && (value % gadget->ep0->maxpacket) == 0;
1427 + value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1428 + if (value < 0) {
1429 + DBG (dev, "ep_queue < 0 --> %d\n", value);
1430 + req->status = 0;
1431 + zero_setup_complete (gadget->ep0, req);
1432 + }
1433 + }
1434 +
1435 + /* device either stalls (value < 0) or reports success */
1436 + return value;
1437 +}
1438 +
1439 +static void
1440 +zero_disconnect (struct usb_gadget *gadget)
1441 +{
1442 + struct zero_dev *dev = get_gadget_data (gadget);
1443 + unsigned long flags;
1444 +
1445 + spin_lock_irqsave (&dev->lock, flags);
1446 + zero_reset_config (dev);
1447 +
1448 + /* a more significant application might have some non-usb
1449 + * activities to quiesce here, saving resources like power
1450 + * or pushing the notification up a network stack.
1451 + */
1452 + spin_unlock_irqrestore (&dev->lock, flags);
1453 +
1454 + /* next we may get setup() calls to enumerate new connections;
1455 + * or an unbind() during shutdown (including removing module).
1456 + */
1457 +}
1458 +
1459 +static void
1460 +zero_autoresume (unsigned long _dev)
1461 +{
1462 + struct zero_dev *dev = (struct zero_dev *) _dev;
1463 + int status;
1464 +
1465 + /* normally the host would be woken up for something
1466 + * more significant than just a timer firing...
1467 + */
1468 + if (dev->gadget->speed != USB_SPEED_UNKNOWN) {
1469 + status = usb_gadget_wakeup (dev->gadget);
1470 + DBG (dev, "wakeup --> %d\n", status);
1471 + }
1472 +}
1473 +
1474 +/*-------------------------------------------------------------------------*/
1475 +
1476 +static void
1477 +zero_unbind (struct usb_gadget *gadget)
1478 +{
1479 + struct zero_dev *dev = get_gadget_data (gadget);
1480 +
1481 + DBG (dev, "unbind\n");
1482 +
1483 + /* we've already been disconnected ... no i/o is active */
1484 + if (dev->req)
1485 + free_ep_req (gadget->ep0, dev->req);
1486 + del_timer_sync (&dev->resume);
1487 + kfree (dev);
1488 + set_gadget_data (gadget, NULL);
1489 +}
1490 +
1491 +static int
1492 +zero_bind (struct usb_gadget *gadget)
1493 +{
1494 + struct zero_dev *dev;
1495 + //struct usb_ep *ep;
1496 +
1497 + printk("binding\n");
1498 + /*
1499 + * DRIVER POLICY CHOICE: you may want to do this differently.
1500 + * One thing to avoid is reusing a bcdDevice revision code
1501 + * with different host-visible configurations or behavior
1502 + * restrictions -- using ep1in/ep2out vs ep1out/ep3in, etc
1503 + */
1504 + //device_desc.bcdDevice = __constant_cpu_to_le16 (0x0201);
1505 +
1506 +
1507 + /* ok, we made sense of the hardware ... */
1508 + dev = kmalloc (sizeof *dev, SLAB_KERNEL);
1509 + if (!dev)
1510 + return -ENOMEM;
1511 + memset (dev, 0, sizeof *dev);
1512 + spin_lock_init (&dev->lock);
1513 + dev->gadget = gadget;
1514 + set_gadget_data (gadget, dev);
1515 +
1516 + /* preallocate control response and buffer */
1517 + dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1518 + if (!dev->req)
1519 + goto enomem;
1520 + dev->req->buf = usb_ep_alloc_buffer (gadget->ep0, USB_BUFSIZ,
1521 + &dev->req->dma, GFP_KERNEL);
1522 + if (!dev->req->buf)
1523 + goto enomem;
1524 +
1525 + dev->req->complete = zero_setup_complete;
1526 +
1527 + device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;
1528 +
1529 +#ifdef CONFIG_USB_GADGET_DUALSPEED
1530 + /* assume ep0 uses the same value for both speeds ... */
1531 + dev_qualifier.bMaxPacketSize0 = device_desc.bMaxPacketSize0;
1532 +
1533 + /* and that all endpoints are dual-speed */
1534 + //hs_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress;
1535 + //hs_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress;
1536 +#endif
1537 +
1538 + usb_gadget_set_selfpowered (gadget);
1539 +
1540 + init_timer (&dev->resume);
1541 + dev->resume.function = zero_autoresume;
1542 + dev->resume.data = (unsigned long) dev;
1543 +
1544 + gadget->ep0->driver_data = dev;
1545 +
1546 + INFO (dev, "%s, version: " DRIVER_VERSION "\n", longname);
1547 + INFO (dev, "using %s, OUT %s IN %s\n", gadget->name,
1548 + EP_OUT_NAME, EP_IN_NAME);
1549 +
1550 + snprintf (manufacturer, sizeof manufacturer,
1551 + UTS_SYSNAME " " UTS_RELEASE " with %s",
1552 + gadget->name);
1553 +
1554 + return 0;
1555 +
1556 +enomem:
1557 + zero_unbind (gadget);
1558 + return -ENOMEM;
1559 +}
1560 +
1561 +/*-------------------------------------------------------------------------*/
1562 +
1563 +static void
1564 +zero_suspend (struct usb_gadget *gadget)
1565 +{
1566 + struct zero_dev *dev = get_gadget_data (gadget);
1567 +
1568 + if (gadget->speed == USB_SPEED_UNKNOWN)
1569 + return;
1570 +
1571 + if (autoresume) {
1572 + mod_timer (&dev->resume, jiffies + (HZ * autoresume));
1573 + DBG (dev, "suspend, wakeup in %d seconds\n", autoresume);
1574 + } else
1575 + DBG (dev, "suspend\n");
1576 +}
1577 +
1578 +static void
1579 +zero_resume (struct usb_gadget *gadget)
1580 +{
1581 + struct zero_dev *dev = get_gadget_data (gadget);
1582 +
1583 + DBG (dev, "resume\n");
1584 + del_timer (&dev->resume);
1585 +}
1586 +
1587 +
1588 +/*-------------------------------------------------------------------------*/
1589 +
1590 +static struct usb_gadget_driver zero_driver = {
1591 +#ifdef CONFIG_USB_GADGET_DUALSPEED
1592 + .speed = USB_SPEED_HIGH,
1593 +#else
1594 + .speed = USB_SPEED_FULL,
1595 +#endif
1596 + .function = (char *) longname,
1597 + .bind = zero_bind,
1598 + .unbind = zero_unbind,
1599 +
1600 + .setup = zero_setup,
1601 + .disconnect = zero_disconnect,
1602 +
1603 + .suspend = zero_suspend,
1604 + .resume = zero_resume,
1605 +
1606 + .driver = {
1607 + .name = (char *) shortname,
1608 + // .shutdown = ...
1609 + // .suspend = ...
1610 + // .resume = ...
1611 + },
1612 +};
1613 +
1614 +MODULE_AUTHOR ("David Brownell");
1615 +MODULE_LICENSE ("Dual BSD/GPL");
1616 +
1617 +static struct proc_dir_entry *pdir, *pfile;
1618 +
1619 +static int isoc_read_data (char *page, char **start,
1620 + off_t off, int count,
1621 + int *eof, void *data)
1622 +{
1623 + int i;
1624 + static int c = 0;
1625 + static int done = 0;
1626 + static int s = 0;
1627 +
1628 +/*
1629 + printk ("\ncount: %d\n", count);
1630 + printk ("rbuf_start: %d\n", rbuf_start);
1631 + printk ("rbuf_len: %d\n", rbuf_len);
1632 + printk ("off: %d\n", off);
1633 + printk ("start: %p\n\n", *start);
1634 +*/
1635 + if (done) {
1636 + c = 0;
1637 + done = 0;
1638 + *eof = 1;
1639 + return 0;
1640 + }
1641 +
1642 + if (c == 0) {
1643 + if (rbuf_len == RBUF_LEN)
1644 + s = rbuf_start;
1645 + else s = 0;
1646 + }
1647 +
1648 + for (i=0; i<count && c<rbuf_len; i++, c++) {
1649 + page[i] = rbuf[(c+s) % RBUF_LEN];
1650 + }
1651 + *start = page;
1652 +
1653 + if (c >= rbuf_len) {
1654 + *eof = 1;
1655 + done = 1;
1656 + }
1657 +
1658 +
1659 + return i;
1660 +}
1661 +
1662 +static int __init init (void)
1663 +{
1664 +
1665 + int retval = 0;
1666 +
1667 + pdir = proc_mkdir("isoc_test", NULL);
1668 + if(pdir == NULL) {
1669 + retval = -ENOMEM;
1670 + printk("Error creating dir\n");
1671 + goto done;
1672 + }
1673 + pdir->owner = THIS_MODULE;
1674 +
1675 + pfile = create_proc_read_entry("isoc_data",
1676 + 0444, pdir,
1677 + isoc_read_data,
1678 + NULL);
1679 + if (pfile == NULL) {
1680 + retval = -ENOMEM;
1681 + printk("Error creating file\n");
1682 + goto no_file;
1683 + }
1684 + pfile->owner = THIS_MODULE;
1685 +
1686 + return usb_gadget_register_driver (&zero_driver);
1687 +
1688 + no_file:
1689 + remove_proc_entry("isoc_data", NULL);
1690 + done:
1691 + return retval;
1692 +}
1693 +module_init (init);
1694 +
1695 +static void __exit cleanup (void)
1696 +{
1697 +
1698 + usb_gadget_unregister_driver (&zero_driver);
1699 +
1700 + remove_proc_entry("isoc_data", pdir);
1701 + remove_proc_entry("isoc_test", NULL);
1702 +}
1703 +module_exit (cleanup);
1704 --- /dev/null
1705 +++ b/drivers/usb/dwc_otg/dwc_otg_attr.c
1706 @@ -0,0 +1,966 @@
1707 +/* ==========================================================================
1708 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
1709 + * $Revision: 1.2 $
1710 + * $Date: 2008-11-21 05:39:15 $
1711 + * $Change: 1064918 $
1712 + *
1713 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
1714 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
1715 + * otherwise expressly agreed to in writing between Synopsys and you.
1716 + *
1717 + * The Software IS NOT an item of Licensed Software or Licensed Product under
1718 + * any End User Software License Agreement or Agreement for Licensed Product
1719 + * with Synopsys or any supplement thereto. You are permitted to use and
1720 + * redistribute this Software in source and binary forms, with or without
1721 + * modification, provided that redistributions of source code must retain this
1722 + * notice. You may not view, use, disclose, copy or distribute this file or
1723 + * any information contained herein except pursuant to this license grant from
1724 + * Synopsys. If you do not agree with this notice, including the disclaimer
1725 + * below, then you are not authorized to use the Software.
1726 + *
1727 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1728 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1729 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1730 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1731 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1732 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1733 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1734 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1735 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1736 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1737 + * DAMAGE.
1738 + * ========================================================================== */
1739 +
1740 +/** @file
1741 + *
1742 + * The diagnostic interface will provide access to the controller for
1743 + * bringing up the hardware and testing. The Linux driver attributes
1744 + * feature will be used to provide the Linux Diagnostic
1745 + * Interface. These attributes are accessed through sysfs.
1746 + */
1747 +
1748 +/** @page "Linux Module Attributes"
1749 + *
1750 + * The Linux module attributes feature is used to provide the Linux
1751 + * Diagnostic Interface. These attributes are accessed through sysfs.
1752 + * The diagnostic interface will provide access to the controller for
1753 + * bringing up the hardware and testing.
1754 +
1755 +
1756 + The following table shows the attributes.
1757 + <table>
1758 + <tr>
1759 + <td><b> Name</b></td>
1760 + <td><b> Description</b></td>
1761 + <td><b> Access</b></td>
1762 + </tr>
1763 +
1764 + <tr>
1765 + <td> mode </td>
1766 + <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
1767 + <td> Read</td>
1768 + </tr>
1769 +
1770 + <tr>
1771 + <td> hnpcapable </td>
1772 + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
1773 + Read returns the current value.</td>
1774 + <td> Read/Write</td>
1775 + </tr>
1776 +
1777 + <tr>
1778 + <td> srpcapable </td>
1779 + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
1780 + Read returns the current value.</td>
1781 + <td> Read/Write</td>
1782 + </tr>
1783 +
1784 + <tr>
1785 + <td> hnp </td>
1786 + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
1787 + <td> Read/Write</td>
1788 + </tr>
1789 +
1790 + <tr>
1791 + <td> srp </td>
1792 + <td> Initiates the Session Request Protocol. Read returns the status.</td>
1793 + <td> Read/Write</td>
1794 + </tr>
1795 +
1796 + <tr>
1797 + <td> buspower </td>
1798 + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
1799 + <td> Read/Write</td>
1800 + </tr>
1801 +
1802 + <tr>
1803 + <td> bussuspend </td>
1804 + <td> Suspends the USB bus.</td>
1805 + <td> Read/Write</td>
1806 + </tr>
1807 +
1808 + <tr>
1809 + <td> busconnected </td>
1810 + <td> Gets the connection status of the bus</td>
1811 + <td> Read</td>
1812 + </tr>
1813 +
1814 + <tr>
1815 + <td> gotgctl </td>
1816 + <td> Gets or sets the Core Control Status Register.</td>
1817 + <td> Read/Write</td>
1818 + </tr>
1819 +
1820 + <tr>
1821 + <td> gusbcfg </td>
1822 + <td> Gets or sets the Core USB Configuration Register</td>
1823 + <td> Read/Write</td>
1824 + </tr>
1825 +
1826 + <tr>
1827 + <td> grxfsiz </td>
1828 + <td> Gets or sets the Receive FIFO Size Register</td>
1829 + <td> Read/Write</td>
1830 + </tr>
1831 +
1832 + <tr>
1833 + <td> gnptxfsiz </td>
1834 + <td> Gets or sets the non-periodic Transmit Size Register</td>
1835 + <td> Read/Write</td>
1836 + </tr>
1837 +
1838 + <tr>
1839 + <td> gpvndctl </td>
1840 + <td> Gets or sets the PHY Vendor Control Register</td>
1841 + <td> Read/Write</td>
1842 + </tr>
1843 +
1844 + <tr>
1845 + <td> ggpio </td>
1846 + <td> Gets the value in the lower 16-bits of the General Purpose IO Register
1847 + or sets the upper 16 bits.</td>
1848 + <td> Read/Write</td>
1849 + </tr>
1850 +
1851 + <tr>
1852 + <td> guid </td>
1853 + <td> Gets or sets the value of the User ID Register</td>
1854 + <td> Read/Write</td>
1855 + </tr>
1856 +
1857 + <tr>
1858 + <td> gsnpsid </td>
1859 + <td> Gets the value of the Synopsys ID Regester</td>
1860 + <td> Read</td>
1861 + </tr>
1862 +
1863 + <tr>
1864 + <td> devspeed </td>
1865 + <td> Gets or sets the device speed setting in the DCFG register</td>
1866 + <td> Read/Write</td>
1867 + </tr>
1868 +
1869 + <tr>
1870 + <td> enumspeed </td>
1871 + <td> Gets the device enumeration Speed.</td>
1872 + <td> Read</td>
1873 + </tr>
1874 +
1875 + <tr>
1876 + <td> hptxfsiz </td>
1877 + <td> Gets the value of the Host Periodic Transmit FIFO</td>
1878 + <td> Read</td>
1879 + </tr>
1880 +
1881 + <tr>
1882 + <td> hprt0 </td>
1883 + <td> Gets or sets the value in the Host Port Control and Status Register</td>
1884 + <td> Read/Write</td>
1885 + </tr>
1886 +
1887 + <tr>
1888 + <td> regoffset </td>
1889 + <td> Sets the register offset for the next Register Access</td>
1890 + <td> Read/Write</td>
1891 + </tr>
1892 +
1893 + <tr>
1894 + <td> regvalue </td>
1895 + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
1896 + <td> Read/Write</td>
1897 + </tr>
1898 +
1899 + <tr>
1900 + <td> remote_wakeup </td>
1901 + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
1902 + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
1903 + Wakeup signalling bit in the Device Control Register is set for 1
1904 + milli-second.</td>
1905 + <td> Read/Write</td>
1906 + </tr>
1907 +
1908 + <tr>
1909 + <td> regdump </td>
1910 + <td> Dumps the contents of core registers.</td>
1911 + <td> Read</td>
1912 + </tr>
1913 +
1914 + <tr>
1915 + <td> spramdump </td>
1916 + <td> Dumps the contents of core registers.</td>
1917 + <td> Read</td>
1918 + </tr>
1919 +
1920 + <tr>
1921 + <td> hcddump </td>
1922 + <td> Dumps the current HCD state.</td>
1923 + <td> Read</td>
1924 + </tr>
1925 +
1926 + <tr>
1927 + <td> hcd_frrem </td>
1928 + <td> Shows the average value of the Frame Remaining
1929 + field in the Host Frame Number/Frame Remaining register when an SOF interrupt
1930 + occurs. This can be used to determine the average interrupt latency. Also
1931 + shows the average Frame Remaining value for start_transfer and the "a" and
1932 + "b" sample points. The "a" and "b" sample points may be used during debugging
1933 + bto determine how long it takes to execute a section of the HCD code.</td>
1934 + <td> Read</td>
1935 + </tr>
1936 +
1937 + <tr>
1938 + <td> rd_reg_test </td>
1939 + <td> Displays the time required to read the GNPTXFSIZ register many times
1940 + (the output shows the number of times the register is read).
1941 + <td> Read</td>
1942 + </tr>
1943 +
1944 + <tr>
1945 + <td> wr_reg_test </td>
1946 + <td> Displays the time required to write the GNPTXFSIZ register many times
1947 + (the output shows the number of times the register is written).
1948 + <td> Read</td>
1949 + </tr>
1950 +
1951 + </table>
1952 +
1953 + Example usage:
1954 + To get the current mode:
1955 + cat /sys/devices/lm0/mode
1956 +
1957 + To power down the USB:
1958 + echo 0 > /sys/devices/lm0/buspower
1959 + */
1960 +
1961 +#include <linux/kernel.h>
1962 +#include <linux/module.h>
1963 +#include <linux/moduleparam.h>
1964 +#include <linux/init.h>
1965 +#include <linux/device.h>
1966 +#include <linux/errno.h>
1967 +#include <linux/types.h>
1968 +#include <linux/stat.h> /* permission constants */
1969 +#include <linux/version.h>
1970 +
1971 +#include <asm/io.h>
1972 +
1973 +#include "linux/dwc_otg_plat.h"
1974 +#include "dwc_otg_attr.h"
1975 +#include "dwc_otg_driver.h"
1976 +#include "dwc_otg_pcd.h"
1977 +#include "dwc_otg_hcd.h"
1978 +
1979 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
1980 +/*
1981 + * MACROs for defining sysfs attribute
1982 + */
1983 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
1984 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
1985 +{ \
1986 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
1987 + uint32_t val; \
1988 + val = dwc_read_reg32 (_addr_); \
1989 + val = (val & (_mask_)) >> _shift_; \
1990 + return sprintf (buf, "%s = 0x%x\n", _string_, val); \
1991 +}
1992 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
1993 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
1994 + const char *buf, size_t count) \
1995 +{ \
1996 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
1997 + uint32_t set = simple_strtoul(buf, NULL, 16); \
1998 + uint32_t clear = set; \
1999 + clear = ((~clear) << _shift_) & _mask_; \
2000 + set = (set << _shift_) & _mask_; \
2001 + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
2002 + dwc_modify_reg32(_addr_, clear, set); \
2003 + return count; \
2004 +}
2005 +
2006 +/*
2007 + * MACROs for defining sysfs attribute for 32-bit registers
2008 + */
2009 +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
2010 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
2011 +{ \
2012 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
2013 + uint32_t val; \
2014 + val = dwc_read_reg32 (_addr_); \
2015 + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
2016 +}
2017 +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
2018 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
2019 + const char *buf, size_t count) \
2020 +{ \
2021 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
2022 + uint32_t val = simple_strtoul(buf, NULL, 16); \
2023 + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
2024 + dwc_write_reg32(_addr_, val); \
2025 + return count; \
2026 +}
2027 +
2028 +#else
2029 +
2030 +/*
2031 + * MACROs for defining sysfs attribute
2032 + */
2033 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2034 +static ssize_t _otg_attr_name_##_show (struct device *_dev, char *buf) \
2035 +{ \
2036 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
2037 + uint32_t val; \
2038 + val = dwc_read_reg32 (_addr_); \
2039 + val = (val & (_mask_)) >> _shift_; \
2040 + return sprintf (buf, "%s = 0x%x\n", _string_, val); \
2041 +}
2042 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2043 +static ssize_t _otg_attr_name_##_store (struct device *_dev, const char *buf, size_t count) \
2044 +{ \
2045 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
2046 + uint32_t set = simple_strtoul(buf, NULL, 16); \
2047 + uint32_t clear = set; \
2048 + clear = ((~clear) << _shift_) & _mask_; \
2049 + set = (set << _shift_) & _mask_; \
2050 + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
2051 + dwc_modify_reg32(_addr_, clear, set); \
2052 + return count; \
2053 +}
2054 +
2055 +/*
2056 + * MACROs for defining sysfs attribute for 32-bit registers
2057 + */
2058 +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
2059 +static ssize_t _otg_attr_name_##_show (struct device *_dev, char *buf) \
2060 +{ \
2061 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
2062 + uint32_t val; \
2063 + val = dwc_read_reg32 (_addr_); \
2064 + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
2065 +}
2066 +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
2067 +static ssize_t _otg_attr_name_##_store (struct device *_dev, const char *buf, size_t count) \
2068 +{ \
2069 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
2070 + uint32_t val = simple_strtoul(buf, NULL, 16); \
2071 + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
2072 + dwc_write_reg32(_addr_, val); \
2073 + return count; \
2074 +}
2075 +
2076 +#endif
2077 +
2078 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2079 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2080 +DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2081 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
2082 +
2083 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2084 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
2085 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
2086 +
2087 +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
2088 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
2089 +DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
2090 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
2091 +
2092 +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
2093 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
2094 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
2095 +
2096 +
2097 +/** @name Functions for Show/Store of Attributes */
2098 +/**@{*/
2099 +
2100 +/**
2101 + * Show the register offset of the Register Access.
2102 + */
2103 +static ssize_t regoffset_show( struct device *_dev,
2104 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2105 + struct device_attribute *attr,
2106 +#endif
2107 + char *buf)
2108 +{
2109 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2110 + return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
2111 +}
2112 +
2113 +/**
2114 + * Set the register offset for the next Register Access Read/Write
2115 + */
2116 +static ssize_t regoffset_store( struct device *_dev,
2117 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2118 + struct device_attribute *attr,
2119 +#endif
2120 + const char *buf,
2121 + size_t count )
2122 +{
2123 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2124 +
2125 + uint32_t offset = simple_strtoul(buf, NULL, 16);
2126 + //dev_dbg(_dev, "Offset=0x%08x\n", offset);
2127 + if (offset < 0x00040000 ) {
2128 + otg_dev->reg_offset = offset;
2129 + }
2130 + else {
2131 + dev_err( _dev, "invalid offset\n" );
2132 + }
2133 +
2134 + return count;
2135 +}
2136 +DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
2137 +
2138 +
2139 +/**
2140 + * Show the value of the register at the offset in the reg_offset
2141 + * attribute.
2142 + */
2143 +static ssize_t regvalue_show( struct device *_dev,
2144 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2145 + struct device_attribute *attr,
2146 +#endif
2147 + char *buf)
2148 +{
2149 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2150 +
2151 + uint32_t val;
2152 + volatile uint32_t *addr;
2153 +
2154 + if (otg_dev->reg_offset != 0xFFFFFFFF &&
2155 + 0 != otg_dev->base) {
2156 + /* Calculate the address */
2157 + addr = (uint32_t*)(otg_dev->reg_offset +
2158 + (uint8_t*)otg_dev->base);
2159 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
2160 + val = dwc_read_reg32( addr );
2161 + return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
2162 + "Reg@0x%06x = 0x%08x\n",
2163 + otg_dev->reg_offset, val);
2164 + }
2165 + else {
2166 + dev_err(_dev, "Invalid offset (0x%0x)\n",
2167 + otg_dev->reg_offset);
2168 + return sprintf(buf, "invalid offset\n" );
2169 + }
2170 +}
2171 +
2172 +/**
2173 + * Store the value in the register at the offset in the reg_offset
2174 + * attribute.
2175 + *
2176 + */
2177 +static ssize_t regvalue_store( struct device *_dev,
2178 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2179 + struct device_attribute *attr,
2180 +#endif
2181 + const char *buf,
2182 + size_t count )
2183 +{
2184 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2185 +
2186 + volatile uint32_t * addr;
2187 + uint32_t val = simple_strtoul(buf, NULL, 16);
2188 + //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
2189 + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
2190 + /* Calculate the address */
2191 + addr = (uint32_t*)(otg_dev->reg_offset +
2192 + (uint8_t*)otg_dev->base);
2193 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
2194 + dwc_write_reg32( addr, val );
2195 + }
2196 + else {
2197 + dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
2198 + otg_dev->reg_offset);
2199 + }
2200 + return count;
2201 +}
2202 +DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
2203 +
2204 +/*
2205 + * Attributes
2206 + */
2207 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
2208 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
2209 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
2210 +
2211 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
2212 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
2213 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
2214 +
2215 +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
2216 +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
2217 +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
2218 +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
2219 +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
2220 +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
2221 +DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
2222 +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
2223 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
2224 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
2225 +
2226 +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
2227 +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
2228 +
2229 +
2230 +/**
2231 + * @todo Add code to initiate the HNP.
2232 + */
2233 +/**
2234 + * Show the HNP status bit
2235 + */
2236 +static ssize_t hnp_show( struct device *_dev,
2237 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2238 + struct device_attribute *attr,
2239 +#endif
2240 + char *buf)
2241 +{
2242 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2243 +
2244 + gotgctl_data_t val;
2245 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
2246 + return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
2247 +}
2248 +
2249 +/**
2250 + * Set the HNP Request bit
2251 + */
2252 +static ssize_t hnp_store( struct device *_dev,
2253 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2254 + struct device_attribute *attr,
2255 +#endif
2256 + const char *buf,
2257 + size_t count )
2258 +{
2259 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2260 +
2261 + uint32_t in = simple_strtoul(buf, NULL, 16);
2262 + uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
2263 + gotgctl_data_t mem;
2264 + mem.d32 = dwc_read_reg32(addr);
2265 + mem.b.hnpreq = in;
2266 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
2267 + dwc_write_reg32(addr, mem.d32);
2268 + return count;
2269 +}
2270 +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
2271 +
2272 +/**
2273 + * @todo Add code to initiate the SRP.
2274 + */
2275 +/**
2276 + * Show the SRP status bit
2277 + */
2278 +static ssize_t srp_show( struct device *_dev,
2279 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2280 + struct device_attribute *attr,
2281 +#endif
2282 + char *buf)
2283 +{
2284 +#ifndef DWC_HOST_ONLY
2285 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2286 +
2287 + gotgctl_data_t val;
2288 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
2289 + return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
2290 +#else
2291 + return sprintf(buf, "Host Only Mode!\n");
2292 +#endif
2293 +}
2294 +
2295 +
2296 +
2297 +/**
2298 + * Set the SRP Request bit
2299 + */
2300 +static ssize_t srp_store( struct device *_dev,
2301 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2302 + struct device_attribute *attr,
2303 +#endif
2304 + const char *buf,
2305 + size_t count )
2306 +{
2307 +#ifndef DWC_HOST_ONLY
2308 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2309 +
2310 + dwc_otg_pcd_initiate_srp(otg_dev->pcd);
2311 +#endif
2312 + return count;
2313 +}
2314 +DEVICE_ATTR(srp, 0644, srp_show, srp_store);
2315 +
2316 +/**
2317 + * @todo Need to do more for power on/off?
2318 + */
2319 +/**
2320 + * Show the Bus Power status
2321 + */
2322 +static ssize_t buspower_show( struct device *_dev,
2323 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2324 + struct device_attribute *attr,
2325 +#endif
2326 + char *buf)
2327 +{
2328 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2329 +
2330 + hprt0_data_t val;
2331 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
2332 + return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
2333 +}
2334 +
2335 +
2336 +/**
2337 + * Set the Bus Power status
2338 + */
2339 +static ssize_t buspower_store( struct device *_dev,
2340 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2341 + struct device_attribute *attr,
2342 +#endif
2343 + const char *buf,
2344 + size_t count )
2345 +{
2346 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2347 +
2348 + uint32_t on = simple_strtoul(buf, NULL, 16);
2349 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
2350 + hprt0_data_t mem;
2351 +
2352 + mem.d32 = dwc_read_reg32(addr);
2353 + mem.b.prtpwr = on;
2354 +
2355 + //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
2356 + dwc_write_reg32(addr, mem.d32);
2357 +
2358 + return count;
2359 +}
2360 +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
2361 +
2362 +/**
2363 + * @todo Need to do more for suspend?
2364 + */
2365 +/**
2366 + * Show the Bus Suspend status
2367 + */
2368 +static ssize_t bussuspend_show( struct device *_dev,
2369 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2370 + struct device_attribute *attr,
2371 +#endif
2372 + char *buf)
2373 +{
2374 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2375 +
2376 + hprt0_data_t val;
2377 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
2378 + return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
2379 +}
2380 +
2381 +/**
2382 + * Set the Bus Suspend status
2383 + */
2384 +static ssize_t bussuspend_store( struct device *_dev,
2385 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2386 + struct device_attribute *attr,
2387 +#endif
2388 + const char *buf,
2389 + size_t count )
2390 +{
2391 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2392 +
2393 + uint32_t in = simple_strtoul(buf, NULL, 16);
2394 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
2395 + hprt0_data_t mem;
2396 + mem.d32 = dwc_read_reg32(addr);
2397 + mem.b.prtsusp = in;
2398 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
2399 + dwc_write_reg32(addr, mem.d32);
2400 + return count;
2401 +}
2402 +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
2403 +
2404 +/**
2405 + * Show the status of Remote Wakeup.
2406 + */
2407 +static ssize_t remote_wakeup_show( struct device *_dev,
2408 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2409 + struct device_attribute *attr,
2410 +#endif
2411 + char *buf)
2412 +{
2413 +#ifndef DWC_HOST_ONLY
2414 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2415 +
2416 + dctl_data_t val;
2417 + val.d32 =
2418 + dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
2419 + return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
2420 + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
2421 +#else
2422 + return sprintf(buf, "Host Only Mode!\n");
2423 +#endif
2424 +}
2425 +/**
2426 + * Initiate a remote wakeup of the host. The Device control register
2427 + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
2428 + * flag is set.
2429 + *
2430 + */
2431 +static ssize_t remote_wakeup_store( struct device *_dev,
2432 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2433 + struct device_attribute *attr,
2434 +#endif
2435 + const char *buf,
2436 + size_t count )
2437 +{
2438 +#ifndef DWC_HOST_ONLY
2439 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2440 +
2441 + uint32_t val = simple_strtoul(buf, NULL, 16);
2442 + if (val&1) {
2443 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
2444 + }
2445 + else {
2446 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
2447 + }
2448 +#endif
2449 + return count;
2450 +}
2451 +DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
2452 + remote_wakeup_store);
2453 +
2454 +/**
2455 + * Dump global registers and either host or device registers (depending on the
2456 + * current mode of the core).
2457 + */
2458 +static ssize_t regdump_show( struct device *_dev,
2459 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2460 + struct device_attribute *attr,
2461 +#endif
2462 + char *buf)
2463 +{
2464 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2465 +
2466 + dwc_otg_dump_global_registers( otg_dev->core_if);
2467 + if (dwc_otg_is_host_mode(otg_dev->core_if)) {
2468 + dwc_otg_dump_host_registers( otg_dev->core_if);
2469 + } else {
2470 + dwc_otg_dump_dev_registers( otg_dev->core_if);
2471 +
2472 + }
2473 + return sprintf( buf, "Register Dump\n" );
2474 +}
2475 +
2476 +DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
2477 +
2478 +/**
2479 + * Dump global registers and either host or device registers (depending on the
2480 + * current mode of the core).
2481 + */
2482 +static ssize_t spramdump_show( struct device *_dev,
2483 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2484 + struct device_attribute *attr,
2485 +#endif
2486 + char *buf)
2487 +{
2488 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2489 +
2490 + dwc_otg_dump_spram( otg_dev->core_if);
2491 +
2492 + return sprintf( buf, "SPRAM Dump\n" );
2493 +}
2494 +
2495 +DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
2496 +
2497 +/**
2498 + * Dump the current hcd state.
2499 + */
2500 +static ssize_t hcddump_show( struct device *_dev,
2501 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2502 + struct device_attribute *attr,
2503 +#endif
2504 + char *buf)
2505 +{
2506 +#ifndef DWC_DEVICE_ONLY
2507 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2508 +
2509 + dwc_otg_hcd_dump_state(otg_dev->hcd);
2510 +#endif
2511 + return sprintf( buf, "HCD Dump\n" );
2512 +}
2513 +
2514 +DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
2515 +
2516 +/**
2517 + * Dump the average frame remaining at SOF. This can be used to
2518 + * determine average interrupt latency. Frame remaining is also shown for
2519 + * start transfer and two additional sample points.
2520 + */
2521 +static ssize_t hcd_frrem_show( struct device *_dev,
2522 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2523 + struct device_attribute *attr,
2524 +#endif
2525 + char *buf)
2526 +{
2527 +#ifndef DWC_DEVICE_ONLY
2528 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2529 +
2530 + dwc_otg_hcd_dump_frrem(otg_dev->hcd);
2531 +#endif
2532 + return sprintf( buf, "HCD Dump Frame Remaining\n" );
2533 +}
2534 +
2535 +DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
2536 +
2537 +/**
2538 + * Displays the time required to read the GNPTXFSIZ register many times (the
2539 + * output shows the number of times the register is read).
2540 + */
2541 +#define RW_REG_COUNT 10000000
2542 +#define MSEC_PER_JIFFIE 1000/HZ
2543 +static ssize_t rd_reg_test_show( struct device *_dev,
2544 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2545 + struct device_attribute *attr,
2546 +#endif
2547 + char *buf)
2548 +{
2549 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2550 +
2551 + int i;
2552 + int time;
2553 + int start_jiffies;
2554 +
2555 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
2556 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
2557 + start_jiffies = jiffies;
2558 + for (i = 0; i < RW_REG_COUNT; i++) {
2559 + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
2560 + }
2561 + time = jiffies - start_jiffies;
2562 + return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
2563 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
2564 +}
2565 +
2566 +DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
2567 +
2568 +/**
2569 + * Displays the time required to write the GNPTXFSIZ register many times (the
2570 + * output shows the number of times the register is written).
2571 + */
2572 +static ssize_t wr_reg_test_show( struct device *_dev,
2573 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
2574 + struct device_attribute *attr,
2575 +#endif
2576 + char *buf)
2577 +{
2578 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
2579 +
2580 + uint32_t reg_val;
2581 + int i;
2582 + int time;
2583 + int start_jiffies;
2584 +
2585 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
2586 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
2587 + reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
2588 + start_jiffies = jiffies;
2589 + for (i = 0; i < RW_REG_COUNT; i++) {
2590 + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
2591 + }
2592 + time = jiffies - start_jiffies;
2593 + return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
2594 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
2595 +}
2596 +
2597 +DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
2598 +/**@}*/
2599 +
2600 +/**
2601 + * Create the device files
2602 + */
2603 +void dwc_otg_attr_create (struct device *dev)
2604 +{
2605 + int error;
2606 +
2607 + error = device_create_file(dev, &dev_attr_regoffset);
2608 + error = device_create_file(dev, &dev_attr_regvalue);
2609 + error = device_create_file(dev, &dev_attr_mode);
2610 + error = device_create_file(dev, &dev_attr_hnpcapable);
2611 + error = device_create_file(dev, &dev_attr_srpcapable);
2612 + error = device_create_file(dev, &dev_attr_hnp);
2613 + error = device_create_file(dev, &dev_attr_srp);
2614 + error = device_create_file(dev, &dev_attr_buspower);
2615 + error = device_create_file(dev, &dev_attr_bussuspend);
2616 + error = device_create_file(dev, &dev_attr_busconnected);
2617 + error = device_create_file(dev, &dev_attr_gotgctl);
2618 + error = device_create_file(dev, &dev_attr_gusbcfg);
2619 + error = device_create_file(dev, &dev_attr_grxfsiz);
2620 + error = device_create_file(dev, &dev_attr_gnptxfsiz);
2621 + error = device_create_file(dev, &dev_attr_gpvndctl);
2622 + error = device_create_file(dev, &dev_attr_ggpio);
2623 + error = device_create_file(dev, &dev_attr_guid);
2624 + error = device_create_file(dev, &dev_attr_gsnpsid);
2625 + error = device_create_file(dev, &dev_attr_devspeed);
2626 + error = device_create_file(dev, &dev_attr_enumspeed);
2627 + error = device_create_file(dev, &dev_attr_hptxfsiz);
2628 + error = device_create_file(dev, &dev_attr_hprt0);
2629 + error = device_create_file(dev, &dev_attr_remote_wakeup);
2630 + error = device_create_file(dev, &dev_attr_regdump);
2631 + error = device_create_file(dev, &dev_attr_spramdump);
2632 + error = device_create_file(dev, &dev_attr_hcddump);
2633 + error = device_create_file(dev, &dev_attr_hcd_frrem);
2634 + error = device_create_file(dev, &dev_attr_rd_reg_test);
2635 + error = device_create_file(dev, &dev_attr_wr_reg_test);
2636 +}
2637 +
2638 +/**
2639 + * Remove the device files
2640 + */
2641 +void dwc_otg_attr_remove (struct device *dev)
2642 +{
2643 + device_remove_file(dev, &dev_attr_regoffset);
2644 + device_remove_file(dev, &dev_attr_regvalue);
2645 + device_remove_file(dev, &dev_attr_mode);
2646 + device_remove_file(dev, &dev_attr_hnpcapable);
2647 + device_remove_file(dev, &dev_attr_srpcapable);
2648 + device_remove_file(dev, &dev_attr_hnp);
2649 + device_remove_file(dev, &dev_attr_srp);
2650 + device_remove_file(dev, &dev_attr_buspower);
2651 + device_remove_file(dev, &dev_attr_bussuspend);
2652 + device_remove_file(dev, &dev_attr_busconnected);
2653 + device_remove_file(dev, &dev_attr_gotgctl);
2654 + device_remove_file(dev, &dev_attr_gusbcfg);
2655 + device_remove_file(dev, &dev_attr_grxfsiz);
2656 + device_remove_file(dev, &dev_attr_gnptxfsiz);
2657 + device_remove_file(dev, &dev_attr_gpvndctl);
2658 + device_remove_file(dev, &dev_attr_ggpio);
2659 + device_remove_file(dev, &dev_attr_guid);
2660 + device_remove_file(dev, &dev_attr_gsnpsid);
2661 + device_remove_file(dev, &dev_attr_devspeed);
2662 + device_remove_file(dev, &dev_attr_enumspeed);
2663 + device_remove_file(dev, &dev_attr_hptxfsiz);
2664 + device_remove_file(dev, &dev_attr_hprt0);
2665 + device_remove_file(dev, &dev_attr_remote_wakeup);
2666 + device_remove_file(dev, &dev_attr_regdump);
2667 + device_remove_file(dev, &dev_attr_spramdump);
2668 + device_remove_file(dev, &dev_attr_hcddump);
2669 + device_remove_file(dev, &dev_attr_hcd_frrem);
2670 + device_remove_file(dev, &dev_attr_rd_reg_test);
2671 + device_remove_file(dev, &dev_attr_wr_reg_test);
2672 +}
2673 --- /dev/null
2674 +++ b/drivers/usb/dwc_otg/dwc_otg_attr.h
2675 @@ -0,0 +1,67 @@
2676 +/* ==========================================================================
2677 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
2678 + * $Revision: 1.2 $
2679 + * $Date: 2008-11-21 05:39:15 $
2680 + * $Change: 477051 $
2681 + *
2682 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
2683 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
2684 + * otherwise expressly agreed to in writing between Synopsys and you.
2685 + *
2686 + * The Software IS NOT an item of Licensed Software or Licensed Product under
2687 + * any End User Software License Agreement or Agreement for Licensed Product
2688 + * with Synopsys or any supplement thereto. You are permitted to use and
2689 + * redistribute this Software in source and binary forms, with or without
2690 + * modification, provided that redistributions of source code must retain this
2691 + * notice. You may not view, use, disclose, copy or distribute this file or
2692 + * any information contained herein except pursuant to this license grant from
2693 + * Synopsys. If you do not agree with this notice, including the disclaimer
2694 + * below, then you are not authorized to use the Software.
2695 + *
2696 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
2697 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2698 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2699 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
2700 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
2701 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
2702 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
2703 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2704 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2705 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
2706 + * DAMAGE.
2707 + * ========================================================================== */
2708 +
2709 +#if !defined(__DWC_OTG_ATTR_H__)
2710 +#define __DWC_OTG_ATTR_H__
2711 +
2712 +/** @file
2713 + * This file contains the interface to the Linux device attributes.
2714 + */
2715 +extern struct device_attribute dev_attr_regoffset;
2716 +extern struct device_attribute dev_attr_regvalue;
2717 +
2718 +extern struct device_attribute dev_attr_mode;
2719 +extern struct device_attribute dev_attr_hnpcapable;
2720 +extern struct device_attribute dev_attr_srpcapable;
2721 +extern struct device_attribute dev_attr_hnp;
2722 +extern struct device_attribute dev_attr_srp;
2723 +extern struct device_attribute dev_attr_buspower;
2724 +extern struct device_attribute dev_attr_bussuspend;
2725 +extern struct device_attribute dev_attr_busconnected;
2726 +extern struct device_attribute dev_attr_gotgctl;
2727 +extern struct device_attribute dev_attr_gusbcfg;
2728 +extern struct device_attribute dev_attr_grxfsiz;
2729 +extern struct device_attribute dev_attr_gnptxfsiz;
2730 +extern struct device_attribute dev_attr_gpvndctl;
2731 +extern struct device_attribute dev_attr_ggpio;
2732 +extern struct device_attribute dev_attr_guid;
2733 +extern struct device_attribute dev_attr_gsnpsid;
2734 +extern struct device_attribute dev_attr_devspeed;
2735 +extern struct device_attribute dev_attr_enumspeed;
2736 +extern struct device_attribute dev_attr_hptxfsiz;
2737 +extern struct device_attribute dev_attr_hprt0;
2738 +
2739 +void dwc_otg_attr_create (struct device *dev);
2740 +void dwc_otg_attr_remove (struct device *dev);
2741 +
2742 +#endif
2743 --- /dev/null
2744 +++ b/drivers/usb/dwc_otg/dwc_otg_cil.c
2745 @@ -0,0 +1,3692 @@
2746 +/* ==========================================================================
2747 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
2748 + * $Revision: 1.7 $
2749 + * $Date: 2008-12-22 11:43:05 $
2750 + * $Change: 1117667 $
2751 + *
2752 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
2753 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
2754 + * otherwise expressly agreed to in writing between Synopsys and you.
2755 + *
2756 + * The Software IS NOT an item of Licensed Software or Licensed Product under
2757 + * any End User Software License Agreement or Agreement for Licensed Product
2758 + * with Synopsys or any supplement thereto. You are permitted to use and
2759 + * redistribute this Software in source and binary forms, with or without
2760 + * modification, provided that redistributions of source code must retain this
2761 + * notice. You may not view, use, disclose, copy or distribute this file or
2762 + * any information contained herein except pursuant to this license grant from
2763 + * Synopsys. If you do not agree with this notice, including the disclaimer
2764 + * below, then you are not authorized to use the Software.
2765 + *
2766 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
2767 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2768 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2769 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
2770 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
2771 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
2772 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
2773 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2774 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2775 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
2776 + * DAMAGE.
2777 + * ========================================================================== */
2778 +
2779 +/** @file
2780 + *
2781 + * The Core Interface Layer provides basic services for accessing and
2782 + * managing the DWC_otg hardware. These services are used by both the
2783 + * Host Controller Driver and the Peripheral Controller Driver.
2784 + *
2785 + * The CIL manages the memory map for the core so that the HCD and PCD
2786 + * don't have to do this separately. It also handles basic tasks like
2787 + * reading/writing the registers and data FIFOs in the controller.
2788 + * Some of the data access functions provide encapsulation of several
2789 + * operations required to perform a task, such as writing multiple
2790 + * registers to start a transfer. Finally, the CIL performs basic
2791 + * services that are not specific to either the host or device modes
2792 + * of operation. These services include management of the OTG Host
2793 + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
2794 + * Diagnostic API is also provided to allow testing of the controller
2795 + * hardware.
2796 + *
2797 + * The Core Interface Layer has the following requirements:
2798 + * - Provides basic controller operations.
2799 + * - Minimal use of OS services.
2800 + * - The OS services used will be abstracted by using inline functions
2801 + * or macros.
2802 + *
2803 + */
2804 +#include <asm/unaligned.h>
2805 +#include <linux/dma-mapping.h>
2806 +#ifdef DEBUG
2807 +#include <linux/jiffies.h>
2808 +#endif
2809 +
2810 +#include "linux/dwc_otg_plat.h"
2811 +#include "dwc_otg_regs.h"
2812 +#include "dwc_otg_cil.h"
2813 +
2814 +/* Included only to access hc->qh for non-dword buffer handling
2815 + * TODO: account it
2816 + */
2817 +#include "dwc_otg_hcd.h"
2818 +
2819 +/**
2820 + * This function is called to initialize the DWC_otg CSR data
2821 + * structures. The register addresses in the device and host
2822 + * structures are initialized from the base address supplied by the
2823 + * caller. The calling function must make the OS calls to get the
2824 + * base address of the DWC_otg controller registers. The core_params
2825 + * argument holds the parameters that specify how the core should be
2826 + * configured.
2827 + *
2828 + * @param[in] reg_base_addr Base address of DWC_otg core registers
2829 + * @param[in] core_params Pointer to the core configuration parameters
2830 + *
2831 + */
2832 +dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
2833 + dwc_otg_core_params_t *core_params)
2834 +{
2835 + dwc_otg_core_if_t *core_if = 0;
2836 + dwc_otg_dev_if_t *dev_if = 0;
2837 + dwc_otg_host_if_t *host_if = 0;
2838 + uint8_t *reg_base = (uint8_t *)reg_base_addr;
2839 + int i = 0;
2840 +
2841 + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
2842 +
2843 + core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
2844 +
2845 + if (core_if == 0) {
2846 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
2847 + return 0;
2848 + }
2849 +
2850 + memset(core_if, 0, sizeof(dwc_otg_core_if_t));
2851 +
2852 + core_if->core_params = core_params;
2853 + core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
2854 +
2855 + /*
2856 + * Allocate the Device Mode structures.
2857 + */
2858 + dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
2859 +
2860 + if (dev_if == 0) {
2861 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
2862 + kfree(core_if);
2863 + return 0;
2864 + }
2865 +
2866 + dev_if->dev_global_regs =
2867 + (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
2868 +
2869 + for (i=0; i<MAX_EPS_CHANNELS; i++)
2870 + {
2871 + dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
2872 + (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
2873 + (i * DWC_EP_REG_OFFSET));
2874 +
2875 + dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
2876 + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
2877 + (i * DWC_EP_REG_OFFSET));
2878 + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
2879 + i, &dev_if->in_ep_regs[i]->diepctl);
2880 + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
2881 + i, &dev_if->out_ep_regs[i]->doepctl);
2882 + }
2883 +
2884 + dev_if->speed = 0; // unknown
2885 +
2886 + core_if->dev_if = dev_if;
2887 +
2888 + /*
2889 + * Allocate the Host Mode structures.
2890 + */
2891 + host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
2892 +
2893 + if (host_if == 0) {
2894 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
2895 + kfree(dev_if);
2896 + kfree(core_if);
2897 + return 0;
2898 + }
2899 +
2900 + host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
2901 + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
2902 +
2903 + host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
2904 +
2905 + for (i=0; i<MAX_EPS_CHANNELS; i++)
2906 + {
2907 + host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
2908 + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
2909 + (i * DWC_OTG_CHAN_REGS_OFFSET));
2910 + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
2911 + i, &host_if->hc_regs[i]->hcchar);
2912 + }
2913 +
2914 + host_if->num_host_channels = MAX_EPS_CHANNELS;
2915 + core_if->host_if = host_if;
2916 +
2917 + for (i=0; i<MAX_EPS_CHANNELS; i++)
2918 + {
2919 + core_if->data_fifo[i] =
2920 + (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
2921 + (i * DWC_OTG_DATA_FIFO_SIZE));
2922 + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
2923 + i, (unsigned)core_if->data_fifo[i]);
2924 + }
2925 +
2926 + core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
2927 +
2928 + /*
2929 + * Store the contents of the hardware configuration registers here for
2930 + * easy access later.
2931 + */
2932 + core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
2933 + core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
2934 + core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
2935 + core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
2936 +
2937 + DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
2938 + DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
2939 + DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
2940 + DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
2941 +
2942 + core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
2943 + core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
2944 +
2945 + DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
2946 + DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
2947 +
2948 + DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
2949 + DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
2950 + DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
2951 + DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
2952 + DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
2953 + DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
2954 + DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
2955 +
2956 + DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
2957 + DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
2958 +
2959 + /*
2960 + * Set the SRP sucess bit for FS-I2c
2961 + */
2962 + core_if->srp_success = 0;
2963 + core_if->srp_timer_started = 0;
2964 +
2965 +
2966 + /*
2967 + * Create new workqueue and init works
2968 + */
2969 + core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
2970 + if(core_if->wq_otg == 0) {
2971 + DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
2972 + kfree(host_if);
2973 + kfree(dev_if);
2974 + kfree(core_if);
2975 + return 0 * HZ;
2976 + }
2977 +
2978 +
2979 +
2980 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
2981 +
2982 + INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change, core_if);
2983 + INIT_WORK(&core_if->w_wkp, w_wakeup_detected, core_if);
2984 +
2985 +#else
2986 +
2987 + INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
2988 + INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
2989 +
2990 +#endif
2991 + return core_if;
2992 +}
2993 +
2994 +/**
2995 + * This function frees the structures allocated by dwc_otg_cil_init().
2996 + *
2997 + * @param[in] core_if The core interface pointer returned from
2998 + * dwc_otg_cil_init().
2999 + *
3000 + */
3001 +void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
3002 +{
3003 + /* Disable all interrupts */
3004 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
3005 + dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
3006 +
3007 + if (core_if->wq_otg) {
3008 + destroy_workqueue(core_if->wq_otg);
3009 + }
3010 + if (core_if->dev_if) {
3011 + kfree(core_if->dev_if);
3012 + }
3013 + if (core_if->host_if) {
3014 + kfree(core_if->host_if);
3015 + }
3016 + kfree(core_if);
3017 +}
3018 +
3019 +/**
3020 + * This function enables the controller's Global Interrupt in the AHB Config
3021 + * register.
3022 + *
3023 + * @param[in] core_if Programming view of DWC_otg controller.
3024 + */
3025 +void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
3026 +{
3027 + gahbcfg_data_t ahbcfg = { .d32 = 0};
3028 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
3029 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
3030 +}
3031 +
3032 +/**
3033 + * This function disables the controller's Global Interrupt in the AHB Config
3034 + * register.
3035 + *
3036 + * @param[in] core_if Programming view of DWC_otg controller.
3037 + */
3038 +void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
3039 +{
3040 + gahbcfg_data_t ahbcfg = { .d32 = 0};
3041 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
3042 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
3043 +}
3044 +
3045 +/**
3046 + * This function initializes the commmon interrupts, used in both
3047 + * device and host modes.
3048 + *
3049 + * @param[in] core_if Programming view of the DWC_otg controller
3050 + *
3051 + */
3052 +static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
3053 +{
3054 + dwc_otg_core_global_regs_t *global_regs =
3055 + core_if->core_global_regs;
3056 + gintmsk_data_t intr_mask = { .d32 = 0};
3057 +
3058 + /* Clear any pending OTG Interrupts */
3059 + dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
3060 +
3061 + /* Clear any pending interrupts */
3062 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3063 +
3064 + /*
3065 + * Enable the interrupts in the GINTMSK.
3066 + */
3067 + intr_mask.b.modemismatch = 1;
3068 + intr_mask.b.otgintr = 1;
3069 +
3070 + if (!core_if->dma_enable) {
3071 + intr_mask.b.rxstsqlvl = 1;
3072 + }
3073 +
3074 + intr_mask.b.conidstschng = 1;
3075 + intr_mask.b.wkupintr = 1;
3076 + intr_mask.b.disconnect = 1;
3077 + intr_mask.b.usbsuspend = 1;
3078 + intr_mask.b.sessreqintr = 1;
3079 + dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
3080 +}
3081 +
3082 +/**
3083 + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
3084 + * type.
3085 + */
3086 +static void init_fslspclksel(dwc_otg_core_if_t *core_if)
3087 +{
3088 + uint32_t val;
3089 + hcfg_data_t hcfg;
3090 +
3091 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
3092 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
3093 + (core_if->core_params->ulpi_fs_ls)) ||
3094 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3095 + /* Full speed PHY */
3096 + val = DWC_HCFG_48_MHZ;
3097 + }
3098 + else {
3099 + /* High speed PHY running at full speed or high speed */
3100 + val = DWC_HCFG_30_60_MHZ;
3101 + }
3102 +
3103 + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
3104 + hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
3105 + hcfg.b.fslspclksel = val;
3106 + dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
3107 +}
3108 +
3109 +/**
3110 + * Initializes the DevSpd field of the DCFG register depending on the PHY type
3111 + * and the enumeration speed of the device.
3112 + */
3113 +static void init_devspd(dwc_otg_core_if_t *core_if)
3114 +{
3115 + uint32_t val;
3116 + dcfg_data_t dcfg;
3117 +
3118 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
3119 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
3120 + (core_if->core_params->ulpi_fs_ls)) ||
3121 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3122 + /* Full speed PHY */
3123 + val = 0x3;
3124 + }
3125 + else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
3126 + /* High speed PHY running at full speed */
3127 + val = 0x1;
3128 + }
3129 + else {
3130 + /* High speed PHY running at high speed */
3131 + val = 0x0;
3132 + }
3133 +
3134 + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
3135 +
3136 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
3137 + dcfg.b.devspd = val;
3138 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
3139 +}
3140 +
3141 +/**
3142 + * This function calculates the number of IN EPS
3143 + * using GHWCFG1 and GHWCFG2 registers values
3144 + *
3145 + * @param core_if Programming view of the DWC_otg controller
3146 + */
3147 +static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
3148 +{
3149 + uint32_t num_in_eps = 0;
3150 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
3151 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
3152 + uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
3153 + int i;
3154 +
3155 +
3156 + for(i = 0; i < num_eps; ++i)
3157 + {
3158 + if(!(hwcfg1 & 0x1))
3159 + num_in_eps++;
3160 +
3161 + hwcfg1 >>= 2;
3162 + }
3163 +
3164 + if(core_if->hwcfg4.b.ded_fifo_en) {
3165 + num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
3166 + }
3167 +
3168 + return num_in_eps;
3169 +}
3170 +
3171 +
3172 +/**
3173 + * This function calculates the number of OUT EPS
3174 + * using GHWCFG1 and GHWCFG2 registers values
3175 + *
3176 + * @param core_if Programming view of the DWC_otg controller
3177 + */
3178 +static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
3179 +{
3180 + uint32_t num_out_eps = 0;
3181 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
3182 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
3183 + int i;
3184 +
3185 + for(i = 0; i < num_eps; ++i)
3186 + {
3187 + if(!(hwcfg1 & 0x2))
3188 + num_out_eps++;
3189 +
3190 + hwcfg1 >>= 2;
3191 + }
3192 + return num_out_eps;
3193 +}
3194 +/**
3195 + * This function initializes the DWC_otg controller registers and
3196 + * prepares the core for device mode or host mode operation.
3197 + *
3198 + * @param core_if Programming view of the DWC_otg controller
3199 + *
3200 + */
3201 +void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
3202 +{
3203 + int i = 0;
3204 + dwc_otg_core_global_regs_t *global_regs =
3205 + core_if->core_global_regs;
3206 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3207 + gahbcfg_data_t ahbcfg = { .d32 = 0 };
3208 + gusbcfg_data_t usbcfg = { .d32 = 0 };
3209 + gi2cctl_data_t i2cctl = { .d32 = 0 };
3210 +
3211 + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
3212 +
3213 + /* Common Initialization */
3214 +
3215 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3216 +
3217 +// usbcfg.b.tx_end_delay = 1;
3218 + /* Program the ULPI External VBUS bit if needed */
3219 + usbcfg.b.ulpi_ext_vbus_drv =
3220 + (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
3221 +
3222 + /* Set external TS Dline pulsing */
3223 + usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
3224 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
3225 +
3226 +
3227 + /* Reset the Controller */
3228 + dwc_otg_core_reset(core_if);
3229 +
3230 + /* Initialize parameters from Hardware configuration registers. */
3231 + dev_if->num_in_eps = calc_num_in_eps(core_if);
3232 + dev_if->num_out_eps = calc_num_out_eps(core_if);
3233 +
3234 +
3235 + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
3236 +
3237 + for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
3238 + {
3239 + dev_if->perio_tx_fifo_size[i] =
3240 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
3241 + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
3242 + i, dev_if->perio_tx_fifo_size[i]);
3243 + }
3244 +
3245 + for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
3246 + {
3247 + dev_if->tx_fifo_size[i] =
3248 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
3249 + DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
3250 + i, dev_if->perio_tx_fifo_size[i]);
3251 + }
3252 +
3253 + core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
3254 + core_if->rx_fifo_size =
3255 + dwc_read_reg32(&global_regs->grxfsiz);
3256 + core_if->nperio_tx_fifo_size =
3257 + dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
3258 +
3259 + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
3260 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
3261 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
3262 +
3263 + /* This programming sequence needs to happen in FS mode before any other
3264 + * programming occurs */
3265 + if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
3266 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
3267 + /* If FS mode with FS PHY */
3268 +
3269 + /* core_init() is now called on every switch so only call the
3270 + * following for the first time through. */
3271 + if (!core_if->phy_init_done) {
3272 + core_if->phy_init_done = 1;
3273 + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
3274 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3275 + usbcfg.b.physel = 1;
3276 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
3277 +
3278 + /* Reset after a PHY select */
3279 + dwc_otg_core_reset(core_if);
3280 + }
3281 +
3282 + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
3283 + * do this on HNP Dev/Host mode switches (done in dev_init and
3284 + * host_init). */
3285 + if (dwc_otg_is_host_mode(core_if)) {
3286 + init_fslspclksel(core_if);
3287 + }
3288 + else {
3289 + init_devspd(core_if);
3290 + }
3291 +
3292 + if (core_if->core_params->i2c_enable) {
3293 + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
3294 + /* Program GUSBCFG.OtgUtmifsSel to I2C */
3295 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3296 + usbcfg.b.otgutmifssel = 1;
3297 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
3298 +
3299 + /* Program GI2CCTL.I2CEn */
3300 + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
3301 + i2cctl.b.i2cdevaddr = 1;
3302 + i2cctl.b.i2cen = 0;
3303 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
3304 + i2cctl.b.i2cen = 1;
3305 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
3306 + }
3307 +
3308 + } /* endif speed == DWC_SPEED_PARAM_FULL */
3309 +
3310 + else {
3311 + /* High speed PHY. */
3312 + if (!core_if->phy_init_done) {
3313 + core_if->phy_init_done = 1;
3314 + /* HS PHY parameters. These parameters are preserved
3315 + * during soft reset so only program the first time. Do
3316 + * a soft reset immediately after setting phyif. */
3317 + usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
3318 + if (usbcfg.b.ulpi_utmi_sel == 1) {
3319 + /* ULPI interface */
3320 + usbcfg.b.phyif = 0;
3321 + usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
3322 + }
3323 + else {
3324 + /* UTMI+ interface */
3325 + if (core_if->core_params->phy_utmi_width == 16) {
3326 + usbcfg.b.phyif = 1;
3327 + }
3328 + else {
3329 + usbcfg.b.phyif = 0;
3330 + }
3331 + }
3332 +
3333 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3334 +
3335 + /* Reset after setting the PHY parameters */
3336 + dwc_otg_core_reset(core_if);
3337 + }
3338 + }
3339 +
3340 + if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
3341 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
3342 + (core_if->core_params->ulpi_fs_ls)) {
3343 + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
3344 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3345 + usbcfg.b.ulpi_fsls = 1;
3346 + usbcfg.b.ulpi_clk_sus_m = 1;
3347 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3348 + }
3349 + else {
3350 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3351 + usbcfg.b.ulpi_fsls = 0;
3352 + usbcfg.b.ulpi_clk_sus_m = 0;
3353 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3354 + }
3355 +
3356 + /* Program the GAHBCFG Register.*/
3357 + switch (core_if->hwcfg2.b.architecture) {
3358 +
3359 + case DWC_SLAVE_ONLY_ARCH:
3360 + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
3361 + ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
3362 + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
3363 + core_if->dma_enable = 0;
3364 + core_if->dma_desc_enable = 0;
3365 + break;
3366 +
3367 + case DWC_EXT_DMA_ARCH:
3368 + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
3369 + ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
3370 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
3371 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
3372 + break;
3373 +
3374 + case DWC_INT_DMA_ARCH:
3375 + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
3376 + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
3377 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
3378 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
3379 + break;
3380 +
3381 + }
3382 + ahbcfg.b.dmaenable = core_if->dma_enable;
3383 + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
3384 +
3385 + core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
3386 +
3387 + core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
3388 + core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
3389 + DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
3390 + DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
3391 +
3392 + /*
3393 + * Program the GUSBCFG register.
3394 + */
3395 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
3396 +
3397 + switch (core_if->hwcfg2.b.op_mode) {
3398 + case DWC_MODE_HNP_SRP_CAPABLE:
3399 + usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
3400 + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
3401 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3402 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3403 + break;
3404 +
3405 + case DWC_MODE_SRP_ONLY_CAPABLE:
3406 + usbcfg.b.hnpcap = 0;
3407 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3408 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3409 + break;
3410 +
3411 + case DWC_MODE_NO_HNP_SRP_CAPABLE:
3412 + usbcfg.b.hnpcap = 0;
3413 + usbcfg.b.srpcap = 0;
3414 + break;
3415 +
3416 + case DWC_MODE_SRP_CAPABLE_DEVICE:
3417 + usbcfg.b.hnpcap = 0;
3418 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3419 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3420 + break;
3421 +
3422 + case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
3423 + usbcfg.b.hnpcap = 0;
3424 + usbcfg.b.srpcap = 0;
3425 + break;
3426 +
3427 + case DWC_MODE_SRP_CAPABLE_HOST:
3428 + usbcfg.b.hnpcap = 0;
3429 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
3430 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
3431 + break;
3432 +
3433 + case DWC_MODE_NO_SRP_CAPABLE_HOST:
3434 + usbcfg.b.hnpcap = 0;
3435 + usbcfg.b.srpcap = 0;
3436 + break;
3437 + }
3438 +
3439 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
3440 +
3441 + /* Enable common interrupts */
3442 + dwc_otg_enable_common_interrupts(core_if);
3443 +
3444 + /* Do device or host intialization based on mode during PCD
3445 + * and HCD initialization */
3446 + if (dwc_otg_is_host_mode(core_if)) {
3447 + DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
3448 + core_if->op_state = A_HOST;
3449 + }
3450 + else {
3451 + DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
3452 + core_if->op_state = B_PERIPHERAL;
3453 +#ifdef DWC_DEVICE_ONLY
3454 + dwc_otg_core_dev_init(core_if);
3455 +#endif
3456 + }
3457 +}
3458 +
3459 +
3460 +/**
3461 + * This function enables the Device mode interrupts.
3462 + *
3463 + * @param core_if Programming view of DWC_otg controller
3464 + */
3465 +void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
3466 +{
3467 + gintmsk_data_t intr_mask = { .d32 = 0};
3468 + dwc_otg_core_global_regs_t *global_regs =
3469 + core_if->core_global_regs;
3470 +
3471 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
3472 +
3473 + /* Disable all interrupts. */
3474 + dwc_write_reg32(&global_regs->gintmsk, 0);
3475 +
3476 + /* Clear any pending interrupts */
3477 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3478 +
3479 + /* Enable the common interrupts */
3480 + dwc_otg_enable_common_interrupts(core_if);
3481 +
3482 + /* Enable interrupts */
3483 + intr_mask.b.usbreset = 1;
3484 + intr_mask.b.enumdone = 1;
3485 +
3486 + if(!core_if->multiproc_int_enable) {
3487 + intr_mask.b.inepintr = 1;
3488 + intr_mask.b.outepintr = 1;
3489 + }
3490 +
3491 + intr_mask.b.erlysuspend = 1;
3492 +
3493 + if(core_if->en_multiple_tx_fifo == 0) {
3494 + intr_mask.b.epmismatch = 1;
3495 + }
3496 +
3497 +
3498 +#ifdef DWC_EN_ISOC
3499 + if(core_if->dma_enable) {
3500 + if(core_if->dma_desc_enable == 0) {
3501 + if(core_if->pti_enh_enable) {
3502 + dctl_data_t dctl = { .d32 = 0 };
3503 + dctl.b.ifrmnum = 1;
3504 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
3505 + } else {
3506 + intr_mask.b.incomplisoin = 1;
3507 + intr_mask.b.incomplisoout = 1;
3508 + }
3509 + }
3510 + } else {
3511 + intr_mask.b.incomplisoin = 1;
3512 + intr_mask.b.incomplisoout = 1;
3513 + }
3514 +#endif // DWC_EN_ISOC
3515 +
3516 +/** @todo NGS: Should this be a module parameter? */
3517 +#ifdef USE_PERIODIC_EP
3518 + intr_mask.b.isooutdrop = 1;
3519 + intr_mask.b.eopframe = 1;
3520 + intr_mask.b.incomplisoin = 1;
3521 + intr_mask.b.incomplisoout = 1;
3522 +#endif
3523 +
3524 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
3525 +
3526 + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
3527 + dwc_read_reg32(&global_regs->gintmsk));
3528 +}
3529 +
3530 +/**
3531 + * This function initializes the DWC_otg controller registers for
3532 + * device mode.
3533 + *
3534 + * @param core_if Programming view of DWC_otg controller
3535 + *
3536 + */
3537 +void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
3538 +{
3539 + int i;
3540 + dwc_otg_core_global_regs_t *global_regs =
3541 + core_if->core_global_regs;
3542 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3543 + dwc_otg_core_params_t *params = core_if->core_params;
3544 + dcfg_data_t dcfg = { .d32 = 0};
3545 + grstctl_t resetctl = { .d32 = 0 };
3546 + uint32_t rx_fifo_size;
3547 + fifosize_data_t nptxfifosize;
3548 + fifosize_data_t txfifosize;
3549 + dthrctl_data_t dthrctl;
3550 + fifosize_data_t ptxfifosize;
3551 +
3552 + /* Restart the Phy Clock */
3553 + dwc_write_reg32(core_if->pcgcctl, 0);
3554 +
3555 + /* Device configuration register */
3556 + init_devspd(core_if);
3557 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
3558 + dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
3559 + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
3560 +
3561 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
3562 +
3563 + /* Configure data FIFO sizes */
3564 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
3565 + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
3566 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
3567 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
3568 +
3569 + /* Rx FIFO */
3570 + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
3571 + dwc_read_reg32(&global_regs->grxfsiz));
3572 +
3573 + rx_fifo_size = params->dev_rx_fifo_size;
3574 + dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
3575 +
3576 + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
3577 + dwc_read_reg32(&global_regs->grxfsiz));
3578 +
3579 + /** Set Periodic Tx FIFO Mask all bits 0 */
3580 + core_if->p_tx_msk = 0;
3581 +
3582 + /** Set Tx FIFO Mask all bits 0 */
3583 + core_if->tx_msk = 0;
3584 +
3585 + if(core_if->en_multiple_tx_fifo == 0) {
3586 + /* Non-periodic Tx FIFO */
3587 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
3588 + dwc_read_reg32(&global_regs->gnptxfsiz));
3589 +
3590 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
3591 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
3592 +
3593 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
3594 +
3595 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
3596 + dwc_read_reg32(&global_regs->gnptxfsiz));
3597 +
3598 + /**@todo NGS: Fix Periodic FIFO Sizing! */
3599 + /*
3600 + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
3601 + * Indexes of the FIFO size module parameters in the
3602 + * dev_perio_tx_fifo_size array and the FIFO size registers in
3603 + * the dptxfsiz array run from 0 to 14.
3604 + */
3605 + /** @todo Finish debug of this */
3606 + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
3607 + for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
3608 + {
3609 + ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
3610 + DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
3611 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
3612 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
3613 + ptxfifosize.d32);
3614 + DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
3615 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
3616 + ptxfifosize.b.startaddr += ptxfifosize.b.depth;
3617 + }
3618 + }
3619 + else {
3620 + /*
3621 + * Tx FIFOs These FIFOs are numbered from 1 to 15.
3622 + * Indexes of the FIFO size module parameters in the
3623 + * dev_tx_fifo_size array and the FIFO size registers in
3624 + * the dptxfsiz_dieptxf array run from 0 to 14.
3625 + */
3626 +
3627 +
3628 + /* Non-periodic Tx FIFO */
3629 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
3630 + dwc_read_reg32(&global_regs->gnptxfsiz));
3631 +
3632 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
3633 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
3634 +
3635 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
3636 +
3637 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
3638 + dwc_read_reg32(&global_regs->gnptxfsiz));
3639 +
3640 + txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
3641 + /*
3642 + Modify by kaiker ,for RT3052 device mode config
3643 +
3644 + In RT3052,Since the _core_if->hwcfg4.b.num_dev_perio_in_ep is
3645 + configed to 0 so these TX_FIF0 not config.IN EP will can't
3646 + more than 1 if not modify it.
3647 +
3648 + */
3649 +#if 1
3650 + for (i=1 ; i <= dev_if->num_in_eps; i++)
3651 +#else
3652 + for (i=1; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
3653 +#endif
3654 + {
3655 +
3656 + txfifosize.b.depth = params->dev_tx_fifo_size[i];
3657 +
3658 + DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
3659 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
3660 +
3661 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i-1],
3662 + txfifosize.d32);
3663 +
3664 + DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
3665 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1]));
3666 +
3667 + txfifosize.b.startaddr += txfifosize.b.depth;
3668 + }
3669 + }
3670 + }
3671 + /* Flush the FIFOs */
3672 + dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
3673 + dwc_otg_flush_rx_fifo(core_if);
3674 +
3675 + /* Flush the Learning Queue. */
3676 + resetctl.b.intknqflsh = 1;
3677 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
3678 +
3679 + /* Clear all pending Device Interrupts */
3680 +
3681 + if(core_if->multiproc_int_enable) {
3682 + }
3683 +
3684 + /** @todo - if the condition needed to be checked
3685 + * or in any case all pending interrutps should be cleared?
3686 + */
3687 + if(core_if->multiproc_int_enable) {
3688 + for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
3689 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
3690 + }
3691 +
3692 + for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
3693 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
3694 + }
3695 +
3696 + dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
3697 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
3698 + } else {
3699 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
3700 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
3701 + dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
3702 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
3703 + }
3704 +
3705 + for (i=0; i <= dev_if->num_in_eps; i++)
3706 + {
3707 + depctl_data_t depctl;
3708 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
3709 + if (depctl.b.epena) {
3710 + depctl.d32 = 0;
3711 + depctl.b.epdis = 1;
3712 + depctl.b.snak = 1;
3713 + }
3714 + else {
3715 + depctl.d32 = 0;
3716 + }
3717 +
3718 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
3719 +
3720 +
3721 + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
3722 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
3723 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
3724 + }
3725 +
3726 + for (i=0; i <= dev_if->num_out_eps; i++)
3727 + {
3728 + depctl_data_t depctl;
3729 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
3730 + if (depctl.b.epena) {
3731 + depctl.d32 = 0;
3732 + depctl.b.epdis = 1;
3733 + depctl.b.snak = 1;
3734 + }
3735 + else {
3736 + depctl.d32 = 0;
3737 + }
3738 +
3739 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
3740 +
3741 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
3742 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
3743 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
3744 + }
3745 +
3746 + if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
3747 + dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
3748 + dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
3749 + dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
3750 +
3751 + dev_if->rx_thr_length = params->rx_thr_length;
3752 + dev_if->tx_thr_length = params->tx_thr_length;
3753 +
3754 + dev_if->setup_desc_index = 0;
3755 +
3756 + dthrctl.d32 = 0;
3757 + dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
3758 + dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
3759 + dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
3760 + dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
3761 + dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
3762 +
3763 + dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
3764 +
3765 + DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
3766 + dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
3767 +
3768 + }
3769 +
3770 + dwc_otg_enable_device_interrupts(core_if);
3771 +
3772 + {
3773 + diepmsk_data_t msk = { .d32 = 0 };
3774 + msk.b.txfifoundrn = 1;
3775 + if(core_if->multiproc_int_enable) {
3776 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
3777 + } else {
3778 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
3779 + }
3780 + }
3781 +
3782 +
3783 + if(core_if->multiproc_int_enable) {
3784 + /* Set NAK on Babble */
3785 + dctl_data_t dctl = { .d32 = 0};
3786 + dctl.b.nakonbble = 1;
3787 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
3788 + }
3789 +}
3790 +
3791 +/**
3792 + * This function enables the Host mode interrupts.
3793 + *
3794 + * @param core_if Programming view of DWC_otg controller
3795 + */
3796 +void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
3797 +{
3798 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
3799 + gintmsk_data_t intr_mask = { .d32 = 0 };
3800 +
3801 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
3802 +
3803 + /* Disable all interrupts. */
3804 + dwc_write_reg32(&global_regs->gintmsk, 0);
3805 +
3806 + /* Clear any pending interrupts. */
3807 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
3808 +
3809 + /* Enable the common interrupts */
3810 + dwc_otg_enable_common_interrupts(core_if);
3811 +
3812 + /*
3813 + * Enable host mode interrupts without disturbing common
3814 + * interrupts.
3815 + */
3816 + intr_mask.b.sofintr = 1;
3817 + intr_mask.b.portintr = 1;
3818 + intr_mask.b.hcintr = 1;
3819 +
3820 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
3821 +}
3822 +
3823 +/**
3824 + * This function disables the Host Mode interrupts.
3825 + *
3826 + * @param core_if Programming view of DWC_otg controller
3827 + */
3828 +void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
3829 +{
3830 + dwc_otg_core_global_regs_t *global_regs =
3831 + core_if->core_global_regs;
3832 + gintmsk_data_t intr_mask = { .d32 = 0 };
3833 +
3834 + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
3835 +
3836 + /*
3837 + * Disable host mode interrupts without disturbing common
3838 + * interrupts.
3839 + */
3840 + intr_mask.b.sofintr = 1;
3841 + intr_mask.b.portintr = 1;
3842 + intr_mask.b.hcintr = 1;
3843 + intr_mask.b.ptxfempty = 1;
3844 + intr_mask.b.nptxfempty = 1;
3845 +
3846 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
3847 +}
3848 +
3849 +/**
3850 + * This function initializes the DWC_otg controller registers for
3851 + * host mode.
3852 + *
3853 + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
3854 + * request queues. Host channels are reset to ensure that they are ready for
3855 + * performing transfers.
3856 + *
3857 + * @param core_if Programming view of DWC_otg controller
3858 + *
3859 + */
3860 +void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
3861 +{
3862 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
3863 + dwc_otg_host_if_t *host_if = core_if->host_if;
3864 + dwc_otg_core_params_t *params = core_if->core_params;
3865 + hprt0_data_t hprt0 = { .d32 = 0 };
3866 + fifosize_data_t nptxfifosize;
3867 + fifosize_data_t ptxfifosize;
3868 + int i;
3869 + hcchar_data_t hcchar;
3870 + hcfg_data_t hcfg;
3871 + dwc_otg_hc_regs_t *hc_regs;
3872 + int num_channels;
3873 + gotgctl_data_t gotgctl = { .d32 = 0 };
3874 +
3875 + DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
3876 +
3877 + /* Restart the Phy Clock */
3878 + dwc_write_reg32(core_if->pcgcctl, 0);
3879 +
3880 + /* Initialize Host Configuration Register */
3881 + init_fslspclksel(core_if);
3882 + if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
3883 + {
3884 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
3885 + hcfg.b.fslssupp = 1;
3886 + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
3887 + }
3888 +
3889 + /* Configure data FIFO sizes */
3890 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
3891 + DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
3892 + DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
3893 + DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
3894 + DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
3895 +
3896 + /* Rx FIFO */
3897 + DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
3898 + dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
3899 + DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
3900 +
3901 + /* Non-periodic Tx FIFO */
3902 + DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
3903 + nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
3904 + nptxfifosize.b.startaddr = params->host_rx_fifo_size;
3905 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
3906 + DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
3907 +
3908 + /* Periodic Tx FIFO */
3909 + DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
3910 + ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
3911 + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
3912 + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
3913 + DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
3914 + }
3915 +
3916 + /* Clear Host Set HNP Enable in the OTG Control Register */
3917 + gotgctl.b.hstsethnpen = 1;
3918 + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
3919 +
3920 + /* Make sure the FIFOs are flushed. */
3921 + dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
3922 + dwc_otg_flush_rx_fifo(core_if);
3923 +
3924 + /* Flush out any leftover queued requests. */
3925 + num_channels = core_if->core_params->host_channels;
3926 + for (i = 0; i < num_channels; i++)
3927 + {
3928 + hc_regs = core_if->host_if->hc_regs[i];
3929 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
3930 + hcchar.b.chen = 0;
3931 + hcchar.b.chdis = 1;
3932 + hcchar.b.epdir = 0;
3933 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
3934 + }
3935 +
3936 + /* Halt all channels to put them into a known state. */
3937 + for (i = 0; i < num_channels; i++)
3938 + {
3939 + int count = 0;
3940 + hc_regs = core_if->host_if->hc_regs[i];
3941 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
3942 + hcchar.b.chen = 1;
3943 + hcchar.b.chdis = 1;
3944 + hcchar.b.epdir = 0;
3945 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
3946 + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
3947 + do {
3948 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
3949 + if (++count > 1000)
3950 + {
3951 + DWC_ERROR("%s: Unable to clear halt on channel %d\n",
3952 + __func__, i);
3953 + break;
3954 + }
3955 + }
3956 + while (hcchar.b.chen);
3957 + }
3958 +
3959 + /* Turn on the vbus power. */
3960 + DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
3961 + if (core_if->op_state == A_HOST) {
3962 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
3963 + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
3964 + if (hprt0.b.prtpwr == 0) {
3965 + hprt0.b.prtpwr = 1;
3966 + dwc_write_reg32(host_if->hprt0, hprt0.d32);
3967 + }
3968 + }
3969 +
3970 + dwc_otg_enable_host_interrupts(core_if);
3971 +}
3972 +
3973 +/**
3974 + * Prepares a host channel for transferring packets to/from a specific
3975 + * endpoint. The HCCHARn register is set up with the characteristics specified
3976 + * in _hc. Host channel interrupts that may need to be serviced while this
3977 + * transfer is in progress are enabled.
3978 + *
3979 + * @param core_if Programming view of DWC_otg controller
3980 + * @param hc Information needed to initialize the host channel
3981 + */
3982 +void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
3983 +{
3984 + uint32_t intr_enable;
3985 + hcintmsk_data_t hc_intr_mask;
3986 + gintmsk_data_t gintmsk = { .d32 = 0 };
3987 + hcchar_data_t hcchar;
3988 + hcsplt_data_t hcsplt;
3989 +
3990 + uint8_t hc_num = hc->hc_num;
3991 + dwc_otg_host_if_t *host_if = core_if->host_if;
3992 + dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
3993 +
3994 + /* Clear old interrupt conditions for this host channel. */
3995 + hc_intr_mask.d32 = 0xFFFFFFFF;
3996 + hc_intr_mask.b.reserved = 0;
3997 + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
3998 +
3999 + /* Enable channel interrupts required for this transfer. */
4000 + hc_intr_mask.d32 = 0;
4001 + hc_intr_mask.b.chhltd = 1;
4002 + if (core_if->dma_enable) {
4003 + hc_intr_mask.b.ahberr = 1;
4004 + if (hc->error_state && !hc->do_split &&
4005 + hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
4006 + hc_intr_mask.b.ack = 1;
4007 + if (hc->ep_is_in) {
4008 + hc_intr_mask.b.datatglerr = 1;
4009 + if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
4010 + hc_intr_mask.b.nak = 1;
4011 + }
4012 + }
4013 + }
4014 + }
4015 + else {
4016 + switch (hc->ep_type) {
4017 + case DWC_OTG_EP_TYPE_CONTROL:
4018 + case DWC_OTG_EP_TYPE_BULK:
4019 + hc_intr_mask.b.xfercompl = 1;
4020 + hc_intr_mask.b.stall = 1;
4021 + hc_intr_mask.b.xacterr = 1;
4022 + hc_intr_mask.b.datatglerr = 1;
4023 + if (hc->ep_is_in) {
4024 + hc_intr_mask.b.bblerr = 1;
4025 + }
4026 + else {
4027 + hc_intr_mask.b.nak = 1;
4028 + hc_intr_mask.b.nyet = 1;
4029 + if (hc->do_ping) {
4030 + hc_intr_mask.b.ack = 1;
4031 + }
4032 + }
4033 +
4034 + if (hc->do_split) {
4035 + hc_intr_mask.b.nak = 1;
4036 + if (hc->complete_split) {
4037 + hc_intr_mask.b.nyet = 1;
4038 + }
4039 + else {
4040 + hc_intr_mask.b.ack = 1;
4041 + }
4042 + }
4043 +
4044 + if (hc->error_state) {
4045 + hc_intr_mask.b.ack = 1;
4046 + }
4047 + break;
4048 + case DWC_OTG_EP_TYPE_INTR:
4049 + hc_intr_mask.b.xfercompl = 1;
4050 + hc_intr_mask.b.nak = 1;
4051 + hc_intr_mask.b.stall = 1;
4052 + hc_intr_mask.b.xacterr = 1;
4053 + hc_intr_mask.b.datatglerr = 1;
4054 + hc_intr_mask.b.frmovrun = 1;
4055 +
4056 + if (hc->ep_is_in) {
4057 + hc_intr_mask.b.bblerr = 1;
4058 + }
4059 + if (hc->error_state) {
4060 + hc_intr_mask.b.ack = 1;
4061 + }
4062 + if (hc->do_split) {
4063 + if (hc->complete_split) {
4064 + hc_intr_mask.b.nyet = 1;
4065 + }
4066 + else {
4067 + hc_intr_mask.b.ack = 1;
4068 + }
4069 + }
4070 + break;
4071 + case DWC_OTG_EP_TYPE_ISOC:
4072 + hc_intr_mask.b.xfercompl = 1;
4073 + hc_intr_mask.b.frmovrun = 1;
4074 + hc_intr_mask.b.ack = 1;
4075 +
4076 + if (hc->ep_is_in) {
4077 + hc_intr_mask.b.xacterr = 1;
4078 + hc_intr_mask.b.bblerr = 1;
4079 + }
4080 + break;
4081 + }
4082 + }
4083 + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
4084 +
4085 +// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
4086 +// hc->max_packet = 512;
4087 + /* Enable the top level host channel interrupt. */
4088 + intr_enable = (1 << hc_num);
4089 + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
4090 +
4091 + /* Make sure host channel interrupts are enabled. */
4092 + gintmsk.b.hcintr = 1;
4093 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
4094 +
4095 + /*
4096 + * Program the HCCHARn register with the endpoint characteristics for
4097 + * the current transfer.
4098 + */
4099 + hcchar.d32 = 0;
4100 + hcchar.b.devaddr = hc->dev_addr;
4101 + hcchar.b.epnum = hc->ep_num;
4102 + hcchar.b.epdir = hc->ep_is_in;
4103 + hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
4104 + hcchar.b.eptype = hc->ep_type;
4105 + hcchar.b.mps = hc->max_packet;
4106 +
4107 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
4108 +
4109 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4110 + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
4111 + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
4112 + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
4113 + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
4114 + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
4115 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
4116 + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
4117 +
4118 + /*
4119 + * Program the HCSPLIT register for SPLITs
4120 + */
4121 + hcsplt.d32 = 0;
4122 + if (hc->do_split) {
4123 + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
4124 + hc->complete_split ? "CSPLIT" : "SSPLIT");
4125 + hcsplt.b.compsplt = hc->complete_split;
4126 + hcsplt.b.xactpos = hc->xact_pos;
4127 + hcsplt.b.hubaddr = hc->hub_addr;
4128 + hcsplt.b.prtaddr = hc->port_addr;
4129 + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
4130 + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
4131 + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
4132 + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
4133 + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
4134 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
4135 + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
4136 + }
4137 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
4138 +
4139 +}
4140 +
4141 +/**
4142 + * Attempts to halt a host channel. This function should only be called in
4143 + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
4144 + * normal circumstances in DMA mode, the controller halts the channel when the
4145 + * transfer is complete or a condition occurs that requires application
4146 + * intervention.
4147 + *
4148 + * In slave mode, checks for a free request queue entry, then sets the Channel
4149 + * Enable and Channel Disable bits of the Host Channel Characteristics
4150 + * register of the specified channel to intiate the halt. If there is no free
4151 + * request queue entry, sets only the Channel Disable bit of the HCCHARn
4152 + * register to flush requests for this channel. In the latter case, sets a
4153 + * flag to indicate that the host channel needs to be halted when a request
4154 + * queue slot is open.
4155 + *
4156 + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
4157 + * HCCHARn register. The controller ensures there is space in the request
4158 + * queue before submitting the halt request.
4159 + *
4160 + * Some time may elapse before the core flushes any posted requests for this
4161 + * host channel and halts. The Channel Halted interrupt handler completes the
4162 + * deactivation of the host channel.
4163 + *
4164 + * @param core_if Controller register interface.
4165 + * @param hc Host channel to halt.
4166 + * @param halt_status Reason for halting the channel.
4167 + */
4168 +void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
4169 + dwc_hc_t *hc,
4170 + dwc_otg_halt_status_e halt_status)
4171 +{
4172 + gnptxsts_data_t nptxsts;
4173 + hptxsts_data_t hptxsts;
4174 + hcchar_data_t hcchar;
4175 + dwc_otg_hc_regs_t *hc_regs;
4176 + dwc_otg_core_global_regs_t *global_regs;
4177 + dwc_otg_host_global_regs_t *host_global_regs;
4178 +
4179 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4180 + global_regs = core_if->core_global_regs;
4181 + host_global_regs = core_if->host_if->host_global_regs;
4182 +
4183 + WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
4184 +
4185 + if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
4186 + halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
4187 + /*
4188 + * Disable all channel interrupts except Ch Halted. The QTD
4189 + * and QH state associated with this transfer has been cleared
4190 + * (in the case of URB_DEQUEUE), so the channel needs to be
4191 + * shut down carefully to prevent crashes.
4192 + */
4193 + hcintmsk_data_t hcintmsk;
4194 + hcintmsk.d32 = 0;
4195 + hcintmsk.b.chhltd = 1;
4196 + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
4197 +
4198 + /*
4199 + * Make sure no other interrupts besides halt are currently
4200 + * pending. Handling another interrupt could cause a crash due
4201 + * to the QTD and QH state.
4202 + */
4203 + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
4204 +
4205 + /*
4206 + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
4207 + * even if the channel was already halted for some other
4208 + * reason.
4209 + */
4210 + hc->halt_status = halt_status;
4211 +
4212 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4213 + if (hcchar.b.chen == 0) {
4214 + /*
4215 + * The channel is either already halted or it hasn't
4216 + * started yet. In DMA mode, the transfer may halt if
4217 + * it finishes normally or a condition occurs that
4218 + * requires driver intervention. Don't want to halt
4219 + * the channel again. In either Slave or DMA mode,
4220 + * it's possible that the transfer has been assigned
4221 + * to a channel, but not started yet when an URB is
4222 + * dequeued. Don't want to halt a channel that hasn't
4223 + * started yet.
4224 + */
4225 + return;
4226 + }
4227 + }
4228 +
4229 + if (hc->halt_pending) {
4230 + /*
4231 + * A halt has already been issued for this channel. This might
4232 + * happen when a transfer is aborted by a higher level in
4233 + * the stack.
4234 + */
4235 +#ifdef DEBUG
4236 + DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
4237 + __func__, hc->hc_num);
4238 +
4239 +/* dwc_otg_dump_global_registers(core_if); */
4240 +/* dwc_otg_dump_host_registers(core_if); */
4241 +#endif
4242 + return;
4243 + }
4244 +
4245 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4246 + hcchar.b.chen = 1;
4247 + hcchar.b.chdis = 1;
4248 +
4249 + if (!core_if->dma_enable) {
4250 + /* Check for space in the request queue to issue the halt. */
4251 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
4252 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
4253 + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
4254 + if (nptxsts.b.nptxqspcavail == 0) {
4255 + hcchar.b.chen = 0;
4256 + }
4257 + }
4258 + else {
4259 + hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
4260 + if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
4261 + hcchar.b.chen = 0;
4262 + }
4263 + }
4264 + }
4265 +
4266 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4267 +
4268 + hc->halt_status = halt_status;
4269 +
4270 + if (hcchar.b.chen) {
4271 + hc->halt_pending = 1;
4272 + hc->halt_on_queue = 0;
4273 + }
4274 + else {
4275 + hc->halt_on_queue = 1;
4276 + }
4277 +
4278 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4279 + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
4280 + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
4281 + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
4282 + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
4283 +
4284 + return;
4285 +}
4286 +
4287 +/**
4288 + * Clears the transfer state for a host channel. This function is normally
4289 + * called after a transfer is done and the host channel is being released.
4290 + *
4291 + * @param core_if Programming view of DWC_otg controller.
4292 + * @param hc Identifies the host channel to clean up.
4293 + */
4294 +void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
4295 +{
4296 + dwc_otg_hc_regs_t *hc_regs;
4297 +
4298 + hc->xfer_started = 0;
4299 +
4300 + /*
4301 + * Clear channel interrupt enables and any unhandled channel interrupt
4302 + * conditions.
4303 + */
4304 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4305 + dwc_write_reg32(&hc_regs->hcintmsk, 0);
4306 + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
4307 +
4308 +#ifdef DEBUG
4309 + del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
4310 + {
4311 + hcchar_data_t hcchar;
4312 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4313 + if (hcchar.b.chdis) {
4314 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
4315 + __func__, hc->hc_num, hcchar.d32);
4316 + }
4317 + }
4318 +#endif
4319 +}
4320 +
4321 +/**
4322 + * Sets the channel property that indicates in which frame a periodic transfer
4323 + * should occur. This is always set to the _next_ frame. This function has no
4324 + * effect on non-periodic transfers.
4325 + *
4326 + * @param core_if Programming view of DWC_otg controller.
4327 + * @param hc Identifies the host channel to set up and its properties.
4328 + * @param hcchar Current value of the HCCHAR register for the specified host
4329 + * channel.
4330 + */
4331 +static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
4332 + dwc_hc_t *hc,
4333 + hcchar_data_t *hcchar)
4334 +{
4335 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4336 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4337 + hfnum_data_t hfnum;
4338 + hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
4339 +
4340 + /* 1 if _next_ frame is odd, 0 if it's even */
4341 + hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
4342 +#ifdef DEBUG
4343 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
4344 + switch (hfnum.b.frnum & 0x7) {
4345 + case 7:
4346 + core_if->hfnum_7_samples++;
4347 + core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
4348 + break;
4349 + case 0:
4350 + core_if->hfnum_0_samples++;
4351 + core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
4352 + break;
4353 + default:
4354 + core_if->hfnum_other_samples++;
4355 + core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
4356 + break;
4357 + }
4358 + }
4359 +#endif
4360 + }
4361 +}
4362 +
4363 +#ifdef DEBUG
4364 +static void hc_xfer_timeout(unsigned long ptr)
4365 +{
4366 + hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
4367 + int hc_num = xfer_info->hc->hc_num;
4368 + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
4369 + DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
4370 +}
4371 +#endif
4372 +
4373 +/*
4374 + * This function does the setup for a data transfer for a host channel and
4375 + * starts the transfer. May be called in either Slave mode or DMA mode. In
4376 + * Slave mode, the caller must ensure that there is sufficient space in the
4377 + * request queue and Tx Data FIFO.
4378 + *
4379 + * For an OUT transfer in Slave mode, it loads a data packet into the
4380 + * appropriate FIFO. If necessary, additional data packets will be loaded in
4381 + * the Host ISR.
4382 + *
4383 + * For an IN transfer in Slave mode, a data packet is requested. The data
4384 + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
4385 + * additional data packets are requested in the Host ISR.
4386 + *
4387 + * For a PING transfer in Slave mode, the Do Ping bit is set in the egards,
4388 + *
4389 + * Steven
4390 + *
4391 + * register along with a packet count of 1 and the channel is enabled. This
4392 + * causes a single PING transaction to occur. Other fields in HCTSIZ are
4393 + * simply set to 0 since no data transfer occurs in this case.
4394 + *
4395 + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
4396 + * all the information required to perform the subsequent data transfer. In
4397 + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
4398 + * controller performs the entire PING protocol, then starts the data
4399 + * transfer.
4400 + *
4401 + * @param core_if Programming view of DWC_otg controller.
4402 + * @param hc Information needed to initialize the host channel. The xfer_len
4403 + * value may be reduced to accommodate the max widths of the XferSize and
4404 + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
4405 + * to reflect the final xfer_len value.
4406 + */
4407 +void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
4408 +{
4409 + hcchar_data_t hcchar;
4410 + hctsiz_data_t hctsiz;
4411 + uint16_t num_packets;
4412 + uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
4413 + uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
4414 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4415 +
4416 + hctsiz.d32 = 0;
4417 +
4418 + if (hc->do_ping) {
4419 + if (!core_if->dma_enable) {
4420 + dwc_otg_hc_do_ping(core_if, hc);
4421 + hc->xfer_started = 1;
4422 + return;
4423 + }
4424 + else {
4425 + hctsiz.b.dopng = 1;
4426 + }
4427 + }
4428 +
4429 + if (hc->do_split) {
4430 + num_packets = 1;
4431 +
4432 + if (hc->complete_split && !hc->ep_is_in) {
4433 + /* For CSPLIT OUT Transfer, set the size to 0 so the
4434 + * core doesn't expect any data written to the FIFO */
4435 + hc->xfer_len = 0;
4436 + }
4437 + else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
4438 + hc->xfer_len = hc->max_packet;
4439 + }
4440 + else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
4441 + hc->xfer_len = 188;
4442 + }
4443 +
4444 + hctsiz.b.xfersize = hc->xfer_len;
4445 + }
4446 + else {
4447 + /*
4448 + * Ensure that the transfer length and packet count will fit
4449 + * in the widths allocated for them in the HCTSIZn register.
4450 + */
4451 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4452 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4453 + /*
4454 + * Make sure the transfer size is no larger than one
4455 + * (micro)frame's worth of data. (A check was done
4456 + * when the periodic transfer was accepted to ensure
4457 + * that a (micro)frame's worth of data can be
4458 + * programmed into a channel.)
4459 + */
4460 + uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
4461 + if (hc->xfer_len > max_periodic_len) {
4462 + hc->xfer_len = max_periodic_len;
4463 + }
4464 + else {
4465 + }
4466 +
4467 + }
4468 + else if (hc->xfer_len > max_hc_xfer_size) {
4469 + /* Make sure that xfer_len is a multiple of max packet size. */
4470 + hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
4471 + }
4472 +
4473 + if (hc->xfer_len > 0) {
4474 + num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
4475 + if (num_packets > max_hc_pkt_count) {
4476 + num_packets = max_hc_pkt_count;
4477 + hc->xfer_len = num_packets * hc->max_packet;
4478 + }
4479 + }
4480 + else {
4481 + /* Need 1 packet for transfer length of 0. */
4482 + num_packets = 1;
4483 + }
4484 +
4485 + if (hc->ep_is_in) {
4486 + /* Always program an integral # of max packets for IN transfers. */
4487 + hc->xfer_len = num_packets * hc->max_packet;
4488 + }
4489 +
4490 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4491 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4492 + /*
4493 + * Make sure that the multi_count field matches the
4494 + * actual transfer length.
4495 + */
4496 + hc->multi_count = num_packets;
4497 + }
4498 +
4499 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4500 + /* Set up the initial PID for the transfer. */
4501 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
4502 + if (hc->ep_is_in) {
4503 + if (hc->multi_count == 1) {
4504 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
4505 + }
4506 + else if (hc->multi_count == 2) {
4507 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
4508 + }
4509 + else {
4510 + hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
4511 + }
4512 + }
4513 + else {
4514 + if (hc->multi_count == 1) {
4515 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
4516 + }
4517 + else {
4518 + hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
4519 + }
4520 + }
4521 + }
4522 + else {
4523 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
4524 + }
4525 + }
4526 +
4527 + hctsiz.b.xfersize = hc->xfer_len;
4528 + }
4529 +
4530 + hc->start_pkt_count = num_packets;
4531 + hctsiz.b.pktcnt = num_packets;
4532 + hctsiz.b.pid = hc->data_pid_start;
4533 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
4534 +
4535 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4536 + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
4537 + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
4538 + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
4539 +
4540 + if (core_if->dma_enable) {
4541 +#if defined (CONFIG_DWC_OTG_HOST_ONLY)
4542 + if ((uint32_t)hc->xfer_buff & 0x3) {
4543 + /* non DWORD-aligned buffer case*/
4544 + if(!hc->qh->dw_align_buf) {
4545 + hc->qh->dw_align_buf =
4546 + dma_alloc_coherent(NULL,
4547 + core_if->core_params->max_transfer_size,
4548 + &hc->qh->dw_align_buf_dma,
4549 + GFP_ATOMIC | GFP_DMA);
4550 + if (!hc->qh->dw_align_buf) {
4551 +
4552 + DWC_ERROR("%s: Failed to allocate memory to handle "
4553 + "non-dword aligned buffer case\n", __func__);
4554 + return;
4555 + }
4556 +
4557 + }
4558 + if (!hc->ep_is_in) {
4559 + memcpy(hc->qh->dw_align_buf, phys_to_virt((uint32_t)hc->xfer_buff), hc->xfer_len);
4560 + }
4561 +
4562 + dwc_write_reg32(&hc_regs->hcdma, hc->qh->dw_align_buf_dma);
4563 + }
4564 + else
4565 +#endif
4566 + dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
4567 + }
4568 +
4569 + /* Start the split */
4570 + if (hc->do_split) {
4571 + hcsplt_data_t hcsplt;
4572 + hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
4573 + hcsplt.b.spltena = 1;
4574 + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
4575 + }
4576 +
4577 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4578 + hcchar.b.multicnt = hc->multi_count;
4579 + hc_set_even_odd_frame(core_if, hc, &hcchar);
4580 +#ifdef DEBUG
4581 + core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
4582 + if (hcchar.b.chdis) {
4583 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
4584 + __func__, hc->hc_num, hcchar.d32);
4585 + }
4586 +#endif
4587 +
4588 + /* Set host channel enable after all other setup is complete. */
4589 + hcchar.b.chen = 1;
4590 + hcchar.b.chdis = 0;
4591 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4592 +
4593 + hc->xfer_started = 1;
4594 + hc->requests++;
4595 +
4596 + if (!core_if->dma_enable &&
4597 + !hc->ep_is_in && hc->xfer_len > 0) {
4598 + /* Load OUT packet into the appropriate Tx FIFO. */
4599 + dwc_otg_hc_write_packet(core_if, hc);
4600 + }
4601 +
4602 +#ifdef DEBUG
4603 + /* Start a timer for this transfer. */
4604 + core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
4605 + core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
4606 + core_if->hc_xfer_info[hc->hc_num].hc = hc;
4607 + core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
4608 + core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
4609 + add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
4610 +#endif
4611 +}
4612 +
4613 +/**
4614 + * This function continues a data transfer that was started by previous call
4615 + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
4616 + * sufficient space in the request queue and Tx Data FIFO. This function
4617 + * should only be called in Slave mode. In DMA mode, the controller acts
4618 + * autonomously to complete transfers programmed to a host channel.
4619 + *
4620 + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
4621 + * if there is any data remaining to be queued. For an IN transfer, another
4622 + * data packet is always requested. For the SETUP phase of a control transfer,
4623 + * this function does nothing.
4624 + *
4625 + * @return 1 if a new request is queued, 0 if no more requests are required
4626 + * for this transfer.
4627 + */
4628 +int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
4629 +{
4630 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4631 +
4632 + if (hc->do_split) {
4633 + /* SPLITs always queue just once per channel */
4634 + return 0;
4635 + }
4636 + else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
4637 + /* SETUPs are queued only once since they can't be NAKed. */
4638 + return 0;
4639 + }
4640 + else if (hc->ep_is_in) {
4641 + /*
4642 + * Always queue another request for other IN transfers. If
4643 + * back-to-back INs are issued and NAKs are received for both,
4644 + * the driver may still be processing the first NAK when the
4645 + * second NAK is received. When the interrupt handler clears
4646 + * the NAK interrupt for the first NAK, the second NAK will
4647 + * not be seen. So we can't depend on the NAK interrupt
4648 + * handler to requeue a NAKed request. Instead, IN requests
4649 + * are issued each time this function is called. When the
4650 + * transfer completes, the extra requests for the channel will
4651 + * be flushed.
4652 + */
4653 + hcchar_data_t hcchar;
4654 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4655 +
4656 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4657 + hc_set_even_odd_frame(core_if, hc, &hcchar);
4658 + hcchar.b.chen = 1;
4659 + hcchar.b.chdis = 0;
4660 + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
4661 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4662 + hc->requests++;
4663 + return 1;
4664 + }
4665 + else {
4666 + /* OUT transfers. */
4667 + if (hc->xfer_count < hc->xfer_len) {
4668 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
4669 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
4670 + hcchar_data_t hcchar;
4671 + dwc_otg_hc_regs_t *hc_regs;
4672 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4673 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4674 + hc_set_even_odd_frame(core_if, hc, &hcchar);
4675 + }
4676 +
4677 + /* Load OUT packet into the appropriate Tx FIFO. */
4678 + dwc_otg_hc_write_packet(core_if, hc);
4679 + hc->requests++;
4680 + return 1;
4681 + }
4682 + else {
4683 + return 0;
4684 + }
4685 + }
4686 +}
4687 +
4688 +/**
4689 + * Starts a PING transfer. This function should only be called in Slave mode.
4690 + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
4691 + */
4692 +void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
4693 +{
4694 + hcchar_data_t hcchar;
4695 + hctsiz_data_t hctsiz;
4696 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
4697 +
4698 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
4699 +
4700 + hctsiz.d32 = 0;
4701 + hctsiz.b.dopng = 1;
4702 + hctsiz.b.pktcnt = 1;
4703 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
4704 +
4705 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
4706 + hcchar.b.chen = 1;
4707 + hcchar.b.chdis = 0;
4708 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
4709 +}
4710 +
4711 +/*
4712 + * This function writes a packet into the Tx FIFO associated with the Host
4713 + * Channel. For a channel associated with a non-periodic EP, the non-periodic
4714 + * Tx FIFO is written. For a channel associated with a periodic EP, the
4715 + * periodic Tx FIFO is written. This function should only be called in Slave
4716 + * mode.
4717 + *
4718 + * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
4719 + * then number of bytes written to the Tx FIFO.
4720 + */
4721 +void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
4722 +{
4723 + uint32_t i;
4724 + uint32_t remaining_count;
4725 + uint32_t byte_count;
4726 + uint32_t dword_count;
4727 +
4728 + uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
4729 + uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
4730 +
4731 + remaining_count = hc->xfer_len - hc->xfer_count;
4732 + if (remaining_count > hc->max_packet) {
4733 + byte_count = hc->max_packet;
4734 + }
4735 + else {
4736 + byte_count = remaining_count;
4737 + }
4738 +
4739 + dword_count = (byte_count + 3) / 4;
4740 +
4741 + if ((((unsigned long)data_buff) & 0x3) == 0) {
4742 + /* xfer_buff is DWORD aligned. */
4743 + for (i = 0; i < dword_count; i++, data_buff++)
4744 + {
4745 + dwc_write_reg32(data_fifo, *data_buff);
4746 + }
4747 + }
4748 + else {
4749 + /* xfer_buff is not DWORD aligned. */
4750 + for (i = 0; i < dword_count; i++, data_buff++)
4751 + {
4752 + dwc_write_reg32(data_fifo, get_unaligned(data_buff));
4753 + }
4754 + }
4755 +
4756 + hc->xfer_count += byte_count;
4757 + hc->xfer_buff += byte_count;
4758 +}
4759 +
4760 +/**
4761 + * Gets the current USB frame number. This is the frame number from the last
4762 + * SOF packet.
4763 + */
4764 +uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
4765 +{
4766 + dsts_data_t dsts;
4767 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
4768 +
4769 + /* read current frame/microframe number from DSTS register */
4770 + return dsts.b.soffn;
4771 +}
4772 +
4773 +/**
4774 + * This function reads a setup packet from the Rx FIFO into the destination
4775 + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
4776 + * Interrupt routine when a SETUP packet has been received in Slave mode.
4777 + *
4778 + * @param core_if Programming view of DWC_otg controller.
4779 + * @param dest Destination buffer for packet data.
4780 + */
4781 +void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
4782 +{
4783 + /* Get the 8 bytes of a setup transaction data */
4784 +
4785 + /* Pop 2 DWORDS off the receive data FIFO into memory */
4786 + dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
4787 + dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
4788 +}
4789 +
4790 +
4791 +/**
4792 + * This function enables EP0 OUT to receive SETUP packets and configures EP0
4793 + * IN for transmitting packets. It is normally called when the
4794 + * "Enumeration Done" interrupt occurs.
4795 + *
4796 + * @param core_if Programming view of DWC_otg controller.
4797 + * @param ep The EP0 data.
4798 + */
4799 +void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4800 +{
4801 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
4802 + dsts_data_t dsts;
4803 + depctl_data_t diepctl;
4804 + depctl_data_t doepctl;
4805 + dctl_data_t dctl = { .d32 = 0 };
4806 +
4807 + /* Read the Device Status and Endpoint 0 Control registers */
4808 + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
4809 + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
4810 + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
4811 +
4812 + /* Set the MPS of the IN EP based on the enumeration speed */
4813 + switch (dsts.b.enumspd) {
4814 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
4815 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
4816 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
4817 + diepctl.b.mps = DWC_DEP0CTL_MPS_64;
4818 + break;
4819 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
4820 + diepctl.b.mps = DWC_DEP0CTL_MPS_8;
4821 + break;
4822 + }
4823 +
4824 + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
4825 +
4826 + /* Enable OUT EP for receive */
4827 + doepctl.b.epena = 1;
4828 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
4829 +
4830 +#ifdef VERBOSE
4831 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
4832 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
4833 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
4834 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
4835 +#endif
4836 + dctl.b.cgnpinnak = 1;
4837 +
4838 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
4839 + DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
4840 + dwc_read_reg32(&dev_if->dev_global_regs->dctl));
4841 +}
4842 +
4843 +/**
4844 + * This function activates an EP. The Device EP control register for
4845 + * the EP is configured as defined in the ep structure. Note: This
4846 + * function is not used for EP0.
4847 + *
4848 + * @param core_if Programming view of DWC_otg controller.
4849 + * @param ep The EP to activate.
4850 + */
4851 +void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4852 +{
4853 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
4854 + depctl_data_t depctl;
4855 + volatile uint32_t *addr;
4856 + daint_data_t daintmsk = { .d32 = 0 };
4857 +
4858 + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
4859 + (ep->is_in?"IN":"OUT"));
4860 +
4861 + /* Read DEPCTLn register */
4862 + if (ep->is_in == 1) {
4863 + addr = &dev_if->in_ep_regs[ep->num]->diepctl;
4864 + daintmsk.ep.in = 1<<ep->num;
4865 + }
4866 + else {
4867 + addr = &dev_if->out_ep_regs[ep->num]->doepctl;
4868 + daintmsk.ep.out = 1<<ep->num;
4869 + }
4870 +
4871 + /* If the EP is already active don't change the EP Control
4872 + * register. */
4873 + depctl.d32 = dwc_read_reg32(addr);
4874 + if (!depctl.b.usbactep) {
4875 + depctl.b.mps = ep->maxpacket;
4876 + depctl.b.eptype = ep->type;
4877 + depctl.b.txfnum = ep->tx_fifo_num;
4878 +
4879 + if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
4880 + depctl.b.setd0pid = 1; // ???
4881 + }
4882 + else {
4883 + depctl.b.setd0pid = 1;
4884 + }
4885 + depctl.b.usbactep = 1;
4886 +
4887 + dwc_write_reg32(addr, depctl.d32);
4888 + DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr));
4889 + }
4890 +
4891 + /* Enable the Interrupt for this EP */
4892 + if(core_if->multiproc_int_enable) {
4893 + if (ep->is_in == 1) {
4894 + diepmsk_data_t diepmsk = { .d32 = 0};
4895 + diepmsk.b.xfercompl = 1;
4896 + diepmsk.b.timeout = 1;
4897 + diepmsk.b.epdisabled = 1;
4898 + diepmsk.b.ahberr = 1;
4899 + diepmsk.b.intknepmis = 1;
4900 + diepmsk.b.txfifoundrn = 1; //?????
4901 +
4902 +
4903 + if(core_if->dma_desc_enable) {
4904 + diepmsk.b.bna = 1;
4905 + }
4906 +/*
4907 + if(core_if->dma_enable) {
4908 + doepmsk.b.nak = 1;
4909 + }
4910 +*/
4911 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
4912 +
4913 + } else {
4914 + doepmsk_data_t doepmsk = { .d32 = 0};
4915 + doepmsk.b.xfercompl = 1;
4916 + doepmsk.b.ahberr = 1;
4917 + doepmsk.b.epdisabled = 1;
4918 +
4919 +
4920 + if(core_if->dma_desc_enable) {
4921 + doepmsk.b.bna = 1;
4922 + }
4923 +/*
4924 + doepmsk.b.babble = 1;
4925 + doepmsk.b.nyet = 1;
4926 + doepmsk.b.nak = 1;
4927 +*/
4928 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
4929 + }
4930 + dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
4931 + 0, daintmsk.d32);
4932 + } else {
4933 + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
4934 + 0, daintmsk.d32);
4935 + }
4936 +
4937 + DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
4938 + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
4939 +
4940 + ep->stall_clear_flag = 0;
4941 + return;
4942 +}
4943 +
4944 +/**
4945 + * This function deactivates an EP. This is done by clearing the USB Active
4946 + * EP bit in the Device EP control register. Note: This function is not used
4947 + * for EP0. EP0 cannot be deactivated.
4948 + *
4949 + * @param core_if Programming view of DWC_otg controller.
4950 + * @param ep The EP to deactivate.
4951 + */
4952 +void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4953 +{
4954 + depctl_data_t depctl = { .d32 = 0 };
4955 + volatile uint32_t *addr;
4956 + daint_data_t daintmsk = { .d32 = 0};
4957 +
4958 + /* Read DEPCTLn register */
4959 + if (ep->is_in == 1) {
4960 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
4961 + daintmsk.ep.in = 1<<ep->num;
4962 + }
4963 + else {
4964 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
4965 + daintmsk.ep.out = 1<<ep->num;
4966 + }
4967 +
4968 + depctl.b.usbactep = 0;
4969 +
4970 + if(core_if->dma_desc_enable)
4971 + depctl.b.epdis = 1;
4972 +
4973 + dwc_write_reg32(addr, depctl.d32);
4974 +
4975 + /* Disable the Interrupt for this EP */
4976 + if(core_if->multiproc_int_enable) {
4977 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
4978 + daintmsk.d32, 0);
4979 +
4980 + if (ep->is_in == 1) {
4981 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
4982 + } else {
4983 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
4984 + }
4985 + } else {
4986 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
4987 + daintmsk.d32, 0);
4988 + }
4989 +}
4990 +
4991 +/**
4992 + * This function does the setup for a data transfer for an EP and
4993 + * starts the transfer. For an IN transfer, the packets will be
4994 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
4995 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
4996 + *
4997 + * @param core_if Programming view of DWC_otg controller.
4998 + * @param ep The EP to start the transfer on.
4999 + */
5000 +static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5001 +{
5002 + dwc_otg_dma_desc_t* dma_desc;
5003 + uint32_t offset;
5004 + uint32_t xfer_est;
5005 + int i;
5006 +
5007 + ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
5008 + ((ep->total_len % ep->maxxfer) ? 1 : 0);
5009 + if(!ep->desc_cnt)
5010 + ep->desc_cnt = 1;
5011 +
5012 + dma_desc = ep->desc_addr;
5013 + xfer_est = ep->total_len;
5014 + offset = 0;
5015 + for( i = 0; i < ep->desc_cnt; ++i) {
5016 + /** DMA Descriptor Setup */
5017 + if(xfer_est > ep->maxxfer) {
5018 + dma_desc->status.b.bs = BS_HOST_BUSY;
5019 + dma_desc->status.b.l = 0;
5020 + dma_desc->status.b.ioc = 0;
5021 + dma_desc->status.b.sp = 0;
5022 + dma_desc->status.b.bytes = ep->maxxfer;
5023 + dma_desc->buf = ep->dma_addr + offset;
5024 + dma_desc->status.b.bs = BS_HOST_READY;
5025 +
5026 + xfer_est -= ep->maxxfer;
5027 + offset += ep->maxxfer;
5028 + } else {
5029 + dma_desc->status.b.bs = BS_HOST_BUSY;
5030 + dma_desc->status.b.l = 1;
5031 + dma_desc->status.b.ioc = 1;
5032 + if(ep->is_in) {
5033 + dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
5034 + 1 : ((ep->sent_zlp) ? 1 : 0);
5035 + dma_desc->status.b.bytes = xfer_est;
5036 + } else {
5037 + dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
5038 + }
5039 +
5040 + dma_desc->buf = ep->dma_addr + offset;
5041 + dma_desc->status.b.bs = BS_HOST_READY;
5042 + }
5043 + dma_desc ++;
5044 + }
5045 +}
5046 +
5047 +/**
5048 + * This function does the setup for a data transfer for an EP and
5049 + * starts the transfer. For an IN transfer, the packets will be
5050 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
5051 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
5052 + *
5053 + * @param core_if Programming view of DWC_otg controller.
5054 + * @param ep The EP to start the transfer on.
5055 + */
5056 +
5057 +void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5058 +{
5059 + depctl_data_t depctl;
5060 + deptsiz_data_t deptsiz;
5061 + gintmsk_data_t intr_mask = { .d32 = 0};
5062 +
5063 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
5064 +
5065 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
5066 + "xfer_buff=%p start_xfer_buff=%p\n",
5067 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
5068 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
5069 +
5070 + /* IN endpoint */
5071 + if (ep->is_in == 1) {
5072 + dwc_otg_dev_in_ep_regs_t *in_regs =
5073 + core_if->dev_if->in_ep_regs[ep->num];
5074 +
5075 + gnptxsts_data_t gtxstatus;
5076 +
5077 + gtxstatus.d32 =
5078 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5079 +
5080 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
5081 +#ifdef DEBUG
5082 + DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
5083 +#endif
5084 + return;
5085 + }
5086 +
5087 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
5088 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
5089 +
5090 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
5091 + ep->maxxfer : (ep->total_len - ep->xfer_len);
5092 +
5093 + /* Zero Length Packet? */
5094 + if ((ep->xfer_len - ep->xfer_count) == 0) {
5095 + deptsiz.b.xfersize = 0;
5096 + deptsiz.b.pktcnt = 1;
5097 + }
5098 + else {
5099 + /* Program the transfer size and packet count
5100 + * as follows: xfersize = N * maxpacket +
5101 + * short_packet pktcnt = N + (short_packet
5102 + * exist ? 1 : 0)
5103 + */
5104 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
5105 + deptsiz.b.pktcnt =
5106 + (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
5107 + ep->maxpacket;
5108 + }
5109 +
5110 +
5111 + /* Write the DMA register */
5112 + if (core_if->dma_enable) {
5113 + if (core_if->dma_desc_enable == 0) {
5114 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5115 + dwc_write_reg32 (&(in_regs->diepdma),
5116 + (uint32_t)ep->dma_addr);
5117 + }
5118 + else {
5119 + init_dma_desc_chain(core_if, ep);
5120 + /** DIEPDMAn Register write */
5121 + dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
5122 + }
5123 + }
5124 + else {
5125 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5126 + if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
5127 + /**
5128 + * Enable the Non-Periodic Tx FIFO empty interrupt,
5129 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
5130 + * the data will be written into the fifo by the ISR.
5131 + */
5132 + if(core_if->en_multiple_tx_fifo == 0) {
5133 + intr_mask.b.nptxfempty = 1;
5134 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5135 + intr_mask.d32, intr_mask.d32);
5136 + }
5137 + else {
5138 + /* Enable the Tx FIFO Empty Interrupt for this EP */
5139 + if(ep->xfer_len > 0) {
5140 + uint32_t fifoemptymsk = 0;
5141 + fifoemptymsk = 1 << ep->num;
5142 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
5143 + 0, fifoemptymsk);
5144 +
5145 + }
5146 + }
5147 + }
5148 + }
5149 +
5150 + /* EP enable, IN data in FIFO */
5151 + depctl.b.cnak = 1;
5152 + depctl.b.epena = 1;
5153 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5154 +
5155 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
5156 + depctl.b.nextep = ep->num;
5157 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
5158 +
5159 + }
5160 + else {
5161 + /* OUT endpoint */
5162 + dwc_otg_dev_out_ep_regs_t *out_regs =
5163 + core_if->dev_if->out_ep_regs[ep->num];
5164 +
5165 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
5166 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
5167 +
5168 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
5169 + ep->maxxfer : (ep->total_len - ep->xfer_len);
5170 +
5171 + /* Program the transfer size and packet count as follows:
5172 + *
5173 + * pktcnt = N
5174 + * xfersize = N * maxpacket
5175 + */
5176 + if ((ep->xfer_len - ep->xfer_count) == 0) {
5177 + /* Zero Length Packet */
5178 + deptsiz.b.xfersize = ep->maxpacket;
5179 + deptsiz.b.pktcnt = 1;
5180 + }
5181 + else {
5182 + deptsiz.b.pktcnt =
5183 + (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
5184 + ep->maxpacket;
5185 + ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
5186 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
5187 + }
5188 +
5189 + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
5190 + ep->num,
5191 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
5192 +
5193 + if (core_if->dma_enable) {
5194 + if (!core_if->dma_desc_enable) {
5195 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5196 +
5197 + dwc_write_reg32 (&(out_regs->doepdma),
5198 + (uint32_t)ep->dma_addr);
5199 + }
5200 + else {
5201 + init_dma_desc_chain(core_if, ep);
5202 +
5203 + /** DOEPDMAn Register write */
5204 + dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
5205 + }
5206 + }
5207 + else {
5208 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5209 + }
5210 +
5211 + /* EP enable */
5212 + depctl.b.cnak = 1;
5213 + depctl.b.epena = 1;
5214 +
5215 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
5216 +
5217 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
5218 + dwc_read_reg32(&out_regs->doepctl),
5219 + dwc_read_reg32(&out_regs->doeptsiz));
5220 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
5221 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
5222 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
5223 + }
5224 +}
5225 +
5226 +/**
5227 + * This function setup a zero length transfer in Buffer DMA and
5228 + * Slave modes for usb requests with zero field set
5229 + *
5230 + * @param core_if Programming view of DWC_otg controller.
5231 + * @param ep The EP to start the transfer on.
5232 + *
5233 + */
5234 +void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5235 +{
5236 +
5237 + depctl_data_t depctl;
5238 + deptsiz_data_t deptsiz;
5239 + gintmsk_data_t intr_mask = { .d32 = 0};
5240 +
5241 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
5242 +
5243 + /* IN endpoint */
5244 + if (ep->is_in == 1) {
5245 + dwc_otg_dev_in_ep_regs_t *in_regs =
5246 + core_if->dev_if->in_ep_regs[ep->num];
5247 +
5248 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
5249 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
5250 +
5251 + deptsiz.b.xfersize = 0;
5252 + deptsiz.b.pktcnt = 1;
5253 +
5254 +
5255 + /* Write the DMA register */
5256 + if (core_if->dma_enable) {
5257 + if (core_if->dma_desc_enable == 0) {
5258 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5259 + dwc_write_reg32 (&(in_regs->diepdma),
5260 + (uint32_t)ep->dma_addr);
5261 + }
5262 + }
5263 + else {
5264 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5265 + /**
5266 + * Enable the Non-Periodic Tx FIFO empty interrupt,
5267 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
5268 + * the data will be written into the fifo by the ISR.
5269 + */
5270 + if(core_if->en_multiple_tx_fifo == 0) {
5271 + intr_mask.b.nptxfempty = 1;
5272 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5273 + intr_mask.d32, intr_mask.d32);
5274 + }
5275 + else {
5276 + /* Enable the Tx FIFO Empty Interrupt for this EP */
5277 + if(ep->xfer_len > 0) {
5278 + uint32_t fifoemptymsk = 0;
5279 + fifoemptymsk = 1 << ep->num;
5280 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
5281 + 0, fifoemptymsk);
5282 + }
5283 + }
5284 + }
5285 +
5286 + /* EP enable, IN data in FIFO */
5287 + depctl.b.cnak = 1;
5288 + depctl.b.epena = 1;
5289 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5290 +
5291 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
5292 + depctl.b.nextep = ep->num;
5293 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
5294 +
5295 + }
5296 + else {
5297 + /* OUT endpoint */
5298 + dwc_otg_dev_out_ep_regs_t *out_regs =
5299 + core_if->dev_if->out_ep_regs[ep->num];
5300 +
5301 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
5302 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
5303 +
5304 + /* Zero Length Packet */
5305 + deptsiz.b.xfersize = ep->maxpacket;
5306 + deptsiz.b.pktcnt = 1;
5307 +
5308 + if (core_if->dma_enable) {
5309 + if (!core_if->dma_desc_enable) {
5310 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5311 +
5312 + dwc_write_reg32 (&(out_regs->doepdma),
5313 + (uint32_t)ep->dma_addr);
5314 + }
5315 + }
5316 + else {
5317 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5318 + }
5319 +
5320 + /* EP enable */
5321 + depctl.b.cnak = 1;
5322 + depctl.b.epena = 1;
5323 +
5324 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
5325 +
5326 + }
5327 +}
5328 +
5329 +/**
5330 + * This function does the setup for a data transfer for EP0 and starts
5331 + * the transfer. For an IN transfer, the packets will be loaded into
5332 + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
5333 + * unloaded from the Rx FIFO in the ISR.
5334 + *
5335 + * @param core_if Programming view of DWC_otg controller.
5336 + * @param ep The EP0 data.
5337 + */
5338 +void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5339 +{
5340 + depctl_data_t depctl;
5341 + deptsiz0_data_t deptsiz;
5342 + gintmsk_data_t intr_mask = { .d32 = 0};
5343 + dwc_otg_dma_desc_t* dma_desc;
5344 +
5345 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
5346 + "xfer_buff=%p start_xfer_buff=%p \n",
5347 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
5348 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
5349 +
5350 + ep->total_len = ep->xfer_len;
5351 +
5352 + /* IN endpoint */
5353 + if (ep->is_in == 1) {
5354 + dwc_otg_dev_in_ep_regs_t *in_regs =
5355 + core_if->dev_if->in_ep_regs[0];
5356 +
5357 + gnptxsts_data_t gtxstatus;
5358 +
5359 + gtxstatus.d32 =
5360 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5361 +
5362 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
5363 +#ifdef DEBUG
5364 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5365 + DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
5366 + dwc_read_reg32(&in_regs->diepctl));
5367 + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
5368 + deptsiz.d32,
5369 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
5370 + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
5371 + gtxstatus.d32);
5372 +#endif
5373 + return;
5374 + }
5375 +
5376 +
5377 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
5378 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5379 +
5380 + /* Zero Length Packet? */
5381 + if (ep->xfer_len == 0) {
5382 + deptsiz.b.xfersize = 0;
5383 + deptsiz.b.pktcnt = 1;
5384 + }
5385 + else {
5386 + /* Program the transfer size and packet count
5387 + * as follows: xfersize = N * maxpacket +
5388 + * short_packet pktcnt = N + (short_packet
5389 + * exist ? 1 : 0)
5390 + */
5391 + if (ep->xfer_len > ep->maxpacket) {
5392 + ep->xfer_len = ep->maxpacket;
5393 + deptsiz.b.xfersize = ep->maxpacket;
5394 + }
5395 + else {
5396 + deptsiz.b.xfersize = ep->xfer_len;
5397 + }
5398 + deptsiz.b.pktcnt = 1;
5399 +
5400 + }
5401 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
5402 + ep->xfer_len,
5403 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
5404 +
5405 + /* Write the DMA register */
5406 + if (core_if->dma_enable) {
5407 + if(core_if->dma_desc_enable == 0) {
5408 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5409 +
5410 + dwc_write_reg32 (&(in_regs->diepdma),
5411 + (uint32_t)ep->dma_addr);
5412 + }
5413 + else {
5414 + dma_desc = core_if->dev_if->in_desc_addr;
5415 +
5416 + /** DMA Descriptor Setup */
5417 + dma_desc->status.b.bs = BS_HOST_BUSY;
5418 + dma_desc->status.b.l = 1;
5419 + dma_desc->status.b.ioc = 1;
5420 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
5421 + dma_desc->status.b.bytes = ep->xfer_len;
5422 + dma_desc->buf = ep->dma_addr;
5423 + dma_desc->status.b.bs = BS_HOST_READY;
5424 +
5425 + /** DIEPDMA0 Register write */
5426 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
5427 + }
5428 + }
5429 + else {
5430 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5431 + }
5432 +
5433 + /* EP enable, IN data in FIFO */
5434 + depctl.b.cnak = 1;
5435 + depctl.b.epena = 1;
5436 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5437 +
5438 + /**
5439 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
5440 + * data will be written into the fifo by the ISR.
5441 + */
5442 + if (!core_if->dma_enable) {
5443 + if(core_if->en_multiple_tx_fifo == 0) {
5444 + intr_mask.b.nptxfempty = 1;
5445 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5446 + intr_mask.d32, intr_mask.d32);
5447 + }
5448 + else {
5449 + /* Enable the Tx FIFO Empty Interrupt for this EP */
5450 + if(ep->xfer_len > 0) {
5451 + uint32_t fifoemptymsk = 0;
5452 + fifoemptymsk |= 1 << ep->num;
5453 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
5454 + 0, fifoemptymsk);
5455 + }
5456 + }
5457 + }
5458 + }
5459 + else {
5460 + /* OUT endpoint */
5461 + dwc_otg_dev_out_ep_regs_t *out_regs =
5462 + core_if->dev_if->out_ep_regs[0];
5463 +
5464 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
5465 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
5466 +
5467 + /* Program the transfer size and packet count as follows:
5468 + * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
5469 + * pktcnt = N */
5470 + /* Zero Length Packet */
5471 + deptsiz.b.xfersize = ep->maxpacket;
5472 + deptsiz.b.pktcnt = 1;
5473 +
5474 + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
5475 + ep->xfer_len,
5476 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
5477 +
5478 + if (core_if->dma_enable) {
5479 + if(!core_if->dma_desc_enable) {
5480 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5481 +
5482 + dwc_write_reg32 (&(out_regs->doepdma),
5483 + (uint32_t)ep->dma_addr);
5484 + }
5485 + else {
5486 + dma_desc = core_if->dev_if->out_desc_addr;
5487 +
5488 + /** DMA Descriptor Setup */
5489 + dma_desc->status.b.bs = BS_HOST_BUSY;
5490 + dma_desc->status.b.l = 1;
5491 + dma_desc->status.b.ioc = 1;
5492 + dma_desc->status.b.bytes = ep->maxpacket;
5493 + dma_desc->buf = ep->dma_addr;
5494 + dma_desc->status.b.bs = BS_HOST_READY;
5495 +
5496 + /** DOEPDMA0 Register write */
5497 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
5498 + }
5499 + }
5500 + else {
5501 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5502 + }
5503 +
5504 + /* EP enable */
5505 + depctl.b.cnak = 1;
5506 + depctl.b.epena = 1;
5507 + dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
5508 + }
5509 +}
5510 +
5511 +/**
5512 + * This function continues control IN transfers started by
5513 + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
5514 + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
5515 + * bit for the packet count.
5516 + *
5517 + * @param core_if Programming view of DWC_otg controller.
5518 + * @param ep The EP0 data.
5519 + */
5520 +void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5521 +{
5522 + depctl_data_t depctl;
5523 + deptsiz0_data_t deptsiz;
5524 + gintmsk_data_t intr_mask = { .d32 = 0};
5525 + dwc_otg_dma_desc_t* dma_desc;
5526 +
5527 + if (ep->is_in == 1) {
5528 + dwc_otg_dev_in_ep_regs_t *in_regs =
5529 + core_if->dev_if->in_ep_regs[0];
5530 + gnptxsts_data_t tx_status = { .d32 = 0 };
5531 +
5532 + tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
5533 + /** @todo Should there be check for room in the Tx
5534 + * Status Queue. If not remove the code above this comment. */
5535 +
5536 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
5537 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
5538 +
5539 + /* Program the transfer size and packet count
5540 + * as follows: xfersize = N * maxpacket +
5541 + * short_packet pktcnt = N + (short_packet
5542 + * exist ? 1 : 0)
5543 + */
5544 +
5545 +
5546 + if(core_if->dma_desc_enable == 0) {
5547 + deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
5548 + (ep->total_len - ep->xfer_count);
5549 + deptsiz.b.pktcnt = 1;
5550 + if(core_if->dma_enable == 0) {
5551 + ep->xfer_len += deptsiz.b.xfersize;
5552 + } else {
5553 + ep->xfer_len = deptsiz.b.xfersize;
5554 + }
5555 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
5556 + }
5557 + else {
5558 + ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
5559 + (ep->total_len - ep->xfer_count);
5560 +
5561 + dma_desc = core_if->dev_if->in_desc_addr;
5562 +
5563 + /** DMA Descriptor Setup */
5564 + dma_desc->status.b.bs = BS_HOST_BUSY;
5565 + dma_desc->status.b.l = 1;
5566 + dma_desc->status.b.ioc = 1;
5567 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
5568 + dma_desc->status.b.bytes = ep->xfer_len;
5569 + dma_desc->buf = ep->dma_addr;
5570 + dma_desc->status.b.bs = BS_HOST_READY;
5571 +
5572 + /** DIEPDMA0 Register write */
5573 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
5574 + }
5575 +
5576 +
5577 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
5578 + ep->xfer_len,
5579 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
5580 +
5581 + /* Write the DMA register */
5582 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
5583 + if(core_if->dma_desc_enable == 0)
5584 + dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
5585 + }
5586 +
5587 + /* EP enable, IN data in FIFO */
5588 + depctl.b.cnak = 1;
5589 + depctl.b.epena = 1;
5590 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
5591 +
5592 + /**
5593 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
5594 + * data will be written into the fifo by the ISR.
5595 + */
5596 + if (!core_if->dma_enable) {
5597 + if(core_if->en_multiple_tx_fifo == 0) {
5598 + /* First clear it from GINTSTS */
5599 + intr_mask.b.nptxfempty = 1;
5600 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
5601 + intr_mask.d32, intr_mask.d32);
5602 +
5603 + }
5604 + else {
5605 + /* Enable the Tx FIFO Empty Interrupt for this EP */
5606 + if(ep->xfer_len > 0) {
5607 + uint32_t fifoemptymsk = 0;
5608 + fifoemptymsk |= 1 << ep->num;
5609 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
5610 + 0, fifoemptymsk);
5611 + }
5612 + }
5613 + }
5614 + }
5615 + else {
5616 + dwc_otg_dev_out_ep_regs_t *out_regs =
5617 + core_if->dev_if->out_ep_regs[0];
5618 +
5619 +
5620 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
5621 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
5622 +
5623 + /* Program the transfer size and packet count
5624 + * as follows: xfersize = N * maxpacket +
5625 + * short_packet pktcnt = N + (short_packet
5626 + * exist ? 1 : 0)
5627 + */
5628 + deptsiz.b.xfersize = ep->maxpacket;
5629 + deptsiz.b.pktcnt = 1;
5630 +
5631 +
5632 + if(core_if->dma_desc_enable == 0) {
5633 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
5634 + }
5635 + else {
5636 + dma_desc = core_if->dev_if->out_desc_addr;
5637 +
5638 + /** DMA Descriptor Setup */
5639 + dma_desc->status.b.bs = BS_HOST_BUSY;
5640 + dma_desc->status.b.l = 1;
5641 + dma_desc->status.b.ioc = 1;
5642 + dma_desc->status.b.bytes = ep->maxpacket;
5643 + dma_desc->buf = ep->dma_addr;
5644 + dma_desc->status.b.bs = BS_HOST_READY;
5645 +
5646 + /** DOEPDMA0 Register write */
5647 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
5648 + }
5649 +
5650 +
5651 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
5652 + ep->xfer_len,
5653 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
5654 +
5655 + /* Write the DMA register */
5656 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
5657 + if(core_if->dma_desc_enable == 0)
5658 + dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
5659 + }
5660 +
5661 + /* EP enable, IN data in FIFO */
5662 + depctl.b.cnak = 1;
5663 + depctl.b.epena = 1;
5664 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
5665 +
5666 + }
5667 +}
5668 +
5669 +#ifdef DEBUG
5670 +void dump_msg(const u8 *buf, unsigned int length)
5671 +{
5672 + unsigned int start, num, i;
5673 + char line[52], *p;
5674 +
5675 + if (length >= 512)
5676 + return;
5677 + start = 0;
5678 + while (length > 0) {
5679 + num = min(length, 16u);
5680 + p = line;
5681 + for (i = 0; i < num; ++i)
5682 + {
5683 + if (i == 8)
5684 + *p++ = ' ';
5685 + sprintf(p, " %02x", buf[i]);
5686 + p += 3;
5687 + }
5688 + *p = 0;
5689 + DWC_PRINT("%6x: %s\n", start, line);
5690 + buf += num;
5691 + start += num;
5692 + length -= num;
5693 + }
5694 +}
5695 +#else
5696 +static inline void dump_msg(const u8 *buf, unsigned int length)
5697 +{
5698 +}
5699 +#endif
5700 +
5701 +/**
5702 + * This function writes a packet into the Tx FIFO associated with the
5703 + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
5704 + * periodic EPs the periodic Tx FIFO associated with the EP is written
5705 + * with all packets for the next micro-frame.
5706 + *
5707 + * @param core_if Programming view of DWC_otg controller.
5708 + * @param ep The EP to write packet for.
5709 + * @param dma Indicates if DMA is being used.
5710 + */
5711 +void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
5712 +{
5713 + /**
5714 + * The buffer is padded to DWORD on a per packet basis in
5715 + * slave/dma mode if the MPS is not DWORD aligned. The last
5716 + * packet, if short, is also padded to a multiple of DWORD.
5717 + *
5718 + * ep->xfer_buff always starts DWORD aligned in memory and is a
5719 + * multiple of DWORD in length
5720 + *
5721 + * ep->xfer_len can be any number of bytes
5722 + *
5723 + * ep->xfer_count is a multiple of ep->maxpacket until the last
5724 + * packet
5725 + *
5726 + * FIFO access is DWORD */
5727 +
5728 + uint32_t i;
5729 + uint32_t byte_count;
5730 + uint32_t dword_count;
5731 + uint32_t *fifo;
5732 + uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
5733 +
5734 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
5735 + if (ep->xfer_count >= ep->xfer_len) {
5736 + DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
5737 + return;
5738 + }
5739 +
5740 + /* Find the byte length of the packet either short packet or MPS */
5741 + if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
5742 + byte_count = ep->xfer_len - ep->xfer_count;
5743 + }
5744 + else {
5745 + byte_count = ep->maxpacket;
5746 + }
5747 +
5748 + /* Find the DWORD length, padded by extra bytes as neccessary if MPS
5749 + * is not a multiple of DWORD */
5750 + dword_count = (byte_count + 3) / 4;
5751 +
5752 +#ifdef VERBOSE
5753 + dump_msg(ep->xfer_buff, byte_count);
5754 +#endif
5755 +
5756 + /**@todo NGS Where are the Periodic Tx FIFO addresses
5757 + * intialized? What should this be? */
5758 +
5759 + fifo = core_if->data_fifo[ep->num];
5760 +
5761 +
5762 + DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
5763 +
5764 + if (!dma) {
5765 + for (i=0; i<dword_count; i++, data_buff++) {
5766 + dwc_write_reg32(fifo, *data_buff);
5767 + }
5768 + }
5769 +
5770 + ep->xfer_count += byte_count;
5771 + ep->xfer_buff += byte_count;
5772 + ep->dma_addr += byte_count;
5773 +}
5774 +
5775 +/**
5776 + * Set the EP STALL.
5777 + *
5778 + * @param core_if Programming view of DWC_otg controller.
5779 + * @param ep The EP to set the stall on.
5780 + */
5781 +void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5782 +{
5783 + depctl_data_t depctl;
5784 + volatile uint32_t *depctl_addr;
5785 +
5786 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
5787 + (ep->is_in?"IN":"OUT"));
5788 +
5789 + DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
5790 + (ep->is_in?"in":"out"));
5791 +
5792 + if (ep->is_in == 1) {
5793 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
5794 + depctl.d32 = dwc_read_reg32(depctl_addr);
5795 +
5796 + /* set the disable and stall bits */
5797 + if (depctl.b.epena) {
5798 + depctl.b.epdis = 1;
5799 + }
5800 + depctl.b.stall = 1;
5801 + dwc_write_reg32(depctl_addr, depctl.d32);
5802 + }
5803 + else {
5804 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
5805 + depctl.d32 = dwc_read_reg32(depctl_addr);
5806 +
5807 + /* set the stall bit */
5808 + depctl.b.stall = 1;
5809 + dwc_write_reg32(depctl_addr, depctl.d32);
5810 + }
5811 +
5812 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
5813 +
5814 + return;
5815 +}
5816 +
5817 +/**
5818 + * Clear the EP STALL.
5819 + *
5820 + * @param core_if Programming view of DWC_otg controller.
5821 + * @param ep The EP to clear stall from.
5822 + */
5823 +void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
5824 +{
5825 + depctl_data_t depctl;
5826 + volatile uint32_t *depctl_addr;
5827 +
5828 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
5829 + (ep->is_in?"IN":"OUT"));
5830 +
5831 + if (ep->is_in == 1) {
5832 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
5833 + }
5834 + else {
5835 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
5836 + }
5837 +
5838 + depctl.d32 = dwc_read_reg32(depctl_addr);
5839 +
5840 + /* clear the stall bits */
5841 + depctl.b.stall = 0;
5842 +
5843 + /*
5844 + * USB Spec 9.4.5: For endpoints using data toggle, regardless
5845 + * of whether an endpoint has the Halt feature set, a
5846 + * ClearFeature(ENDPOINT_HALT) request always results in the
5847 + * data toggle being reinitialized to DATA0.
5848 + */
5849 + if (ep->type == DWC_OTG_EP_TYPE_INTR ||
5850 + ep->type == DWC_OTG_EP_TYPE_BULK) {
5851 + depctl.b.setd0pid = 1; /* DATA0 */
5852 + }
5853 +
5854 + dwc_write_reg32(depctl_addr, depctl.d32);
5855 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
5856 + return;
5857 +}
5858 +
5859 +/**
5860 + * This function reads a packet from the Rx FIFO into the destination
5861 + * buffer. To read SETUP data use dwc_otg_read_setup_packet.
5862 + *
5863 + * @param core_if Programming view of DWC_otg controller.
5864 + * @param dest Destination buffer for the packet.
5865 + * @param bytes Number of bytes to copy to the destination.
5866 + */
5867 +void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
5868 + uint8_t *dest,
5869 + uint16_t bytes)
5870 +{
5871 + int i;
5872 + int word_count = (bytes + 3) / 4;
5873 +
5874 + volatile uint32_t *fifo = core_if->data_fifo[0];
5875 + uint32_t *data_buff = (uint32_t *)dest;
5876 +
5877 + /**
5878 + * @todo Account for the case where _dest is not dword aligned. This
5879 + * requires reading data from the FIFO into a uint32_t temp buffer,
5880 + * then moving it into the data buffer.
5881 + */
5882 +
5883 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
5884 + core_if, dest, bytes);
5885 +
5886 + for (i=0; i<word_count; i++, data_buff++)
5887 + {
5888 + *data_buff = dwc_read_reg32(fifo);
5889 + }
5890 +
5891 + return;
5892 +}
5893 +
5894 +
5895 +
5896 +/**
5897 + * This functions reads the device registers and prints them
5898 + *
5899 + * @param core_if Programming view of DWC_otg controller.
5900 + */
5901 +void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
5902 +{
5903 + int i;
5904 + volatile uint32_t *addr;
5905 +
5906 + DWC_PRINT("Device Global Registers\n");
5907 + addr=&core_if->dev_if->dev_global_regs->dcfg;
5908 + DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5909 + addr=&core_if->dev_if->dev_global_regs->dctl;
5910 + DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5911 + addr=&core_if->dev_if->dev_global_regs->dsts;
5912 + DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5913 + addr=&core_if->dev_if->dev_global_regs->diepmsk;
5914 + DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5915 + addr=&core_if->dev_if->dev_global_regs->doepmsk;
5916 + DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5917 + addr=&core_if->dev_if->dev_global_regs->daint;
5918 + DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5919 + addr=&core_if->dev_if->dev_global_regs->daintmsk;
5920 + DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5921 + addr=&core_if->dev_if->dev_global_regs->dtknqr1;
5922 + DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5923 + if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
5924 + addr=&core_if->dev_if->dev_global_regs->dtknqr2;
5925 + DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
5926 + (uint32_t)addr,dwc_read_reg32(addr));
5927 + }
5928 +
5929 + addr=&core_if->dev_if->dev_global_regs->dvbusdis;
5930 + DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5931 +
5932 + addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
5933 + DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
5934 + (uint32_t)addr,dwc_read_reg32(addr));
5935 +
5936 + if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
5937 + addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
5938 + DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
5939 + (uint32_t)addr, dwc_read_reg32(addr));
5940 + }
5941 +/*
5942 + if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
5943 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
5944 + DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
5945 + (uint32_t)addr, dwc_read_reg32(addr));
5946 + }
5947 +*/
5948 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
5949 + DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
5950 +
5951 + addr=&core_if->dev_if->dev_global_regs->deachint;
5952 + DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5953 + addr=&core_if->dev_if->dev_global_regs->deachintmsk;
5954 + DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5955 +
5956 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
5957 + addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
5958 + DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
5959 + }
5960 +
5961 +
5962 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
5963 + addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
5964 + DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
5965 + }
5966 +
5967 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
5968 + DWC_PRINT("Device IN EP %d Registers\n", i);
5969 + addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
5970 + DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5971 + addr=&core_if->dev_if->in_ep_regs[i]->diepint;
5972 + DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5973 + addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
5974 + DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5975 + addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
5976 + DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5977 + addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
5978 + DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5979 + addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
5980 + DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5981 + }
5982 +
5983 +
5984 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
5985 + DWC_PRINT("Device OUT EP %d Registers\n", i);
5986 + addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
5987 + DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5988 + addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
5989 + DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5990 + addr=&core_if->dev_if->out_ep_regs[i]->doepint;
5991 + DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5992 + addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
5993 + DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5994 + addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
5995 + DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5996 + addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
5997 + DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
5998 +
5999 + }
6000 +
6001 +
6002 +
6003 + return;
6004 +}
6005 +
6006 +/**
6007 + * This functions reads the SPRAM and prints its content
6008 + *
6009 + * @param core_if Programming view of DWC_otg controller.
6010 + */
6011 +void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
6012 +{
6013 + volatile uint8_t *addr, *start_addr, *end_addr;
6014 +
6015 + DWC_PRINT("SPRAM Data:\n");
6016 + start_addr = (void*)core_if->core_global_regs;
6017 + DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
6018 + start_addr += 0x00028000;
6019 + end_addr=(void*)core_if->core_global_regs;
6020 + end_addr += 0x000280e0;
6021 +
6022 + for(addr = start_addr; addr < end_addr; addr+=16)
6023 + {
6024 + DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
6025 + addr[0],
6026 + addr[1],
6027 + addr[2],
6028 + addr[3],
6029 + addr[4],
6030 + addr[5],
6031 + addr[6],
6032 + addr[7],
6033 + addr[8],
6034 + addr[9],
6035 + addr[10],
6036 + addr[11],
6037 + addr[12],
6038 + addr[13],
6039 + addr[14],
6040 + addr[15]
6041 + );
6042 + }
6043 +
6044 + return;
6045 +}
6046 +/**
6047 + * This function reads the host registers and prints them
6048 + *
6049 + * @param core_if Programming view of DWC_otg controller.
6050 + */
6051 +void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
6052 +{
6053 + int i;
6054 + volatile uint32_t *addr;
6055 +
6056 + DWC_PRINT("Host Global Registers\n");
6057 + addr=&core_if->host_if->host_global_regs->hcfg;
6058 + DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6059 + addr=&core_if->host_if->host_global_regs->hfir;
6060 + DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6061 + addr=&core_if->host_if->host_global_regs->hfnum;
6062 + DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6063 + addr=&core_if->host_if->host_global_regs->hptxsts;
6064 + DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6065 + addr=&core_if->host_if->host_global_regs->haint;
6066 + DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6067 + addr=&core_if->host_if->host_global_regs->haintmsk;
6068 + DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6069 + addr=core_if->host_if->hprt0;
6070 + DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6071 +
6072 + for (i=0; i<core_if->core_params->host_channels; i++)
6073 + {
6074 + DWC_PRINT("Host Channel %d Specific Registers\n", i);
6075 + addr=&core_if->host_if->hc_regs[i]->hcchar;
6076 + DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6077 + addr=&core_if->host_if->hc_regs[i]->hcsplt;
6078 + DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6079 + addr=&core_if->host_if->hc_regs[i]->hcint;
6080 + DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6081 + addr=&core_if->host_if->hc_regs[i]->hcintmsk;
6082 + DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6083 + addr=&core_if->host_if->hc_regs[i]->hctsiz;
6084 + DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6085 + addr=&core_if->host_if->hc_regs[i]->hcdma;
6086 + DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6087 + }
6088 + return;
6089 +}
6090 +
6091 +/**
6092 + * This function reads the core global registers and prints them
6093 + *
6094 + * @param core_if Programming view of DWC_otg controller.
6095 + */
6096 +void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
6097 +{
6098 + int i;
6099 + volatile uint32_t *addr;
6100 +
6101 + DWC_PRINT("Core Global Registers\n");
6102 + addr=&core_if->core_global_regs->gotgctl;
6103 + DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6104 + addr=&core_if->core_global_regs->gotgint;
6105 + DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6106 + addr=&core_if->core_global_regs->gahbcfg;
6107 + DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6108 + addr=&core_if->core_global_regs->gusbcfg;
6109 + DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6110 + addr=&core_if->core_global_regs->grstctl;
6111 + DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6112 + addr=&core_if->core_global_regs->gintsts;
6113 + DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6114 + addr=&core_if->core_global_regs->gintmsk;
6115 + DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6116 + addr=&core_if->core_global_regs->grxstsr;
6117 + DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6118 + //addr=&core_if->core_global_regs->grxstsp;
6119 + //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6120 + addr=&core_if->core_global_regs->grxfsiz;
6121 + DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6122 + addr=&core_if->core_global_regs->gnptxfsiz;
6123 + DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6124 + addr=&core_if->core_global_regs->gnptxsts;
6125 + DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6126 + addr=&core_if->core_global_regs->gi2cctl;
6127 + DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6128 + addr=&core_if->core_global_regs->gpvndctl;
6129 + DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6130 + addr=&core_if->core_global_regs->ggpio;
6131 + DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6132 + addr=&core_if->core_global_regs->guid;
6133 + DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6134 + addr=&core_if->core_global_regs->gsnpsid;
6135 + DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6136 + addr=&core_if->core_global_regs->ghwcfg1;
6137 + DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6138 + addr=&core_if->core_global_regs->ghwcfg2;
6139 + DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6140 + addr=&core_if->core_global_regs->ghwcfg3;
6141 + DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6142 + addr=&core_if->core_global_regs->ghwcfg4;
6143 + DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6144 + addr=&core_if->core_global_regs->hptxfsiz;
6145 + DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
6146 +
6147 + for (i=0; i<core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
6148 + {
6149 + addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
6150 + DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr));
6151 + }
6152 +}
6153 +
6154 +/**
6155 + * Flush a Tx FIFO.
6156 + *
6157 + * @param core_if Programming view of DWC_otg controller.
6158 + * @param num Tx FIFO to flush.
6159 + */
6160 +void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
6161 + const int num)
6162 +{
6163 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
6164 + volatile grstctl_t greset = { .d32 = 0};
6165 + int count = 0;
6166 +
6167 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
6168 +
6169 + greset.b.txfflsh = 1;
6170 + greset.b.txfnum = num;
6171 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
6172 +
6173 + do {
6174 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
6175 + if (++count > 10000) {
6176 + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
6177 + __func__, greset.d32,
6178 + dwc_read_reg32(&global_regs->gnptxsts));
6179 + break;
6180 + }
6181 + }
6182 + while (greset.b.txfflsh == 1);
6183 +
6184 + /* Wait for 3 PHY Clocks*/
6185 + UDELAY(1);
6186 +}
6187 +
6188 +/**
6189 + * Flush Rx FIFO.
6190 + *
6191 + * @param core_if Programming view of DWC_otg controller.
6192 + */
6193 +void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
6194 +{
6195 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
6196 + volatile grstctl_t greset = { .d32 = 0};
6197 + int count = 0;
6198 +
6199 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
6200 + /*
6201 + *
6202 + */
6203 + greset.b.rxfflsh = 1;
6204 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
6205 +
6206 + do {
6207 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
6208 + if (++count > 10000) {
6209 + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
6210 + greset.d32);
6211 + break;
6212 + }
6213 + }
6214 + while (greset.b.rxfflsh == 1);
6215 +
6216 + /* Wait for 3 PHY Clocks*/
6217 + UDELAY(1);
6218 +}
6219 +
6220 +/**
6221 + * Do core a soft reset of the core. Be careful with this because it
6222 + * resets all the internal state machines of the core.
6223 + */
6224 +void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
6225 +{
6226 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
6227 + volatile grstctl_t greset = { .d32 = 0};
6228 + int count = 0;
6229 +
6230 + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
6231 + /* Wait for AHB master IDLE state. */
6232 + do {
6233 + UDELAY(10);
6234 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
6235 + if (++count > 100000) {
6236 + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
6237 + greset.d32);
6238 + return;
6239 + }
6240 + }
6241 + while (greset.b.ahbidle == 0);
6242 +
6243 + /* Core Soft Reset */
6244 + count = 0;
6245 + greset.b.csftrst = 1;
6246 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
6247 + do {
6248 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
6249 + if (++count > 10000) {
6250 + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
6251 + greset.d32);
6252 + break;
6253 + }
6254 + }
6255 + while (greset.b.csftrst == 1);
6256 +
6257 + /* Wait for 3 PHY Clocks*/
6258 + MDELAY(100);
6259 +}
6260 +
6261 +
6262 +
6263 +/**
6264 + * Register HCD callbacks. The callbacks are used to start and stop
6265 + * the HCD for interrupt processing.
6266 + *
6267 + * @param core_if Programming view of DWC_otg controller.
6268 + * @param cb the HCD callback structure.
6269 + * @param p pointer to be passed to callback function (usb_hcd*).
6270 + */
6271 +void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
6272 + dwc_otg_cil_callbacks_t *cb,
6273 + void *p)
6274 +{
6275 + core_if->hcd_cb = cb;
6276 + cb->p = p;
6277 +}
6278 +
6279 +/**
6280 + * Register PCD callbacks. The callbacks are used to start and stop
6281 + * the PCD for interrupt processing.
6282 + *
6283 + * @param core_if Programming view of DWC_otg controller.
6284 + * @param cb the PCD callback structure.
6285 + * @param p pointer to be passed to callback function (pcd*).
6286 + */
6287 +void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
6288 + dwc_otg_cil_callbacks_t *cb,
6289 + void *p)
6290 +{
6291 + core_if->pcd_cb = cb;
6292 + cb->p = p;
6293 +}
6294 +
6295 +#ifdef DWC_EN_ISOC
6296 +
6297 +/**
6298 + * This function writes isoc data per 1 (micro)frame into tx fifo
6299 + *
6300 + * @param core_if Programming view of DWC_otg controller.
6301 + * @param ep The EP to start the transfer on.
6302 + *
6303 + */
6304 +void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
6305 +{
6306 + dwc_otg_dev_in_ep_regs_t *ep_regs;
6307 + dtxfsts_data_t txstatus = {.d32 = 0};
6308 + uint32_t len = 0;
6309 + uint32_t dwords;
6310 +
6311 + ep->xfer_len = ep->data_per_frame;
6312 + ep->xfer_count = 0;
6313 +
6314 + ep_regs = core_if->dev_if->in_ep_regs[ep->num];
6315 +
6316 + len = ep->xfer_len - ep->xfer_count;
6317 +
6318 + if (len > ep->maxpacket) {
6319 + len = ep->maxpacket;
6320 + }
6321 +
6322 + dwords = (len + 3)/4;
6323 +
6324 + /* While there is space in the queue and space in the FIFO and
6325 + * More data to tranfer, Write packets to the Tx FIFO */
6326 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
6327 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
6328 +
6329 + while (txstatus.b.txfspcavail > dwords &&
6330 + ep->xfer_count < ep->xfer_len &&
6331 + ep->xfer_len != 0) {
6332 + /* Write the FIFO */
6333 + dwc_otg_ep_write_packet(core_if, ep, 0);
6334 +
6335 + len = ep->xfer_len - ep->xfer_count;
6336 + if (len > ep->maxpacket) {
6337 + len = ep->maxpacket;
6338 + }
6339 +
6340 + dwords = (len + 3)/4;
6341 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
6342 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
6343 + }
6344 +}
6345 +
6346 +
6347 +/**
6348 + * This function initializes a descriptor chain for Isochronous transfer
6349 + *
6350 + * @param core_if Programming view of DWC_otg controller.
6351 + * @param ep The EP to start the transfer on.
6352 + *
6353 + */
6354 +void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
6355 +{
6356 + deptsiz_data_t deptsiz = { .d32 = 0 };
6357 + depctl_data_t depctl = { .d32 = 0 };
6358 + dsts_data_t dsts = { .d32 = 0 };
6359 + volatile uint32_t *addr;
6360 +
6361 + if(ep->is_in) {
6362 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
6363 + } else {
6364 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
6365 + }
6366 +
6367 + ep->xfer_len = ep->data_per_frame;
6368 + ep->xfer_count = 0;
6369 + ep->xfer_buff = ep->cur_pkt_addr;
6370 + ep->dma_addr = ep->cur_pkt_dma_addr;
6371 +
6372 + if(ep->is_in) {
6373 + /* Program the transfer size and packet count
6374 + * as follows: xfersize = N * maxpacket +
6375 + * short_packet pktcnt = N + (short_packet
6376 + * exist ? 1 : 0)
6377 + */
6378 + deptsiz.b.xfersize = ep->xfer_len;
6379 + deptsiz.b.pktcnt =
6380 + (ep->xfer_len - 1 + ep->maxpacket) /
6381 + ep->maxpacket;
6382 + deptsiz.b.mc = deptsiz.b.pktcnt;
6383 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
6384 +
6385 + /* Write the DMA register */
6386 + if (core_if->dma_enable) {
6387 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
6388 + }
6389 + } else {
6390 + deptsiz.b.pktcnt =
6391 + (ep->xfer_len + (ep->maxpacket - 1)) /
6392 + ep->maxpacket;
6393 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
6394 +
6395 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
6396 +
6397 + if (core_if->dma_enable) {
6398 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
6399 + (uint32_t)ep->dma_addr);
6400 + }
6401 + }
6402 +
6403 +
6404 + /** Enable endpoint, clear nak */
6405 +
6406 + depctl.d32 = 0;
6407 + if(ep->bInterval == 1) {
6408 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
6409 + ep->next_frame = dsts.b.soffn + ep->bInterval;
6410 +
6411 + if(ep->next_frame & 0x1) {
6412 + depctl.b.setd1pid = 1;
6413 + } else {
6414 + depctl.b.setd0pid = 1;
6415 + }
6416 + } else {
6417 + ep->next_frame += ep->bInterval;
6418 +
6419 + if(ep->next_frame & 0x1) {
6420 + depctl.b.setd1pid = 1;
6421 + } else {
6422 + depctl.b.setd0pid = 1;
6423 + }
6424 + }
6425 + depctl.b.epena = 1;
6426 + depctl.b.cnak = 1;
6427 +
6428 + dwc_modify_reg32(addr, 0, depctl.d32);
6429 + depctl.d32 = dwc_read_reg32(addr);
6430 +
6431 + if(ep->is_in && core_if->dma_enable == 0) {
6432 + write_isoc_frame_data(core_if, ep);
6433 + }
6434 +
6435 +}
6436 +
6437 +#endif //DWC_EN_ISOC
6438 --- /dev/null
6439 +++ b/drivers/usb/dwc_otg/dwc_otg_cil.h
6440 @@ -0,0 +1,1098 @@
6441 +/* ==========================================================================
6442 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
6443 + * $Revision: 1.2 $
6444 + * $Date: 2008-11-21 05:39:15 $
6445 + * $Change: 1099526 $
6446 + *
6447 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6448 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6449 + * otherwise expressly agreed to in writing between Synopsys and you.
6450 + *
6451 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6452 + * any End User Software License Agreement or Agreement for Licensed Product
6453 + * with Synopsys or any supplement thereto. You are permitted to use and
6454 + * redistribute this Software in source and binary forms, with or without
6455 + * modification, provided that redistributions of source code must retain this
6456 + * notice. You may not view, use, disclose, copy or distribute this file or
6457 + * any information contained herein except pursuant to this license grant from
6458 + * Synopsys. If you do not agree with this notice, including the disclaimer
6459 + * below, then you are not authorized to use the Software.
6460 + *
6461 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6462 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6463 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6464 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6465 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6466 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6467 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6468 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6469 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6470 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6471 + * DAMAGE.
6472 + * ========================================================================== */
6473 +
6474 +#if !defined(__DWC_CIL_H__)
6475 +#define __DWC_CIL_H__
6476 +
6477 +#include <linux/workqueue.h>
6478 +#include <linux/version.h>
6479 +#include <asm/param.h>
6480 +
6481 +#include "linux/dwc_otg_plat.h"
6482 +#include "dwc_otg_regs.h"
6483 +#ifdef DEBUG
6484 +#include "linux/timer.h"
6485 +#endif
6486 +
6487 +/**
6488 + * @file
6489 + * This file contains the interface to the Core Interface Layer.
6490 + */
6491 +
6492 +
6493 +/** Macros defined for DWC OTG HW Release verison */
6494 +#define OTG_CORE_REV_2_00 0x4F542000
6495 +#define OTG_CORE_REV_2_60a 0x4F54260A
6496 +#define OTG_CORE_REV_2_71a 0x4F54271A
6497 +#define OTG_CORE_REV_2_72a 0x4F54272A
6498 +
6499 +/**
6500 +*/
6501 +typedef struct iso_pkt_info
6502 +{
6503 + uint32_t offset;
6504 + uint32_t length;
6505 + int32_t status;
6506 +} iso_pkt_info_t;
6507 +/**
6508 + * The <code>dwc_ep</code> structure represents the state of a single
6509 + * endpoint when acting in device mode. It contains the data items
6510 + * needed for an endpoint to be activated and transfer packets.
6511 + */
6512 +typedef struct dwc_ep
6513 +{
6514 + /** EP number used for register address lookup */
6515 + uint8_t num;
6516 + /** EP direction 0 = OUT */
6517 + unsigned is_in : 1;
6518 + /** EP active. */
6519 + unsigned active : 1;
6520 +
6521 + /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
6522 + If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
6523 + unsigned tx_fifo_num : 4;
6524 + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
6525 + unsigned type : 2;
6526 +#define DWC_OTG_EP_TYPE_CONTROL 0
6527 +#define DWC_OTG_EP_TYPE_ISOC 1
6528 +#define DWC_OTG_EP_TYPE_BULK 2
6529 +#define DWC_OTG_EP_TYPE_INTR 3
6530 +
6531 + /** DATA start PID for INTR and BULK EP */
6532 + unsigned data_pid_start : 1;
6533 + /** Frame (even/odd) for ISOC EP */
6534 + unsigned even_odd_frame : 1;
6535 + /** Max Packet bytes */
6536 + unsigned maxpacket : 11;
6537 +
6538 + /** Max Transfer size */
6539 + unsigned maxxfer : 16;
6540 +
6541 + /** @name Transfer state */
6542 + /** @{ */
6543 +
6544 + /**
6545 + * Pointer to the beginning of the transfer buffer -- do not modify
6546 + * during transfer.
6547 + */
6548 +
6549 + uint32_t dma_addr;
6550 +
6551 + uint32_t dma_desc_addr;
6552 + dwc_otg_dma_desc_t* desc_addr;
6553 +
6554 +
6555 + uint8_t *start_xfer_buff;
6556 + /** pointer to the transfer buffer */
6557 + uint8_t *xfer_buff;
6558 + /** Number of bytes to transfer */
6559 + unsigned xfer_len : 19;
6560 + /** Number of bytes transferred. */
6561 + unsigned xfer_count : 19;
6562 + /** Sent ZLP */
6563 + unsigned sent_zlp : 1;
6564 + /** Total len for control transfer */
6565 + unsigned total_len : 19;
6566 +
6567 + /** stall clear flag */
6568 + unsigned stall_clear_flag : 1;
6569 +
6570 + /** Allocated DMA Desc count */
6571 + uint32_t desc_cnt;
6572 +
6573 +#ifdef DWC_EN_ISOC
6574 + /**
6575 + * Variables specific for ISOC EPs
6576 + *
6577 + */
6578 + /** DMA addresses of ISOC buffers */
6579 + uint32_t dma_addr0;
6580 + uint32_t dma_addr1;
6581 +
6582 + uint32_t iso_dma_desc_addr;
6583 + dwc_otg_dma_desc_t* iso_desc_addr;
6584 +
6585 + /** pointer to the transfer buffers */
6586 + uint8_t *xfer_buff0;
6587 + uint8_t *xfer_buff1;
6588 +
6589 + /** number of ISOC Buffer is processing */
6590 + uint32_t proc_buf_num;
6591 + /** Interval of ISOC Buffer processing */
6592 + uint32_t buf_proc_intrvl;
6593 + /** Data size for regular frame */
6594 + uint32_t data_per_frame;
6595 +
6596 + /* todo - pattern data support is to be implemented in the future */
6597 + /** Data size for pattern frame */
6598 + uint32_t data_pattern_frame;
6599 + /** Frame number of pattern data */
6600 + uint32_t sync_frame;
6601 +
6602 + /** bInterval */
6603 + uint32_t bInterval;
6604 + /** ISO Packet number per frame */
6605 + uint32_t pkt_per_frm;
6606 + /** Next frame num for which will be setup DMA Desc */
6607 + uint32_t next_frame;
6608 + /** Number of packets per buffer processing */
6609 + uint32_t pkt_cnt;
6610 + /** Info for all isoc packets */
6611 + iso_pkt_info_t *pkt_info;
6612 + /** current pkt number */
6613 + uint32_t cur_pkt;
6614 + /** current pkt number */
6615 + uint8_t *cur_pkt_addr;
6616 + /** current pkt number */
6617 + uint32_t cur_pkt_dma_addr;
6618 +#endif //DWC_EN_ISOC
6619 +/** @} */
6620 +} dwc_ep_t;
6621 +
6622 +/*
6623 + * Reasons for halting a host channel.
6624 + */
6625 +typedef enum dwc_otg_halt_status
6626 +{
6627 + DWC_OTG_HC_XFER_NO_HALT_STATUS,
6628 + DWC_OTG_HC_XFER_COMPLETE,
6629 + DWC_OTG_HC_XFER_URB_COMPLETE,
6630 + DWC_OTG_HC_XFER_ACK,
6631 + DWC_OTG_HC_XFER_NAK,
6632 + DWC_OTG_HC_XFER_NYET,
6633 + DWC_OTG_HC_XFER_STALL,
6634 + DWC_OTG_HC_XFER_XACT_ERR,
6635 + DWC_OTG_HC_XFER_FRAME_OVERRUN,
6636 + DWC_OTG_HC_XFER_BABBLE_ERR,
6637 + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
6638 + DWC_OTG_HC_XFER_AHB_ERR,
6639 + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
6640 + DWC_OTG_HC_XFER_URB_DEQUEUE
6641 +} dwc_otg_halt_status_e;
6642 +
6643 +/**
6644 + * Host channel descriptor. This structure represents the state of a single
6645 + * host channel when acting in host mode. It contains the data items needed to
6646 + * transfer packets to an endpoint via a host channel.
6647 + */
6648 +typedef struct dwc_hc
6649 +{
6650 + /** Host channel number used for register address lookup */
6651 + uint8_t hc_num;
6652 +
6653 + /** Device to access */
6654 + unsigned dev_addr : 7;
6655 +
6656 + /** EP to access */
6657 + unsigned ep_num : 4;
6658 +
6659 + /** EP direction. 0: OUT, 1: IN */
6660 + unsigned ep_is_in : 1;
6661 +
6662 + /**
6663 + * EP speed.
6664 + * One of the following values:
6665 + * - DWC_OTG_EP_SPEED_LOW
6666 + * - DWC_OTG_EP_SPEED_FULL
6667 + * - DWC_OTG_EP_SPEED_HIGH
6668 + */
6669 + unsigned speed : 2;
6670 +#define DWC_OTG_EP_SPEED_LOW 0
6671 +#define DWC_OTG_EP_SPEED_FULL 1
6672 +#define DWC_OTG_EP_SPEED_HIGH 2
6673 +
6674 + /**
6675 + * Endpoint type.
6676 + * One of the following values:
6677 + * - DWC_OTG_EP_TYPE_CONTROL: 0
6678 + * - DWC_OTG_EP_TYPE_ISOC: 1
6679 + * - DWC_OTG_EP_TYPE_BULK: 2
6680 + * - DWC_OTG_EP_TYPE_INTR: 3
6681 + */
6682 + unsigned ep_type : 2;
6683 +
6684 + /** Max packet size in bytes */
6685 + unsigned max_packet : 11;
6686 +
6687 + /**
6688 + * PID for initial transaction.
6689 + * 0: DATA0,<br>
6690 + * 1: DATA2,<br>
6691 + * 2: DATA1,<br>
6692 + * 3: MDATA (non-Control EP),
6693 + * SETUP (Control EP)
6694 + */
6695 + unsigned data_pid_start : 2;
6696 +#define DWC_OTG_HC_PID_DATA0 0
6697 +#define DWC_OTG_HC_PID_DATA2 1
6698 +#define DWC_OTG_HC_PID_DATA1 2
6699 +#define DWC_OTG_HC_PID_MDATA 3
6700 +#define DWC_OTG_HC_PID_SETUP 3
6701 +
6702 + /** Number of periodic transactions per (micro)frame */
6703 + unsigned multi_count: 2;
6704 +
6705 + /** @name Transfer State */
6706 + /** @{ */
6707 +
6708 + /** Pointer to the current transfer buffer position. */
6709 + uint8_t *xfer_buff;
6710 + /** Total number of bytes to transfer. */
6711 + uint32_t xfer_len;
6712 + /** Number of bytes transferred so far. */
6713 + uint32_t xfer_count;
6714 + /** Packet count at start of transfer.*/
6715 + uint16_t start_pkt_count;
6716 +
6717 + /**
6718 + * Flag to indicate whether the transfer has been started. Set to 1 if
6719 + * it has been started, 0 otherwise.
6720 + */
6721 + uint8_t xfer_started;
6722 +
6723 + /**
6724 + * Set to 1 to indicate that a PING request should be issued on this
6725 + * channel. If 0, process normally.
6726 + */
6727 + uint8_t do_ping;
6728 +
6729 + /**
6730 + * Set to 1 to indicate that the error count for this transaction is
6731 + * non-zero. Set to 0 if the error count is 0.
6732 + */
6733 + uint8_t error_state;
6734 +
6735 + /**
6736 + * Set to 1 to indicate that this channel should be halted the next
6737 + * time a request is queued for the channel. This is necessary in
6738 + * slave mode if no request queue space is available when an attempt
6739 + * is made to halt the channel.
6740 + */
6741 + uint8_t halt_on_queue;
6742 +
6743 + /**
6744 + * Set to 1 if the host channel has been halted, but the core is not
6745 + * finished flushing queued requests. Otherwise 0.
6746 + */
6747 + uint8_t halt_pending;
6748 +
6749 + /**
6750 + * Reason for halting the host channel.
6751 + */
6752 + dwc_otg_halt_status_e halt_status;
6753 +
6754 + /*
6755 + * Split settings for the host channel
6756 + */
6757 + uint8_t do_split; /**< Enable split for the channel */
6758 + uint8_t complete_split; /**< Enable complete split */
6759 + uint8_t hub_addr; /**< Address of high speed hub */
6760 +
6761 + uint8_t port_addr; /**< Port of the low/full speed device */
6762 + /** Split transaction position
6763 + * One of the following values:
6764 + * - DWC_HCSPLIT_XACTPOS_MID
6765 + * - DWC_HCSPLIT_XACTPOS_BEGIN
6766 + * - DWC_HCSPLIT_XACTPOS_END
6767 + * - DWC_HCSPLIT_XACTPOS_ALL */
6768 + uint8_t xact_pos;
6769 +
6770 + /** Set when the host channel does a short read. */
6771 + uint8_t short_read;
6772 +
6773 + /**
6774 + * Number of requests issued for this channel since it was assigned to
6775 + * the current transfer (not counting PINGs).
6776 + */
6777 + uint8_t requests;
6778 +
6779 + /**
6780 + * Queue Head for the transfer being processed by this channel.
6781 + */
6782 + struct dwc_otg_qh *qh;
6783 +
6784 + /** @} */
6785 +
6786 + /** Entry in list of host channels. */
6787 + struct list_head hc_list_entry;
6788 +} dwc_hc_t;
6789 +
6790 +/**
6791 + * The following parameters may be specified when starting the module. These
6792 + * parameters define how the DWC_otg controller should be configured.
6793 + * Parameter values are passed to the CIL initialization function
6794 + * dwc_otg_cil_init.
6795 + */
6796 +typedef struct dwc_otg_core_params
6797 +{
6798 + int32_t opt;
6799 +#define dwc_param_opt_default 1
6800 +
6801 + /**
6802 + * Specifies the OTG capabilities. The driver will automatically
6803 + * detect the value for this parameter if none is specified.
6804 + * 0 - HNP and SRP capable (default)
6805 + * 1 - SRP Only capable
6806 + * 2 - No HNP/SRP capable
6807 + */
6808 + int32_t otg_cap;
6809 +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
6810 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
6811 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
6812 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
6813 +
6814 + /**
6815 + * Specifies whether to use slave or DMA mode for accessing the data
6816 + * FIFOs. The driver will automatically detect the value for this
6817 + * parameter if none is specified.
6818 + * 0 - Slave
6819 + * 1 - DMA (default, if available)
6820 + */
6821 + int32_t dma_enable;
6822 +#define dwc_param_dma_enable_default 1
6823 +
6824 + /**
6825 + * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
6826 + * FIFOs in device mode. The driver will automatically detect the value for this
6827 + * parameter if none is specified.
6828 + * 0 - address DMA
6829 + * 1 - DMA Descriptor(default, if available)
6830 + */
6831 + int32_t dma_desc_enable;
6832 +#define dwc_param_dma_desc_enable_default 0
6833 + /** The DMA Burst size (applicable only for External DMA
6834 + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
6835 + */
6836 + int32_t dma_burst_size; /* Translate this to GAHBCFG values */
6837 +#define dwc_param_dma_burst_size_default 32
6838 +
6839 + /**
6840 + * Specifies the maximum speed of operation in host and device mode.
6841 + * The actual speed depends on the speed of the attached device and
6842 + * the value of phy_type. The actual speed depends on the speed of the
6843 + * attached device.
6844 + * 0 - High Speed (default)
6845 + * 1 - Full Speed
6846 + */
6847 + int32_t speed;
6848 +#define dwc_param_speed_default 0
6849 +#define DWC_SPEED_PARAM_HIGH 0
6850 +#define DWC_SPEED_PARAM_FULL 1
6851 +
6852 + /** Specifies whether low power mode is supported when attached
6853 + * to a Full Speed or Low Speed device in host mode.
6854 + * 0 - Don't support low power mode (default)
6855 + * 1 - Support low power mode
6856 + */
6857 + int32_t host_support_fs_ls_low_power;
6858 +#define dwc_param_host_support_fs_ls_low_power_default 0
6859 +
6860 + /** Specifies the PHY clock rate in low power mode when connected to a
6861 + * Low Speed device in host mode. This parameter is applicable only if
6862 + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
6863 + * then defaults to 6 MHZ otherwise 48 MHZ.
6864 + *
6865 + * 0 - 48 MHz
6866 + * 1 - 6 MHz
6867 + */
6868 + int32_t host_ls_low_power_phy_clk;
6869 +#define dwc_param_host_ls_low_power_phy_clk_default 0
6870 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
6871 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
6872 +
6873 + /**
6874 + * 0 - Use cC FIFO size parameters
6875 + * 1 - Allow dynamic FIFO sizing (default)
6876 + */
6877 + int32_t enable_dynamic_fifo;
6878 +#define dwc_param_enable_dynamic_fifo_default 1
6879 +
6880 + /** Total number of 4-byte words in the data FIFO memory. This
6881 + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
6882 + * Tx FIFOs.
6883 + * 32 to 32768 (default 8192)
6884 + * Note: The total FIFO memory depth in the FPGA configuration is 8192.
6885 + */
6886 + int32_t data_fifo_size;
6887 +#define dwc_param_data_fifo_size_default 8192
6888 +
6889 + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
6890 + * FIFO sizing is enabled.
6891 + * 16 to 32768 (default 1064)
6892 + */
6893 + int32_t dev_rx_fifo_size;
6894 +#define dwc_param_dev_rx_fifo_size_default 1064
6895 +
6896 + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
6897 + * when dynamic FIFO sizing is enabled.
6898 + * 16 to 32768 (default 1024)
6899 + */
6900 + int32_t dev_nperio_tx_fifo_size;
6901 +#define dwc_param_dev_nperio_tx_fifo_size_default 1024
6902 +
6903 + /** Number of 4-byte words in each of the periodic Tx FIFOs in device
6904 + * mode when dynamic FIFO sizing is enabled.
6905 + * 4 to 768 (default 256)
6906 + */
6907 + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
6908 +#define dwc_param_dev_perio_tx_fifo_size_default 256
6909 +
6910 + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
6911 + * FIFO sizing is enabled.
6912 + * 16 to 32768 (default 1024)
6913 + */
6914 + int32_t host_rx_fifo_size;
6915 +#define dwc_param_host_rx_fifo_size_default 1024
6916 +
6917 + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
6918 + * when Dynamic FIFO sizing is enabled in the core.
6919 + * 16 to 32768 (default 1024)
6920 + */
6921 + int32_t host_nperio_tx_fifo_size;
6922 +#define dwc_param_host_nperio_tx_fifo_size_default 1024
6923 +
6924 + /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
6925 + * FIFO sizing is enabled.
6926 + * 16 to 32768 (default 1024)
6927 + */
6928 + int32_t host_perio_tx_fifo_size;
6929 +#define dwc_param_host_perio_tx_fifo_size_default 1024
6930 +
6931 + /** The maximum transfer size supported in bytes.
6932 + * 2047 to 65,535 (default 65,535)
6933 + */
6934 + int32_t max_transfer_size;
6935 +#define dwc_param_max_transfer_size_default 65535
6936 +
6937 + /** The maximum number of packets in a transfer.
6938 + * 15 to 511 (default 511)
6939 + */
6940 + int32_t max_packet_count;
6941 +#define dwc_param_max_packet_count_default 511
6942 +
6943 + /** The number of host channel registers to use.
6944 + * 1 to 16 (default 12)
6945 + * Note: The FPGA configuration supports a maximum of 12 host channels.
6946 + */
6947 + int32_t host_channels;
6948 +#define dwc_param_host_channels_default 12
6949 +
6950 + /** The number of endpoints in addition to EP0 available for device
6951 + * mode operations.
6952 + * 1 to 15 (default 6 IN and OUT)
6953 + * Note: The FPGA configuration supports a maximum of 6 IN and OUT
6954 + * endpoints in addition to EP0.
6955 + */
6956 + int32_t dev_endpoints;
6957 +#define dwc_param_dev_endpoints_default 6
6958 +
6959 + /**
6960 + * Specifies the type of PHY interface to use. By default, the driver
6961 + * will automatically detect the phy_type.
6962 + *
6963 + * 0 - Full Speed PHY
6964 + * 1 - UTMI+ (default)
6965 + * 2 - ULPI
6966 + */
6967 + int32_t phy_type;
6968 +#define DWC_PHY_TYPE_PARAM_FS 0
6969 +#define DWC_PHY_TYPE_PARAM_UTMI 1
6970 +#define DWC_PHY_TYPE_PARAM_ULPI 2
6971 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
6972 +
6973 + /**
6974 + * Specifies the UTMI+ Data Width. This parameter is
6975 + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
6976 + * PHY_TYPE, this parameter indicates the data width between
6977 + * the MAC and the ULPI Wrapper.) Also, this parameter is
6978 + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
6979 + * to "8 and 16 bits", meaning that the core has been
6980 + * configured to work at either data path width.
6981 + *
6982 + * 8 or 16 bits (default 16)
6983 + */
6984 + int32_t phy_utmi_width;
6985 +#define dwc_param_phy_utmi_width_default 16
6986 +
6987 + /**
6988 + * Specifies whether the ULPI operates at double or single
6989 + * data rate. This parameter is only applicable if PHY_TYPE is
6990 + * ULPI.
6991 + *
6992 + * 0 - single data rate ULPI interface with 8 bit wide data
6993 + * bus (default)
6994 + * 1 - double data rate ULPI interface with 4 bit wide data
6995 + * bus
6996 + */
6997 + int32_t phy_ulpi_ddr;
6998 +#define dwc_param_phy_ulpi_ddr_default 0
6999 +
7000 + /**
7001 + * Specifies whether to use the internal or external supply to
7002 + * drive the vbus with a ULPI phy.
7003 + */
7004 + int32_t phy_ulpi_ext_vbus;
7005 +#define DWC_PHY_ULPI_INTERNAL_VBUS 0
7006 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
7007 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
7008 +
7009 + /**
7010 + * Specifies whether to use the I2Cinterface for full speed PHY. This
7011 + * parameter is only applicable if PHY_TYPE is FS.
7012 + * 0 - No (default)
7013 + * 1 - Yes
7014 + */
7015 + int32_t i2c_enable;
7016 +#define dwc_param_i2c_enable_default 0
7017 +
7018 + int32_t ulpi_fs_ls;
7019 +#define dwc_param_ulpi_fs_ls_default 0
7020 +
7021 + int32_t ts_dline;
7022 +#define dwc_param_ts_dline_default 0
7023 +
7024 + /**
7025 + * Specifies whether dedicated transmit FIFOs are
7026 + * enabled for non periodic IN endpoints in device mode
7027 + * 0 - No
7028 + * 1 - Yes
7029 + */
7030 + int32_t en_multiple_tx_fifo;
7031 +#define dwc_param_en_multiple_tx_fifo_default 1
7032 +
7033 + /** Number of 4-byte words in each of the Tx FIFOs in device
7034 + * mode when dynamic FIFO sizing is enabled.
7035 + * 4 to 768 (default 256)
7036 + */
7037 + uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
7038 +#define dwc_param_dev_tx_fifo_size_default 256
7039 +
7040 + /** Thresholding enable flag-
7041 + * bit 0 - enable non-ISO Tx thresholding
7042 + * bit 1 - enable ISO Tx thresholding
7043 + * bit 2 - enable Rx thresholding
7044 + */
7045 + uint32_t thr_ctl;
7046 +#define dwc_param_thr_ctl_default 0
7047 +
7048 + /** Thresholding length for Tx
7049 + * FIFOs in 32 bit DWORDs
7050 + */
7051 + uint32_t tx_thr_length;
7052 +#define dwc_param_tx_thr_length_default 64
7053 +
7054 + /** Thresholding length for Rx
7055 + * FIFOs in 32 bit DWORDs
7056 + */
7057 + uint32_t rx_thr_length;
7058 +#define dwc_param_rx_thr_length_default 64
7059 +
7060 + /** Per Transfer Interrupt
7061 + * mode enable flag
7062 + * 1 - Enabled
7063 + * 0 - Disabled
7064 + */
7065 + uint32_t pti_enable;
7066 +#define dwc_param_pti_enable_default 0
7067 +
7068 + /** Molti Processor Interrupt
7069 + * mode enable flag
7070 + * 1 - Enabled
7071 + * 0 - Disabled
7072 + */
7073 + uint32_t mpi_enable;
7074 +#define dwc_param_mpi_enable_default 0
7075 +
7076 +} dwc_otg_core_params_t;
7077 +
7078 +#ifdef DEBUG
7079 +struct dwc_otg_core_if;
7080 +typedef struct hc_xfer_info
7081 +{
7082 + struct dwc_otg_core_if *core_if;
7083 + dwc_hc_t *hc;
7084 +} hc_xfer_info_t;
7085 +#endif
7086 +
7087 +/**
7088 + * The <code>dwc_otg_core_if</code> structure contains information needed to manage
7089 + * the DWC_otg controller acting in either host or device mode. It
7090 + * represents the programming view of the controller as a whole.
7091 + */
7092 +typedef struct dwc_otg_core_if
7093 +{
7094 + /** Parameters that define how the core should be configured.*/
7095 + dwc_otg_core_params_t *core_params;
7096 +
7097 + /** Core Global registers starting at offset 000h. */
7098 + dwc_otg_core_global_regs_t *core_global_regs;
7099 +
7100 + /** Device-specific information */
7101 + dwc_otg_dev_if_t *dev_if;
7102 + /** Host-specific information */
7103 + dwc_otg_host_if_t *host_if;
7104 +
7105 + /** Value from SNPSID register */
7106 + uint32_t snpsid;
7107 +
7108 + /*
7109 + * Set to 1 if the core PHY interface bits in USBCFG have been
7110 + * initialized.
7111 + */
7112 + uint8_t phy_init_done;
7113 +
7114 + /*
7115 + * SRP Success flag, set by srp success interrupt in FS I2C mode
7116 + */
7117 + uint8_t srp_success;
7118 + uint8_t srp_timer_started;
7119 +
7120 + /* Common configuration information */
7121 + /** Power and Clock Gating Control Register */
7122 + volatile uint32_t *pcgcctl;
7123 +#define DWC_OTG_PCGCCTL_OFFSET 0xE00
7124 +
7125 + /** Push/pop addresses for endpoints or host channels.*/
7126 + uint32_t *data_fifo[MAX_EPS_CHANNELS];
7127 +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
7128 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000
7129 +
7130 + /** Total RAM for FIFOs (Bytes) */
7131 + uint16_t total_fifo_size;
7132 + /** Size of Rx FIFO (Bytes) */
7133 + uint16_t rx_fifo_size;
7134 + /** Size of Non-periodic Tx FIFO (Bytes) */
7135 + uint16_t nperio_tx_fifo_size;
7136 +
7137 +
7138 + /** 1 if DMA is enabled, 0 otherwise. */
7139 + uint8_t dma_enable;
7140 +
7141 + /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
7142 + uint8_t dma_desc_enable;
7143 +
7144 + /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
7145 + uint8_t pti_enh_enable;
7146 +
7147 + /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
7148 + uint8_t multiproc_int_enable;
7149 +
7150 + /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
7151 + uint8_t en_multiple_tx_fifo;
7152 +
7153 + /** Set to 1 if multiple packets of a high-bandwidth transfer is in
7154 + * process of being queued */
7155 + uint8_t queuing_high_bandwidth;
7156 +
7157 + /** Hardware Configuration -- stored here for convenience.*/
7158 + hwcfg1_data_t hwcfg1;
7159 + hwcfg2_data_t hwcfg2;
7160 + hwcfg3_data_t hwcfg3;
7161 + hwcfg4_data_t hwcfg4;
7162 +
7163 + /** Host and Device Configuration -- stored here for convenience.*/
7164 + hcfg_data_t hcfg;
7165 + dcfg_data_t dcfg;
7166 +
7167 + /** The operational State, during transations
7168 + * (a_host>>a_peripherial and b_device=>b_host) this may not
7169 + * match the core but allows the software to determine
7170 + * transitions.
7171 + */
7172 + uint8_t op_state;
7173 +
7174 + /**
7175 + * Set to 1 if the HCD needs to be restarted on a session request
7176 + * interrupt. This is required if no connector ID status change has
7177 + * occurred since the HCD was last disconnected.
7178 + */
7179 + uint8_t restart_hcd_on_session_req;
7180 +
7181 + /** HCD callbacks */
7182 + /** A-Device is a_host */
7183 +#define A_HOST (1)
7184 + /** A-Device is a_suspend */
7185 +#define A_SUSPEND (2)
7186 + /** A-Device is a_peripherial */
7187 +#define A_PERIPHERAL (3)
7188 + /** B-Device is operating as a Peripheral. */
7189 +#define B_PERIPHERAL (4)
7190 + /** B-Device is operating as a Host. */
7191 +#define B_HOST (5)
7192 +
7193 + /** HCD callbacks */
7194 + struct dwc_otg_cil_callbacks *hcd_cb;
7195 + /** PCD callbacks */
7196 + struct dwc_otg_cil_callbacks *pcd_cb;
7197 +
7198 + /** Device mode Periodic Tx FIFO Mask */
7199 + uint32_t p_tx_msk;
7200 + /** Device mode Periodic Tx FIFO Mask */
7201 + uint32_t tx_msk;
7202 +
7203 + /** Workqueue object used for handling several interrupts */
7204 + struct workqueue_struct *wq_otg;
7205 +
7206 + /** Work object used for handling "Connector ID Status Change" Interrupt */
7207 + struct work_struct w_conn_id;
7208 +
7209 + /** Work object used for handling "Wakeup Detected" Interrupt */
7210 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
7211 + struct work_struct w_wkp;
7212 +#else
7213 + struct delayed_work w_wkp;
7214 +#endif
7215 +
7216 +#ifdef DEBUG
7217 + uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
7218 +
7219 + hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
7220 + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
7221 +
7222 + uint32_t hfnum_7_samples;
7223 + uint64_t hfnum_7_frrem_accum;
7224 + uint32_t hfnum_0_samples;
7225 + uint64_t hfnum_0_frrem_accum;
7226 + uint32_t hfnum_other_samples;
7227 + uint64_t hfnum_other_frrem_accum;
7228 +#endif
7229 +
7230 +
7231 +} dwc_otg_core_if_t;
7232 +
7233 +/*We must clear S3C24XX_EINTPEND external interrupt register
7234 + * because after clearing in this register trigerred IRQ from
7235 + * H/W core in kernel interrupt can be occured again before OTG
7236 + * handlers clear all IRQ sources of Core registers because of
7237 + * timing latencies and Low Level IRQ Type.
7238 + */
7239 +
7240 +#ifdef CONFIG_MACH_IPMATE
7241 +#define S3C2410X_CLEAR_EINTPEND() \
7242 +do { \
7243 + if (!dwc_otg_read_core_intr(core_if)) { \
7244 + __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
7245 + } \
7246 +} while (0)
7247 +#else
7248 +#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
7249 +#endif
7250 +
7251 +/*
7252 + * The following functions are functions for works
7253 + * using during handling some interrupts
7254 + */
7255 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
7256 +
7257 +extern void w_conn_id_status_change(void *p);
7258 +extern void w_wakeup_detected(void *p);
7259 +
7260 +#else
7261 +
7262 +extern void w_conn_id_status_change(struct work_struct *p);
7263 +extern void w_wakeup_detected(struct work_struct *p);
7264 +
7265 +#endif
7266 +
7267 +
7268 +/*
7269 + * The following functions support initialization of the CIL driver component
7270 + * and the DWC_otg controller.
7271 + */
7272 +extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
7273 + dwc_otg_core_params_t *_core_params);
7274 +extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
7275 +extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
7276 +extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
7277 +extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
7278 +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
7279 +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
7280 +
7281 +/** @name Device CIL Functions
7282 + * The following functions support managing the DWC_otg controller in device
7283 + * mode.
7284 + */
7285 +/**@{*/
7286 +extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
7287 +extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
7288 +extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
7289 +extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7290 +extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7291 +extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7292 +extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7293 +extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7294 +extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7295 +extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7296 +extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
7297 +extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7298 +extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
7299 +extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
7300 +extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
7301 +extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
7302 +#ifdef DWC_EN_ISOC
7303 +extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
7304 +extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
7305 +#endif //DWC_EN_ISOC
7306 +/**@}*/
7307 +
7308 +/** @name Host CIL Functions
7309 + * The following functions support managing the DWC_otg controller in host
7310 + * mode.
7311 + */
7312 +/**@{*/
7313 +extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7314 +extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
7315 + dwc_hc_t *_hc,
7316 + dwc_otg_halt_status_e _halt_status);
7317 +extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7318 +extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7319 +extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7320 +extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7321 +extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
7322 +extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
7323 +extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
7324 +
7325 +/**
7326 + * This function Reads HPRT0 in preparation to modify. It keeps the
7327 + * WC bits 0 so that if they are read as 1, they won't clear when you
7328 + * write it back
7329 + */
7330 +static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
7331 +{
7332 + hprt0_data_t hprt0;
7333 + hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
7334 + hprt0.b.prtena = 0;
7335 + hprt0.b.prtconndet = 0;
7336 + hprt0.b.prtenchng = 0;
7337 + hprt0.b.prtovrcurrchng = 0;
7338 + return hprt0.d32;
7339 +}
7340 +
7341 +extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
7342 +/**@}*/
7343 +
7344 +/** @name Common CIL Functions
7345 + * The following functions support managing the DWC_otg controller in either
7346 + * device or host mode.
7347 + */
7348 +/**@{*/
7349 +
7350 +extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
7351 + uint8_t *dest,
7352 + uint16_t bytes);
7353 +
7354 +extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
7355 +
7356 +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
7357 + const int _num );
7358 +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
7359 +extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
7360 +
7361 +extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
7362 +extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
7363 +
7364 +/**
7365 + * This function returns the Core Interrupt register.
7366 + */
7367 +static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
7368 +{
7369 + return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
7370 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
7371 +}
7372 +
7373 +/**
7374 + * This function returns the OTG Interrupt register.
7375 + */
7376 +static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
7377 +{
7378 + return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
7379 +}
7380 +
7381 +/**
7382 + * This function reads the Device All Endpoints Interrupt register and
7383 + * returns the IN endpoint interrupt bits.
7384 + */
7385 +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
7386 +{
7387 + uint32_t v;
7388 +
7389 + if(core_if->multiproc_int_enable) {
7390 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
7391 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
7392 + } else {
7393 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
7394 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
7395 + }
7396 + return (v & 0xffff);
7397 +
7398 +}
7399 +
7400 +/**
7401 + * This function reads the Device All Endpoints Interrupt register and
7402 + * returns the OUT endpoint interrupt bits.
7403 + */
7404 +static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
7405 +{
7406 + uint32_t v;
7407 +
7408 + if(core_if->multiproc_int_enable) {
7409 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
7410 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
7411 + } else {
7412 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
7413 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
7414 + }
7415 +
7416 + return ((v & 0xffff0000) >> 16);
7417 +}
7418 +
7419 +/**
7420 + * This function returns the Device IN EP Interrupt register
7421 + */
7422 +static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
7423 + dwc_ep_t *ep)
7424 +{
7425 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
7426 + uint32_t v, msk, emp;
7427 +
7428 + if(core_if->multiproc_int_enable) {
7429 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
7430 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
7431 + msk |= ((emp >> ep->num) & 0x1) << 7;
7432 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
7433 + } else {
7434 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
7435 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
7436 + msk |= ((emp >> ep->num) & 0x1) << 7;
7437 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
7438 + }
7439 +
7440 +
7441 + return v;
7442 +}
7443 +/**
7444 + * This function returns the Device OUT EP Interrupt register
7445 + */
7446 +static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
7447 + dwc_ep_t *_ep)
7448 +{
7449 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
7450 + uint32_t v;
7451 + doepmsk_data_t msk = { .d32 = 0 };
7452 +
7453 + if(_core_if->multiproc_int_enable) {
7454 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
7455 + if(_core_if->pti_enh_enable) {
7456 + msk.b.pktdrpsts = 1;
7457 + }
7458 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
7459 + } else {
7460 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
7461 + if(_core_if->pti_enh_enable) {
7462 + msk.b.pktdrpsts = 1;
7463 + }
7464 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
7465 + }
7466 + return v;
7467 +}
7468 +
7469 +/**
7470 + * This function returns the Host All Channel Interrupt register
7471 + */
7472 +static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
7473 +{
7474 + return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
7475 +}
7476 +
7477 +static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
7478 +{
7479 + return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
7480 +}
7481 +
7482 +
7483 +/**
7484 + * This function returns the mode of the operation, host or device.
7485 + *
7486 + * @return 0 - Device Mode, 1 - Host Mode
7487 + */
7488 +static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
7489 +{
7490 + return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
7491 +}
7492 +
7493 +static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
7494 +{
7495 + return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
7496 +}
7497 +static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
7498 +{
7499 + return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
7500 +}
7501 +
7502 +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
7503 +
7504 +
7505 +/**@}*/
7506 +
7507 +/**
7508 + * DWC_otg CIL callback structure. This structure allows the HCD and
7509 + * PCD to register functions used for starting and stopping the PCD
7510 + * and HCD for role change on for a DRD.
7511 + */
7512 +typedef struct dwc_otg_cil_callbacks
7513 +{
7514 + /** Start function for role change */
7515 + int (*start) (void *_p);
7516 + /** Stop Function for role change */
7517 + int (*stop) (void *_p);
7518 + /** Disconnect Function for role change */
7519 + int (*disconnect) (void *_p);
7520 + /** Resume/Remote wakeup Function */
7521 + int (*resume_wakeup) (void *_p);
7522 + /** Suspend function */
7523 + int (*suspend) (void *_p);
7524 + /** Session Start (SRP) */
7525 + int (*session_start) (void *_p);
7526 + /** Pointer passed to start() and stop() */
7527 + void *p;
7528 +} dwc_otg_cil_callbacks_t;
7529 +
7530 +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
7531 + dwc_otg_cil_callbacks_t *_cb,
7532 + void *_p);
7533 +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
7534 + dwc_otg_cil_callbacks_t *_cb,
7535 + void *_p);
7536 +
7537 +#endif
7538 +
7539 --- /dev/null
7540 +++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
7541 @@ -0,0 +1,750 @@
7542 +/* ==========================================================================
7543 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
7544 + * $Revision: 1.2 $
7545 + * $Date: 2008-11-21 05:39:15 $
7546 + * $Change: 1065567 $
7547 + *
7548 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7549 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7550 + * otherwise expressly agreed to in writing between Synopsys and you.
7551 + *
7552 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7553 + * any End User Software License Agreement or Agreement for Licensed Product
7554 + * with Synopsys or any supplement thereto. You are permitted to use and
7555 + * redistribute this Software in source and binary forms, with or without
7556 + * modification, provided that redistributions of source code must retain this
7557 + * notice. You may not view, use, disclose, copy or distribute this file or
7558 + * any information contained herein except pursuant to this license grant from
7559 + * Synopsys. If you do not agree with this notice, including the disclaimer
7560 + * below, then you are not authorized to use the Software.
7561 + *
7562 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7563 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7564 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7565 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7566 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7567 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7568 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7569 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7570 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7571 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7572 + * DAMAGE.
7573 + * ========================================================================== */
7574 +
7575 +/** @file
7576 + *
7577 + * The Core Interface Layer provides basic services for accessing and
7578 + * managing the DWC_otg hardware. These services are used by both the
7579 + * Host Controller Driver and the Peripheral Controller Driver.
7580 + *
7581 + * This file contains the Common Interrupt handlers.
7582 + */
7583 +#include "linux/dwc_otg_plat.h"
7584 +#include "dwc_otg_regs.h"
7585 +#include "dwc_otg_cil.h"
7586 +
7587 +#ifdef DEBUG
7588 +inline const char *op_state_str(dwc_otg_core_if_t *core_if)
7589 +{
7590 + return (core_if->op_state==A_HOST?"a_host":
7591 + (core_if->op_state==A_SUSPEND?"a_suspend":
7592 + (core_if->op_state==A_PERIPHERAL?"a_peripheral":
7593 + (core_if->op_state==B_PERIPHERAL?"b_peripheral":
7594 + (core_if->op_state==B_HOST?"b_host":
7595 + "unknown")))));
7596 +}
7597 +#endif
7598 +
7599 +/** This function will log a debug message
7600 + *
7601 + * @param core_if Programming view of DWC_otg controller.
7602 + */
7603 +int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
7604 +{
7605 + gintsts_data_t gintsts;
7606 + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
7607 + dwc_otg_mode(core_if) ? "Host" : "Device");
7608 +
7609 + /* Clear interrupt */
7610 + gintsts.d32 = 0;
7611 + gintsts.b.modemismatch = 1;
7612 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
7613 + return 1;
7614 +}
7615 +
7616 +/** Start the HCD. Helper function for using the HCD callbacks.
7617 + *
7618 + * @param core_if Programming view of DWC_otg controller.
7619 + */
7620 +static inline void hcd_start(dwc_otg_core_if_t *core_if)
7621 +{
7622 + if (core_if->hcd_cb && core_if->hcd_cb->start) {
7623 + core_if->hcd_cb->start(core_if->hcd_cb->p);
7624 + }
7625 +}
7626 +/** Stop the HCD. Helper function for using the HCD callbacks.
7627 + *
7628 + * @param core_if Programming view of DWC_otg controller.
7629 + */
7630 +static inline void hcd_stop(dwc_otg_core_if_t *core_if)
7631 +{
7632 + if (core_if->hcd_cb && core_if->hcd_cb->stop) {
7633 + core_if->hcd_cb->stop(core_if->hcd_cb->p);
7634 + }
7635 +}
7636 +/** Disconnect the HCD. Helper function for using the HCD callbacks.
7637 + *
7638 + * @param core_if Programming view of DWC_otg controller.
7639 + */
7640 +static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
7641 +{
7642 + if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
7643 + core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
7644 + }
7645 +}
7646 +/** Inform the HCD the a New Session has begun. Helper function for
7647 + * using the HCD callbacks.
7648 + *
7649 + * @param core_if Programming view of DWC_otg controller.
7650 + */
7651 +static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
7652 +{
7653 + if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
7654 + core_if->hcd_cb->session_start(core_if->hcd_cb->p);
7655 + }
7656 +}
7657 +
7658 +/** Start the PCD. Helper function for using the PCD callbacks.
7659 + *
7660 + * @param core_if Programming view of DWC_otg controller.
7661 + */
7662 +static inline void pcd_start(dwc_otg_core_if_t *core_if)
7663 +{
7664 + if (core_if->pcd_cb && core_if->pcd_cb->start) {
7665 + core_if->pcd_cb->start(core_if->pcd_cb->p);
7666 + }
7667 +}
7668 +/** Stop the PCD. Helper function for using the PCD callbacks.
7669 + *
7670 + * @param core_if Programming view of DWC_otg controller.
7671 + */
7672 +static inline void pcd_stop(dwc_otg_core_if_t *core_if)
7673 +{
7674 + if (core_if->pcd_cb && core_if->pcd_cb->stop) {
7675 + core_if->pcd_cb->stop(core_if->pcd_cb->p);
7676 + }
7677 +}
7678 +/** Suspend the PCD. Helper function for using the PCD callbacks.
7679 + *
7680 + * @param core_if Programming view of DWC_otg controller.
7681 + */
7682 +static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
7683 +{
7684 + if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
7685 + core_if->pcd_cb->suspend(core_if->pcd_cb->p);
7686 + }
7687 +}
7688 +/** Resume the PCD. Helper function for using the PCD callbacks.
7689 + *
7690 + * @param core_if Programming view of DWC_otg controller.
7691 + */
7692 +static inline void pcd_resume(dwc_otg_core_if_t *core_if)
7693 +{
7694 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
7695 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
7696 + }
7697 +}
7698 +
7699 +/**
7700 + * This function handles the OTG Interrupts. It reads the OTG
7701 + * Interrupt Register (GOTGINT) to determine what interrupt has
7702 + * occurred.
7703 + *
7704 + * @param core_if Programming view of DWC_otg controller.
7705 + */
7706 +int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
7707 +{
7708 + dwc_otg_core_global_regs_t *global_regs =
7709 + core_if->core_global_regs;
7710 + gotgint_data_t gotgint;
7711 + gotgctl_data_t gotgctl;
7712 + gintmsk_data_t gintmsk;
7713 +
7714 + gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
7715 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7716 + DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
7717 +
7718 + if (gotgint.b.sesenddet) {
7719 + DWC_DEBUGPL(DBG_ANY, "OTG Interrupt: "
7720 + "Session End Detected++ (%s)\n",
7721 + op_state_str(core_if));
7722 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7723 +
7724 + if (core_if->op_state == B_HOST) {
7725 + pcd_start(core_if);
7726 + core_if->op_state = B_PERIPHERAL;
7727 + } else {
7728 + /* If not B_HOST and Device HNP still set. HNP
7729 + * Did not succeed!*/
7730 + if (gotgctl.b.devhnpen) {
7731 + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
7732 + DWC_ERROR("Device Not Connected/Responding!\n");
7733 + }
7734 +
7735 + /* If Session End Detected the B-Cable has
7736 + * been disconnected. */
7737 + /* Reset PCD and Gadget driver to a
7738 + * clean state. */
7739 + pcd_stop(core_if);
7740 + }
7741 + gotgctl.d32 = 0;
7742 + gotgctl.b.devhnpen = 1;
7743 + dwc_modify_reg32(&global_regs->gotgctl,
7744 + gotgctl.d32, 0);
7745 + }
7746 + if (gotgint.b.sesreqsucstschng) {
7747 + DWC_DEBUGPL(DBG_ANY, " OTG Interrupt: "
7748 + "Session Reqeust Success Status Change++\n");
7749 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7750 + if (gotgctl.b.sesreqscs) {
7751 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
7752 + (core_if->core_params->i2c_enable)) {
7753 + core_if->srp_success = 1;
7754 + }
7755 + else {
7756 + pcd_resume(core_if);
7757 + /* Clear Session Request */
7758 + gotgctl.d32 = 0;
7759 + gotgctl.b.sesreq = 1;
7760 + dwc_modify_reg32(&global_regs->gotgctl,
7761 + gotgctl.d32, 0);
7762 + }
7763 + }
7764 + }
7765 + if (gotgint.b.hstnegsucstschng) {
7766 + /* Print statements during the HNP interrupt handling
7767 + * can cause it to fail.*/
7768 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
7769 + if (gotgctl.b.hstnegscs) {
7770 + if (dwc_otg_is_host_mode(core_if)) {
7771 + core_if->op_state = B_HOST;
7772 + /*
7773 + * Need to disable SOF interrupt immediately.
7774 + * When switching from device to host, the PCD
7775 + * interrupt handler won't handle the
7776 + * interrupt if host mode is already set. The
7777 + * HCD interrupt handler won't get called if
7778 + * the HCD state is HALT. This means that the
7779 + * interrupt does not get handled and Linux
7780 + * complains loudly.
7781 + */
7782 + gintmsk.d32 = 0;
7783 + gintmsk.b.sofintr = 1;
7784 + dwc_modify_reg32(&global_regs->gintmsk,
7785 + gintmsk.d32, 0);
7786 + pcd_stop(core_if);
7787 + /*
7788 + * Initialize the Core for Host mode.
7789 + */
7790 + hcd_start(core_if);
7791 + core_if->op_state = B_HOST;
7792 + }
7793 + } else {
7794 + gotgctl.d32 = 0;
7795 + gotgctl.b.hnpreq = 1;
7796 + gotgctl.b.devhnpen = 1;
7797 + dwc_modify_reg32(&global_regs->gotgctl,
7798 + gotgctl.d32, 0);
7799 + DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
7800 + DWC_ERROR("Device Not Connected/Responding\n");
7801 + }
7802 + }
7803 + if (gotgint.b.hstnegdet) {
7804 + /* The disconnect interrupt is set at the same time as
7805 + * Host Negotiation Detected. During the mode
7806 + * switch all interrupts are cleared so the disconnect
7807 + * interrupt handler will not get executed.
7808 + */
7809 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7810 + "Host Negotiation Detected++ (%s)\n",
7811 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
7812 + if (dwc_otg_is_device_mode(core_if)){
7813 + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
7814 + hcd_disconnect(core_if);
7815 + pcd_start(core_if);
7816 + core_if->op_state = A_PERIPHERAL;
7817 + } else {
7818 + /*
7819 + * Need to disable SOF interrupt immediately. When
7820 + * switching from device to host, the PCD interrupt
7821 + * handler won't handle the interrupt if host mode is
7822 + * already set. The HCD interrupt handler won't get
7823 + * called if the HCD state is HALT. This means that
7824 + * the interrupt does not get handled and Linux
7825 + * complains loudly.
7826 + */
7827 + gintmsk.d32 = 0;
7828 + gintmsk.b.sofintr = 1;
7829 + dwc_modify_reg32(&global_regs->gintmsk,
7830 + gintmsk.d32, 0);
7831 + pcd_stop(core_if);
7832 + hcd_start(core_if);
7833 + core_if->op_state = A_HOST;
7834 + }
7835 + }
7836 + if (gotgint.b.adevtoutchng) {
7837 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7838 + "A-Device Timeout Change++\n");
7839 + }
7840 + if (gotgint.b.debdone) {
7841 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
7842 + "Debounce Done++\n");
7843 + }
7844 +
7845 + /* Clear GOTGINT */
7846 + dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
7847 +
7848 + return 1;
7849 +}
7850 +
7851 +
7852 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
7853 +
7854 +void w_conn_id_status_change(void *p)
7855 +{
7856 + dwc_otg_core_if_t *core_if = p;
7857 +
7858 +#else
7859 +
7860 +void w_conn_id_status_change(struct work_struct *p)
7861 +{
7862 + dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
7863 +
7864 +#endif
7865 +
7866 +
7867 + uint32_t count = 0;
7868 + gotgctl_data_t gotgctl = { .d32 = 0 };
7869 +
7870 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
7871 + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
7872 + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
7873 +
7874 + /* B-Device connector (Device Mode) */
7875 + if (gotgctl.b.conidsts) {
7876 + /* Wait for switch to device mode. */
7877 + while (!dwc_otg_is_device_mode(core_if)){
7878 + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
7879 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
7880 + MDELAY(100);
7881 + if (++count > 10000) *(uint32_t*)NULL=0;
7882 + }
7883 + core_if->op_state = B_PERIPHERAL;
7884 + dwc_otg_core_init(core_if);
7885 + dwc_otg_enable_global_interrupts(core_if);
7886 + pcd_start(core_if);
7887 + } else {
7888 + /* A-Device connector (Host Mode) */
7889 + while (!dwc_otg_is_host_mode(core_if)) {
7890 + DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
7891 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
7892 + MDELAY(100);
7893 + if (++count > 10000) *(uint32_t*)NULL=0;
7894 + }
7895 + core_if->op_state = A_HOST;
7896 + /*
7897 + * Initialize the Core for Host mode.
7898 + */
7899 + dwc_otg_core_init(core_if);
7900 + dwc_otg_enable_global_interrupts(core_if);
7901 + hcd_start(core_if);
7902 + }
7903 +}
7904 +
7905 +
7906 +/**
7907 + * This function handles the Connector ID Status Change Interrupt. It
7908 + * reads the OTG Interrupt Register (GOTCTL) to determine whether this
7909 + * is a Device to Host Mode transition or a Host Mode to Device
7910 + * Transition.
7911 + *
7912 + * This only occurs when the cable is connected/removed from the PHY
7913 + * connector.
7914 + *
7915 + * @param core_if Programming view of DWC_otg controller.
7916 + */
7917 +int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
7918 +{
7919 +
7920 + /*
7921 + * Need to disable SOF interrupt immediately. If switching from device
7922 + * to host, the PCD interrupt handler won't handle the interrupt if
7923 + * host mode is already set. The HCD interrupt handler won't get
7924 + * called if the HCD state is HALT. This means that the interrupt does
7925 + * not get handled and Linux complains loudly.
7926 + */
7927 + gintmsk_data_t gintmsk = { .d32 = 0 };
7928 + gintsts_data_t gintsts = { .d32 = 0 };
7929 +
7930 + gintmsk.b.sofintr = 1;
7931 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
7932 +
7933 + DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
7934 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
7935 +
7936 + /*
7937 + * Need to schedule a work, as there are possible DELAY function calls
7938 + */
7939 + queue_work(core_if->wq_otg, &core_if->w_conn_id);
7940 +
7941 + /* Set flag and clear interrupt */
7942 + gintsts.b.conidstschng = 1;
7943 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
7944 +
7945 + return 1;
7946 +}
7947 +
7948 +/**
7949 + * This interrupt indicates that a device is initiating the Session
7950 + * Request Protocol to request the host to turn on bus power so a new
7951 + * session can begin. The handler responds by turning on bus power. If
7952 + * the DWC_otg controller is in low power mode, the handler brings the
7953 + * controller out of low power mode before turning on bus power.
7954 + *
7955 + * @param core_if Programming view of DWC_otg controller.
7956 + */
7957 +int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
7958 +{
7959 + gintsts_data_t gintsts;
7960 +
7961 +#ifndef DWC_HOST_ONLY
7962 + hprt0_data_t hprt0;
7963 + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
7964 +
7965 + if (dwc_otg_is_device_mode(core_if)) {
7966 + DWC_PRINT("SRP: Device mode\n");
7967 + } else {
7968 + DWC_PRINT("SRP: Host mode\n");
7969 +
7970 + /* Turn on the port power bit. */
7971 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
7972 + hprt0.b.prtpwr = 1;
7973 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7974 +
7975 + /* Start the Connection timer. So a message can be displayed
7976 + * if connect does not occur within 10 seconds. */
7977 + hcd_session_start(core_if);
7978 + }
7979 +#endif
7980 +
7981 + /* Clear interrupt */
7982 + gintsts.d32 = 0;
7983 + gintsts.b.sessreqintr = 1;
7984 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
7985 +
7986 + return 1;
7987 +}
7988 +
7989 +
7990 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
7991 +void w_wakeup_detected(void *p)
7992 +{
7993 + dwc_otg_core_if_t* core_if = p;
7994 +
7995 +#else
7996 +
7997 +void w_wakeup_detected(struct work_struct *p)
7998 +{
7999 + struct delayed_work *dw = container_of(p, struct delayed_work, work);
8000 + dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
8001 +
8002 +#endif
8003 + /*
8004 + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
8005 + * so that OPT tests pass with all PHYs).
8006 + */
8007 + hprt0_data_t hprt0 = {.d32=0};
8008 +#if 0
8009 + pcgcctl_data_t pcgcctl = {.d32=0};
8010 + /* Restart the Phy Clock */
8011 + pcgcctl.b.stoppclk = 1;
8012 + dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
8013 + UDELAY(10);
8014 +#endif //0
8015 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
8016 + DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
8017 +// MDELAY(70);
8018 + hprt0.b.prtres = 0; /* Resume */
8019 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8020 + DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
8021 +}
8022 +/**
8023 + * This interrupt indicates that the DWC_otg controller has detected a
8024 + * resume or remote wakeup sequence. If the DWC_otg controller is in
8025 + * low power mode, the handler must brings the controller out of low
8026 + * power mode. The controller automatically begins resume
8027 + * signaling. The handler schedules a time to stop resume signaling.
8028 + */
8029 +int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
8030 +{
8031 + gintsts_data_t gintsts;
8032 +
8033 + DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
8034 +
8035 + if (dwc_otg_is_device_mode(core_if)) {
8036 + dctl_data_t dctl = {.d32=0};
8037 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
8038 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
8039 +#ifdef PARTIAL_POWER_DOWN
8040 + if (core_if->hwcfg4.b.power_optimiz) {
8041 + pcgcctl_data_t power = {.d32=0};
8042 +
8043 + power.d32 = dwc_read_reg32(core_if->pcgcctl);
8044 + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
8045 +
8046 + power.b.stoppclk = 0;
8047 + dwc_write_reg32(core_if->pcgcctl, power.d32);
8048 +
8049 + power.b.pwrclmp = 0;
8050 + dwc_write_reg32(core_if->pcgcctl, power.d32);
8051 +
8052 + power.b.rstpdwnmodule = 0;
8053 + dwc_write_reg32(core_if->pcgcctl, power.d32);
8054 + }
8055 +#endif
8056 + /* Clear the Remote Wakeup Signalling */
8057 + dctl.b.rmtwkupsig = 1;
8058 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
8059 + dctl.d32, 0);
8060 +
8061 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
8062 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
8063 + }
8064 +
8065 + } else {
8066 + pcgcctl_data_t pcgcctl = {.d32=0};
8067 +
8068 + /* Restart the Phy Clock */
8069 + pcgcctl.b.stoppclk = 1;
8070 + dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
8071 +
8072 + queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
8073 + }
8074 +
8075 + /* Clear interrupt */
8076 + gintsts.d32 = 0;
8077 + gintsts.b.wkupintr = 1;
8078 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
8079 +
8080 + return 1;
8081 +}
8082 +
8083 +/**
8084 + * This interrupt indicates that a device has been disconnected from
8085 + * the root port.
8086 + */
8087 +int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
8088 +{
8089 + gintsts_data_t gintsts;
8090 +
8091 + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
8092 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
8093 + op_state_str(core_if));
8094 +
8095 +/** @todo Consolidate this if statement. */
8096 +#ifndef DWC_HOST_ONLY
8097 + if (core_if->op_state == B_HOST) {
8098 + /* If in device mode Disconnect and stop the HCD, then
8099 + * start the PCD. */
8100 + hcd_disconnect(core_if);
8101 + pcd_start(core_if);
8102 + core_if->op_state = B_PERIPHERAL;
8103 + } else if (dwc_otg_is_device_mode(core_if)) {
8104 + gotgctl_data_t gotgctl = { .d32 = 0 };
8105 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
8106 + if (gotgctl.b.hstsethnpen==1) {
8107 + /* Do nothing, if HNP in process the OTG
8108 + * interrupt "Host Negotiation Detected"
8109 + * interrupt will do the mode switch.
8110 + */
8111 + } else if (gotgctl.b.devhnpen == 0) {
8112 + /* If in device mode Disconnect and stop the HCD, then
8113 + * start the PCD. */
8114 + hcd_disconnect(core_if);
8115 + pcd_start(core_if);
8116 + core_if->op_state = B_PERIPHERAL;
8117 + } else {
8118 + DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
8119 + }
8120 + } else {
8121 + if (core_if->op_state == A_HOST) {
8122 + /* A-Cable still connected but device disconnected. */
8123 + hcd_disconnect(core_if);
8124 + }
8125 + }
8126 +#endif
8127 +
8128 + gintsts.d32 = 0;
8129 + gintsts.b.disconnect = 1;
8130 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
8131 + return 1;
8132 +}
8133 +/**
8134 + * This interrupt indicates that SUSPEND state has been detected on
8135 + * the USB.
8136 + *
8137 + * For HNP the USB Suspend interrupt signals the change from
8138 + * "a_peripheral" to "a_host".
8139 + *
8140 + * When power management is enabled the core will be put in low power
8141 + * mode.
8142 + */
8143 +int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
8144 +{
8145 + dsts_data_t dsts;
8146 + gintsts_data_t gintsts;
8147 +
8148 + DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
8149 +
8150 + if (dwc_otg_is_device_mode(core_if)) {
8151 + /* Check the Device status register to determine if the Suspend
8152 + * state is active. */
8153 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
8154 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
8155 + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
8156 + "HWCFG4.power Optimize=%d\n",
8157 + dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
8158 +
8159 +
8160 +#ifdef PARTIAL_POWER_DOWN
8161 +/** @todo Add a module parameter for power management. */
8162 +
8163 + if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
8164 + pcgcctl_data_t power = {.d32=0};
8165 + DWC_DEBUGPL(DBG_CIL, "suspend\n");
8166 +
8167 + power.b.pwrclmp = 1;
8168 + dwc_write_reg32(core_if->pcgcctl, power.d32);
8169 +
8170 + power.b.rstpdwnmodule = 1;
8171 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
8172 +
8173 + power.b.stoppclk = 1;
8174 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
8175 +
8176 + } else {
8177 + DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
8178 + }
8179 +#endif
8180 + /* PCD callback for suspend. */
8181 + pcd_suspend(core_if);
8182 + } else {
8183 + if (core_if->op_state == A_PERIPHERAL) {
8184 + DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
8185 + /* Clear the a_peripheral flag, back to a_host. */
8186 + pcd_stop(core_if);
8187 + hcd_start(core_if);
8188 + core_if->op_state = A_HOST;
8189 + }
8190 + }
8191 +
8192 + /* Clear interrupt */
8193 + gintsts.d32 = 0;
8194 + gintsts.b.usbsuspend = 1;
8195 + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
8196 +
8197 + return 1;
8198 +}
8199 +
8200 +
8201 +/**
8202 + * This function returns the Core Interrupt register.
8203 + */
8204 +static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
8205 +{
8206 + gintsts_data_t gintsts;
8207 + gintmsk_data_t gintmsk;
8208 + gintmsk_data_t gintmsk_common = {.d32=0};
8209 + gintmsk_common.b.wkupintr = 1;
8210 + gintmsk_common.b.sessreqintr = 1;
8211 + gintmsk_common.b.conidstschng = 1;
8212 + gintmsk_common.b.otgintr = 1;
8213 + gintmsk_common.b.modemismatch = 1;
8214 + gintmsk_common.b.disconnect = 1;
8215 + gintmsk_common.b.usbsuspend = 1;
8216 + /** @todo: The port interrupt occurs while in device
8217 + * mode. Added code to CIL to clear the interrupt for now!
8218 + */
8219 + gintmsk_common.b.portintr = 1;
8220 +
8221 + gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
8222 + gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
8223 +#ifdef DEBUG
8224 + /* if any common interrupts set */
8225 + if (gintsts.d32 & gintmsk_common.d32) {
8226 + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
8227 + gintsts.d32, gintmsk.d32);
8228 + }
8229 +#endif
8230 +
8231 + return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
8232 +
8233 +}
8234 +
8235 +/**
8236 + * Common interrupt handler.
8237 + *
8238 + * The common interrupts are those that occur in both Host and Device mode.
8239 + * This handler handles the following interrupts:
8240 + * - Mode Mismatch Interrupt
8241 + * - Disconnect Interrupt
8242 + * - OTG Interrupt
8243 + * - Connector ID Status Change Interrupt
8244 + * - Session Request Interrupt.
8245 + * - Resume / Remote Wakeup Detected Interrupt.
8246 + *
8247 + */
8248 +int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
8249 +{
8250 + int retval = 0;
8251 + gintsts_data_t gintsts;
8252 +
8253 + gintsts.d32 = dwc_otg_read_common_intr(core_if);
8254 +
8255 + if (gintsts.b.modemismatch) {
8256 + retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
8257 + }
8258 + if (gintsts.b.otgintr) {
8259 + retval |= dwc_otg_handle_otg_intr(core_if);
8260 + }
8261 + if (gintsts.b.conidstschng) {
8262 + retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
8263 + }
8264 + if (gintsts.b.disconnect) {
8265 + retval |= dwc_otg_handle_disconnect_intr(core_if);
8266 + }
8267 + if (gintsts.b.sessreqintr) {
8268 + retval |= dwc_otg_handle_session_req_intr(core_if);
8269 + }
8270 + if (gintsts.b.wkupintr) {
8271 + retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
8272 + }
8273 + if (gintsts.b.usbsuspend) {
8274 + retval |= dwc_otg_handle_usb_suspend_intr(core_if);
8275 + }
8276 + if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
8277 + /* The port interrupt occurs while in device mode with HPRT0
8278 + * Port Enable/Disable.
8279 + */
8280 + gintsts.d32 = 0;
8281 + gintsts.b.portintr = 1;
8282 + dwc_write_reg32(&core_if->core_global_regs->gintsts,
8283 + gintsts.d32);
8284 + retval |= 1;
8285 +
8286 + }
8287 +
8288 + S3C2410X_CLEAR_EINTPEND();
8289 +
8290 + return retval;
8291 +}
8292 --- /dev/null
8293 +++ b/drivers/usb/dwc_otg/dwc_otg_driver.c
8294 @@ -0,0 +1,1273 @@
8295 +/* ==========================================================================
8296 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $
8297 + * $Revision: 1.7 $
8298 + * $Date: 2008-11-21 05:39:15 $
8299 + * $Change: 791271 $
8300 + *
8301 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
8302 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
8303 + * otherwise expressly agreed to in writing between Synopsys and you.
8304 + *
8305 + * The Software IS NOT an item of Licensed Software or Licensed Product under
8306 + * any End User Software License Agreement or Agreement for Licensed Product
8307 + * with Synopsys or any supplement thereto. You are permitted to use and
8308 + * redistribute this Software in source and binary forms, with or without
8309 + * modification, provided that redistributions of source code must retain this
8310 + * notice. You may not view, use, disclose, copy or distribute this file or
8311 + * any information contained herein except pursuant to this license grant from
8312 + * Synopsys. If you do not agree with this notice, including the disclaimer
8313 + * below, then you are not authorized to use the Software.
8314 + *
8315 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
8316 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
8317 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
8318 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
8319 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
8320 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
8321 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
8322 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
8323 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
8324 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
8325 + * DAMAGE.
8326 + * ========================================================================== */
8327 +
8328 +/** @file
8329 + * The dwc_otg_driver module provides the initialization and cleanup entry
8330 + * points for the DWC_otg driver. This module will be dynamically installed
8331 + * after Linux is booted using the insmod command. When the module is
8332 + * installed, the dwc_otg_driver_init function is called. When the module is
8333 + * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
8334 + *
8335 + * This module also defines a data structure for the dwc_otg_driver, which is
8336 + * used in conjunction with the standard ARM platform_device structure. These
8337 + * structures allow the OTG driver to comply with the standard Linux driver
8338 + * model in which devices and drivers are registered with a bus driver. This
8339 + * has the benefit that Linux can expose attributes of the driver and device
8340 + * in its special sysfs file system. Users can then read or write files in
8341 + * this file system to perform diagnostics on the driver components or the
8342 + * device.
8343 + */
8344 +
8345 +#include <linux/kernel.h>
8346 +#include <linux/module.h>
8347 +#include <linux/moduleparam.h>
8348 +#include <linux/init.h>
8349 +#include <linux/device.h>
8350 +#include <linux/errno.h>
8351 +#include <linux/types.h>
8352 +#include <linux/stat.h> /* permission constants */
8353 +#include <linux/version.h>
8354 +#include <linux/platform_device.h>
8355 +
8356 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
8357 +# include <linux/irq.h>
8358 +#endif
8359 +
8360 +#include <asm/io.h>
8361 +
8362 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
8363 +# include <asm/irq.h>
8364 +#endif
8365 +
8366 +#include "linux/dwc_otg_plat.h"
8367 +#include "dwc_otg_attr.h"
8368 +#include "dwc_otg_driver.h"
8369 +#include "dwc_otg_cil.h"
8370 +#include "dwc_otg_pcd.h"
8371 +#include "dwc_otg_hcd.h"
8372 +
8373 +#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
8374 +#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
8375 +
8376 +static const char dwc_driver_name[] = "dwc_otg";
8377 +
8378 +/*-------------------------------------------------------------------------*/
8379 +/* Encapsulate the module parameter settings */
8380 +
8381 +static dwc_otg_core_params_t dwc_otg_module_params = {
8382 + .opt = -1,
8383 + .otg_cap = -1,
8384 + .dma_enable = -1,
8385 + .dma_desc_enable = -1,
8386 + .dma_burst_size = -1,
8387 + .speed = -1,
8388 + .host_support_fs_ls_low_power = -1,
8389 + .host_ls_low_power_phy_clk = -1,
8390 + .enable_dynamic_fifo = -1,
8391 + .data_fifo_size = -1,
8392 + .dev_rx_fifo_size = -1,
8393 + .dev_nperio_tx_fifo_size = -1,
8394 + .dev_perio_tx_fifo_size = {
8395 + /* dev_perio_tx_fifo_size_1 */
8396 + -1,
8397 + -1,
8398 + -1,
8399 + -1,
8400 + -1,
8401 + -1,
8402 + -1,
8403 + -1,
8404 + -1,
8405 + -1,
8406 + -1,
8407 + -1,
8408 + -1,
8409 + -1,
8410 + -1
8411 + /* 15 */
8412 + },
8413 + .host_rx_fifo_size = -1,
8414 + .host_nperio_tx_fifo_size = -1,
8415 + .host_perio_tx_fifo_size = -1,
8416 + .max_transfer_size = -1,
8417 + .max_packet_count = -1,
8418 + .host_channels = -1,
8419 + .dev_endpoints = -1,
8420 + .phy_type = -1,
8421 + .phy_utmi_width = -1,
8422 + .phy_ulpi_ddr = -1,
8423 + .phy_ulpi_ext_vbus = -1,
8424 + .i2c_enable = -1,
8425 + .ulpi_fs_ls = -1,
8426 + .ts_dline = -1,
8427 + .en_multiple_tx_fifo = -1,
8428 + .dev_tx_fifo_size = {
8429 + /* dev_tx_fifo_size */
8430 + -1,
8431 + -1,
8432 + -1,
8433 + -1,
8434 + -1,
8435 + -1,
8436 + -1,
8437 + -1,
8438 + -1,
8439 + -1,
8440 + -1,
8441 + -1,
8442 + -1,
8443 + -1,
8444 + -1
8445 + /* 15 */
8446 + },
8447 + .thr_ctl = -1,
8448 + .tx_thr_length = -1,
8449 + .rx_thr_length = -1,
8450 + .pti_enable = -1,
8451 + .mpi_enable = -1,
8452 +};
8453 +
8454 +/**
8455 + * This function shows the Driver Version.
8456 + */
8457 +static ssize_t version_show(struct device_driver *dev, char *buf)
8458 +{
8459 + return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2, "%s\n",
8460 + DWC_DRIVER_VERSION);
8461 +}
8462 +static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
8463 +
8464 +/**
8465 + * Global Debug Level Mask.
8466 + */
8467 +uint32_t g_dbg_lvl = 0; /* OFF */
8468 +
8469 +/**
8470 + * This function shows the driver Debug Level.
8471 + */
8472 +static ssize_t dbg_level_show(struct device_driver *drv, char *buf)
8473 +{
8474 + return sprintf(buf, "0x%0x\n", g_dbg_lvl);
8475 +}
8476 +
8477 +/**
8478 + * This function stores the driver Debug Level.
8479 + */
8480 +static ssize_t dbg_level_store(struct device_driver *drv, const char *buf,
8481 + size_t count)
8482 +{
8483 + g_dbg_lvl = simple_strtoul(buf, NULL, 16);
8484 + return count;
8485 +}
8486 +static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store);
8487 +
8488 +/**
8489 + * This function is called during module intialization to verify that
8490 + * the module parameters are in a valid state.
8491 + */
8492 +static int check_parameters(dwc_otg_core_if_t *core_if)
8493 +{
8494 + int i;
8495 + int retval = 0;
8496 +
8497 +/* Checks if the parameter is outside of its valid range of values */
8498 +#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
8499 + ((dwc_otg_module_params._param_ < (_low_)) || \
8500 + (dwc_otg_module_params._param_ > (_high_)))
8501 +
8502 +/* If the parameter has been set by the user, check that the parameter value is
8503 + * within the value range of values. If not, report a module error. */
8504 +#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
8505 + do { \
8506 + if (dwc_otg_module_params._param_ != -1) { \
8507 + if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
8508 + DWC_ERROR("`%d' invalid for parameter `%s'\n", \
8509 + dwc_otg_module_params._param_, _string_); \
8510 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
8511 + retval++; \
8512 + } \
8513 + } \
8514 + } while (0)
8515 +
8516 + DWC_OTG_PARAM_ERR(opt,0,1,"opt");
8517 + DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
8518 + DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
8519 + DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
8520 + DWC_OTG_PARAM_ERR(speed,0,1,"speed");
8521 + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
8522 + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
8523 + DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
8524 + DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
8525 + DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
8526 + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
8527 + DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
8528 + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
8529 + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
8530 + DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
8531 + DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
8532 + DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
8533 + DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
8534 + DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
8535 + DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
8536 + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
8537 + DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
8538 + DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
8539 + DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
8540 +
8541 + if (dwc_otg_module_params.dma_burst_size != -1) {
8542 + if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
8543 + DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
8544 + DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
8545 + DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
8546 + DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
8547 + DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
8548 + DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
8549 + DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
8550 + DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
8551 + dwc_otg_module_params.dma_burst_size);
8552 + dwc_otg_module_params.dma_burst_size = 32;
8553 + retval++;
8554 + }
8555 +
8556 + {
8557 + uint8_t brst_sz = 0;
8558 + while(dwc_otg_module_params.dma_burst_size > 1) {
8559 + brst_sz ++;
8560 + dwc_otg_module_params.dma_burst_size >>= 1;
8561 + }
8562 + dwc_otg_module_params.dma_burst_size = brst_sz;
8563 + }
8564 + }
8565 +
8566 + if (dwc_otg_module_params.phy_utmi_width != -1) {
8567 + if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
8568 + DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
8569 + DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
8570 + dwc_otg_module_params.phy_utmi_width);
8571 + dwc_otg_module_params.phy_utmi_width = 16;
8572 + retval++;
8573 + }
8574 + }
8575 +
8576 + for (i = 0; i < 15; i++) {
8577 + /** @todo should be like above */
8578 + //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
8579 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
8580 + if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
8581 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
8582 + dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
8583 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
8584 + retval++;
8585 + }
8586 + }
8587 + }
8588 +
8589 + DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
8590 +
8591 + for (i = 0; i < 15; i++) {
8592 + /** @todo should be like above */
8593 + //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
8594 + if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
8595 + if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
8596 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
8597 + dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
8598 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
8599 + retval++;
8600 + }
8601 + }
8602 + }
8603 +
8604 + DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
8605 + DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
8606 + DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
8607 +
8608 + DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
8609 + DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
8610 +
8611 + /* At this point, all module parameters that have been set by the user
8612 + * are valid, and those that have not are left unset. Now set their
8613 + * default values and/or check the parameters against the hardware
8614 + * configurations of the OTG core. */
8615 +
8616 +/* This sets the parameter to the default value if it has not been set by the
8617 + * user */
8618 +#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
8619 + ({ \
8620 + int changed = 1; \
8621 + if (dwc_otg_module_params._param_ == -1) { \
8622 + changed = 0; \
8623 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
8624 + } \
8625 + changed; \
8626 + })
8627 +
8628 +/* This checks the macro agains the hardware configuration to see if it is
8629 + * valid. It is possible that the default value could be invalid. In this
8630 + * case, it will report a module error if the user touched the parameter.
8631 + * Otherwise it will adjust the value without any error. */
8632 +#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
8633 + ({ \
8634 + int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
8635 + int error = 0; \
8636 + if (!(_is_valid_)) { \
8637 + if (changed) { \
8638 + DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
8639 + error = 1; \
8640 + } \
8641 + dwc_otg_module_params._param_ = (_set_valid_); \
8642 + } \
8643 + error; \
8644 + })
8645 +
8646 + /* OTG Cap */
8647 + retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
8648 + ({
8649 + int valid;
8650 + valid = 1;
8651 + switch (dwc_otg_module_params.otg_cap) {
8652 + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
8653 + if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
8654 + valid = 0;
8655 + break;
8656 + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
8657 + if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
8658 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
8659 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
8660 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
8661 + valid = 0;
8662 + }
8663 + break;
8664 + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
8665 + /* always valid */
8666 + break;
8667 + }
8668 + valid;
8669 + }),
8670 + (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
8671 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
8672 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
8673 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
8674 + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
8675 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
8676 +
8677 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
8678 + ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
8679 + 0);
8680 +
8681 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
8682 + ((dwc_otg_module_params.dma_desc_enable == 1) &&
8683 + ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
8684 + 0);
8685 +
8686 + retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
8687 +
8688 + DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
8689 +
8690 + retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
8691 + "host_support_fs_ls_low_power",
8692 + 1, 0);
8693 +
8694 + retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
8695 + "enable_dynamic_fifo",
8696 + ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
8697 + (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
8698 +
8699 + retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
8700 + "data_fifo_size",
8701 + (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
8702 + core_if->hwcfg3.b.dfifo_depth);
8703 +
8704 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
8705 + "dev_rx_fifo_size",
8706 + (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
8707 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
8708 +
8709 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
8710 + "dev_nperio_tx_fifo_size",
8711 + (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
8712 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
8713 +
8714 + retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
8715 + "host_rx_fifo_size",
8716 + (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
8717 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
8718 +
8719 + retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
8720 + "host_nperio_tx_fifo_size",
8721 + (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
8722 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
8723 +
8724 + retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
8725 + "host_perio_tx_fifo_size",
8726 + (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
8727 + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
8728 +
8729 + retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
8730 + "max_transfer_size",
8731 + (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
8732 + ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
8733 +
8734 + retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
8735 + "max_packet_count",
8736 + (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
8737 + ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
8738 +
8739 + retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
8740 + "host_channels",
8741 + (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
8742 + (core_if->hwcfg2.b.num_host_chan + 1));
8743 +
8744 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
8745 + "dev_endpoints",
8746 + (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
8747 + core_if->hwcfg2.b.num_dev_ep);
8748 +
8749 +/*
8750 + * Define the following to disable the FS PHY Hardware checking. This is for
8751 + * internal testing only.
8752 + *
8753 + * #define NO_FS_PHY_HW_CHECKS
8754 + */
8755 +
8756 +#ifdef NO_FS_PHY_HW_CHECKS
8757 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
8758 + "phy_type", 1, 0);
8759 +#else
8760 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
8761 + "phy_type",
8762 + ({
8763 + int valid = 0;
8764 + if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
8765 + ((core_if->hwcfg2.b.hs_phy_type == 1) ||
8766 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
8767 + valid = 1;
8768 + }
8769 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
8770 + ((core_if->hwcfg2.b.hs_phy_type == 2) ||
8771 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
8772 + valid = 1;
8773 + }
8774 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
8775 + (core_if->hwcfg2.b.fs_phy_type == 1)) {
8776 + valid = 1;
8777 + }
8778 + valid;
8779 + }),
8780 + ({
8781 + int set = DWC_PHY_TYPE_PARAM_FS;
8782 + if (core_if->hwcfg2.b.hs_phy_type) {
8783 + if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
8784 + (core_if->hwcfg2.b.hs_phy_type == 1)) {
8785 + set = DWC_PHY_TYPE_PARAM_UTMI;
8786 + }
8787 + else {
8788 + set = DWC_PHY_TYPE_PARAM_ULPI;
8789 + }
8790 + }
8791 + set;
8792 + }));
8793 +#endif
8794 +
8795 + retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
8796 + (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
8797 + dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
8798 +
8799 + retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
8800 + "host_ls_low_power_phy_clk",
8801 + ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
8802 + ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
8803 +
8804 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
8805 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
8806 + DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
8807 + DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
8808 + DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
8809 +
8810 +#ifdef NO_FS_PHY_HW_CHECKS
8811 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
8812 +#else
8813 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
8814 + "i2c_enable",
8815 + (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
8816 + 0);
8817 +#endif
8818 +
8819 + for (i = 0; i < 15; i++) {
8820 + int changed = 1;
8821 + int error = 0;
8822 +
8823 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
8824 + changed = 0;
8825 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
8826 + }
8827 + if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
8828 + if (changed) {
8829 + DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
8830 + error = 1;
8831 + }
8832 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
8833 + }
8834 + retval += error;
8835 + }
8836 +
8837 + retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
8838 + ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
8839 + 0);
8840 +
8841 + for (i = 0; i < 15; i++) {
8842 + int changed = 1;
8843 + int error = 0;
8844 +
8845 + if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
8846 + changed = 0;
8847 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
8848 + }
8849 + if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
8850 + if (changed) {
8851 + DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
8852 + error = 1;
8853 + }
8854 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
8855 + }
8856 + retval += error;
8857 + }
8858 +
8859 + retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
8860 + ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
8861 + 0);
8862 +
8863 + DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
8864 + DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
8865 +
8866 + retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
8867 + ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
8868 + 0);
8869 +
8870 + retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
8871 + ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
8872 + 0);
8873 + return retval;
8874 +}
8875 +
8876 +/**
8877 + * This function is the top level interrupt handler for the Common
8878 + * (Device and host modes) interrupts.
8879 + */
8880 +static irqreturn_t dwc_otg_common_irq(int irq, void *dev
8881 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
8882 + , struct pt_regs *r
8883 +#endif
8884 + )
8885 +{
8886 + dwc_otg_device_t *otg_dev = dev;
8887 + int32_t retval = IRQ_NONE;
8888 +
8889 + retval = dwc_otg_handle_common_intr(otg_dev->core_if);
8890 + return IRQ_RETVAL(retval);
8891 +}
8892 +
8893 +/**
8894 + * This function is called when a platform_device is unregistered with the
8895 + * dwc_otg_driver. This happens, for example, when the rmmod command is
8896 + * executed. The device may or may not be electrically present. If it is
8897 + * present, the driver stops device processing. Any resources used on behalf
8898 + * of this device are freed.
8899 + *
8900 + * @param[in] pdev
8901 + */
8902 +static int dwc_otg_driver_remove(struct platform_device *pdev)
8903 +{
8904 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
8905 + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
8906 +
8907 + if (!otg_dev) {
8908 + /* Memory allocation for the dwc_otg_device failed. */
8909 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
8910 + return 0;
8911 + }
8912 +
8913 + /*
8914 + * Free the IRQ
8915 + */
8916 + if (otg_dev->common_irq_installed) {
8917 + free_irq(otg_dev->irq, otg_dev);
8918 + }
8919 +
8920 +#ifndef DWC_DEVICE_ONLY
8921 + if (otg_dev->hcd) {
8922 + dwc_otg_hcd_remove(&pdev->dev);
8923 + } else {
8924 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
8925 + return 0;
8926 + }
8927 +#endif
8928 +
8929 +#ifndef DWC_HOST_ONLY
8930 + if (otg_dev->pcd) {
8931 + dwc_otg_pcd_remove(&pdev->dev);
8932 + }
8933 +#endif
8934 + if (otg_dev->core_if) {
8935 + dwc_otg_cil_remove(otg_dev->core_if);
8936 + }
8937 +
8938 + /*
8939 + * Remove the device attributes
8940 + */
8941 + dwc_otg_attr_remove(otg_dev->parent);
8942 +
8943 + /* Disable USB port */
8944 + dwc_write_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0xe00), 0xf);
8945 +
8946 + /*
8947 + * Return the memory.
8948 + */
8949 + if (otg_dev->base) {
8950 + iounmap(otg_dev->base);
8951 + }
8952 +
8953 + if (otg_dev->phys_addr != 0) {
8954 + release_mem_region(otg_dev->phys_addr, otg_dev->base_len);
8955 + }
8956 +
8957 + kfree(otg_dev);
8958 +
8959 + /*
8960 + * Clear the drvdata pointer.
8961 + */
8962 + platform_set_drvdata(pdev, NULL);
8963 +
8964 + return 0;
8965 +}
8966 +
8967 +/**
8968 + * This function is called when an platform_device is bound to a
8969 + * dwc_otg_driver. It creates the driver components required to
8970 + * control the device (CIL, HCD, and PCD) and it initializes the
8971 + * device. The driver components are stored in a dwc_otg_device
8972 + * structure. A reference to the dwc_otg_device is saved in the
8973 + * platform_device. This allows the driver to access the dwc_otg_device
8974 + * structure on subsequent calls to driver methods for this device.
8975 + *
8976 + * @param[in] pdev platform_device definition
8977 + */
8978 +static int dwc_otg_driver_probe(struct platform_device *pdev)
8979 +{
8980 + int retval = 0;
8981 + uint32_t snpsid;
8982 + dwc_otg_device_t *otg_dev;
8983 + struct resource *res;
8984 +
8985 + dev_dbg(&pdev->dev, "dwc_otg_driver_probe(%p)\n", pdev);
8986 +
8987 + otg_dev= kzalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
8988 + if (!otg_dev) {
8989 + dev_err(&pdev->dev, "kmalloc of dwc_otg_device failed\n");
8990 + retval = -ENOMEM;
8991 + goto fail;
8992 + }
8993 +
8994 + otg_dev->reg_offset = 0xFFFFFFFF;
8995 +
8996 + /*
8997 + * Retrieve the memory and IRQ resources.
8998 + */
8999 + otg_dev->irq = platform_get_irq(pdev, 0);
9000 + if (otg_dev->irq <= 0) {
9001 + dev_err(&pdev->dev, "no device irq\n");
9002 + retval = -EINVAL;
9003 + goto fail;
9004 + }
9005 +
9006 + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
9007 + if (res == NULL) {
9008 + dev_err(&pdev->dev, "no CSR address\n");
9009 + retval = -EINVAL;
9010 + goto fail;
9011 + }
9012 +
9013 + otg_dev->parent = &pdev->dev;
9014 + otg_dev->phys_addr = res->start;
9015 + otg_dev->base_len = res->end - res->start + 1;
9016 + if (request_mem_region(otg_dev->phys_addr,
9017 + otg_dev->base_len,
9018 + dwc_driver_name) == NULL) {
9019 + dev_err(&pdev->dev, "request_mem_region failed\n");
9020 + retval = -EBUSY;
9021 + goto fail;
9022 + }
9023 +
9024 + /*
9025 + * Map the DWC_otg Core memory into virtual address space.
9026 + */
9027 + otg_dev->base = ioremap(otg_dev->phys_addr, otg_dev->base_len);
9028 + if (!otg_dev->base) {
9029 + dev_err(&pdev->dev, "ioremap() failed\n");
9030 + retval = -ENOMEM;
9031 + goto fail;
9032 + }
9033 + dev_dbg(&pdev->dev, "mapped base=0x%08x\n", (unsigned) otg_dev->base);
9034 +
9035 + /* Enable USB Port */
9036 + dwc_write_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0xe00), 0);
9037 +
9038 + /*
9039 + * Attempt to ensure this device is really a DWC_otg Controller.
9040 + * Read and verify the SNPSID register contents. The value should be
9041 + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
9042 + */
9043 + snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0x40));
9044 +
9045 + if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
9046 + dev_err(&pdev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
9047 + retval = -EINVAL;
9048 + goto fail;
9049 + }
9050 +
9051 + DWC_PRINT("Core Release: %x.%x%x%x\n",
9052 + (snpsid >> 12 & 0xF),
9053 + (snpsid >> 8 & 0xF),
9054 + (snpsid >> 4 & 0xF),
9055 + (snpsid & 0xF));
9056 +
9057 + /*
9058 + * Initialize driver data to point to the global DWC_otg
9059 + * Device structure.
9060 + */
9061 + platform_set_drvdata(pdev, otg_dev);
9062 + dev_dbg(&pdev->dev, "dwc_otg_device=0x%p\n", otg_dev);
9063 +
9064 +
9065 + otg_dev->core_if = dwc_otg_cil_init(otg_dev->base,
9066 + &dwc_otg_module_params);
9067 +
9068 + otg_dev->core_if->snpsid = snpsid;
9069 +
9070 + if (!otg_dev->core_if) {
9071 + dev_err(&pdev->dev, "CIL initialization failed!\n");
9072 + retval = -ENOMEM;
9073 + goto fail;
9074 + }
9075 +
9076 + /*
9077 + * Validate parameter values.
9078 + */
9079 + if (check_parameters(otg_dev->core_if)) {
9080 + retval = -EINVAL;
9081 + goto fail;
9082 + }
9083 +
9084 + /*
9085 + * Create Device Attributes in sysfs
9086 + */
9087 + //dwc_otg_attr_create(&pdev->dev);
9088 +
9089 + /*
9090 + * Disable the global interrupt until all the interrupt
9091 + * handlers are installed.
9092 + */
9093 + dwc_otg_disable_global_interrupts(otg_dev->core_if);
9094 +
9095 + /*
9096 + * Install the interrupt handler for the common interrupts before
9097 + * enabling common interrupts in core_init below.
9098 + */
9099 + DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n",
9100 + otg_dev->irq);
9101 + retval = request_irq(otg_dev->irq, dwc_otg_common_irq,
9102 + IRQF_SHARED, "dwc_otg", otg_dev);
9103 + if (retval) {
9104 + DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
9105 + retval = -EBUSY;
9106 + goto fail;
9107 + } else {
9108 + otg_dev->common_irq_installed = 1;
9109 + }
9110 +
9111 + /*
9112 + * Initialize the DWC_otg core.
9113 + */
9114 + dwc_otg_core_init(otg_dev->core_if);
9115 +
9116 +#ifndef DWC_HOST_ONLY
9117 + /*
9118 + * Initialize the PCD
9119 + */
9120 + retval = dwc_otg_pcd_init(&pdev->dev);
9121 + if (retval != 0) {
9122 + DWC_ERROR("dwc_otg_pcd_init failed\n");
9123 + otg_dev->pcd = NULL;
9124 + goto fail;
9125 + }
9126 +#endif
9127 +#ifndef DWC_DEVICE_ONLY
9128 + /*
9129 + * Initialize the HCD
9130 + */
9131 + retval = dwc_otg_hcd_init(&pdev->dev);
9132 + if (retval != 0) {
9133 + DWC_ERROR("dwc_otg_hcd_init failed\n");
9134 + otg_dev->hcd = NULL;
9135 + goto fail;
9136 + }
9137 +#endif
9138 +
9139 + /*
9140 + * Enable the global interrupt after all the interrupt
9141 + * handlers are installed.
9142 + */
9143 + dwc_otg_enable_global_interrupts(otg_dev->core_if);
9144 +
9145 + return 0;
9146 +
9147 + fail:
9148 + dwc_otg_driver_remove(pdev);
9149 + return retval;
9150 +}
9151 +
9152 +/**
9153 + * This structure defines the methods to be called by a bus driver
9154 + * during the lifecycle of a device on that bus. Both drivers and
9155 + * devices are registered with a bus driver. The bus driver matches
9156 + * devices to drivers based on information in the device and driver
9157 + * structures.
9158 + *
9159 + * The probe function is called when the bus driver matches a device
9160 + * to this driver. The remove function is called when a device is
9161 + * unregistered with the bus driver.
9162 + */
9163 +
9164 +static const struct of_device_id ralink_otg_match[] = {
9165 + { .compatible = "ralink,rt3050-otg" },
9166 + {},
9167 +};
9168 +MODULE_DEVICE_TABLE(of, ralink_otg_match);
9169 +
9170 +static struct platform_driver dwc_otg_driver = {
9171 + .driver = {
9172 + .name = (char *)dwc_driver_name,
9173 + .of_match_table = ralink_otg_match,
9174 + },
9175 + .probe = dwc_otg_driver_probe,
9176 + .remove = dwc_otg_driver_remove,
9177 +};
9178 +
9179 +/**
9180 + * This function is called when the dwc_otg_driver is installed with the
9181 + * insmod command. It registers the dwc_otg_driver structure with the
9182 + * appropriate bus driver. This will cause the dwc_otg_driver_probe function
9183 + * to be called. In addition, the bus driver will automatically expose
9184 + * attributes defined for the device and driver in the special sysfs file
9185 + * system.
9186 + *
9187 + * @return
9188 + */
9189 +static int __init dwc_otg_driver_init(void)
9190 +{
9191 + int retval = 0;
9192 + int error;
9193 +
9194 + printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
9195 +
9196 + retval = platform_driver_register(&dwc_otg_driver);
9197 + if (retval) {
9198 + printk(KERN_ERR "%s retval=%d\n", __func__, retval);
9199 + return retval;
9200 + }
9201 +
9202 + error = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version);
9203 + error = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
9204 +
9205 + return retval;
9206 +}
9207 +module_init(dwc_otg_driver_init);
9208 +
9209 +/**
9210 + * This function is called when the driver is removed from the kernel
9211 + * with the rmmod command. The driver unregisters itself with its bus
9212 + * driver.
9213 + *
9214 + */
9215 +static void __exit dwc_otg_driver_cleanup(void)
9216 +{
9217 + printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n");
9218 +
9219 + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
9220 + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
9221 +
9222 + platform_driver_unregister(&dwc_otg_driver);
9223 +
9224 + printk(KERN_INFO "%s module removed\n", dwc_driver_name);
9225 +}
9226 +module_exit(dwc_otg_driver_cleanup);
9227 +
9228 +MODULE_DESCRIPTION(DWC_DRIVER_DESC);
9229 +MODULE_AUTHOR("Synopsys Inc.");
9230 +MODULE_LICENSE("GPL");
9231 +
9232 +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
9233 +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
9234 +module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
9235 +MODULE_PARM_DESC(opt, "OPT Mode");
9236 +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
9237 +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
9238 +
9239 +module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
9240 +MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
9241 +
9242 +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
9243 +MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
9244 +module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
9245 +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
9246 +module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
9247 +MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
9248 +module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
9249 +MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
9250 +module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
9251 +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
9252 +module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
9253 +MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
9254 +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
9255 +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
9256 +module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
9257 +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
9258 +module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
9259 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
9260 +module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
9261 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
9262 +module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
9263 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
9264 +module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
9265 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
9266 +module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
9267 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
9268 +module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
9269 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
9270 +module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
9271 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
9272 +module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
9273 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
9274 +module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
9275 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
9276 +module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
9277 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
9278 +module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
9279 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
9280 +module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
9281 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
9282 +module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
9283 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
9284 +module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
9285 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
9286 +module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
9287 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
9288 +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
9289 +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
9290 +module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
9291 +MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
9292 +module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
9293 +MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
9294 +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
9295 +/** @todo Set the max to 512K, modify checks */
9296 +MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
9297 +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
9298 +MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
9299 +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
9300 +MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
9301 +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
9302 +MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
9303 +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
9304 +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
9305 +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
9306 +MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
9307 +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
9308 +MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
9309 +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
9310 +MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
9311 +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
9312 +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
9313 +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
9314 +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
9315 +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
9316 +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
9317 +module_param_named(debug, g_dbg_lvl, int, 0444);
9318 +MODULE_PARM_DESC(debug, "");
9319 +
9320 +module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
9321 +MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
9322 +module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
9323 +MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
9324 +module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
9325 +MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
9326 +module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
9327 +MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
9328 +module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
9329 +MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
9330 +module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
9331 +MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
9332 +module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
9333 +MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
9334 +module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
9335 +MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
9336 +module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
9337 +MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
9338 +module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
9339 +MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
9340 +module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
9341 +MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
9342 +module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
9343 +MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
9344 +module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
9345 +MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
9346 +module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
9347 +MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
9348 +module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
9349 +MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
9350 +module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
9351 +MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
9352 +
9353 +module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
9354 +MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
9355 +module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
9356 +MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
9357 +module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
9358 +MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
9359 +
9360 +module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
9361 +MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
9362 +
9363 +module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
9364 +MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
9365 +
9366 +/** @page "Module Parameters"
9367 + *
9368 + * The following parameters may be specified when starting the module.
9369 + * These parameters define how the DWC_otg controller should be
9370 + * configured. Parameter values are passed to the CIL initialization
9371 + * function dwc_otg_cil_init
9372 + *
9373 + * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
9374 + *
9375 +
9376 + <table>
9377 + <tr><td>Parameter Name</td><td>Meaning</td></tr>
9378 +
9379 + <tr>
9380 + <td>otg_cap</td>
9381 + <td>Specifies the OTG capabilities. The driver will automatically detect the
9382 + value for this parameter if none is specified.
9383 + - 0: HNP and SRP capable (default, if available)
9384 + - 1: SRP Only capable
9385 + - 2: No HNP/SRP capable
9386 + </td></tr>
9387 +
9388 + <tr>
9389 + <td>dma_enable</td>
9390 + <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
9391 + The driver will automatically detect the value for this parameter if none is
9392 + specified.
9393 + - 0: Slave
9394 + - 1: DMA (default, if available)
9395 + </td></tr>
9396 +
9397 + <tr>
9398 + <td>dma_burst_size</td>
9399 + <td>The DMA Burst size (applicable only for External DMA Mode).
9400 + - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
9401 + </td></tr>
9402 +
9403 + <tr>
9404 + <td>speed</td>
9405 + <td>Specifies the maximum speed of operation in host and device mode. The
9406 + actual speed depends on the speed of the attached device and the value of
9407 + phy_type.
9408 + - 0: High Speed (default)
9409 + - 1: Full Speed
9410 + </td></tr>
9411 +
9412 + <tr>
9413 + <td>host_support_fs_ls_low_power</td>
9414 + <td>Specifies whether low power mode is supported when attached to a Full
9415 + Speed or Low Speed device in host mode.
9416 + - 0: Don't support low power mode (default)
9417 + - 1: Support low power mode
9418 + </td></tr>
9419 +
9420 + <tr>
9421 + <td>host_ls_low_power_phy_clk</td>
9422 + <td>Specifies the PHY clock rate in low power mode when connected to a Low
9423 + Speed device in host mode. This parameter is applicable only if
9424 + HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
9425 + - 0: 48 MHz (default)
9426 + - 1: 6 MHz
9427 + </td></tr>
9428 +
9429 + <tr>
9430 + <td>enable_dynamic_fifo</td>
9431 + <td> Specifies whether FIFOs may be resized by the driver software.
9432 + - 0: Use cC FIFO size parameters
9433 + - 1: Allow dynamic FIFO sizing (default)
9434 + </td></tr>
9435 +
9436 + <tr>
9437 + <td>data_fifo_size</td>
9438 + <td>Total number of 4-byte words in the data FIFO memory. This memory
9439 + includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
9440 + - Values: 32 to 32768 (default 8192)
9441 +
9442 + Note: The total FIFO memory depth in the FPGA configuration is 8192.
9443 + </td></tr>
9444 +
9445 + <tr>
9446 + <td>dev_rx_fifo_size</td>
9447 + <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
9448 + FIFO sizing is enabled.
9449 + - Values: 16 to 32768 (default 1064)
9450 + </td></tr>
9451 +
9452 + <tr>
9453 + <td>dev_nperio_tx_fifo_size</td>
9454 + <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
9455 + dynamic FIFO sizing is enabled.
9456 + - Values: 16 to 32768 (default 1024)
9457 + </td></tr>
9458 +
9459 + <tr>
9460 + <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
9461 + <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
9462 + when dynamic FIFO sizing is enabled.
9463 + - Values: 4 to 768 (default 256)
9464 + </td></tr>
9465 +
9466 + <tr>
9467 + <td>host_rx_fifo_size</td>
9468 + <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
9469 + sizing is enabled.
9470 + - Values: 16 to 32768 (default 1024)
9471 + </td></tr>
9472 +
9473 + <tr>
9474 + <td>host_nperio_tx_fifo_size</td>
9475 + <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
9476 + dynamic FIFO sizing is enabled in the core.
9477 + - Values: 16 to 32768 (default 1024)
9478 + </td></tr>
9479 +
9480 + <tr>
9481 + <td>host_perio_tx_fifo_size</td>
9482 + <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
9483 + sizing is enabled.
9484 + - Values: 16 to 32768 (default 1024)
9485 + </td></tr>
9486 +
9487 + <tr>
9488 + <td>max_transfer_size</td>
9489 + <td>The maximum transfer size supported in bytes.
9490 + - Values: 2047 to 65,535 (default 65,535)
9491 + </td></tr>
9492 +
9493 + <tr>
9494 + <td>max_packet_count</td>
9495 + <td>The maximum number of packets in a transfer.
9496 + - Values: 15 to 511 (default 511)
9497 + </td></tr>
9498 +
9499 + <tr>
9500 + <td>host_channels</td>
9501 + <td>The number of host channel registers to use.
9502 + - Values: 1 to 16 (default 12)
9503 +
9504 + Note: The FPGA configuration supports a maximum of 12 host channels.
9505 + </td></tr>
9506 +
9507 + <tr>
9508 + <td>dev_endpoints</td>
9509 + <td>The number of endpoints in addition to EP0 available for device mode
9510 + operations.
9511 + - Values: 1 to 15 (default 6 IN and OUT)
9512 +
9513 + Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
9514 + addition to EP0.
9515 + </td></tr>
9516 +
9517 + <tr>
9518 + <td>phy_type</td>
9519 + <td>Specifies the type of PHY interface to use. By default, the driver will
9520 + automatically detect the phy_type.
9521 + - 0: Full Speed
9522 + - 1: UTMI+ (default, if available)
9523 + - 2: ULPI
9524 + </td></tr>
9525 +
9526 + <tr>
9527 + <td>phy_utmi_width</td>
9528 + <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
9529 + phy_type of UTMI+. Also, this parameter is applicable only if the
9530 + OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
9531 + core has been configured to work at either data path width.
9532 + - Values: 8 or 16 bits (default 16)
9533 + </td></tr>
9534 +
9535 + <tr>
9536 + <td>phy_ulpi_ddr</td>
9537 + <td>Specifies whether the ULPI operates at double or single data rate. This
9538 + parameter is only applicable if phy_type is ULPI.
9539 + - 0: single data rate ULPI interface with 8 bit wide data bus (default)
9540 + - 1: double data rate ULPI interface with 4 bit wide data bus
9541 + </td></tr>
9542 +
9543 + <tr>
9544 + <td>i2c_enable</td>
9545 + <td>Specifies whether to use the I2C interface for full speed PHY. This
9546 + parameter is only applicable if PHY_TYPE is FS.
9547 + - 0: Disabled (default)
9548 + - 1: Enabled
9549 + </td></tr>
9550 +
9551 + <tr>
9552 + <td>otg_en_multiple_tx_fifo</td>
9553 + <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs.
9554 + The driver will automatically detect the value for this parameter if none is
9555 + specified.
9556 + - 0: Disabled
9557 + - 1: Enabled (default, if available)
9558 + </td></tr>
9559 +
9560 + <tr>
9561 + <td>dev_tx_fifo_size_n (n = 1 to 15)</td>
9562 + <td>Number of 4-byte words in each of the Tx FIFOs in device mode
9563 + when dynamic FIFO sizing is enabled.
9564 + - Values: 4 to 768 (default 256)
9565 + </td></tr>
9566 +
9567 +*/
9568 --- /dev/null
9569 +++ b/drivers/usb/dwc_otg/dwc_otg_driver.h
9570 @@ -0,0 +1,83 @@
9571 +/* ==========================================================================
9572 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
9573 + * $Revision: 1.2 $
9574 + * $Date: 2008-11-21 05:39:15 $
9575 + * $Change: 1064918 $
9576 + *
9577 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
9578 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9579 + * otherwise expressly agreed to in writing between Synopsys and you.
9580 + *
9581 + * The Software IS NOT an item of Licensed Software or Licensed Product under
9582 + * any End User Software License Agreement or Agreement for Licensed Product
9583 + * with Synopsys or any supplement thereto. You are permitted to use and
9584 + * redistribute this Software in source and binary forms, with or without
9585 + * modification, provided that redistributions of source code must retain this
9586 + * notice. You may not view, use, disclose, copy or distribute this file or
9587 + * any information contained herein except pursuant to this license grant from
9588 + * Synopsys. If you do not agree with this notice, including the disclaimer
9589 + * below, then you are not authorized to use the Software.
9590 + *
9591 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
9592 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
9593 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
9594 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
9595 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
9596 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
9597 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
9598 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
9599 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
9600 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
9601 + * DAMAGE.
9602 + * ========================================================================== */
9603 +
9604 +#ifndef __DWC_OTG_DRIVER_H__
9605 +#define __DWC_OTG_DRIVER_H__
9606 +
9607 +/** @file
9608 + * This file contains the interface to the Linux driver.
9609 + */
9610 +#include "dwc_otg_cil.h"
9611 +
9612 +/* Type declarations */
9613 +struct dwc_otg_pcd;
9614 +struct dwc_otg_hcd;
9615 +
9616 +/**
9617 + * This structure is a wrapper that encapsulates the driver components used to
9618 + * manage a single DWC_otg controller.
9619 + */
9620 +typedef struct dwc_otg_device {
9621 + /** Base address returned from ioremap() */
9622 + void *base;
9623 +
9624 + struct device *parent;
9625 +
9626 + /** Pointer to the core interface structure. */
9627 + dwc_otg_core_if_t *core_if;
9628 +
9629 + /** Register offset for Diagnostic API. */
9630 + uint32_t reg_offset;
9631 +
9632 + /** Pointer to the PCD structure. */
9633 + struct dwc_otg_pcd *pcd;
9634 +
9635 + /** Pointer to the HCD structure. */
9636 + struct dwc_otg_hcd *hcd;
9637 +
9638 + /** Flag to indicate whether the common IRQ handler is installed. */
9639 + uint8_t common_irq_installed;
9640 +
9641 + /* Interrupt request number. */
9642 + unsigned int irq;
9643 +
9644 + /* Physical address of Control and Status registers, used by
9645 + * release_mem_region().
9646 + */
9647 + resource_size_t phys_addr;
9648 +
9649 + /* Length of memory region, used by release_mem_region(). */
9650 + unsigned long base_len;
9651 +} dwc_otg_device_t;
9652 +
9653 +#endif
9654 --- /dev/null
9655 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c
9656 @@ -0,0 +1,2852 @@
9657 +/* ==========================================================================
9658 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
9659 + * $Revision: 1.4 $
9660 + * $Date: 2008-11-21 05:39:15 $
9661 + * $Change: 1064940 $
9662 + *
9663 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
9664 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9665 + * otherwise expressly agreed to in writing between Synopsys and you.
9666 + *
9667 + * The Software IS NOT an item of Licensed Software or Licensed Product under
9668 + * any End User Software License Agreement or Agreement for Licensed Product
9669 + * with Synopsys or any supplement thereto. You are permitted to use and
9670 + * redistribute this Software in source and binary forms, with or without
9671 + * modification, provided that redistributions of source code must retain this
9672 + * notice. You may not view, use, disclose, copy or distribute this file or
9673 + * any information contained herein except pursuant to this license grant from
9674 + * Synopsys. If you do not agree with this notice, including the disclaimer
9675 + * below, then you are not authorized to use the Software.
9676 + *
9677 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
9678 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
9679 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
9680 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
9681 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
9682 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
9683 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
9684 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
9685 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
9686 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
9687 + * DAMAGE.
9688 + * ========================================================================== */
9689 +#ifndef DWC_DEVICE_ONLY
9690 +
9691 +/**
9692 + * @file
9693 + *
9694 + * This file contains the implementation of the HCD. In Linux, the HCD
9695 + * implements the hc_driver API.
9696 + */
9697 +#include <linux/kernel.h>
9698 +#include <linux/module.h>
9699 +#include <linux/moduleparam.h>
9700 +#include <linux/init.h>
9701 +#include <linux/device.h>
9702 +#include <linux/errno.h>
9703 +#include <linux/list.h>
9704 +#include <linux/interrupt.h>
9705 +#include <linux/string.h>
9706 +#include <linux/dma-mapping.h>
9707 +#include <linux/version.h>
9708 +
9709 +#include "dwc_otg_driver.h"
9710 +#include "dwc_otg_hcd.h"
9711 +#include "dwc_otg_regs.h"
9712 +
9713 +static const char dwc_otg_hcd_name[] = "dwc_otg";
9714 +
9715 +static const struct hc_driver dwc_otg_hc_driver = {
9716 +
9717 + .description = dwc_otg_hcd_name,
9718 + .product_desc = "DWC OTG Controller",
9719 + .hcd_priv_size = sizeof(dwc_otg_hcd_t),
9720 +
9721 + .irq = dwc_otg_hcd_irq,
9722 +
9723 + .flags = HCD_MEMORY | HCD_USB2,
9724 +
9725 + //.reset =
9726 + .start = dwc_otg_hcd_start,
9727 + //.suspend =
9728 + //.resume =
9729 + .stop = dwc_otg_hcd_stop,
9730 +
9731 + .urb_enqueue = dwc_otg_hcd_urb_enqueue,
9732 + .urb_dequeue = dwc_otg_hcd_urb_dequeue,
9733 + .endpoint_disable = dwc_otg_hcd_endpoint_disable,
9734 +
9735 + .get_frame_number = dwc_otg_hcd_get_frame_number,
9736 +
9737 + .hub_status_data = dwc_otg_hcd_hub_status_data,
9738 + .hub_control = dwc_otg_hcd_hub_control,
9739 + //.hub_suspend =
9740 + //.hub_resume =
9741 +};
9742 +
9743 +/**
9744 + * Work queue function for starting the HCD when A-Cable is connected.
9745 + * The dwc_otg_hcd_start() must be called in a process context.
9746 + */
9747 +static void hcd_start_func(
9748 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
9749 + void *_vp
9750 +#else
9751 + struct work_struct *_work
9752 +#endif
9753 + )
9754 +{
9755 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
9756 + struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp;
9757 +#else
9758 + struct delayed_work *dw = container_of(_work, struct delayed_work, work);
9759 + struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
9760 + struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
9761 +#endif
9762 + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
9763 + if (usb_hcd) {
9764 + dwc_otg_hcd_start(usb_hcd);
9765 + }
9766 +}
9767 +
9768 +/**
9769 + * HCD Callback function for starting the HCD when A-Cable is
9770 + * connected.
9771 + *
9772 + * @param p void pointer to the <code>struct usb_hcd</code>
9773 + */
9774 +static int32_t dwc_otg_hcd_start_cb(void *p)
9775 +{
9776 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
9777 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
9778 + hprt0_data_t hprt0;
9779 +
9780 + if (core_if->op_state == B_HOST) {
9781 + /*
9782 + * Reset the port. During a HNP mode switch the reset
9783 + * needs to occur within 1ms and have a duration of at
9784 + * least 50ms.
9785 + */
9786 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9787 + hprt0.b.prtrst = 1;
9788 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9789 + ((struct usb_hcd *)p)->self.is_b_host = 1;
9790 + } else {
9791 + ((struct usb_hcd *)p)->self.is_b_host = 0;
9792 + }
9793 +
9794 + /* Need to start the HCD in a non-interrupt context. */
9795 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
9796 + INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func, p);
9797 +// INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func, p);
9798 +#else
9799 +// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
9800 + INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
9801 +#endif
9802 +// schedule_work(&dwc_otg_hcd->start_work);
9803 + queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
9804 +
9805 + return 1;
9806 +}
9807 +
9808 +/**
9809 + * HCD Callback function for stopping the HCD.
9810 + *
9811 + * @param p void pointer to the <code>struct usb_hcd</code>
9812 + */
9813 +static int32_t dwc_otg_hcd_stop_cb(void *p)
9814 +{
9815 + struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
9816 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
9817 + dwc_otg_hcd_stop(usb_hcd);
9818 + return 1;
9819 +}
9820 +
9821 +static void del_xfer_timers(dwc_otg_hcd_t *hcd)
9822 +{
9823 +#ifdef DEBUG
9824 + int i;
9825 + int num_channels = hcd->core_if->core_params->host_channels;
9826 + for (i = 0; i < num_channels; i++) {
9827 + del_timer(&hcd->core_if->hc_xfer_timer[i]);
9828 + }
9829 +#endif
9830 +}
9831 +
9832 +static void del_timers(dwc_otg_hcd_t *hcd)
9833 +{
9834 + del_xfer_timers(hcd);
9835 + del_timer(&hcd->conn_timer);
9836 +}
9837 +
9838 +/**
9839 + * Processes all the URBs in a single list of QHs. Completes them with
9840 + * -ETIMEDOUT and frees the QTD.
9841 + */
9842 +static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
9843 +{
9844 + struct list_head *qh_item;
9845 + dwc_otg_qh_t *qh;
9846 + struct list_head *qtd_item;
9847 + dwc_otg_qtd_t *qtd;
9848 +
9849 + list_for_each(qh_item, qh_list) {
9850 + qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
9851 + for (qtd_item = qh->qtd_list.next;
9852 + qtd_item != &qh->qtd_list;
9853 + qtd_item = qh->qtd_list.next) {
9854 + qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
9855 + if (qtd->urb != NULL) {
9856 + dwc_otg_hcd_complete_urb(hcd, qtd->urb,
9857 + -ETIMEDOUT);
9858 + }
9859 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
9860 + }
9861 + }
9862 +}
9863 +
9864 +/**
9865 + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
9866 + * and periodic schedules. The QTD associated with each URB is removed from
9867 + * the schedule and freed. This function may be called when a disconnect is
9868 + * detected or when the HCD is being stopped.
9869 + */
9870 +static void kill_all_urbs(dwc_otg_hcd_t *hcd)
9871 +{
9872 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
9873 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
9874 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
9875 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
9876 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
9877 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
9878 +}
9879 +
9880 +/**
9881 + * HCD Callback function for disconnect of the HCD.
9882 + *
9883 + * @param p void pointer to the <code>struct usb_hcd</code>
9884 + */
9885 +static int32_t dwc_otg_hcd_disconnect_cb(void *p)
9886 +{
9887 + gintsts_data_t intr;
9888 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
9889 +
9890 + //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
9891 +
9892 + /*
9893 + * Set status flags for the hub driver.
9894 + */
9895 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
9896 + dwc_otg_hcd->flags.b.port_connect_status = 0;
9897 +
9898 + /*
9899 + * Shutdown any transfers in process by clearing the Tx FIFO Empty
9900 + * interrupt mask and status bits and disabling subsequent host
9901 + * channel interrupts.
9902 + */
9903 + intr.d32 = 0;
9904 + intr.b.nptxfempty = 1;
9905 + intr.b.ptxfempty = 1;
9906 + intr.b.hcintr = 1;
9907 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
9908 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
9909 +
9910 + del_timers(dwc_otg_hcd);
9911 +
9912 + /*
9913 + * Turn off the vbus power only if the core has transitioned to device
9914 + * mode. If still in host mode, need to keep power on to detect a
9915 + * reconnection.
9916 + */
9917 + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
9918 + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
9919 + hprt0_data_t hprt0 = { .d32=0 };
9920 + DWC_PRINT("Disconnect: PortPower off\n");
9921 + hprt0.b.prtpwr = 0;
9922 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
9923 + }
9924 +
9925 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
9926 + }
9927 +
9928 + /* Respond with an error status to all URBs in the schedule. */
9929 + kill_all_urbs(dwc_otg_hcd);
9930 +
9931 + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
9932 + /* Clean up any host channels that were in use. */
9933 + int num_channels;
9934 + int i;
9935 + dwc_hc_t *channel;
9936 + dwc_otg_hc_regs_t *hc_regs;
9937 + hcchar_data_t hcchar;
9938 +
9939 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
9940 +
9941 + if (!dwc_otg_hcd->core_if->dma_enable) {
9942 + /* Flush out any channel requests in slave mode. */
9943 + for (i = 0; i < num_channels; i++) {
9944 + channel = dwc_otg_hcd->hc_ptr_array[i];
9945 + if (list_empty(&channel->hc_list_entry)) {
9946 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
9947 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9948 + if (hcchar.b.chen) {
9949 + hcchar.b.chen = 0;
9950 + hcchar.b.chdis = 1;
9951 + hcchar.b.epdir = 0;
9952 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9953 + }
9954 + }
9955 + }
9956 + }
9957 +
9958 + for (i = 0; i < num_channels; i++) {
9959 + channel = dwc_otg_hcd->hc_ptr_array[i];
9960 + if (list_empty(&channel->hc_list_entry)) {
9961 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
9962 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9963 + if (hcchar.b.chen) {
9964 + /* Halt the channel. */
9965 + hcchar.b.chdis = 1;
9966 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9967 + }
9968 +
9969 + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
9970 + list_add_tail(&channel->hc_list_entry,
9971 + &dwc_otg_hcd->free_hc_list);
9972 + }
9973 + }
9974 + }
9975 +
9976 + /* A disconnect will end the session so the B-Device is no
9977 + * longer a B-host. */
9978 + ((struct usb_hcd *)p)->self.is_b_host = 0;
9979 + return 1;
9980 +}
9981 +
9982 +/**
9983 + * Connection timeout function. An OTG host is required to display a
9984 + * message if the device does not connect within 10 seconds.
9985 + */
9986 +void dwc_otg_hcd_connect_timeout(unsigned long ptr)
9987 +{
9988 + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
9989 + DWC_PRINT("Connect Timeout\n");
9990 + DWC_ERROR("Device Not Connected/Responding\n");
9991 +}
9992 +
9993 +/**
9994 + * Start the connection timer. An OTG host is required to display a
9995 + * message if the device does not connect within 10 seconds. The
9996 + * timer is deleted if a port connect interrupt occurs before the
9997 + * timer expires.
9998 + */
9999 +static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
10000 +{
10001 + init_timer(&hcd->conn_timer);
10002 + hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
10003 + hcd->conn_timer.data = 0;
10004 + hcd->conn_timer.expires = jiffies + (HZ * 10);
10005 + add_timer(&hcd->conn_timer);
10006 +}
10007 +
10008 +/**
10009 + * HCD Callback function for disconnect of the HCD.
10010 + *
10011 + * @param p void pointer to the <code>struct usb_hcd</code>
10012 + */
10013 +static int32_t dwc_otg_hcd_session_start_cb(void *p)
10014 +{
10015 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
10016 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
10017 + dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
10018 + return 1;
10019 +}
10020 +
10021 +/**
10022 + * HCD Callback structure for handling mode switching.
10023 + */
10024 +static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
10025 + .start = dwc_otg_hcd_start_cb,
10026 + .stop = dwc_otg_hcd_stop_cb,
10027 + .disconnect = dwc_otg_hcd_disconnect_cb,
10028 + .session_start = dwc_otg_hcd_session_start_cb,
10029 + .p = 0,
10030 +};
10031 +
10032 +/**
10033 + * Reset tasklet function
10034 + */
10035 +static void reset_tasklet_func(unsigned long data)
10036 +{
10037 + dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
10038 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
10039 + hprt0_data_t hprt0;
10040 +
10041 + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
10042 +
10043 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
10044 + hprt0.b.prtrst = 1;
10045 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
10046 + mdelay(60);
10047 +
10048 + hprt0.b.prtrst = 0;
10049 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
10050 + dwc_otg_hcd->flags.b.port_reset_change = 1;
10051 +}
10052 +
10053 +static struct tasklet_struct reset_tasklet = {
10054 + .next = NULL,
10055 + .state = 0,
10056 + .count = ATOMIC_INIT(0),
10057 + .func = reset_tasklet_func,
10058 + .data = 0,
10059 +};
10060 +
10061 +/**
10062 + * Initializes the HCD. This function allocates memory for and initializes the
10063 + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
10064 + * USB bus with the core and calls the hc_driver->start() function. It returns
10065 + * a negative error on failure.
10066 + */
10067 +int dwc_otg_hcd_init(struct device *dev)
10068 +{
10069 + dwc_otg_device_t *otg_dev = dev_get_drvdata(dev);
10070 + struct usb_hcd *hcd = NULL;
10071 + dwc_otg_hcd_t *dwc_otg_hcd = NULL;
10072 +
10073 + int num_channels;
10074 + int i;
10075 + dwc_hc_t *channel;
10076 +
10077 + int retval = 0;
10078 +
10079 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
10080 +
10081 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
10082 + /* 2.6.20+ requires dev.dma_mask to be set prior to calling usb_create_hcd() */
10083 +
10084 + /* Set device flags indicating whether the HCD supports DMA. */
10085 + if (otg_dev->core_if->dma_enable) {
10086 + DWC_PRINT("Using DMA mode\n");
10087 + dev->dma_mask = (void *)~0;
10088 + dev->coherent_dma_mask = ~0;
10089 +
10090 + if (otg_dev->core_if->dma_desc_enable) {
10091 + DWC_PRINT("Device using Descriptor DMA mode\n");
10092 + } else {
10093 + DWC_PRINT("Device using Buffer DMA mode\n");
10094 + }
10095 + } else {
10096 + DWC_PRINT("Using Slave mode\n");
10097 + dev->dma_mask = (void *)0;
10098 + dev->coherent_dma_mask = 0;
10099 + }
10100 +#endif
10101 + /*
10102 + * Allocate memory for the base HCD plus the DWC OTG HCD.
10103 + * Initialize the base HCD.
10104 + */
10105 + hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev));
10106 + if (!hcd) {
10107 + retval = -ENOMEM;
10108 + goto error1;
10109 + }
10110 +
10111 + dev_set_drvdata(dev, otg_dev);
10112 + hcd->regs = otg_dev->base;
10113 + hcd->rsrc_start = otg_dev->phys_addr;
10114 + hcd->rsrc_len = otg_dev->base_len;
10115 + hcd->self.otg_port = 1;
10116 + hcd->has_tt = 1;
10117 +
10118 + /* Initialize the DWC OTG HCD. */
10119 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10120 + dwc_otg_hcd->core_if = otg_dev->core_if;
10121 + otg_dev->hcd = dwc_otg_hcd;
10122 +
10123 + /* */
10124 + spin_lock_init(&dwc_otg_hcd->lock);
10125 +
10126 + /* Register the HCD CIL Callbacks */
10127 + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
10128 + &hcd_cil_callbacks, hcd);
10129 +
10130 + /* Initialize the non-periodic schedule. */
10131 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
10132 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
10133 +
10134 + /* Initialize the periodic schedule. */
10135 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
10136 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
10137 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
10138 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
10139 +
10140 + /*
10141 + * Create a host channel descriptor for each host channel implemented
10142 + * in the controller. Initialize the channel descriptor array.
10143 + */
10144 + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
10145 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
10146 + memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
10147 + for (i = 0; i < num_channels; i++) {
10148 + channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
10149 + if (channel == NULL) {
10150 + retval = -ENOMEM;
10151 + DWC_ERROR("%s: host channel allocation failed\n", __func__);
10152 + goto error2;
10153 + }
10154 + memset(channel, 0, sizeof(dwc_hc_t));
10155 + channel->hc_num = i;
10156 + dwc_otg_hcd->hc_ptr_array[i] = channel;
10157 +#ifdef DEBUG
10158 + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
10159 +#endif
10160 + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
10161 + }
10162 +
10163 + /* Initialize the Connection timeout timer. */
10164 + init_timer(&dwc_otg_hcd->conn_timer);
10165 +
10166 + /* Initialize reset tasklet. */
10167 + reset_tasklet.data = (unsigned long) dwc_otg_hcd;
10168 + dwc_otg_hcd->reset_tasklet = &reset_tasklet;
10169 +
10170 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
10171 + /* Set device flags indicating whether the HCD supports DMA. */
10172 + if (otg_dev->core_if->dma_enable) {
10173 + DWC_PRINT("Using DMA mode\n");
10174 + dev->dma_mask = (void *)~0;
10175 + dev->coherent_dma_mask = ~0;
10176 +
10177 + if (otg_dev->core_if->dma_desc_enable){
10178 + DWC_PRINT("Device using Descriptor DMA mode\n");
10179 + } else {
10180 + DWC_PRINT("Device using Buffer DMA mode\n");
10181 + }
10182 + } else {
10183 + DWC_PRINT("Using Slave mode\n");
10184 + dev->dma_mask = (void *)0;
10185 + dev->dev.coherent_dma_mask = 0;
10186 + }
10187 +#endif
10188 + /*
10189 + * Finish generic HCD initialization and start the HCD. This function
10190 + * allocates the DMA buffer pool, registers the USB bus, requests the
10191 + * IRQ line, and calls dwc_otg_hcd_start method.
10192 + */
10193 + retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
10194 + if (retval < 0) {
10195 + goto error2;
10196 + }
10197 +
10198 + /*
10199 + * Allocate space for storing data on status transactions. Normally no
10200 + * data is sent, but this space acts as a bit bucket. This must be
10201 + * done after usb_add_hcd since that function allocates the DMA buffer
10202 + * pool.
10203 + */
10204 + if (otg_dev->core_if->dma_enable) {
10205 + dwc_otg_hcd->status_buf =
10206 + dma_alloc_coherent(dev,
10207 + DWC_OTG_HCD_STATUS_BUF_SIZE,
10208 + &dwc_otg_hcd->status_buf_dma,
10209 + GFP_KERNEL | GFP_DMA);
10210 + } else {
10211 + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
10212 + GFP_KERNEL);
10213 + }
10214 + if (!dwc_otg_hcd->status_buf) {
10215 + retval = -ENOMEM;
10216 + DWC_ERROR("%s: status_buf allocation failed\n", __func__);
10217 + goto error3;
10218 + }
10219 +
10220 + dwc_otg_hcd->otg_dev = otg_dev;
10221 +
10222 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n",
10223 + dev_name(dev), hcd->self.busnum);
10224 +
10225 + return 0;
10226 +
10227 + /* Error conditions */
10228 + error3:
10229 + usb_remove_hcd(hcd);
10230 + error2:
10231 + dwc_otg_hcd_free(hcd);
10232 + usb_put_hcd(hcd);
10233 +
10234 + /* FIXME: 2008/05/03 by Steven
10235 + * write back to device:
10236 + * dwc_otg_hcd has already been released by dwc_otg_hcd_free()
10237 + */
10238 + dev_set_drvdata(dev, otg_dev);
10239 +
10240 + error1:
10241 + return retval;
10242 +}
10243 +
10244 +/**
10245 + * Removes the HCD.
10246 + * Frees memory and resources associated with the HCD and deregisters the bus.
10247 + */
10248 +void dwc_otg_hcd_remove(struct device *dev)
10249 +{
10250 + dwc_otg_device_t *otg_dev = dev_get_drvdata(dev);
10251 + dwc_otg_hcd_t *dwc_otg_hcd;
10252 + struct usb_hcd *hcd;
10253 +
10254 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
10255 +
10256 + if (!otg_dev) {
10257 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
10258 + return;
10259 + }
10260 +
10261 + dwc_otg_hcd = otg_dev->hcd;
10262 +
10263 + if (!dwc_otg_hcd) {
10264 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
10265 + return;
10266 + }
10267 +
10268 + hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
10269 +
10270 + if (!hcd) {
10271 + DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
10272 + return;
10273 + }
10274 +
10275 + /* Turn off all interrupts */
10276 + dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
10277 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
10278 +
10279 + usb_remove_hcd(hcd);
10280 + dwc_otg_hcd_free(hcd);
10281 + usb_put_hcd(hcd);
10282 +}
10283 +
10284 +/* =========================================================================
10285 + * Linux HC Driver Functions
10286 + * ========================================================================= */
10287 +
10288 +/**
10289 + * Initializes dynamic portions of the DWC_otg HCD state.
10290 + */
10291 +static void hcd_reinit(dwc_otg_hcd_t *hcd)
10292 +{
10293 + struct list_head *item;
10294 + int num_channels;
10295 + int i;
10296 + dwc_hc_t *channel;
10297 +
10298 + hcd->flags.d32 = 0;
10299 +
10300 + hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
10301 + hcd->non_periodic_channels = 0;
10302 + hcd->periodic_channels = 0;
10303 +
10304 + /*
10305 + * Put all channels in the free channel list and clean up channel
10306 + * states.
10307 + */
10308 + item = hcd->free_hc_list.next;
10309 + while (item != &hcd->free_hc_list) {
10310 + list_del(item);
10311 + item = hcd->free_hc_list.next;
10312 + }
10313 + num_channels = hcd->core_if->core_params->host_channels;
10314 + for (i = 0; i < num_channels; i++) {
10315 + channel = hcd->hc_ptr_array[i];
10316 + list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
10317 + dwc_otg_hc_cleanup(hcd->core_if, channel);
10318 + }
10319 +
10320 + /* Initialize the DWC core for host mode operation. */
10321 + dwc_otg_core_host_init(hcd->core_if);
10322 +}
10323 +
10324 +/** Initializes the DWC_otg controller and its root hub and prepares it for host
10325 + * mode operation. Activates the root port. Returns 0 on success and a negative
10326 + * error code on failure. */
10327 +int dwc_otg_hcd_start(struct usb_hcd *hcd)
10328 +{
10329 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10330 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
10331 + struct usb_bus *bus;
10332 +
10333 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
10334 + struct usb_device *udev;
10335 + int retval;
10336 +#endif
10337 +
10338 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
10339 +
10340 + bus = hcd_to_bus(hcd);
10341 +
10342 + /* Initialize the bus state. If the core is in Device Mode
10343 + * HALT the USB bus and return. */
10344 + if (dwc_otg_is_device_mode(core_if)) {
10345 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
10346 + hcd->state = HC_STATE_HALT;
10347 +#else
10348 + hcd->state = HC_STATE_RUNNING;
10349 +#endif
10350 + return 0;
10351 + }
10352 + hcd->state = HC_STATE_RUNNING;
10353 +
10354 + /* Initialize and connect root hub if one is not already attached */
10355 + if (bus->root_hub) {
10356 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
10357 + /* Inform the HUB driver to resume. */
10358 + usb_hcd_resume_root_hub(hcd);
10359 + }
10360 + else {
10361 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
10362 +
10363 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
10364 + udev = usb_alloc_dev(NULL, bus, 0);
10365 + udev->speed = USB_SPEED_HIGH;
10366 + if (!udev) {
10367 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
10368 + return -ENODEV;
10369 + }
10370 + if ((retval = usb_hcd_register_root_hub(udev, hcd)) != 0) {
10371 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval);
10372 + return -ENODEV;
10373 + }
10374 +#endif
10375 + }
10376 +
10377 + hcd_reinit(dwc_otg_hcd);
10378 +
10379 + return 0;
10380 +}
10381 +
10382 +static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
10383 +{
10384 + struct list_head *item;
10385 + dwc_otg_qh_t *qh;
10386 +
10387 + if (!qh_list->next) {
10388 + /* The list hasn't been initialized yet. */
10389 + return;
10390 + }
10391 +
10392 + /* Ensure there are no QTDs or URBs left. */
10393 + kill_urbs_in_qh_list(hcd, qh_list);
10394 +
10395 + for (item = qh_list->next; item != qh_list; item = qh_list->next) {
10396 + qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
10397 + dwc_otg_hcd_qh_remove_and_free(hcd, qh);
10398 + }
10399 +}
10400 +
10401 +/**
10402 + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
10403 + * stopped.
10404 + */
10405 +void dwc_otg_hcd_stop(struct usb_hcd *hcd)
10406 +{
10407 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10408 + hprt0_data_t hprt0 = { .d32=0 };
10409 +
10410 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
10411 +
10412 + /* Turn off all host-specific interrupts. */
10413 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
10414 +
10415 + /*
10416 + * The root hub should be disconnected before this function is called.
10417 + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
10418 + * and the QH lists (via ..._hcd_endpoint_disable).
10419 + */
10420 +
10421 + /* Turn off the vbus power */
10422 + DWC_PRINT("PortPower off\n");
10423 + hprt0.b.prtpwr = 0;
10424 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
10425 +}
10426 +
10427 +/** Returns the current frame number. */
10428 +int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
10429 +{
10430 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10431 + hfnum_data_t hfnum;
10432 +
10433 + hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
10434 + host_if->host_global_regs->hfnum);
10435 +
10436 +#ifdef DEBUG_SOF
10437 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
10438 +#endif
10439 + return hfnum.b.frnum;
10440 +}
10441 +
10442 +/**
10443 + * Frees secondary storage associated with the dwc_otg_hcd structure contained
10444 + * in the struct usb_hcd field.
10445 + */
10446 +void dwc_otg_hcd_free(struct usb_hcd *hcd)
10447 +{
10448 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10449 + int i;
10450 +
10451 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
10452 +
10453 + del_timers(dwc_otg_hcd);
10454 +
10455 + /* Free memory for QH/QTD lists */
10456 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
10457 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
10458 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
10459 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
10460 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
10461 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
10462 +
10463 + /* Free memory for the host channels. */
10464 + for (i = 0; i < MAX_EPS_CHANNELS; i++) {
10465 + dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
10466 + if (hc != NULL) {
10467 + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
10468 + kfree(hc);
10469 + }
10470 + }
10471 +
10472 + if (dwc_otg_hcd->core_if->dma_enable) {
10473 + if (dwc_otg_hcd->status_buf_dma) {
10474 + dma_free_coherent(hcd->self.controller,
10475 + DWC_OTG_HCD_STATUS_BUF_SIZE,
10476 + dwc_otg_hcd->status_buf,
10477 + dwc_otg_hcd->status_buf_dma);
10478 + }
10479 + } else if (dwc_otg_hcd->status_buf != NULL) {
10480 + kfree(dwc_otg_hcd->status_buf);
10481 + }
10482 +}
10483 +
10484 +#ifdef DEBUG
10485 +static void dump_urb_info(struct urb *urb, char* fn_name)
10486 +{
10487 + DWC_PRINT("%s, urb %p\n", fn_name, urb);
10488 + DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
10489 + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
10490 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
10491 + DWC_PRINT(" Endpoint type: %s\n",
10492 + ({char *pipetype;
10493 + switch (usb_pipetype(urb->pipe)) {
10494 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
10495 + case PIPE_BULK: pipetype = "BULK"; break;
10496 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
10497 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
10498 + default: pipetype = "UNKNOWN"; break;
10499 + }; pipetype;}));
10500 + DWC_PRINT(" Speed: %s\n",
10501 + ({char *speed;
10502 + switch (urb->dev->speed) {
10503 + case USB_SPEED_HIGH: speed = "HIGH"; break;
10504 + case USB_SPEED_FULL: speed = "FULL"; break;
10505 + case USB_SPEED_LOW: speed = "LOW"; break;
10506 + default: speed = "UNKNOWN"; break;
10507 + }; speed;}));
10508 + DWC_PRINT(" Max packet size: %d\n",
10509 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
10510 + DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
10511 + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
10512 + urb->transfer_buffer, (void *)urb->transfer_dma);
10513 + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
10514 + urb->setup_packet, (void *)urb->setup_dma);
10515 + DWC_PRINT(" Interval: %d\n", urb->interval);
10516 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
10517 + int i;
10518 + for (i = 0; i < urb->number_of_packets; i++) {
10519 + DWC_PRINT(" ISO Desc %d:\n", i);
10520 + DWC_PRINT(" offset: %d, length %d\n",
10521 + urb->iso_frame_desc[i].offset,
10522 + urb->iso_frame_desc[i].length);
10523 + }
10524 + }
10525 +}
10526 +
10527 +static void dump_channel_info(dwc_otg_hcd_t *hcd,
10528 + dwc_otg_qh_t *qh)
10529 +{
10530 + if (qh->channel != NULL) {
10531 + dwc_hc_t *hc = qh->channel;
10532 + struct list_head *item;
10533 + dwc_otg_qh_t *qh_item;
10534 + int num_channels = hcd->core_if->core_params->host_channels;
10535 + int i;
10536 +
10537 + dwc_otg_hc_regs_t *hc_regs;
10538 + hcchar_data_t hcchar;
10539 + hcsplt_data_t hcsplt;
10540 + hctsiz_data_t hctsiz;
10541 + uint32_t hcdma;
10542 +
10543 + hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
10544 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10545 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
10546 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
10547 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
10548 +
10549 + DWC_PRINT(" Assigned to channel %p:\n", hc);
10550 + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
10551 + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
10552 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
10553 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
10554 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
10555 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
10556 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
10557 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
10558 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
10559 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
10560 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
10561 + DWC_PRINT(" qh: %p\n", hc->qh);
10562 + DWC_PRINT(" NP inactive sched:\n");
10563 + list_for_each(item, &hcd->non_periodic_sched_inactive) {
10564 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
10565 + DWC_PRINT(" %p\n", qh_item);
10566 + }
10567 + DWC_PRINT(" NP active sched:\n");
10568 + list_for_each(item, &hcd->non_periodic_sched_active) {
10569 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
10570 + DWC_PRINT(" %p\n", qh_item);
10571 + }
10572 + DWC_PRINT(" Channels: \n");
10573 + for (i = 0; i < num_channels; i++) {
10574 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
10575 + DWC_PRINT(" %2d: %p\n", i, hc);
10576 + }
10577 + }
10578 +}
10579 +#endif
10580 +
10581 +/** Starts processing a USB transfer request specified by a USB Request Block
10582 + * (URB). mem_flags indicates the type of memory allocation to use while
10583 + * processing this URB. */
10584 +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
10585 + struct urb *urb,
10586 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
10587 + int mem_flags
10588 +#else
10589 + gfp_t mem_flags
10590 +#endif
10591 + )
10592 +{
10593 + int retval = 0;
10594 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10595 + dwc_otg_qtd_t *qtd;
10596 +
10597 +#ifdef DEBUG
10598 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10599 + dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
10600 + }
10601 +#endif
10602 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
10603 + /* No longer connected. */
10604 + return -ENODEV;
10605 + }
10606 +
10607 + qtd = dwc_otg_hcd_qtd_create(urb);
10608 + if (qtd == NULL) {
10609 + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
10610 + return -ENOMEM;
10611 + }
10612 +
10613 + retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
10614 + if (retval < 0) {
10615 + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
10616 + "Error status %d\n", retval);
10617 + dwc_otg_hcd_qtd_free(qtd);
10618 + }
10619 +
10620 + return retval;
10621 +}
10622 +
10623 +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
10624 + * success. */
10625 +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
10626 + struct urb *urb,
10627 + int status)
10628 +{
10629 + unsigned long flags;
10630 + dwc_otg_hcd_t *dwc_otg_hcd;
10631 + dwc_otg_qtd_t *urb_qtd;
10632 + dwc_otg_qh_t *qh;
10633 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
10634 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
10635 +#endif
10636 +
10637 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
10638 +
10639 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10640 +
10641 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
10642 +
10643 + urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
10644 + qh = (dwc_otg_qh_t *)ep->hcpriv;
10645 +
10646 +#ifdef DEBUG
10647 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10648 + dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
10649 + if (urb_qtd == qh->qtd_in_process) {
10650 + dump_channel_info(dwc_otg_hcd, qh);
10651 + }
10652 + }
10653 +#endif
10654 +
10655 + if (urb_qtd == qh->qtd_in_process) {
10656 + /* The QTD is in process (it has been assigned to a channel). */
10657 +
10658 + if (dwc_otg_hcd->flags.b.port_connect_status) {
10659 + /*
10660 + * If still connected (i.e. in host mode), halt the
10661 + * channel so it can be used for other transfers. If
10662 + * no longer connected, the host registers can't be
10663 + * written to halt the channel since the core is in
10664 + * device mode.
10665 + */
10666 + dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
10667 + DWC_OTG_HC_XFER_URB_DEQUEUE);
10668 + }
10669 + }
10670 +
10671 + /*
10672 + * Free the QTD and clean up the associated QH. Leave the QH in the
10673 + * schedule if it has any remaining QTDs.
10674 + */
10675 + dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
10676 + if (urb_qtd == qh->qtd_in_process) {
10677 + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
10678 + qh->channel = NULL;
10679 + qh->qtd_in_process = NULL;
10680 + } else if (list_empty(&qh->qtd_list)) {
10681 + dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
10682 + }
10683 +
10684 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
10685 +
10686 + urb->hcpriv = NULL;
10687 +
10688 + /* Higher layer software sets URB status. */
10689 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
10690 + usb_hcd_giveback_urb(hcd, urb, status);
10691 +#else
10692 + usb_hcd_giveback_urb(hcd, urb, NULL);
10693 +#endif
10694 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10695 + DWC_PRINT("Called usb_hcd_giveback_urb()\n");
10696 + DWC_PRINT(" urb->status = %d\n", urb->status);
10697 + }
10698 +
10699 + return 0;
10700 +}
10701 +
10702 +/** Frees resources in the DWC_otg controller related to a given endpoint. Also
10703 + * clears state in the HCD related to the endpoint. Any URBs for the endpoint
10704 + * must already be dequeued. */
10705 +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
10706 + struct usb_host_endpoint *ep)
10707 +{
10708 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10709 + dwc_otg_qh_t *qh;
10710 +
10711 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
10712 + unsigned long flags;
10713 + int retry = 0;
10714 +#endif
10715 +
10716 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
10717 + "endpoint=%d\n", ep->desc.bEndpointAddress,
10718 + dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
10719 +
10720 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
10721 +rescan:
10722 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
10723 + qh = (dwc_otg_qh_t *)(ep->hcpriv);
10724 + if (!qh)
10725 + goto done;
10726 +
10727 + /** Check that the QTD list is really empty */
10728 + if (!list_empty(&qh->qtd_list)) {
10729 + if (retry++ < 250) {
10730 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
10731 + schedule_timeout_uninterruptible(1);
10732 + goto rescan;
10733 + }
10734 +
10735 + DWC_WARN("DWC OTG HCD EP DISABLE:"
10736 + " QTD List for this endpoint is not empty\n");
10737 + }
10738 +
10739 + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
10740 + ep->hcpriv = NULL;
10741 +done:
10742 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
10743 +
10744 +#else // LINUX_VERSION_CODE
10745 +
10746 + qh = (dwc_otg_qh_t *)(ep->hcpriv);
10747 + if (qh != NULL) {
10748 +#ifdef DEBUG
10749 + /** Check that the QTD list is really empty */
10750 + if (!list_empty(&qh->qtd_list)) {
10751 + DWC_WARN("DWC OTG HCD EP DISABLE:"
10752 + " QTD List for this endpoint is not empty\n");
10753 + }
10754 +#endif
10755 + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
10756 + ep->hcpriv = NULL;
10757 + }
10758 +#endif // LINUX_VERSION_CODE
10759 +}
10760 +
10761 +/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
10762 + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
10763 + * interrupt.
10764 + *
10765 + * This function is called by the USB core when an interrupt occurs */
10766 +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd
10767 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
10768 + , struct pt_regs *regs
10769 +#endif
10770 + )
10771 +{
10772 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10773 + return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
10774 +}
10775 +
10776 +/** Creates Status Change bitmap for the root hub and root port. The bitmap is
10777 + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
10778 + * is the status change indicator for the single root port. Returns 1 if either
10779 + * change indicator is 1, otherwise returns 0. */
10780 +int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
10781 +{
10782 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
10783 +
10784 + buf[0] = 0;
10785 + buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
10786 + dwc_otg_hcd->flags.b.port_reset_change ||
10787 + dwc_otg_hcd->flags.b.port_enable_change ||
10788 + dwc_otg_hcd->flags.b.port_suspend_change ||
10789 + dwc_otg_hcd->flags.b.port_over_current_change) << 1;
10790 +
10791 +#ifdef DEBUG
10792 + if (buf[0]) {
10793 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
10794 + " Root port status changed\n");
10795 + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
10796 + dwc_otg_hcd->flags.b.port_connect_status_change);
10797 + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
10798 + dwc_otg_hcd->flags.b.port_reset_change);
10799 + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
10800 + dwc_otg_hcd->flags.b.port_enable_change);
10801 + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
10802 + dwc_otg_hcd->flags.b.port_suspend_change);
10803 + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
10804 + dwc_otg_hcd->flags.b.port_over_current_change);
10805 + }
10806 +#endif
10807 + return (buf[0] != 0);
10808 +}
10809 +
10810 +#ifdef DWC_HS_ELECT_TST
10811 +/*
10812 + * Quick and dirty hack to implement the HS Electrical Test
10813 + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
10814 + *
10815 + * This code was copied from our userspace app "hset". It sends a
10816 + * Get Device Descriptor control sequence in two parts, first the
10817 + * Setup packet by itself, followed some time later by the In and
10818 + * Ack packets. Rather than trying to figure out how to add this
10819 + * functionality to the normal driver code, we just hijack the
10820 + * hardware, using these two function to drive the hardware
10821 + * directly.
10822 + */
10823 +
10824 +dwc_otg_core_global_regs_t *global_regs;
10825 +dwc_otg_host_global_regs_t *hc_global_regs;
10826 +dwc_otg_hc_regs_t *hc_regs;
10827 +uint32_t *data_fifo;
10828 +
10829 +static void do_setup(void)
10830 +{
10831 + gintsts_data_t gintsts;
10832 + hctsiz_data_t hctsiz;
10833 + hcchar_data_t hcchar;
10834 + haint_data_t haint;
10835 + hcint_data_t hcint;
10836 +
10837 + /* Enable HAINTs */
10838 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
10839 +
10840 + /* Enable HCINTs */
10841 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
10842 +
10843 + /* Read GINTSTS */
10844 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10845 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
10846 +
10847 + /* Read HAINT */
10848 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
10849 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
10850 +
10851 + /* Read HCINT */
10852 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
10853 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
10854 +
10855 + /* Read HCCHAR */
10856 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10857 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
10858 +
10859 + /* Clear HCINT */
10860 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
10861 +
10862 + /* Clear HAINT */
10863 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
10864 +
10865 + /* Clear GINTSTS */
10866 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
10867 +
10868 + /* Read GINTSTS */
10869 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10870 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
10871 +
10872 + /*
10873 + * Send Setup packet (Get Device Descriptor)
10874 + */
10875 +
10876 + /* Make sure channel is disabled */
10877 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10878 + if (hcchar.b.chen) {
10879 + //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
10880 + hcchar.b.chdis = 1;
10881 +// hcchar.b.chen = 1;
10882 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
10883 + //sleep(1);
10884 + mdelay(1000);
10885 +
10886 + /* Read GINTSTS */
10887 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10888 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
10889 +
10890 + /* Read HAINT */
10891 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
10892 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
10893 +
10894 + /* Read HCINT */
10895 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
10896 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
10897 +
10898 + /* Read HCCHAR */
10899 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10900 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
10901 +
10902 + /* Clear HCINT */
10903 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
10904 +
10905 + /* Clear HAINT */
10906 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
10907 +
10908 + /* Clear GINTSTS */
10909 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
10910 +
10911 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10912 + //if (hcchar.b.chen) {
10913 + // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
10914 + //}
10915 + }
10916 +
10917 + /* Set HCTSIZ */
10918 + hctsiz.d32 = 0;
10919 + hctsiz.b.xfersize = 8;
10920 + hctsiz.b.pktcnt = 1;
10921 + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
10922 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
10923 +
10924 + /* Set HCCHAR */
10925 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10926 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
10927 + hcchar.b.epdir = 0;
10928 + hcchar.b.epnum = 0;
10929 + hcchar.b.mps = 8;
10930 + hcchar.b.chen = 1;
10931 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
10932 +
10933 + /* Fill FIFO with Setup data for Get Device Descriptor */
10934 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
10935 + dwc_write_reg32(data_fifo++, 0x01000680);
10936 + dwc_write_reg32(data_fifo++, 0x00080000);
10937 +
10938 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10939 + //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
10940 +
10941 + /* Wait for host channel interrupt */
10942 + do {
10943 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10944 + } while (gintsts.b.hcintr == 0);
10945 +
10946 + //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
10947 +
10948 + /* Disable HCINTs */
10949 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
10950 +
10951 + /* Disable HAINTs */
10952 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
10953 +
10954 + /* Read HAINT */
10955 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
10956 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
10957 +
10958 + /* Read HCINT */
10959 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
10960 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
10961 +
10962 + /* Read HCCHAR */
10963 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
10964 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
10965 +
10966 + /* Clear HCINT */
10967 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
10968 +
10969 + /* Clear HAINT */
10970 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
10971 +
10972 + /* Clear GINTSTS */
10973 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
10974 +
10975 + /* Read GINTSTS */
10976 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10977 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
10978 +}
10979 +
10980 +static void do_in_ack(void)
10981 +{
10982 + gintsts_data_t gintsts;
10983 + hctsiz_data_t hctsiz;
10984 + hcchar_data_t hcchar;
10985 + haint_data_t haint;
10986 + hcint_data_t hcint;
10987 + host_grxsts_data_t grxsts;
10988 +
10989 + /* Enable HAINTs */
10990 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
10991 +
10992 + /* Enable HCINTs */
10993 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
10994 +
10995 + /* Read GINTSTS */
10996 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
10997 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
10998 +
10999 + /* Read HAINT */
11000 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11001 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11002 +
11003 + /* Read HCINT */
11004 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11005 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11006 +
11007 + /* Read HCCHAR */
11008 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11009 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11010 +
11011 + /* Clear HCINT */
11012 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11013 +
11014 + /* Clear HAINT */
11015 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11016 +
11017 + /* Clear GINTSTS */
11018 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11019 +
11020 + /* Read GINTSTS */
11021 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11022 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11023 +
11024 + /*
11025 + * Receive Control In packet
11026 + */
11027 +
11028 + /* Make sure channel is disabled */
11029 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11030 + if (hcchar.b.chen) {
11031 + //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
11032 + hcchar.b.chdis = 1;
11033 + hcchar.b.chen = 1;
11034 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
11035 + //sleep(1);
11036 + mdelay(1000);
11037 +
11038 + /* Read GINTSTS */
11039 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11040 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11041 +
11042 + /* Read HAINT */
11043 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11044 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11045 +
11046 + /* Read HCINT */
11047 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11048 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11049 +
11050 + /* Read HCCHAR */
11051 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11052 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11053 +
11054 + /* Clear HCINT */
11055 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11056 +
11057 + /* Clear HAINT */
11058 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11059 +
11060 + /* Clear GINTSTS */
11061 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11062 +
11063 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11064 + //if (hcchar.b.chen) {
11065 + // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
11066 + //}
11067 + }
11068 +
11069 + /* Set HCTSIZ */
11070 + hctsiz.d32 = 0;
11071 + hctsiz.b.xfersize = 8;
11072 + hctsiz.b.pktcnt = 1;
11073 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
11074 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
11075 +
11076 + /* Set HCCHAR */
11077 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11078 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
11079 + hcchar.b.epdir = 1;
11080 + hcchar.b.epnum = 0;
11081 + hcchar.b.mps = 8;
11082 + hcchar.b.chen = 1;
11083 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
11084 +
11085 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11086 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
11087 +
11088 + /* Wait for receive status queue interrupt */
11089 + do {
11090 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11091 + } while (gintsts.b.rxstsqlvl == 0);
11092 +
11093 + //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
11094 +
11095 + /* Read RXSTS */
11096 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
11097 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
11098 +
11099 + /* Clear RXSTSQLVL in GINTSTS */
11100 + gintsts.d32 = 0;
11101 + gintsts.b.rxstsqlvl = 1;
11102 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11103 +
11104 + switch (grxsts.b.pktsts) {
11105 + case DWC_GRXSTS_PKTSTS_IN:
11106 + /* Read the data into the host buffer */
11107 + if (grxsts.b.bcnt > 0) {
11108 + int i;
11109 + int word_count = (grxsts.b.bcnt + 3) / 4;
11110 +
11111 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
11112 +
11113 + for (i = 0; i < word_count; i++) {
11114 + (void)dwc_read_reg32(data_fifo++);
11115 + }
11116 + }
11117 +
11118 + //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
11119 + break;
11120 +
11121 + default:
11122 + //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
11123 + break;
11124 + }
11125 +
11126 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11127 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
11128 +
11129 + /* Wait for receive status queue interrupt */
11130 + do {
11131 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11132 + } while (gintsts.b.rxstsqlvl == 0);
11133 +
11134 + //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
11135 +
11136 + /* Read RXSTS */
11137 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
11138 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
11139 +
11140 + /* Clear RXSTSQLVL in GINTSTS */
11141 + gintsts.d32 = 0;
11142 + gintsts.b.rxstsqlvl = 1;
11143 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11144 +
11145 + switch (grxsts.b.pktsts) {
11146 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
11147 + break;
11148 +
11149 + default:
11150 + //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
11151 + break;
11152 + }
11153 +
11154 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11155 + //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
11156 +
11157 + /* Wait for host channel interrupt */
11158 + do {
11159 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11160 + } while (gintsts.b.hcintr == 0);
11161 +
11162 + //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
11163 +
11164 + /* Read HAINT */
11165 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11166 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11167 +
11168 + /* Read HCINT */
11169 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11170 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11171 +
11172 + /* Read HCCHAR */
11173 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11174 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11175 +
11176 + /* Clear HCINT */
11177 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11178 +
11179 + /* Clear HAINT */
11180 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11181 +
11182 + /* Clear GINTSTS */
11183 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11184 +
11185 + /* Read GINTSTS */
11186 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11187 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11188 +
11189 +// usleep(100000);
11190 +// mdelay(100);
11191 + mdelay(1);
11192 +
11193 + /*
11194 + * Send handshake packet
11195 + */
11196 +
11197 + /* Read HAINT */
11198 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11199 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11200 +
11201 + /* Read HCINT */
11202 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11203 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11204 +
11205 + /* Read HCCHAR */
11206 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11207 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11208 +
11209 + /* Clear HCINT */
11210 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11211 +
11212 + /* Clear HAINT */
11213 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11214 +
11215 + /* Clear GINTSTS */
11216 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11217 +
11218 + /* Read GINTSTS */
11219 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11220 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11221 +
11222 + /* Make sure channel is disabled */
11223 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11224 + if (hcchar.b.chen) {
11225 + //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
11226 + hcchar.b.chdis = 1;
11227 + hcchar.b.chen = 1;
11228 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
11229 + //sleep(1);
11230 + mdelay(1000);
11231 +
11232 + /* Read GINTSTS */
11233 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11234 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11235 +
11236 + /* Read HAINT */
11237 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11238 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11239 +
11240 + /* Read HCINT */
11241 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11242 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11243 +
11244 + /* Read HCCHAR */
11245 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11246 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11247 +
11248 + /* Clear HCINT */
11249 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11250 +
11251 + /* Clear HAINT */
11252 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11253 +
11254 + /* Clear GINTSTS */
11255 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11256 +
11257 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11258 + //if (hcchar.b.chen) {
11259 + // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
11260 + //}
11261 + }
11262 +
11263 + /* Set HCTSIZ */
11264 + hctsiz.d32 = 0;
11265 + hctsiz.b.xfersize = 0;
11266 + hctsiz.b.pktcnt = 1;
11267 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
11268 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
11269 +
11270 + /* Set HCCHAR */
11271 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11272 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
11273 + hcchar.b.epdir = 0;
11274 + hcchar.b.epnum = 0;
11275 + hcchar.b.mps = 8;
11276 + hcchar.b.chen = 1;
11277 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
11278 +
11279 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11280 + //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
11281 +
11282 + /* Wait for host channel interrupt */
11283 + do {
11284 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11285 + } while (gintsts.b.hcintr == 0);
11286 +
11287 + //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
11288 +
11289 + /* Disable HCINTs */
11290 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
11291 +
11292 + /* Disable HAINTs */
11293 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
11294 +
11295 + /* Read HAINT */
11296 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
11297 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
11298 +
11299 + /* Read HCINT */
11300 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
11301 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
11302 +
11303 + /* Read HCCHAR */
11304 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
11305 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
11306 +
11307 + /* Clear HCINT */
11308 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
11309 +
11310 + /* Clear HAINT */
11311 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
11312 +
11313 + /* Clear GINTSTS */
11314 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
11315 +
11316 + /* Read GINTSTS */
11317 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
11318 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
11319 +}
11320 +#endif /* DWC_HS_ELECT_TST */
11321 +
11322 +/** Handles hub class-specific requests. */
11323 +int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
11324 + u16 typeReq,
11325 + u16 wValue,
11326 + u16 wIndex,
11327 + char *buf,
11328 + u16 wLength)
11329 +{
11330 + int retval = 0;
11331 +
11332 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
11333 + dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
11334 + struct usb_hub_descriptor *desc;
11335 + hprt0_data_t hprt0 = {.d32 = 0};
11336 +
11337 + uint32_t port_status;
11338 +
11339 + switch (typeReq) {
11340 + case ClearHubFeature:
11341 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11342 + "ClearHubFeature 0x%x\n", wValue);
11343 + switch (wValue) {
11344 + case C_HUB_LOCAL_POWER:
11345 + case C_HUB_OVER_CURRENT:
11346 + /* Nothing required here */
11347 + break;
11348 + default:
11349 + retval = -EINVAL;
11350 + DWC_ERROR("DWC OTG HCD - "
11351 + "ClearHubFeature request %xh unknown\n", wValue);
11352 + }
11353 + break;
11354 + case ClearPortFeature:
11355 + if (!wIndex || wIndex > 1)
11356 + goto error;
11357 +
11358 + switch (wValue) {
11359 + case USB_PORT_FEAT_ENABLE:
11360 + DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
11361 + "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
11362 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11363 + hprt0.b.prtena = 1;
11364 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11365 + break;
11366 + case USB_PORT_FEAT_SUSPEND:
11367 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11368 + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
11369 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11370 + hprt0.b.prtres = 1;
11371 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11372 + /* Clear Resume bit */
11373 + mdelay(100);
11374 + hprt0.b.prtres = 0;
11375 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11376 + break;
11377 + case USB_PORT_FEAT_POWER:
11378 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11379 + "ClearPortFeature USB_PORT_FEAT_POWER\n");
11380 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11381 + hprt0.b.prtpwr = 0;
11382 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11383 + break;
11384 + case USB_PORT_FEAT_INDICATOR:
11385 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11386 + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
11387 + /* Port inidicator not supported */
11388 + break;
11389 + case USB_PORT_FEAT_C_CONNECTION:
11390 + /* Clears drivers internal connect status change
11391 + * flag */
11392 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11393 + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
11394 + dwc_otg_hcd->flags.b.port_connect_status_change = 0;
11395 + break;
11396 + case USB_PORT_FEAT_C_RESET:
11397 + /* Clears the driver's internal Port Reset Change
11398 + * flag */
11399 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11400 + "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
11401 + dwc_otg_hcd->flags.b.port_reset_change = 0;
11402 + break;
11403 + case USB_PORT_FEAT_C_ENABLE:
11404 + /* Clears the driver's internal Port
11405 + * Enable/Disable Change flag */
11406 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11407 + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
11408 + dwc_otg_hcd->flags.b.port_enable_change = 0;
11409 + break;
11410 + case USB_PORT_FEAT_C_SUSPEND:
11411 + /* Clears the driver's internal Port Suspend
11412 + * Change flag, which is set when resume signaling on
11413 + * the host port is complete */
11414 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11415 + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
11416 + dwc_otg_hcd->flags.b.port_suspend_change = 0;
11417 + break;
11418 + case USB_PORT_FEAT_C_OVER_CURRENT:
11419 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11420 + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
11421 + dwc_otg_hcd->flags.b.port_over_current_change = 0;
11422 + break;
11423 + default:
11424 + retval = -EINVAL;
11425 + DWC_ERROR("DWC OTG HCD - "
11426 + "ClearPortFeature request %xh "
11427 + "unknown or unsupported\n", wValue);
11428 + }
11429 + break;
11430 + case GetHubDescriptor:
11431 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11432 + "GetHubDescriptor\n");
11433 + desc = (struct usb_hub_descriptor *)buf;
11434 + desc->bDescLength = 9;
11435 + desc->bDescriptorType = 0x29;
11436 + desc->bNbrPorts = 1;
11437 + desc->wHubCharacteristics = 0x08;
11438 + desc->bPwrOn2PwrGood = 1;
11439 + desc->bHubContrCurrent = 0;
11440 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,39)
11441 + desc->u.hs.DeviceRemovable[0] = 0;
11442 + desc->u.hs.DeviceRemovable[1] = 0xff;
11443 +#endif
11444 + break;
11445 + case GetHubStatus:
11446 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11447 + "GetHubStatus\n");
11448 + memset(buf, 0, 4);
11449 + break;
11450 + case GetPortStatus:
11451 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11452 + "GetPortStatus\n");
11453 +
11454 + if (!wIndex || wIndex > 1)
11455 + goto error;
11456 +
11457 + port_status = 0;
11458 +
11459 + if (dwc_otg_hcd->flags.b.port_connect_status_change)
11460 + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
11461 +
11462 + if (dwc_otg_hcd->flags.b.port_enable_change)
11463 + port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
11464 +
11465 + if (dwc_otg_hcd->flags.b.port_suspend_change)
11466 + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
11467 +
11468 + if (dwc_otg_hcd->flags.b.port_reset_change)
11469 + port_status |= (1 << USB_PORT_FEAT_C_RESET);
11470 +
11471 + if (dwc_otg_hcd->flags.b.port_over_current_change) {
11472 + DWC_ERROR("Device Not Supported\n");
11473 + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
11474 + }
11475 +
11476 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
11477 + /*
11478 + * The port is disconnected, which means the core is
11479 + * either in device mode or it soon will be. Just
11480 + * return 0's for the remainder of the port status
11481 + * since the port register can't be read if the core
11482 + * is in device mode.
11483 + */
11484 + *((__le32 *) buf) = cpu_to_le32(port_status);
11485 + break;
11486 + }
11487 +
11488 + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
11489 + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
11490 +
11491 + if (hprt0.b.prtconnsts)
11492 + port_status |= (1 << USB_PORT_FEAT_CONNECTION);
11493 +
11494 + if (hprt0.b.prtena)
11495 + port_status |= (1 << USB_PORT_FEAT_ENABLE);
11496 +
11497 + if (hprt0.b.prtsusp)
11498 + port_status |= (1 << USB_PORT_FEAT_SUSPEND);
11499 +
11500 + if (hprt0.b.prtovrcurract)
11501 + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
11502 +
11503 + if (hprt0.b.prtrst)
11504 + port_status |= (1 << USB_PORT_FEAT_RESET);
11505 +
11506 + if (hprt0.b.prtpwr)
11507 + port_status |= (1 << USB_PORT_FEAT_POWER);
11508 +
11509 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
11510 + port_status |= USB_PORT_STAT_HIGH_SPEED;
11511 + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
11512 + port_status |= USB_PORT_STAT_LOW_SPEED;
11513 +
11514 + if (hprt0.b.prttstctl)
11515 + port_status |= (1 << USB_PORT_FEAT_TEST);
11516 +
11517 + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
11518 +
11519 + *((__le32 *) buf) = cpu_to_le32(port_status);
11520 +
11521 + break;
11522 + case SetHubFeature:
11523 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11524 + "SetHubFeature\n");
11525 + /* No HUB features supported */
11526 + break;
11527 + case SetPortFeature:
11528 + if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
11529 + goto error;
11530 +
11531 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
11532 + /*
11533 + * The port is disconnected, which means the core is
11534 + * either in device mode or it soon will be. Just
11535 + * return without doing anything since the port
11536 + * register can't be written if the core is in device
11537 + * mode.
11538 + */
11539 + break;
11540 + }
11541 +
11542 + switch (wValue) {
11543 + case USB_PORT_FEAT_SUSPEND:
11544 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11545 + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
11546 + if (hcd->self.otg_port == wIndex &&
11547 + hcd->self.b_hnp_enable) {
11548 + gotgctl_data_t gotgctl = {.d32=0};
11549 + gotgctl.b.hstsethnpen = 1;
11550 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
11551 + 0, gotgctl.d32);
11552 + core_if->op_state = A_SUSPEND;
11553 + }
11554 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11555 + hprt0.b.prtsusp = 1;
11556 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11557 + //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
11558 + /* Suspend the Phy Clock */
11559 + {
11560 + pcgcctl_data_t pcgcctl = {.d32=0};
11561 + pcgcctl.b.stoppclk = 1;
11562 + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
11563 + }
11564 +
11565 + /* For HNP the bus must be suspended for at least 200ms. */
11566 + if (hcd->self.b_hnp_enable) {
11567 + mdelay(200);
11568 + //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
11569 + }
11570 + break;
11571 + case USB_PORT_FEAT_POWER:
11572 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11573 + "SetPortFeature - USB_PORT_FEAT_POWER\n");
11574 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11575 + hprt0.b.prtpwr = 1;
11576 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11577 + break;
11578 + case USB_PORT_FEAT_RESET:
11579 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11580 + "SetPortFeature - USB_PORT_FEAT_RESET\n");
11581 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11582 + /* When B-Host the Port reset bit is set in
11583 + * the Start HCD Callback function, so that
11584 + * the reset is started within 1ms of the HNP
11585 + * success interrupt. */
11586 + if (!hcd->self.is_b_host) {
11587 + hprt0.b.prtrst = 1;
11588 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11589 + }
11590 + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
11591 + MDELAY(60);
11592 + hprt0.b.prtrst = 0;
11593 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11594 + break;
11595 +
11596 +#ifdef DWC_HS_ELECT_TST
11597 + case USB_PORT_FEAT_TEST:
11598 + {
11599 + uint32_t t;
11600 + gintmsk_data_t gintmsk;
11601 +
11602 + t = (wIndex >> 8); /* MSB wIndex USB */
11603 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11604 + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
11605 + warn("USB_PORT_FEAT_TEST %d\n", t);
11606 + if (t < 6) {
11607 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11608 + hprt0.b.prttstctl = t;
11609 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11610 + } else {
11611 + /* Setup global vars with reg addresses (quick and
11612 + * dirty hack, should be cleaned up)
11613 + */
11614 + global_regs = core_if->core_global_regs;
11615 + hc_global_regs = core_if->host_if->host_global_regs;
11616 + hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
11617 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
11618 +
11619 + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
11620 + /* Save current interrupt mask */
11621 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
11622 +
11623 + /* Disable all interrupts while we muck with
11624 + * the hardware directly
11625 + */
11626 + dwc_write_reg32(&global_regs->gintmsk, 0);
11627 +
11628 + /* 15 second delay per the test spec */
11629 + mdelay(15000);
11630 +
11631 + /* Drive suspend on the root port */
11632 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11633 + hprt0.b.prtsusp = 1;
11634 + hprt0.b.prtres = 0;
11635 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11636 +
11637 + /* 15 second delay per the test spec */
11638 + mdelay(15000);
11639 +
11640 + /* Drive resume on the root port */
11641 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
11642 + hprt0.b.prtsusp = 0;
11643 + hprt0.b.prtres = 1;
11644 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11645 + mdelay(100);
11646 +
11647 + /* Clear the resume bit */
11648 + hprt0.b.prtres = 0;
11649 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
11650 +
11651 + /* Restore interrupts */
11652 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
11653 + } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
11654 + /* Save current interrupt mask */
11655 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
11656 +
11657 + /* Disable all interrupts while we muck with
11658 + * the hardware directly
11659 + */
11660 + dwc_write_reg32(&global_regs->gintmsk, 0);
11661 +
11662 + /* 15 second delay per the test spec */
11663 + mdelay(15000);
11664 +
11665 + /* Send the Setup packet */
11666 + do_setup();
11667 +
11668 + /* 15 second delay so nothing else happens for awhile */
11669 + mdelay(15000);
11670 +
11671 + /* Restore interrupts */
11672 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
11673 + } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
11674 + /* Save current interrupt mask */
11675 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
11676 +
11677 + /* Disable all interrupts while we muck with
11678 + * the hardware directly
11679 + */
11680 + dwc_write_reg32(&global_regs->gintmsk, 0);
11681 +
11682 + /* Send the Setup packet */
11683 + do_setup();
11684 +
11685 + /* 15 second delay so nothing else happens for awhile */
11686 + mdelay(15000);
11687 +
11688 + /* Send the In and Ack packets */
11689 + do_in_ack();
11690 +
11691 + /* 15 second delay so nothing else happens for awhile */
11692 + mdelay(15000);
11693 +
11694 + /* Restore interrupts */
11695 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
11696 + }
11697 + }
11698 + break;
11699 + }
11700 +#endif /* DWC_HS_ELECT_TST */
11701 +
11702 + case USB_PORT_FEAT_INDICATOR:
11703 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
11704 + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
11705 + /* Not supported */
11706 + break;
11707 + default:
11708 + retval = -EINVAL;
11709 + DWC_ERROR("DWC OTG HCD - "
11710 + "SetPortFeature request %xh "
11711 + "unknown or unsupported\n", wValue);
11712 + break;
11713 + }
11714 + break;
11715 + default:
11716 + error:
11717 + retval = -EINVAL;
11718 + DWC_WARN("DWC OTG HCD - "
11719 + "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
11720 + typeReq, wIndex, wValue);
11721 + break;
11722 + }
11723 +
11724 + return retval;
11725 +}
11726 +
11727 +/**
11728 + * Assigns transactions from a QTD to a free host channel and initializes the
11729 + * host channel to perform the transactions. The host channel is removed from
11730 + * the free list.
11731 + *
11732 + * @param hcd The HCD state structure.
11733 + * @param qh Transactions from the first QTD for this QH are selected and
11734 + * assigned to a free host channel.
11735 + */
11736 +static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
11737 +{
11738 + dwc_hc_t *hc;
11739 + dwc_otg_qtd_t *qtd;
11740 + struct urb *urb;
11741 +
11742 + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
11743 +
11744 + hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
11745 +
11746 + /* Remove the host channel from the free list. */
11747 + list_del_init(&hc->hc_list_entry);
11748 +
11749 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
11750 + urb = qtd->urb;
11751 + qh->channel = hc;
11752 + qh->qtd_in_process = qtd;
11753 +
11754 + /*
11755 + * Use usb_pipedevice to determine device address. This address is
11756 + * 0 before the SET_ADDRESS command and the correct address afterward.
11757 + */
11758 + hc->dev_addr = usb_pipedevice(urb->pipe);
11759 + hc->ep_num = usb_pipeendpoint(urb->pipe);
11760 +
11761 + if (urb->dev->speed == USB_SPEED_LOW) {
11762 + hc->speed = DWC_OTG_EP_SPEED_LOW;
11763 + } else if (urb->dev->speed == USB_SPEED_FULL) {
11764 + hc->speed = DWC_OTG_EP_SPEED_FULL;
11765 + } else {
11766 + hc->speed = DWC_OTG_EP_SPEED_HIGH;
11767 + }
11768 +
11769 + hc->max_packet = dwc_max_packet(qh->maxp);
11770 +
11771 + hc->xfer_started = 0;
11772 + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
11773 + hc->error_state = (qtd->error_count > 0);
11774 + hc->halt_on_queue = 0;
11775 + hc->halt_pending = 0;
11776 + hc->requests = 0;
11777 +
11778 + /*
11779 + * The following values may be modified in the transfer type section
11780 + * below. The xfer_len value may be reduced when the transfer is
11781 + * started to accommodate the max widths of the XferSize and PktCnt
11782 + * fields in the HCTSIZn register.
11783 + */
11784 + hc->do_ping = qh->ping_state;
11785 + hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
11786 + hc->data_pid_start = qh->data_toggle;
11787 + hc->multi_count = 1;
11788 +
11789 + if (hcd->core_if->dma_enable) {
11790 + hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
11791 + } else {
11792 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
11793 + }
11794 + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
11795 + hc->xfer_count = 0;
11796 +
11797 + /*
11798 + * Set the split attributes
11799 + */
11800 + hc->do_split = 0;
11801 + if (qh->do_split) {
11802 + hc->do_split = 1;
11803 + hc->xact_pos = qtd->isoc_split_pos;
11804 + hc->complete_split = qtd->complete_split;
11805 + hc->hub_addr = urb->dev->tt->hub->devnum;
11806 + hc->port_addr = urb->dev->ttport;
11807 + }
11808 +
11809 + switch (usb_pipetype(urb->pipe)) {
11810 + case PIPE_CONTROL:
11811 + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
11812 + switch (qtd->control_phase) {
11813 + case DWC_OTG_CONTROL_SETUP:
11814 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
11815 + hc->do_ping = 0;
11816 + hc->ep_is_in = 0;
11817 + hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
11818 + if (hcd->core_if->dma_enable) {
11819 + hc->xfer_buff = (uint8_t *)urb->setup_dma;
11820 + } else {
11821 + hc->xfer_buff = (uint8_t *)urb->setup_packet;
11822 + }
11823 + hc->xfer_len = 8;
11824 + break;
11825 + case DWC_OTG_CONTROL_DATA:
11826 + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
11827 + hc->data_pid_start = qtd->data_toggle;
11828 + break;
11829 + case DWC_OTG_CONTROL_STATUS:
11830 + /*
11831 + * Direction is opposite of data direction or IN if no
11832 + * data.
11833 + */
11834 + DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
11835 + if (urb->transfer_buffer_length == 0) {
11836 + hc->ep_is_in = 1;
11837 + } else {
11838 + hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
11839 + }
11840 + if (hc->ep_is_in) {
11841 + hc->do_ping = 0;
11842 + }
11843 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
11844 + hc->xfer_len = 0;
11845 + if (hcd->core_if->dma_enable) {
11846 + hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
11847 + } else {
11848 + hc->xfer_buff = (uint8_t *)hcd->status_buf;
11849 + }
11850 + break;
11851 + }
11852 + break;
11853 + case PIPE_BULK:
11854 + hc->ep_type = DWC_OTG_EP_TYPE_BULK;
11855 + break;
11856 + case PIPE_INTERRUPT:
11857 + hc->ep_type = DWC_OTG_EP_TYPE_INTR;
11858 + break;
11859 + case PIPE_ISOCHRONOUS:
11860 + {
11861 + struct usb_iso_packet_descriptor *frame_desc;
11862 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
11863 + hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
11864 + if (hcd->core_if->dma_enable) {
11865 + hc->xfer_buff = (uint8_t *)urb->transfer_dma;
11866 + } else {
11867 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
11868 + }
11869 + hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
11870 + hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
11871 +
11872 + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
11873 + if (hc->xfer_len <= 188) {
11874 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
11875 + }
11876 + else {
11877 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
11878 + }
11879 + }
11880 + }
11881 + break;
11882 + }
11883 +
11884 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
11885 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
11886 + /*
11887 + * This value may be modified when the transfer is started to
11888 + * reflect the actual transfer length.
11889 + */
11890 + hc->multi_count = dwc_hb_mult(qh->maxp);
11891 + }
11892 +
11893 + dwc_otg_hc_init(hcd->core_if, hc);
11894 + hc->qh = qh;
11895 +}
11896 +
11897 +/**
11898 + * This function selects transactions from the HCD transfer schedule and
11899 + * assigns them to available host channels. It is called from HCD interrupt
11900 + * handler functions.
11901 + *
11902 + * @param hcd The HCD state structure.
11903 + *
11904 + * @return The types of new transactions that were assigned to host channels.
11905 + */
11906 +dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
11907 +{
11908 + struct list_head *qh_ptr;
11909 + dwc_otg_qh_t *qh;
11910 + int num_channels;
11911 + dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
11912 +
11913 +#ifdef DEBUG_SOF
11914 + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
11915 +#endif
11916 +
11917 + /* Process entries in the periodic ready list. */
11918 + qh_ptr = hcd->periodic_sched_ready.next;
11919 + while (qh_ptr != &hcd->periodic_sched_ready &&
11920 + !list_empty(&hcd->free_hc_list)) {
11921 +
11922 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
11923 + assign_and_init_hc(hcd, qh);
11924 +
11925 + /*
11926 + * Move the QH from the periodic ready schedule to the
11927 + * periodic assigned schedule.
11928 + */
11929 + qh_ptr = qh_ptr->next;
11930 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
11931 +
11932 + ret_val = DWC_OTG_TRANSACTION_PERIODIC;
11933 + }
11934 +
11935 + /*
11936 + * Process entries in the inactive portion of the non-periodic
11937 + * schedule. Some free host channels may not be used if they are
11938 + * reserved for periodic transfers.
11939 + */
11940 + qh_ptr = hcd->non_periodic_sched_inactive.next;
11941 + num_channels = hcd->core_if->core_params->host_channels;
11942 + while (qh_ptr != &hcd->non_periodic_sched_inactive &&
11943 + (hcd->non_periodic_channels <
11944 + num_channels - hcd->periodic_channels) &&
11945 + !list_empty(&hcd->free_hc_list)) {
11946 +
11947 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
11948 + assign_and_init_hc(hcd, qh);
11949 +
11950 + /*
11951 + * Move the QH from the non-periodic inactive schedule to the
11952 + * non-periodic active schedule.
11953 + */
11954 + qh_ptr = qh_ptr->next;
11955 + list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
11956 +
11957 + if (ret_val == DWC_OTG_TRANSACTION_NONE) {
11958 + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
11959 + } else {
11960 + ret_val = DWC_OTG_TRANSACTION_ALL;
11961 + }
11962 +
11963 + hcd->non_periodic_channels++;
11964 + }
11965 +
11966 + return ret_val;
11967 +}
11968 +
11969 +/**
11970 + * Attempts to queue a single transaction request for a host channel
11971 + * associated with either a periodic or non-periodic transfer. This function
11972 + * assumes that there is space available in the appropriate request queue. For
11973 + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
11974 + * is available in the appropriate Tx FIFO.
11975 + *
11976 + * @param hcd The HCD state structure.
11977 + * @param hc Host channel descriptor associated with either a periodic or
11978 + * non-periodic transfer.
11979 + * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
11980 + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
11981 + * transfers.
11982 + *
11983 + * @return 1 if a request is queued and more requests may be needed to
11984 + * complete the transfer, 0 if no more requests are required for this
11985 + * transfer, -1 if there is insufficient space in the Tx FIFO.
11986 + */
11987 +static int queue_transaction(dwc_otg_hcd_t *hcd,
11988 + dwc_hc_t *hc,
11989 + uint16_t fifo_dwords_avail)
11990 +{
11991 + int retval;
11992 +
11993 + if (hcd->core_if->dma_enable) {
11994 + if (!hc->xfer_started) {
11995 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
11996 + hc->qh->ping_state = 0;
11997 + }
11998 + retval = 0;
11999 + } else if (hc->halt_pending) {
12000 + /* Don't queue a request if the channel has been halted. */
12001 + retval = 0;
12002 + } else if (hc->halt_on_queue) {
12003 + dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
12004 + retval = 0;
12005 + } else if (hc->do_ping) {
12006 + if (!hc->xfer_started) {
12007 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
12008 + }
12009 + retval = 0;
12010 + } else if (!hc->ep_is_in ||
12011 + hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
12012 + if ((fifo_dwords_avail * 4) >= hc->max_packet) {
12013 + if (!hc->xfer_started) {
12014 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
12015 + retval = 1;
12016 + } else {
12017 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
12018 + }
12019 + } else {
12020 + retval = -1;
12021 + }
12022 + } else {
12023 + if (!hc->xfer_started) {
12024 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
12025 + retval = 1;
12026 + } else {
12027 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
12028 + }
12029 + }
12030 +
12031 + return retval;
12032 +}
12033 +
12034 +/**
12035 + * Processes active non-periodic channels and queues transactions for these
12036 + * channels to the DWC_otg controller. After queueing transactions, the NP Tx
12037 + * FIFO Empty interrupt is enabled if there are more transactions to queue as
12038 + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
12039 + * FIFO Empty interrupt is disabled.
12040 + */
12041 +static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
12042 +{
12043 + gnptxsts_data_t tx_status;
12044 + struct list_head *orig_qh_ptr;
12045 + dwc_otg_qh_t *qh;
12046 + int status;
12047 + int no_queue_space = 0;
12048 + int no_fifo_space = 0;
12049 + int more_to_do = 0;
12050 +
12051 + dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
12052 +
12053 + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
12054 +#ifdef DEBUG
12055 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
12056 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
12057 + tx_status.b.nptxqspcavail);
12058 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
12059 + tx_status.b.nptxfspcavail);
12060 +#endif
12061 + /*
12062 + * Keep track of the starting point. Skip over the start-of-list
12063 + * entry.
12064 + */
12065 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
12066 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
12067 + }
12068 + orig_qh_ptr = hcd->non_periodic_qh_ptr;
12069 +
12070 + /*
12071 + * Process once through the active list or until no more space is
12072 + * available in the request queue or the Tx FIFO.
12073 + */
12074 + do {
12075 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
12076 + if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
12077 + no_queue_space = 1;
12078 + break;
12079 + }
12080 +
12081 + qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
12082 + status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
12083 +
12084 + if (status > 0) {
12085 + more_to_do = 1;
12086 + } else if (status < 0) {
12087 + no_fifo_space = 1;
12088 + break;
12089 + }
12090 +
12091 + /* Advance to next QH, skipping start-of-list entry. */
12092 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
12093 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
12094 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
12095 + }
12096 +
12097 + } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
12098 +
12099 + if (!hcd->core_if->dma_enable) {
12100 + gintmsk_data_t intr_mask = {.d32 = 0};
12101 + intr_mask.b.nptxfempty = 1;
12102 +
12103 +#ifdef DEBUG
12104 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
12105 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
12106 + tx_status.b.nptxqspcavail);
12107 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
12108 + tx_status.b.nptxfspcavail);
12109 +#endif
12110 + if (more_to_do || no_queue_space || no_fifo_space) {
12111 + /*
12112 + * May need to queue more transactions as the request
12113 + * queue or Tx FIFO empties. Enable the non-periodic
12114 + * Tx FIFO empty interrupt. (Always use the half-empty
12115 + * level to ensure that new requests are loaded as
12116 + * soon as possible.)
12117 + */
12118 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
12119 + } else {
12120 + /*
12121 + * Disable the Tx FIFO empty interrupt since there are
12122 + * no more transactions that need to be queued right
12123 + * now. This function is called from interrupt
12124 + * handlers to queue more transactions as transfer
12125 + * states change.
12126 + */
12127 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
12128 + }
12129 + }
12130 +}
12131 +
12132 +/**
12133 + * Processes periodic channels for the next frame and queues transactions for
12134 + * these channels to the DWC_otg controller. After queueing transactions, the
12135 + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
12136 + * to queue as Periodic Tx FIFO or request queue space becomes available.
12137 + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
12138 + */
12139 +static void process_periodic_channels(dwc_otg_hcd_t *hcd)
12140 +{
12141 + hptxsts_data_t tx_status;
12142 + struct list_head *qh_ptr;
12143 + dwc_otg_qh_t *qh;
12144 + int status;
12145 + int no_queue_space = 0;
12146 + int no_fifo_space = 0;
12147 +
12148 + dwc_otg_host_global_regs_t *host_regs;
12149 + host_regs = hcd->core_if->host_if->host_global_regs;
12150 +
12151 + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
12152 +#ifdef DEBUG
12153 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
12154 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
12155 + tx_status.b.ptxqspcavail);
12156 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
12157 + tx_status.b.ptxfspcavail);
12158 +#endif
12159 +
12160 + qh_ptr = hcd->periodic_sched_assigned.next;
12161 + while (qh_ptr != &hcd->periodic_sched_assigned) {
12162 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
12163 + if (tx_status.b.ptxqspcavail == 0) {
12164 + no_queue_space = 1;
12165 + break;
12166 + }
12167 +
12168 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
12169 +
12170 + /*
12171 + * Set a flag if we're queuing high-bandwidth in slave mode.
12172 + * The flag prevents any halts to get into the request queue in
12173 + * the middle of multiple high-bandwidth packets getting queued.
12174 + */
12175 + if (!hcd->core_if->dma_enable &&
12176 + qh->channel->multi_count > 1)
12177 + {
12178 + hcd->core_if->queuing_high_bandwidth = 1;
12179 + }
12180 +
12181 + status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
12182 + if (status < 0) {
12183 + no_fifo_space = 1;
12184 + break;
12185 + }
12186 +
12187 + /*
12188 + * In Slave mode, stay on the current transfer until there is
12189 + * nothing more to do or the high-bandwidth request count is
12190 + * reached. In DMA mode, only need to queue one request. The
12191 + * controller automatically handles multiple packets for
12192 + * high-bandwidth transfers.
12193 + */
12194 + if (hcd->core_if->dma_enable || status == 0 ||
12195 + qh->channel->requests == qh->channel->multi_count) {
12196 + qh_ptr = qh_ptr->next;
12197 + /*
12198 + * Move the QH from the periodic assigned schedule to
12199 + * the periodic queued schedule.
12200 + */
12201 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
12202 +
12203 + /* done queuing high bandwidth */
12204 + hcd->core_if->queuing_high_bandwidth = 0;
12205 + }
12206 + }
12207 +
12208 + if (!hcd->core_if->dma_enable) {
12209 + dwc_otg_core_global_regs_t *global_regs;
12210 + gintmsk_data_t intr_mask = {.d32 = 0};
12211 +
12212 + global_regs = hcd->core_if->core_global_regs;
12213 + intr_mask.b.ptxfempty = 1;
12214 +#ifdef DEBUG
12215 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
12216 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
12217 + tx_status.b.ptxqspcavail);
12218 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
12219 + tx_status.b.ptxfspcavail);
12220 +#endif
12221 + if (!list_empty(&hcd->periodic_sched_assigned) ||
12222 + no_queue_space || no_fifo_space) {
12223 + /*
12224 + * May need to queue more transactions as the request
12225 + * queue or Tx FIFO empties. Enable the periodic Tx
12226 + * FIFO empty interrupt. (Always use the half-empty
12227 + * level to ensure that new requests are loaded as
12228 + * soon as possible.)
12229 + */
12230 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
12231 + } else {
12232 + /*
12233 + * Disable the Tx FIFO empty interrupt since there are
12234 + * no more transactions that need to be queued right
12235 + * now. This function is called from interrupt
12236 + * handlers to queue more transactions as transfer
12237 + * states change.
12238 + */
12239 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
12240 + }
12241 + }
12242 +}
12243 +
12244 +/**
12245 + * This function processes the currently active host channels and queues
12246 + * transactions for these channels to the DWC_otg controller. It is called
12247 + * from HCD interrupt handler functions.
12248 + *
12249 + * @param hcd The HCD state structure.
12250 + * @param tr_type The type(s) of transactions to queue (non-periodic,
12251 + * periodic, or both).
12252 + */
12253 +void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
12254 + dwc_otg_transaction_type_e tr_type)
12255 +{
12256 +#ifdef DEBUG_SOF
12257 + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
12258 +#endif
12259 + /* Process host channels associated with periodic transfers. */
12260 + if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
12261 + tr_type == DWC_OTG_TRANSACTION_ALL) &&
12262 + !list_empty(&hcd->periodic_sched_assigned)) {
12263 +
12264 + process_periodic_channels(hcd);
12265 + }
12266 +
12267 + /* Process host channels associated with non-periodic transfers. */
12268 + if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
12269 + tr_type == DWC_OTG_TRANSACTION_ALL) {
12270 + if (!list_empty(&hcd->non_periodic_sched_active)) {
12271 + process_non_periodic_channels(hcd);
12272 + } else {
12273 + /*
12274 + * Ensure NP Tx FIFO empty interrupt is disabled when
12275 + * there are no non-periodic transfers to process.
12276 + */
12277 + gintmsk_data_t gintmsk = {.d32 = 0};
12278 + gintmsk.b.nptxfempty = 1;
12279 + dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
12280 + gintmsk.d32, 0);
12281 + }
12282 + }
12283 +}
12284 +
12285 +/**
12286 + * Sets the final status of an URB and returns it to the device driver. Any
12287 + * required cleanup of the URB is performed.
12288 + */
12289 +void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
12290 +{
12291 +#ifdef DEBUG
12292 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
12293 + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
12294 + __func__, urb, usb_pipedevice(urb->pipe),
12295 + usb_pipeendpoint(urb->pipe),
12296 + usb_pipein(urb->pipe) ? "IN" : "OUT", status);
12297 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
12298 + int i;
12299 + for (i = 0; i < urb->number_of_packets; i++) {
12300 + DWC_PRINT(" ISO Desc %d status: %d\n",
12301 + i, urb->iso_frame_desc[i].status);
12302 + }
12303 + }
12304 + }
12305 +#endif
12306 +
12307 + urb->status = status;
12308 + urb->hcpriv = NULL;
12309 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
12310 + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
12311 +#else
12312 + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, NULL);
12313 +#endif
12314 +}
12315 +
12316 +/*
12317 + * Returns the Queue Head for an URB.
12318 + */
12319 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
12320 +{
12321 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
12322 + return (dwc_otg_qh_t *)ep->hcpriv;
12323 +}
12324 +
12325 +#ifdef DEBUG
12326 +void dwc_print_setup_data(uint8_t *setup)
12327 +{
12328 + int i;
12329 + if (CHK_DEBUG_LEVEL(DBG_HCD)){
12330 + DWC_PRINT("Setup Data = MSB ");
12331 + for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
12332 + DWC_PRINT("\n");
12333 + DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
12334 + DWC_PRINT(" bmRequestType Type = ");
12335 + switch ((setup[0] & 0x60) >> 5) {
12336 + case 0: DWC_PRINT("Standard\n"); break;
12337 + case 1: DWC_PRINT("Class\n"); break;
12338 + case 2: DWC_PRINT("Vendor\n"); break;
12339 + case 3: DWC_PRINT("Reserved\n"); break;
12340 + }
12341 + DWC_PRINT(" bmRequestType Recipient = ");
12342 + switch (setup[0] & 0x1f) {
12343 + case 0: DWC_PRINT("Device\n"); break;
12344 + case 1: DWC_PRINT("Interface\n"); break;
12345 + case 2: DWC_PRINT("Endpoint\n"); break;
12346 + case 3: DWC_PRINT("Other\n"); break;
12347 + default: DWC_PRINT("Reserved\n"); break;
12348 + }
12349 + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
12350 + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
12351 + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
12352 + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
12353 + }
12354 +}
12355 +#endif
12356 +
12357 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
12358 +#if defined(DEBUG) && LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
12359 + DWC_PRINT("Frame remaining at SOF:\n");
12360 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12361 + hcd->frrem_samples, hcd->frrem_accum,
12362 + (hcd->frrem_samples > 0) ?
12363 + hcd->frrem_accum/hcd->frrem_samples : 0);
12364 +
12365 + DWC_PRINT("\n");
12366 + DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
12367 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12368 + hcd->core_if->hfnum_7_samples, hcd->core_if->hfnum_7_frrem_accum,
12369 + (hcd->core_if->hfnum_7_samples > 0) ?
12370 + hcd->core_if->hfnum_7_frrem_accum/hcd->core_if->hfnum_7_samples : 0);
12371 + DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
12372 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12373 + hcd->core_if->hfnum_0_samples, hcd->core_if->hfnum_0_frrem_accum,
12374 + (hcd->core_if->hfnum_0_samples > 0) ?
12375 + hcd->core_if->hfnum_0_frrem_accum/hcd->core_if->hfnum_0_samples : 0);
12376 + DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
12377 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12378 + hcd->core_if->hfnum_other_samples, hcd->core_if->hfnum_other_frrem_accum,
12379 + (hcd->core_if->hfnum_other_samples > 0) ?
12380 + hcd->core_if->hfnum_other_frrem_accum/hcd->core_if->hfnum_other_samples : 0);
12381 +
12382 + DWC_PRINT("\n");
12383 + DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
12384 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12385 + hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a,
12386 + (hcd->hfnum_7_samples_a > 0) ?
12387 + hcd->hfnum_7_frrem_accum_a/hcd->hfnum_7_samples_a : 0);
12388 + DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
12389 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12390 + hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a,
12391 + (hcd->hfnum_0_samples_a > 0) ?
12392 + hcd->hfnum_0_frrem_accum_a/hcd->hfnum_0_samples_a : 0);
12393 + DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
12394 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12395 + hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a,
12396 + (hcd->hfnum_other_samples_a > 0) ?
12397 + hcd->hfnum_other_frrem_accum_a/hcd->hfnum_other_samples_a : 0);
12398 +
12399 + DWC_PRINT("\n");
12400 + DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
12401 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12402 + hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b,
12403 + (hcd->hfnum_7_samples_b > 0) ?
12404 + hcd->hfnum_7_frrem_accum_b/hcd->hfnum_7_samples_b : 0);
12405 + DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
12406 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12407 + hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b,
12408 + (hcd->hfnum_0_samples_b > 0) ?
12409 + hcd->hfnum_0_frrem_accum_b/hcd->hfnum_0_samples_b : 0);
12410 + DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
12411 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
12412 + hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b,
12413 + (hcd->hfnum_other_samples_b > 0) ?
12414 + hcd->hfnum_other_frrem_accum_b/hcd->hfnum_other_samples_b : 0);
12415 +#endif
12416 +}
12417 +
12418 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
12419 +{
12420 +#ifdef DEBUG
12421 + int num_channels;
12422 + int i;
12423 + gnptxsts_data_t np_tx_status;
12424 + hptxsts_data_t p_tx_status;
12425 +
12426 + num_channels = hcd->core_if->core_params->host_channels;
12427 + DWC_PRINT("\n");
12428 + DWC_PRINT("************************************************************\n");
12429 + DWC_PRINT("HCD State:\n");
12430 + DWC_PRINT(" Num channels: %d\n", num_channels);
12431 + for (i = 0; i < num_channels; i++) {
12432 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
12433 + DWC_PRINT(" Channel %d:\n", i);
12434 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
12435 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
12436 + DWC_PRINT(" speed: %d\n", hc->speed);
12437 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
12438 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
12439 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
12440 + DWC_PRINT(" multi_count: %d\n", hc->multi_count);
12441 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
12442 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
12443 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
12444 + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
12445 + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
12446 + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
12447 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
12448 + DWC_PRINT(" do_split: %d\n", hc->do_split);
12449 + DWC_PRINT(" complete_split: %d\n", hc->complete_split);
12450 + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
12451 + DWC_PRINT(" port_addr: %d\n", hc->port_addr);
12452 + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
12453 + DWC_PRINT(" requests: %d\n", hc->requests);
12454 + DWC_PRINT(" qh: %p\n", hc->qh);
12455 + if (hc->xfer_started) {
12456 + hfnum_data_t hfnum;
12457 + hcchar_data_t hcchar;
12458 + hctsiz_data_t hctsiz;
12459 + hcint_data_t hcint;
12460 + hcintmsk_data_t hcintmsk;
12461 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
12462 + hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
12463 + hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
12464 + hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
12465 + hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
12466 + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
12467 + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
12468 + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
12469 + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
12470 + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
12471 + }
12472 + if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
12473 + dwc_otg_qtd_t *qtd;
12474 + struct urb *urb;
12475 + qtd = hc->qh->qtd_in_process;
12476 + urb = qtd->urb;
12477 + DWC_PRINT(" URB Info:\n");
12478 + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
12479 + if (urb) {
12480 + DWC_PRINT(" Dev: %d, EP: %d %s\n",
12481 + usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
12482 + usb_pipein(urb->pipe) ? "IN" : "OUT");
12483 + DWC_PRINT(" Max packet size: %d\n",
12484 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12485 + DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
12486 + DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
12487 + DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
12488 + DWC_PRINT(" actual_length: %d\n", urb->actual_length);
12489 + }
12490 + }
12491 + }
12492 + DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
12493 + DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
12494 + DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
12495 + np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
12496 + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
12497 + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
12498 + p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
12499 + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
12500 + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
12501 + dwc_otg_hcd_dump_frrem(hcd);
12502 + dwc_otg_dump_global_registers(hcd->core_if);
12503 + dwc_otg_dump_host_registers(hcd->core_if);
12504 + DWC_PRINT("************************************************************\n");
12505 + DWC_PRINT("\n");
12506 +#endif
12507 +}
12508 +#endif /* DWC_DEVICE_ONLY */
12509 --- /dev/null
12510 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h
12511 @@ -0,0 +1,668 @@
12512 +/* ==========================================================================
12513 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
12514 + * $Revision: 1.3 $
12515 + * $Date: 2008-12-15 06:51:32 $
12516 + * $Change: 1064918 $
12517 + *
12518 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
12519 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
12520 + * otherwise expressly agreed to in writing between Synopsys and you.
12521 + *
12522 + * The Software IS NOT an item of Licensed Software or Licensed Product under
12523 + * any End User Software License Agreement or Agreement for Licensed Product
12524 + * with Synopsys or any supplement thereto. You are permitted to use and
12525 + * redistribute this Software in source and binary forms, with or without
12526 + * modification, provided that redistributions of source code must retain this
12527 + * notice. You may not view, use, disclose, copy or distribute this file or
12528 + * any information contained herein except pursuant to this license grant from
12529 + * Synopsys. If you do not agree with this notice, including the disclaimer
12530 + * below, then you are not authorized to use the Software.
12531 + *
12532 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
12533 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12534 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
12535 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
12536 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
12537 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
12538 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
12539 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
12540 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
12541 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
12542 + * DAMAGE.
12543 + * ========================================================================== */
12544 +#ifndef DWC_DEVICE_ONLY
12545 +#ifndef __DWC_HCD_H__
12546 +#define __DWC_HCD_H__
12547 +
12548 +#include <linux/list.h>
12549 +#include <linux/usb.h>
12550 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)
12551 +#include <linux/usb/hcd.h>
12552 +#else
12553 +#include <../drivers/usb/core/hcd.h>
12554 +#endif
12555 +
12556 +struct dwc_otg_device;
12557 +
12558 +#include "dwc_otg_cil.h"
12559 +
12560 +/**
12561 + * @file
12562 + *
12563 + * This file contains the structures, constants, and interfaces for
12564 + * the Host Contoller Driver (HCD).
12565 + *
12566 + * The Host Controller Driver (HCD) is responsible for translating requests
12567 + * from the USB Driver into the appropriate actions on the DWC_otg controller.
12568 + * It isolates the USBD from the specifics of the controller by providing an
12569 + * API to the USBD.
12570 + */
12571 +
12572 +/**
12573 + * Phases for control transfers.
12574 + */
12575 +typedef enum dwc_otg_control_phase {
12576 + DWC_OTG_CONTROL_SETUP,
12577 + DWC_OTG_CONTROL_DATA,
12578 + DWC_OTG_CONTROL_STATUS
12579 +} dwc_otg_control_phase_e;
12580 +
12581 +/** Transaction types. */
12582 +typedef enum dwc_otg_transaction_type {
12583 + DWC_OTG_TRANSACTION_NONE,
12584 + DWC_OTG_TRANSACTION_PERIODIC,
12585 + DWC_OTG_TRANSACTION_NON_PERIODIC,
12586 + DWC_OTG_TRANSACTION_ALL
12587 +} dwc_otg_transaction_type_e;
12588 +
12589 +/**
12590 + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
12591 + * interrupt, or isochronous transfer. A single QTD is created for each URB
12592 + * (of one of these types) submitted to the HCD. The transfer associated with
12593 + * a QTD may require one or multiple transactions.
12594 + *
12595 + * A QTD is linked to a Queue Head, which is entered in either the
12596 + * non-periodic or periodic schedule for execution. When a QTD is chosen for
12597 + * execution, some or all of its transactions may be executed. After
12598 + * execution, the state of the QTD is updated. The QTD may be retired if all
12599 + * its transactions are complete or if an error occurred. Otherwise, it
12600 + * remains in the schedule so more transactions can be executed later.
12601 + */
12602 +typedef struct dwc_otg_qtd {
12603 + /**
12604 + * Determines the PID of the next data packet for the data phase of
12605 + * control transfers. Ignored for other transfer types.<br>
12606 + * One of the following values:
12607 + * - DWC_OTG_HC_PID_DATA0
12608 + * - DWC_OTG_HC_PID_DATA1
12609 + */
12610 + uint8_t data_toggle;
12611 +
12612 + /** Current phase for control transfers (Setup, Data, or Status). */
12613 + dwc_otg_control_phase_e control_phase;
12614 +
12615 + /** Keep track of the current split type
12616 + * for FS/LS endpoints on a HS Hub */
12617 + uint8_t complete_split;
12618 +
12619 + /** How many bytes transferred during SSPLIT OUT */
12620 + uint32_t ssplit_out_xfer_count;
12621 +
12622 + /**
12623 + * Holds the number of bus errors that have occurred for a transaction
12624 + * within this transfer.
12625 + */
12626 + uint8_t error_count;
12627 +
12628 + /**
12629 + * Index of the next frame descriptor for an isochronous transfer. A
12630 + * frame descriptor describes the buffer position and length of the
12631 + * data to be transferred in the next scheduled (micro)frame of an
12632 + * isochronous transfer. It also holds status for that transaction.
12633 + * The frame index starts at 0.
12634 + */
12635 + int isoc_frame_index;
12636 +
12637 + /** Position of the ISOC split on full/low speed */
12638 + uint8_t isoc_split_pos;
12639 +
12640 + /** Position of the ISOC split in the buffer for the current frame */
12641 + uint16_t isoc_split_offset;
12642 +
12643 + /** URB for this transfer */
12644 + struct urb *urb;
12645 +
12646 + /** This list of QTDs */
12647 + struct list_head qtd_list_entry;
12648 +
12649 +} dwc_otg_qtd_t;
12650 +
12651 +/**
12652 + * A Queue Head (QH) holds the static characteristics of an endpoint and
12653 + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
12654 + * be entered in either the non-periodic or periodic schedule.
12655 + */
12656 +typedef struct dwc_otg_qh {
12657 + /**
12658 + * Endpoint type.
12659 + * One of the following values:
12660 + * - USB_ENDPOINT_XFER_CONTROL
12661 + * - USB_ENDPOINT_XFER_ISOC
12662 + * - USB_ENDPOINT_XFER_BULK
12663 + * - USB_ENDPOINT_XFER_INT
12664 + */
12665 + uint8_t ep_type;
12666 + uint8_t ep_is_in;
12667 +
12668 + /** wMaxPacketSize Field of Endpoint Descriptor. */
12669 + uint16_t maxp;
12670 +
12671 + /**
12672 + * Determines the PID of the next data packet for non-control
12673 + * transfers. Ignored for control transfers.<br>
12674 + * One of the following values:
12675 + * - DWC_OTG_HC_PID_DATA0
12676 + * - DWC_OTG_HC_PID_DATA1
12677 + */
12678 + uint8_t data_toggle;
12679 +
12680 + /** Ping state if 1. */
12681 + uint8_t ping_state;
12682 +
12683 + /**
12684 + * List of QTDs for this QH.
12685 + */
12686 + struct list_head qtd_list;
12687 +
12688 + /** Host channel currently processing transfers for this QH. */
12689 + dwc_hc_t *channel;
12690 +
12691 + /** QTD currently assigned to a host channel for this QH. */
12692 + dwc_otg_qtd_t *qtd_in_process;
12693 +
12694 + /** Full/low speed endpoint on high-speed hub requires split. */
12695 + uint8_t do_split;
12696 +
12697 + /** @name Periodic schedule information */
12698 + /** @{ */
12699 +
12700 + /** Bandwidth in microseconds per (micro)frame. */
12701 + uint8_t usecs;
12702 +
12703 + /** Interval between transfers in (micro)frames. */
12704 + uint16_t interval;
12705 +
12706 + /**
12707 + * (micro)frame to initialize a periodic transfer. The transfer
12708 + * executes in the following (micro)frame.
12709 + */
12710 + uint16_t sched_frame;
12711 +
12712 + /** (micro)frame at which last start split was initialized. */
12713 + uint16_t start_split_frame;
12714 +
12715 + /** @} */
12716 +
12717 + /** Entry for QH in either the periodic or non-periodic schedule. */
12718 + struct list_head qh_list_entry;
12719 +
12720 + /* For non-dword aligned buffer support */
12721 + uint8_t *dw_align_buf;
12722 + dma_addr_t dw_align_buf_dma;
12723 +} dwc_otg_qh_t;
12724 +
12725 +/**
12726 + * This structure holds the state of the HCD, including the non-periodic and
12727 + * periodic schedules.
12728 + */
12729 +typedef struct dwc_otg_hcd {
12730 + /** The DWC otg device pointer */
12731 + struct dwc_otg_device *otg_dev;
12732 +
12733 + /** DWC OTG Core Interface Layer */
12734 + dwc_otg_core_if_t *core_if;
12735 +
12736 + /** Internal DWC HCD Flags */
12737 + volatile union dwc_otg_hcd_internal_flags {
12738 + uint32_t d32;
12739 + struct {
12740 + unsigned port_connect_status_change : 1;
12741 + unsigned port_connect_status : 1;
12742 + unsigned port_reset_change : 1;
12743 + unsigned port_enable_change : 1;
12744 + unsigned port_suspend_change : 1;
12745 + unsigned port_over_current_change : 1;
12746 + unsigned reserved : 27;
12747 + } b;
12748 + } flags;
12749 +
12750 + /**
12751 + * Inactive items in the non-periodic schedule. This is a list of
12752 + * Queue Heads. Transfers associated with these Queue Heads are not
12753 + * currently assigned to a host channel.
12754 + */
12755 + struct list_head non_periodic_sched_inactive;
12756 +
12757 + /**
12758 + * Active items in the non-periodic schedule. This is a list of
12759 + * Queue Heads. Transfers associated with these Queue Heads are
12760 + * currently assigned to a host channel.
12761 + */
12762 + struct list_head non_periodic_sched_active;
12763 +
12764 + /**
12765 + * Pointer to the next Queue Head to process in the active
12766 + * non-periodic schedule.
12767 + */
12768 + struct list_head *non_periodic_qh_ptr;
12769 +
12770 + /**
12771 + * Inactive items in the periodic schedule. This is a list of QHs for
12772 + * periodic transfers that are _not_ scheduled for the next frame.
12773 + * Each QH in the list has an interval counter that determines when it
12774 + * needs to be scheduled for execution. This scheduling mechanism
12775 + * allows only a simple calculation for periodic bandwidth used (i.e.
12776 + * must assume that all periodic transfers may need to execute in the
12777 + * same frame). However, it greatly simplifies scheduling and should
12778 + * be sufficient for the vast majority of OTG hosts, which need to
12779 + * connect to a small number of peripherals at one time.
12780 + *
12781 + * Items move from this list to periodic_sched_ready when the QH
12782 + * interval counter is 0 at SOF.
12783 + */
12784 + struct list_head periodic_sched_inactive;
12785 +
12786 + /**
12787 + * List of periodic QHs that are ready for execution in the next
12788 + * frame, but have not yet been assigned to host channels.
12789 + *
12790 + * Items move from this list to periodic_sched_assigned as host
12791 + * channels become available during the current frame.
12792 + */
12793 + struct list_head periodic_sched_ready;
12794 +
12795 + /**
12796 + * List of periodic QHs to be executed in the next frame that are
12797 + * assigned to host channels.
12798 + *
12799 + * Items move from this list to periodic_sched_queued as the
12800 + * transactions for the QH are queued to the DWC_otg controller.
12801 + */
12802 + struct list_head periodic_sched_assigned;
12803 +
12804 + /**
12805 + * List of periodic QHs that have been queued for execution.
12806 + *
12807 + * Items move from this list to either periodic_sched_inactive or
12808 + * periodic_sched_ready when the channel associated with the transfer
12809 + * is released. If the interval for the QH is 1, the item moves to
12810 + * periodic_sched_ready because it must be rescheduled for the next
12811 + * frame. Otherwise, the item moves to periodic_sched_inactive.
12812 + */
12813 + struct list_head periodic_sched_queued;
12814 +
12815 + /**
12816 + * Total bandwidth claimed so far for periodic transfers. This value
12817 + * is in microseconds per (micro)frame. The assumption is that all
12818 + * periodic transfers may occur in the same (micro)frame.
12819 + */
12820 + uint16_t periodic_usecs;
12821 +
12822 + /**
12823 + * Frame number read from the core at SOF. The value ranges from 0 to
12824 + * DWC_HFNUM_MAX_FRNUM.
12825 + */
12826 + uint16_t frame_number;
12827 +
12828 + /**
12829 + * Free host channels in the controller. This is a list of
12830 + * dwc_hc_t items.
12831 + */
12832 + struct list_head free_hc_list;
12833 +
12834 + /**
12835 + * Number of host channels assigned to periodic transfers. Currently
12836 + * assuming that there is a dedicated host channel for each periodic
12837 + * transaction and at least one host channel available for
12838 + * non-periodic transactions.
12839 + */
12840 + int periodic_channels;
12841 +
12842 + /**
12843 + * Number of host channels assigned to non-periodic transfers.
12844 + */
12845 + int non_periodic_channels;
12846 +
12847 + /**
12848 + * Array of pointers to the host channel descriptors. Allows accessing
12849 + * a host channel descriptor given the host channel number. This is
12850 + * useful in interrupt handlers.
12851 + */
12852 + dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
12853 +
12854 + /**
12855 + * Buffer to use for any data received during the status phase of a
12856 + * control transfer. Normally no data is transferred during the status
12857 + * phase. This buffer is used as a bit bucket.
12858 + */
12859 + uint8_t *status_buf;
12860 +
12861 + /**
12862 + * DMA address for status_buf.
12863 + */
12864 + dma_addr_t status_buf_dma;
12865 +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
12866 +
12867 + /**
12868 + * Structure to allow starting the HCD in a non-interrupt context
12869 + * during an OTG role change.
12870 + */
12871 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
12872 + struct work_struct start_work;
12873 +#else
12874 + struct delayed_work start_work;
12875 +#endif
12876 +
12877 + /**
12878 + * Connection timer. An OTG host must display a message if the device
12879 + * does not connect. Started when the VBus power is turned on via
12880 + * sysfs attribute "buspower".
12881 + */
12882 + struct timer_list conn_timer;
12883 +
12884 + /* Tasket to do a reset */
12885 + struct tasklet_struct *reset_tasklet;
12886 +
12887 + /* */
12888 + spinlock_t lock;
12889 +
12890 +#ifdef DEBUG
12891 + uint32_t frrem_samples;
12892 + uint64_t frrem_accum;
12893 +
12894 + uint32_t hfnum_7_samples_a;
12895 + uint64_t hfnum_7_frrem_accum_a;
12896 + uint32_t hfnum_0_samples_a;
12897 + uint64_t hfnum_0_frrem_accum_a;
12898 + uint32_t hfnum_other_samples_a;
12899 + uint64_t hfnum_other_frrem_accum_a;
12900 +
12901 + uint32_t hfnum_7_samples_b;
12902 + uint64_t hfnum_7_frrem_accum_b;
12903 + uint32_t hfnum_0_samples_b;
12904 + uint64_t hfnum_0_frrem_accum_b;
12905 + uint32_t hfnum_other_samples_b;
12906 + uint64_t hfnum_other_frrem_accum_b;
12907 +#endif
12908 +} dwc_otg_hcd_t;
12909 +
12910 +/** Gets the dwc_otg_hcd from a struct usb_hcd */
12911 +static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
12912 +{
12913 + return (dwc_otg_hcd_t *)(hcd->hcd_priv);
12914 +}
12915 +
12916 +/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
12917 +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
12918 +{
12919 + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
12920 +}
12921 +
12922 +/** @name HCD Create/Destroy Functions */
12923 +/** @{ */
12924 +extern int dwc_otg_hcd_init(struct device *dev);
12925 +extern void dwc_otg_hcd_remove(struct device *dev);
12926 +/** @} */
12927 +
12928 +/** @name Linux HC Driver API Functions */
12929 +/** @{ */
12930 +
12931 +extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
12932 +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
12933 +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
12934 +extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
12935 +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
12936 + struct urb *urb,
12937 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
12938 + int mem_flags
12939 +#else
12940 + gfp_t mem_flags
12941 +#endif
12942 + );
12943 +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
12944 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
12945 +#endif
12946 + struct urb *urb, int status);
12947 +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
12948 + struct usb_host_endpoint *ep);
12949 +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd
12950 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
12951 + , struct pt_regs *regs
12952 +#endif
12953 + );
12954 +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
12955 + char *buf);
12956 +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
12957 + u16 typeReq,
12958 + u16 wValue,
12959 + u16 wIndex,
12960 + char *buf,
12961 + u16 wLength);
12962 +
12963 +/** @} */
12964 +
12965 +/** @name Transaction Execution Functions */
12966 +/** @{ */
12967 +extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
12968 +extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
12969 + dwc_otg_transaction_type_e tr_type);
12970 +extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
12971 + int status);
12972 +/** @} */
12973 +
12974 +/** @name Interrupt Handler Functions */
12975 +/** @{ */
12976 +extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12977 +extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12978 +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12979 +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12980 +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12981 +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12982 +extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12983 +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12984 +extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12985 +extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12986 +extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
12987 +extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12988 +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
12989 +/** @} */
12990 +
12991 +
12992 +/** @name Schedule Queue Functions */
12993 +/** @{ */
12994 +
12995 +/* Implemented in dwc_otg_hcd_queue.c */
12996 +extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
12997 +extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
12998 +extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
12999 +extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
13000 +extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
13001 +extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
13002 +
13003 +/** Remove and free a QH */
13004 +static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
13005 + dwc_otg_qh_t *qh)
13006 +{
13007 + dwc_otg_hcd_qh_remove(hcd, qh);
13008 + dwc_otg_hcd_qh_free(hcd, qh);
13009 +}
13010 +
13011 +/** Allocates memory for a QH structure.
13012 + * @return Returns the memory allocate or NULL on error. */
13013 +static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
13014 +{
13015 + return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
13016 +}
13017 +
13018 +extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
13019 +extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
13020 +extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
13021 +
13022 +/** Allocates memory for a QTD structure.
13023 + * @return Returns the memory allocate or NULL on error. */
13024 +static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
13025 +{
13026 + return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
13027 +}
13028 +
13029 +/** Frees the memory for a QTD structure. QTD should already be removed from
13030 + * list.
13031 + * @param[in] qtd QTD to free.*/
13032 +static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
13033 +{
13034 + kfree(qtd);
13035 +}
13036 +
13037 +/** Removes a QTD from list.
13038 + * @param[in] hcd HCD instance.
13039 + * @param[in] qtd QTD to remove from list. */
13040 +static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
13041 +{
13042 + unsigned long flags;
13043 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
13044 + list_del(&qtd->qtd_list_entry);
13045 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
13046 +}
13047 +
13048 +/** Remove and free a QTD */
13049 +static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
13050 +{
13051 + dwc_otg_hcd_qtd_remove(hcd, qtd);
13052 + dwc_otg_hcd_qtd_free(qtd);
13053 +}
13054 +
13055 +/** @} */
13056 +
13057 +
13058 +/** @name Internal Functions */
13059 +/** @{ */
13060 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
13061 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
13062 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
13063 +/** @} */
13064 +
13065 +/** Gets the usb_host_endpoint associated with an URB. */
13066 +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
13067 +{
13068 + struct usb_device *dev = urb->dev;
13069 + int ep_num = usb_pipeendpoint(urb->pipe);
13070 +
13071 + if (usb_pipein(urb->pipe))
13072 + return dev->ep_in[ep_num];
13073 + else
13074 + return dev->ep_out[ep_num];
13075 +}
13076 +
13077 +/**
13078 + * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
13079 + * qualified with its direction (possible 32 endpoints per device).
13080 + */
13081 +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
13082 + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
13083 +
13084 +/** Gets the QH that contains the list_head */
13085 +#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
13086 +
13087 +/** Gets the QTD that contains the list_head */
13088 +#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
13089 +
13090 +/** Check if QH is non-periodic */
13091 +#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
13092 + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
13093 +
13094 +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
13095 +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
13096 +
13097 +/** Packet size for any kind of endpoint descriptor */
13098 +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
13099 +
13100 +/**
13101 + * Returns true if _frame1 is less than or equal to _frame2. The comparison is
13102 + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
13103 + * frame number when the max frame number is reached.
13104 + */
13105 +static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
13106 +{
13107 + return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
13108 + (DWC_HFNUM_MAX_FRNUM >> 1);
13109 +}
13110 +
13111 +/**
13112 + * Returns true if _frame1 is greater than _frame2. The comparison is done
13113 + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
13114 + * number when the max frame number is reached.
13115 + */
13116 +static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
13117 +{
13118 + return (frame1 != frame2) &&
13119 + (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
13120 + (DWC_HFNUM_MAX_FRNUM >> 1));
13121 +}
13122 +
13123 +/**
13124 + * Increments _frame by the amount specified by _inc. The addition is done
13125 + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
13126 + */
13127 +static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
13128 +{
13129 + return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
13130 +}
13131 +
13132 +static inline uint16_t dwc_full_frame_num(uint16_t frame)
13133 +{
13134 + return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
13135 +}
13136 +
13137 +static inline uint16_t dwc_micro_frame_num(uint16_t frame)
13138 +{
13139 + return frame & 0x7;
13140 +}
13141 +
13142 +#ifdef DEBUG
13143 +/**
13144 + * Macro to sample the remaining PHY clocks left in the current frame. This
13145 + * may be used during debugging to determine the average time it takes to
13146 + * execute sections of code. There are two possible sample points, "a" and
13147 + * "b", so the _letter argument must be one of these values.
13148 + *
13149 + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
13150 + * example, "cat /sys/devices/lm0/hcd_frrem".
13151 + */
13152 +#define dwc_sample_frrem(_hcd, _qh, _letter) \
13153 +{ \
13154 + hfnum_data_t hfnum; \
13155 + dwc_otg_qtd_t *qtd; \
13156 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
13157 + if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
13158 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
13159 + switch (hfnum.b.frnum & 0x7) { \
13160 + case 7: \
13161 + _hcd->hfnum_7_samples_##_letter++; \
13162 + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
13163 + break; \
13164 + case 0: \
13165 + _hcd->hfnum_0_samples_##_letter++; \
13166 + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
13167 + break; \
13168 + default: \
13169 + _hcd->hfnum_other_samples_##_letter++; \
13170 + _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
13171 + break; \
13172 + } \
13173 + } \
13174 +}
13175 +#else
13176 +#define dwc_sample_frrem(_hcd, _qh, _letter)
13177 +#endif
13178 +#endif
13179 +#endif /* DWC_DEVICE_ONLY */
13180 --- /dev/null
13181 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
13182 @@ -0,0 +1,1873 @@
13183 +/* ==========================================================================
13184 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
13185 + * $Revision: 1.6.2.1 $
13186 + * $Date: 2009-04-22 03:48:22 $
13187 + * $Change: 1117667 $
13188 + *
13189 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13190 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13191 + * otherwise expressly agreed to in writing between Synopsys and you.
13192 + *
13193 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13194 + * any End User Software License Agreement or Agreement for Licensed Product
13195 + * with Synopsys or any supplement thereto. You are permitted to use and
13196 + * redistribute this Software in source and binary forms, with or without
13197 + * modification, provided that redistributions of source code must retain this
13198 + * notice. You may not view, use, disclose, copy or distribute this file or
13199 + * any information contained herein except pursuant to this license grant from
13200 + * Synopsys. If you do not agree with this notice, including the disclaimer
13201 + * below, then you are not authorized to use the Software.
13202 + *
13203 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13204 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13205 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13206 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13207 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13208 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13209 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13210 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13211 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13212 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13213 + * DAMAGE.
13214 + * ========================================================================== */
13215 +#ifndef DWC_DEVICE_ONLY
13216 +
13217 +#include <linux/version.h>
13218 +
13219 +#include "dwc_otg_driver.h"
13220 +#include "dwc_otg_hcd.h"
13221 +#include "dwc_otg_regs.h"
13222 +
13223 +/** @file
13224 + * This file contains the implementation of the HCD Interrupt handlers.
13225 + */
13226 +
13227 +/** This function handles interrupts for the HCD. */
13228 +int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13229 +{
13230 + int retval = 0;
13231 +
13232 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
13233 + gintsts_data_t gintsts;
13234 +#ifdef DEBUG
13235 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
13236 +#endif
13237 +
13238 + /* Check if HOST Mode */
13239 + if (dwc_otg_is_host_mode(core_if)) {
13240 + gintsts.d32 = dwc_otg_read_core_intr(core_if);
13241 + if (!gintsts.d32) {
13242 + return 0;
13243 + }
13244 +
13245 +#ifdef DEBUG
13246 + /* Don't print debug message in the interrupt handler on SOF */
13247 +# ifndef DEBUG_SOF
13248 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
13249 +# endif
13250 + DWC_DEBUGPL(DBG_HCD, "\n");
13251 +#endif
13252 +
13253 +#ifdef DEBUG
13254 +# ifndef DEBUG_SOF
13255 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
13256 +# endif
13257 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
13258 +#endif
13259 + if (gintsts.b.usbreset) {
13260 + DWC_PRINT("Usb Reset In Host Mode\n");
13261 + }
13262 +
13263 +
13264 + if (gintsts.b.sofintr) {
13265 + retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
13266 + }
13267 + if (gintsts.b.rxstsqlvl) {
13268 + retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
13269 + }
13270 + if (gintsts.b.nptxfempty) {
13271 + retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
13272 + }
13273 + if (gintsts.b.i2cintr) {
13274 + /** @todo Implement i2cintr handler. */
13275 + }
13276 + if (gintsts.b.portintr) {
13277 + retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
13278 + }
13279 + if (gintsts.b.hcintr) {
13280 + retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
13281 + }
13282 + if (gintsts.b.ptxfempty) {
13283 + retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
13284 + }
13285 +#ifdef DEBUG
13286 +# ifndef DEBUG_SOF
13287 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
13288 +# endif
13289 + {
13290 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
13291 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
13292 + dwc_read_reg32(&global_regs->gintsts));
13293 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
13294 + dwc_read_reg32(&global_regs->gintmsk));
13295 + }
13296 +#endif
13297 +
13298 +#ifdef DEBUG
13299 +# ifndef DEBUG_SOF
13300 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
13301 +# endif
13302 + DWC_DEBUGPL(DBG_HCD, "\n");
13303 +#endif
13304 +
13305 + }
13306 +
13307 + S3C2410X_CLEAR_EINTPEND();
13308 +
13309 + return retval;
13310 +}
13311 +
13312 +#ifdef DWC_TRACK_MISSED_SOFS
13313 +#warning Compiling code to track missed SOFs
13314 +#define FRAME_NUM_ARRAY_SIZE 1000
13315 +/**
13316 + * This function is for debug only.
13317 + */
13318 +static inline void track_missed_sofs(uint16_t curr_frame_number)
13319 +{
13320 + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
13321 + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
13322 + static int frame_num_idx = 0;
13323 + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
13324 + static int dumped_frame_num_array = 0;
13325 +
13326 + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
13327 + if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
13328 + frame_num_array[frame_num_idx] = curr_frame_number;
13329 + last_frame_num_array[frame_num_idx++] = last_frame_num;
13330 + }
13331 + } else if (!dumped_frame_num_array) {
13332 + int i;
13333 + printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
13334 + printk(KERN_EMERG USB_DWC "----- ----------\n");
13335 + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
13336 + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
13337 + frame_num_array[i], last_frame_num_array[i]);
13338 + }
13339 + dumped_frame_num_array = 1;
13340 + }
13341 + last_frame_num = curr_frame_number;
13342 +}
13343 +#endif
13344 +
13345 +/**
13346 + * Handles the start-of-frame interrupt in host mode. Non-periodic
13347 + * transactions may be queued to the DWC_otg controller for the current
13348 + * (micro)frame. Periodic transactions may be queued to the controller for the
13349 + * next (micro)frame.
13350 + */
13351 +int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
13352 +{
13353 + hfnum_data_t hfnum;
13354 + struct list_head *qh_entry;
13355 + dwc_otg_qh_t *qh;
13356 + dwc_otg_transaction_type_e tr_type;
13357 + gintsts_data_t gintsts = {.d32 = 0};
13358 +
13359 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
13360 +
13361 +#ifdef DEBUG_SOF
13362 + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
13363 +#endif
13364 + hcd->frame_number = hfnum.b.frnum;
13365 +
13366 +#ifdef DEBUG
13367 + hcd->frrem_accum += hfnum.b.frrem;
13368 + hcd->frrem_samples++;
13369 +#endif
13370 +
13371 +#ifdef DWC_TRACK_MISSED_SOFS
13372 + track_missed_sofs(hcd->frame_number);
13373 +#endif
13374 +
13375 + /* Determine whether any periodic QHs should be executed. */
13376 + qh_entry = hcd->periodic_sched_inactive.next;
13377 + while (qh_entry != &hcd->periodic_sched_inactive) {
13378 + qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
13379 + qh_entry = qh_entry->next;
13380 + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
13381 + /*
13382 + * Move QH to the ready list to be executed next
13383 + * (micro)frame.
13384 + */
13385 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
13386 + }
13387 + }
13388 +
13389 + tr_type = dwc_otg_hcd_select_transactions(hcd);
13390 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
13391 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
13392 + }
13393 +
13394 + /* Clear interrupt */
13395 + gintsts.b.sofintr = 1;
13396 + dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
13397 +
13398 + return 1;
13399 +}
13400 +
13401 +/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
13402 + * least one packet in the Rx FIFO. The packets are moved from the FIFO to
13403 + * memory if the DWC_otg controller is operating in Slave mode. */
13404 +int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13405 +{
13406 + host_grxsts_data_t grxsts;
13407 + dwc_hc_t *hc = NULL;
13408 +
13409 + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
13410 +
13411 + grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
13412 +
13413 + hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
13414 +
13415 + /* Packet Status */
13416 + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
13417 + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
13418 + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
13419 + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
13420 +
13421 + switch (grxsts.b.pktsts) {
13422 + case DWC_GRXSTS_PKTSTS_IN:
13423 + /* Read the data into the host buffer. */
13424 + if (grxsts.b.bcnt > 0) {
13425 + dwc_otg_read_packet(dwc_otg_hcd->core_if,
13426 + hc->xfer_buff,
13427 + grxsts.b.bcnt);
13428 +
13429 + /* Update the HC fields for the next packet received. */
13430 + hc->xfer_count += grxsts.b.bcnt;
13431 + hc->xfer_buff += grxsts.b.bcnt;
13432 + }
13433 +
13434 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
13435 + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
13436 + case DWC_GRXSTS_PKTSTS_CH_HALTED:
13437 + /* Handled in interrupt, just ignore data */
13438 + break;
13439 + default:
13440 + DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
13441 + break;
13442 + }
13443 +
13444 + return 1;
13445 +}
13446 +
13447 +/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
13448 + * data packets may be written to the FIFO for OUT transfers. More requests
13449 + * may be written to the non-periodic request queue for IN transfers. This
13450 + * interrupt is enabled only in Slave mode. */
13451 +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13452 +{
13453 + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
13454 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
13455 + DWC_OTG_TRANSACTION_NON_PERIODIC);
13456 + return 1;
13457 +}
13458 +
13459 +/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
13460 + * packets may be written to the FIFO for OUT transfers. More requests may be
13461 + * written to the periodic request queue for IN transfers. This interrupt is
13462 + * enabled only in Slave mode. */
13463 +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13464 +{
13465 + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
13466 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
13467 + DWC_OTG_TRANSACTION_PERIODIC);
13468 + return 1;
13469 +}
13470 +
13471 +/** There are multiple conditions that can cause a port interrupt. This function
13472 + * determines which interrupt conditions have occurred and handles them
13473 + * appropriately. */
13474 +int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13475 +{
13476 + int retval = 0;
13477 + hprt0_data_t hprt0;
13478 + hprt0_data_t hprt0_modify;
13479 +
13480 + hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
13481 + hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
13482 +
13483 + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
13484 + * GINTSTS */
13485 +
13486 + hprt0_modify.b.prtena = 0;
13487 + hprt0_modify.b.prtconndet = 0;
13488 + hprt0_modify.b.prtenchng = 0;
13489 + hprt0_modify.b.prtovrcurrchng = 0;
13490 +
13491 + /* Port Connect Detected
13492 + * Set flag and clear if detected */
13493 + if (hprt0.b.prtconndet) {
13494 + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
13495 + "Port Connect Detected--\n", hprt0.d32);
13496 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
13497 + dwc_otg_hcd->flags.b.port_connect_status = 1;
13498 + hprt0_modify.b.prtconndet = 1;
13499 +
13500 + /* B-Device has connected, Delete the connection timer. */
13501 + del_timer( &dwc_otg_hcd->conn_timer );
13502 +
13503 + /* The Hub driver asserts a reset when it sees port connect
13504 + * status change flag */
13505 + retval |= 1;
13506 + }
13507 +
13508 + /* Port Enable Changed
13509 + * Clear if detected - Set internal flag if disabled */
13510 + if (hprt0.b.prtenchng) {
13511 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
13512 + "Port Enable Changed--\n", hprt0.d32);
13513 + hprt0_modify.b.prtenchng = 1;
13514 + if (hprt0.b.prtena == 1) {
13515 + int do_reset = 0;
13516 + dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
13517 + dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
13518 + dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
13519 +
13520 + /* Check if we need to adjust the PHY clock speed for
13521 + * low power and adjust it */
13522 + if (params->host_support_fs_ls_low_power) {
13523 + gusbcfg_data_t usbcfg;
13524 +
13525 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
13526 +
13527 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
13528 + hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
13529 + /*
13530 + * Low power
13531 + */
13532 + hcfg_data_t hcfg;
13533 + if (usbcfg.b.phylpwrclksel == 0) {
13534 + /* Set PHY low power clock select for FS/LS devices */
13535 + usbcfg.b.phylpwrclksel = 1;
13536 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
13537 + do_reset = 1;
13538 + }
13539 +
13540 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
13541 +
13542 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
13543 + params->host_ls_low_power_phy_clk ==
13544 + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
13545 + /* 6 MHZ */
13546 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
13547 + if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
13548 + hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
13549 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
13550 + hcfg.d32);
13551 + do_reset = 1;
13552 + }
13553 + } else {
13554 + /* 48 MHZ */
13555 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
13556 + if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
13557 + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
13558 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
13559 + hcfg.d32);
13560 + do_reset = 1;
13561 + }
13562 + }
13563 + } else {
13564 + /*
13565 + * Not low power
13566 + */
13567 + if (usbcfg.b.phylpwrclksel == 1) {
13568 + usbcfg.b.phylpwrclksel = 0;
13569 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
13570 + do_reset = 1;
13571 + }
13572 + }
13573 +
13574 + if (do_reset) {
13575 + tasklet_schedule(dwc_otg_hcd->reset_tasklet);
13576 + }
13577 + }
13578 +
13579 + if (!do_reset) {
13580 + /* Port has been enabled set the reset change flag */
13581 + dwc_otg_hcd->flags.b.port_reset_change = 1;
13582 + }
13583 + } else {
13584 + dwc_otg_hcd->flags.b.port_enable_change = 1;
13585 + }
13586 + retval |= 1;
13587 + }
13588 +
13589 + /** Overcurrent Change Interrupt */
13590 + if (hprt0.b.prtovrcurrchng) {
13591 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
13592 + "Port Overcurrent Changed--\n", hprt0.d32);
13593 + dwc_otg_hcd->flags.b.port_over_current_change = 1;
13594 + hprt0_modify.b.prtovrcurrchng = 1;
13595 + retval |= 1;
13596 + }
13597 +
13598 + /* Clear Port Interrupts */
13599 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
13600 +
13601 + return retval;
13602 +}
13603 +
13604 +/** This interrupt indicates that one or more host channels has a pending
13605 + * interrupt. There are multiple conditions that can cause each host channel
13606 + * interrupt. This function determines which conditions have occurred for each
13607 + * host channel interrupt and handles them appropriately. */
13608 +int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
13609 +{
13610 + int i;
13611 + int retval = 0;
13612 + haint_data_t haint;
13613 +
13614 + /* Clear appropriate bits in HCINTn to clear the interrupt bit in
13615 + * GINTSTS */
13616 +
13617 + haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
13618 +
13619 + for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
13620 + if (haint.b2.chint & (1 << i)) {
13621 + retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
13622 + }
13623 + }
13624 +
13625 + return retval;
13626 +}
13627 +
13628 +/* Macro used to clear one channel interrupt */
13629 +#define clear_hc_int(_hc_regs_, _intr_) \
13630 +do { \
13631 + hcint_data_t hcint_clear = {.d32 = 0}; \
13632 + hcint_clear.b._intr_ = 1; \
13633 + dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
13634 +} while (0)
13635 +
13636 +/*
13637 + * Macro used to disable one channel interrupt. Channel interrupts are
13638 + * disabled when the channel is halted or released by the interrupt handler.
13639 + * There is no need to handle further interrupts of that type until the
13640 + * channel is re-assigned. In fact, subsequent handling may cause crashes
13641 + * because the channel structures are cleaned up when the channel is released.
13642 + */
13643 +#define disable_hc_int(_hc_regs_, _intr_) \
13644 +do { \
13645 + hcintmsk_data_t hcintmsk = {.d32 = 0}; \
13646 + hcintmsk.b._intr_ = 1; \
13647 + dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
13648 +} while (0)
13649 +
13650 +/**
13651 + * Gets the actual length of a transfer after the transfer halts. _halt_status
13652 + * holds the reason for the halt.
13653 + *
13654 + * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
13655 + * *short_read is set to 1 upon return if less than the requested
13656 + * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
13657 + * return. short_read may also be NULL on entry, in which case it remains
13658 + * unchanged.
13659 + */
13660 +static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
13661 + dwc_otg_hc_regs_t *hc_regs,
13662 + dwc_otg_qtd_t *qtd,
13663 + dwc_otg_halt_status_e halt_status,
13664 + int *short_read)
13665 +{
13666 + hctsiz_data_t hctsiz;
13667 + uint32_t length;
13668 +
13669 + if (short_read != NULL) {
13670 + *short_read = 0;
13671 + }
13672 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
13673 +
13674 + if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
13675 + if (hc->ep_is_in) {
13676 + length = hc->xfer_len - hctsiz.b.xfersize;
13677 + if (short_read != NULL) {
13678 + *short_read = (hctsiz.b.xfersize != 0);
13679 + }
13680 + } else if (hc->qh->do_split) {
13681 + length = qtd->ssplit_out_xfer_count;
13682 + } else {
13683 + length = hc->xfer_len;
13684 + }
13685 + } else {
13686 + /*
13687 + * Must use the hctsiz.pktcnt field to determine how much data
13688 + * has been transferred. This field reflects the number of
13689 + * packets that have been transferred via the USB. This is
13690 + * always an integral number of packets if the transfer was
13691 + * halted before its normal completion. (Can't use the
13692 + * hctsiz.xfersize field because that reflects the number of
13693 + * bytes transferred via the AHB, not the USB).
13694 + */
13695 + length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
13696 + }
13697 +
13698 + return length;
13699 +}
13700 +
13701 +/**
13702 + * Updates the state of the URB after a Transfer Complete interrupt on the
13703 + * host channel. Updates the actual_length field of the URB based on the
13704 + * number of bytes transferred via the host channel. Sets the URB status
13705 + * if the data transfer is finished.
13706 + *
13707 + * @return 1 if the data transfer specified by the URB is completely finished,
13708 + * 0 otherwise.
13709 + */
13710 +static int update_urb_state_xfer_comp(dwc_hc_t *hc,
13711 + dwc_otg_hc_regs_t *hc_regs,
13712 + struct urb *urb,
13713 + dwc_otg_qtd_t *qtd)
13714 +{
13715 + int xfer_done = 0;
13716 + int short_read = 0;
13717 + int overflow_read=0;
13718 + uint32_t len = 0;
13719 + int max_packet;
13720 +
13721 + len = get_actual_xfer_length(hc, hc_regs, qtd,
13722 + DWC_OTG_HC_XFER_COMPLETE,
13723 + &short_read);
13724 +
13725 + /* Data overflow case: by Steven */
13726 + if (len > urb->transfer_buffer_length) {
13727 + len = urb->transfer_buffer_length;
13728 + overflow_read = 1;
13729 + }
13730 +
13731 + /* non DWORD-aligned buffer case handling. */
13732 + if (((uint32_t)hc->xfer_buff & 0x3) && len && hc->qh->dw_align_buf && hc->ep_is_in) {
13733 + memcpy(urb->transfer_buffer + urb->actual_length, hc->qh->dw_align_buf, len);
13734 + }
13735 + urb->actual_length +=len;
13736 +
13737 + max_packet = usb_maxpacket(urb->dev, urb->pipe, !usb_pipein(urb->pipe));
13738 + if((len) && usb_pipebulk(urb->pipe) &&
13739 + (urb->transfer_flags & URB_ZERO_PACKET) &&
13740 + (urb->actual_length == urb->transfer_buffer_length) &&
13741 + (!(urb->transfer_buffer_length % max_packet))) {
13742 + } else if (short_read || urb->actual_length == urb->transfer_buffer_length) {
13743 + xfer_done = 1;
13744 + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
13745 + urb->status = -EREMOTEIO;
13746 + } else if (overflow_read) {
13747 + urb->status = -EOVERFLOW;
13748 + } else {
13749 + urb->status = 0;
13750 + }
13751 + }
13752 +
13753 +#ifdef DEBUG
13754 + {
13755 + hctsiz_data_t hctsiz;
13756 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
13757 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
13758 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
13759 + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
13760 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
13761 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
13762 + urb->transfer_buffer_length);
13763 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
13764 + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
13765 + short_read, xfer_done);
13766 + }
13767 +#endif
13768 +
13769 + return xfer_done;
13770 +}
13771 +
13772 +/*
13773 + * Save the starting data toggle for the next transfer. The data toggle is
13774 + * saved in the QH for non-control transfers and it's saved in the QTD for
13775 + * control transfers.
13776 + */
13777 +static void save_data_toggle(dwc_hc_t *hc,
13778 + dwc_otg_hc_regs_t *hc_regs,
13779 + dwc_otg_qtd_t *qtd)
13780 +{
13781 + hctsiz_data_t hctsiz;
13782 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
13783 +
13784 + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
13785 + dwc_otg_qh_t *qh = hc->qh;
13786 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
13787 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
13788 + } else {
13789 + qh->data_toggle = DWC_OTG_HC_PID_DATA1;
13790 + }
13791 + } else {
13792 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
13793 + qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
13794 + } else {
13795 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13796 + }
13797 + }
13798 +}
13799 +
13800 +/**
13801 + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
13802 + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
13803 + * still linked to the QH, the QH is added to the end of the inactive
13804 + * non-periodic schedule. For periodic QHs, removes the QH from the periodic
13805 + * schedule if no more QTDs are linked to the QH.
13806 + */
13807 +static void deactivate_qh(dwc_otg_hcd_t *hcd,
13808 + dwc_otg_qh_t *qh,
13809 + int free_qtd)
13810 +{
13811 + int continue_split = 0;
13812 + dwc_otg_qtd_t *qtd;
13813 +
13814 + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
13815 +
13816 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
13817 +
13818 + if (qtd->complete_split) {
13819 + continue_split = 1;
13820 + } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
13821 + qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
13822 + continue_split = 1;
13823 + }
13824 +
13825 + if (free_qtd) {
13826 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
13827 + continue_split = 0;
13828 + }
13829 +
13830 + qh->channel = NULL;
13831 + qh->qtd_in_process = NULL;
13832 + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
13833 +}
13834 +
13835 +/**
13836 + * Updates the state of an Isochronous URB when the transfer is stopped for
13837 + * any reason. The fields of the current entry in the frame descriptor array
13838 + * are set based on the transfer state and the input _halt_status. Completes
13839 + * the Isochronous URB if all the URB frames have been completed.
13840 + *
13841 + * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
13842 + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
13843 + */
13844 +static dwc_otg_halt_status_e
13845 +update_isoc_urb_state(dwc_otg_hcd_t *hcd,
13846 + dwc_hc_t *hc,
13847 + dwc_otg_hc_regs_t *hc_regs,
13848 + dwc_otg_qtd_t *qtd,
13849 + dwc_otg_halt_status_e halt_status)
13850 +{
13851 + struct urb *urb = qtd->urb;
13852 + dwc_otg_halt_status_e ret_val = halt_status;
13853 + struct usb_iso_packet_descriptor *frame_desc;
13854 +
13855 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
13856 + switch (halt_status) {
13857 + case DWC_OTG_HC_XFER_COMPLETE:
13858 + frame_desc->status = 0;
13859 + frame_desc->actual_length =
13860 + get_actual_xfer_length(hc, hc_regs, qtd,
13861 + halt_status, NULL);
13862 +
13863 + /* non DWORD-aligned buffer case handling. */
13864 + if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) &&
13865 + hc->qh->dw_align_buf && hc->ep_is_in) {
13866 + memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset,
13867 + hc->qh->dw_align_buf, frame_desc->actual_length);
13868 +
13869 + }
13870 +
13871 + break;
13872 + case DWC_OTG_HC_XFER_FRAME_OVERRUN:
13873 + printk("DWC_OTG_HC_XFER_FRAME_OVERRUN: %d\n", halt_status);
13874 + urb->error_count++;
13875 + if (hc->ep_is_in) {
13876 + frame_desc->status = -ENOSR;
13877 + } else {
13878 + frame_desc->status = -ECOMM;
13879 + }
13880 + frame_desc->actual_length = 0;
13881 + break;
13882 + case DWC_OTG_HC_XFER_BABBLE_ERR:
13883 + printk("DWC_OTG_HC_XFER_BABBLE_ERR: %d\n", halt_status);
13884 + urb->error_count++;
13885 + frame_desc->status = -EOVERFLOW;
13886 + /* Don't need to update actual_length in this case. */
13887 + break;
13888 + case DWC_OTG_HC_XFER_XACT_ERR:
13889 + printk("DWC_OTG_HC_XFER_XACT_ERR: %d\n", halt_status);
13890 + urb->error_count++;
13891 + frame_desc->status = -EPROTO;
13892 + frame_desc->actual_length =
13893 + get_actual_xfer_length(hc, hc_regs, qtd,
13894 + halt_status, NULL);
13895 +
13896 + /* non DWORD-aligned buffer case handling. */
13897 + if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) &&
13898 + hc->qh->dw_align_buf && hc->ep_is_in) {
13899 + memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset,
13900 + hc->qh->dw_align_buf, frame_desc->actual_length);
13901 +
13902 + }
13903 + break;
13904 + default:
13905 +
13906 + DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
13907 + halt_status);
13908 + BUG();
13909 + break;
13910 + }
13911 +
13912 + if (++qtd->isoc_frame_index == urb->number_of_packets) {
13913 + /*
13914 + * urb->status is not used for isoc transfers.
13915 + * The individual frame_desc statuses are used instead.
13916 + */
13917 + dwc_otg_hcd_complete_urb(hcd, urb, 0);
13918 + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
13919 + } else {
13920 + ret_val = DWC_OTG_HC_XFER_COMPLETE;
13921 + }
13922 +
13923 + return ret_val;
13924 +}
13925 +
13926 +/**
13927 + * Releases a host channel for use by other transfers. Attempts to select and
13928 + * queue more transactions since at least one host channel is available.
13929 + *
13930 + * @param hcd The HCD state structure.
13931 + * @param hc The host channel to release.
13932 + * @param qtd The QTD associated with the host channel. This QTD may be freed
13933 + * if the transfer is complete or an error has occurred.
13934 + * @param halt_status Reason the channel is being released. This status
13935 + * determines the actions taken by this function.
13936 + */
13937 +static void release_channel(dwc_otg_hcd_t *hcd,
13938 + dwc_hc_t *hc,
13939 + dwc_otg_qtd_t *qtd,
13940 + dwc_otg_halt_status_e halt_status)
13941 +{
13942 + dwc_otg_transaction_type_e tr_type;
13943 + int free_qtd;
13944 +
13945 + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
13946 + __func__, hc->hc_num, halt_status);
13947 +
13948 + switch (halt_status) {
13949 + case DWC_OTG_HC_XFER_URB_COMPLETE:
13950 + free_qtd = 1;
13951 + break;
13952 + case DWC_OTG_HC_XFER_AHB_ERR:
13953 + case DWC_OTG_HC_XFER_STALL:
13954 + case DWC_OTG_HC_XFER_BABBLE_ERR:
13955 + free_qtd = 1;
13956 + break;
13957 + case DWC_OTG_HC_XFER_XACT_ERR:
13958 + if (qtd->error_count >= 3) {
13959 + DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
13960 + free_qtd = 1;
13961 + qtd->urb->status = -EPROTO;
13962 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
13963 + } else {
13964 + free_qtd = 0;
13965 + }
13966 + break;
13967 + case DWC_OTG_HC_XFER_URB_DEQUEUE:
13968 + /*
13969 + * The QTD has already been removed and the QH has been
13970 + * deactivated. Don't want to do anything except release the
13971 + * host channel and try to queue more transfers.
13972 + */
13973 + goto cleanup;
13974 + case DWC_OTG_HC_XFER_NO_HALT_STATUS:
13975 + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
13976 + free_qtd = 0;
13977 + break;
13978 + default:
13979 + free_qtd = 0;
13980 + break;
13981 + }
13982 +
13983 + deactivate_qh(hcd, hc->qh, free_qtd);
13984 +
13985 + cleanup:
13986 + /*
13987 + * Release the host channel for use by other transfers. The cleanup
13988 + * function clears the channel interrupt enables and conditions, so
13989 + * there's no need to clear the Channel Halted interrupt separately.
13990 + */
13991 + dwc_otg_hc_cleanup(hcd->core_if, hc);
13992 + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
13993 +
13994 + switch (hc->ep_type) {
13995 + case DWC_OTG_EP_TYPE_CONTROL:
13996 + case DWC_OTG_EP_TYPE_BULK:
13997 + hcd->non_periodic_channels--;
13998 + break;
13999 +
14000 + default:
14001 + /*
14002 + * Don't release reservations for periodic channels here.
14003 + * That's done when a periodic transfer is descheduled (i.e.
14004 + * when the QH is removed from the periodic schedule).
14005 + */
14006 + break;
14007 + }
14008 +
14009 + /* Try to queue more transfers now that there's a free channel. */
14010 + tr_type = dwc_otg_hcd_select_transactions(hcd);
14011 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
14012 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
14013 + }
14014 +}
14015 +
14016 +/**
14017 + * Halts a host channel. If the channel cannot be halted immediately because
14018 + * the request queue is full, this function ensures that the FIFO empty
14019 + * interrupt for the appropriate queue is enabled so that the halt request can
14020 + * be queued when there is space in the request queue.
14021 + *
14022 + * This function may also be called in DMA mode. In that case, the channel is
14023 + * simply released since the core always halts the channel automatically in
14024 + * DMA mode.
14025 + */
14026 +static void halt_channel(dwc_otg_hcd_t *hcd,
14027 + dwc_hc_t *hc,
14028 + dwc_otg_qtd_t *qtd,
14029 + dwc_otg_halt_status_e halt_status)
14030 +{
14031 + if (hcd->core_if->dma_enable) {
14032 + release_channel(hcd, hc, qtd, halt_status);
14033 + return;
14034 + }
14035 +
14036 + /* Slave mode processing... */
14037 + dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
14038 +
14039 + if (hc->halt_on_queue) {
14040 + gintmsk_data_t gintmsk = {.d32 = 0};
14041 + dwc_otg_core_global_regs_t *global_regs;
14042 + global_regs = hcd->core_if->core_global_regs;
14043 +
14044 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
14045 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
14046 + /*
14047 + * Make sure the Non-periodic Tx FIFO empty interrupt
14048 + * is enabled so that the non-periodic schedule will
14049 + * be processed.
14050 + */
14051 + gintmsk.b.nptxfempty = 1;
14052 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
14053 + } else {
14054 + /*
14055 + * Move the QH from the periodic queued schedule to
14056 + * the periodic assigned schedule. This allows the
14057 + * halt to be queued when the periodic schedule is
14058 + * processed.
14059 + */
14060 + list_move(&hc->qh->qh_list_entry,
14061 + &hcd->periodic_sched_assigned);
14062 +
14063 + /*
14064 + * Make sure the Periodic Tx FIFO Empty interrupt is
14065 + * enabled so that the periodic schedule will be
14066 + * processed.
14067 + */
14068 + gintmsk.b.ptxfempty = 1;
14069 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
14070 + }
14071 + }
14072 +}
14073 +
14074 +/**
14075 + * Performs common cleanup for non-periodic transfers after a Transfer
14076 + * Complete interrupt. This function should be called after any endpoint type
14077 + * specific handling is finished to release the host channel.
14078 + */
14079 +static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
14080 + dwc_hc_t *hc,
14081 + dwc_otg_hc_regs_t *hc_regs,
14082 + dwc_otg_qtd_t *qtd,
14083 + dwc_otg_halt_status_e halt_status)
14084 +{
14085 + hcint_data_t hcint;
14086 +
14087 + qtd->error_count = 0;
14088 +
14089 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
14090 + if (hcint.b.nyet) {
14091 + /*
14092 + * Got a NYET on the last transaction of the transfer. This
14093 + * means that the endpoint should be in the PING state at the
14094 + * beginning of the next transfer.
14095 + */
14096 + hc->qh->ping_state = 1;
14097 + clear_hc_int(hc_regs, nyet);
14098 + }
14099 +
14100 + /*
14101 + * Always halt and release the host channel to make it available for
14102 + * more transfers. There may still be more phases for a control
14103 + * transfer or more data packets for a bulk transfer at this point,
14104 + * but the host channel is still halted. A channel will be reassigned
14105 + * to the transfer when the non-periodic schedule is processed after
14106 + * the channel is released. This allows transactions to be queued
14107 + * properly via dwc_otg_hcd_queue_transactions, which also enables the
14108 + * Tx FIFO Empty interrupt if necessary.
14109 + */
14110 + if (hc->ep_is_in) {
14111 + /*
14112 + * IN transfers in Slave mode require an explicit disable to
14113 + * halt the channel. (In DMA mode, this call simply releases
14114 + * the channel.)
14115 + */
14116 + halt_channel(hcd, hc, qtd, halt_status);
14117 + } else {
14118 + /*
14119 + * The channel is automatically disabled by the core for OUT
14120 + * transfers in Slave mode.
14121 + */
14122 + release_channel(hcd, hc, qtd, halt_status);
14123 + }
14124 +}
14125 +
14126 +/**
14127 + * Performs common cleanup for periodic transfers after a Transfer Complete
14128 + * interrupt. This function should be called after any endpoint type specific
14129 + * handling is finished to release the host channel.
14130 + */
14131 +static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
14132 + dwc_hc_t *hc,
14133 + dwc_otg_hc_regs_t *hc_regs,
14134 + dwc_otg_qtd_t *qtd,
14135 + dwc_otg_halt_status_e halt_status)
14136 +{
14137 + hctsiz_data_t hctsiz;
14138 + qtd->error_count = 0;
14139 +
14140 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
14141 + if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
14142 + /* Core halts channel in these cases. */
14143 + release_channel(hcd, hc, qtd, halt_status);
14144 + } else {
14145 + /* Flush any outstanding requests from the Tx queue. */
14146 + halt_channel(hcd, hc, qtd, halt_status);
14147 + }
14148 +}
14149 +
14150 +/**
14151 + * Handles a host channel Transfer Complete interrupt. This handler may be
14152 + * called in either DMA mode or Slave mode.
14153 + */
14154 +static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
14155 + dwc_hc_t *hc,
14156 + dwc_otg_hc_regs_t *hc_regs,
14157 + dwc_otg_qtd_t *qtd)
14158 +{
14159 + int urb_xfer_done;
14160 + dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
14161 + struct urb *urb = qtd->urb;
14162 + int pipe_type = usb_pipetype(urb->pipe);
14163 +
14164 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14165 + "Transfer Complete--\n", hc->hc_num);
14166 +
14167 + /*
14168 + * Handle xfer complete on CSPLIT.
14169 + */
14170 + if (hc->qh->do_split) {
14171 + qtd->complete_split = 0;
14172 + }
14173 +
14174 + /* Update the QTD and URB states. */
14175 + switch (pipe_type) {
14176 + case PIPE_CONTROL:
14177 + switch (qtd->control_phase) {
14178 + case DWC_OTG_CONTROL_SETUP:
14179 + if (urb->transfer_buffer_length > 0) {
14180 + qtd->control_phase = DWC_OTG_CONTROL_DATA;
14181 + } else {
14182 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
14183 + }
14184 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
14185 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
14186 + break;
14187 + case DWC_OTG_CONTROL_DATA: {
14188 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
14189 + if (urb_xfer_done) {
14190 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
14191 + DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
14192 + } else {
14193 + save_data_toggle(hc, hc_regs, qtd);
14194 + }
14195 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
14196 + break;
14197 + }
14198 + case DWC_OTG_CONTROL_STATUS:
14199 + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
14200 + if (urb->status == -EINPROGRESS) {
14201 + urb->status = 0;
14202 + }
14203 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
14204 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
14205 + break;
14206 + }
14207 +
14208 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
14209 + break;
14210 + case PIPE_BULK:
14211 + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
14212 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
14213 + if (urb_xfer_done) {
14214 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
14215 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
14216 + } else {
14217 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
14218 + }
14219 +
14220 + save_data_toggle(hc, hc_regs, qtd);
14221 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
14222 + break;
14223 + case PIPE_INTERRUPT:
14224 + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
14225 + update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
14226 +
14227 + /*
14228 + * Interrupt URB is done on the first transfer complete
14229 + * interrupt.
14230 + */
14231 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
14232 + save_data_toggle(hc, hc_regs, qtd);
14233 + complete_periodic_xfer(hcd, hc, hc_regs, qtd,
14234 + DWC_OTG_HC_XFER_URB_COMPLETE);
14235 + break;
14236 + case PIPE_ISOCHRONOUS:
14237 + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
14238 + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
14239 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
14240 + DWC_OTG_HC_XFER_COMPLETE);
14241 + }
14242 + complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
14243 + break;
14244 + }
14245 +
14246 + disable_hc_int(hc_regs, xfercompl);
14247 +
14248 + return 1;
14249 +}
14250 +
14251 +/**
14252 + * Handles a host channel STALL interrupt. This handler may be called in
14253 + * either DMA mode or Slave mode.
14254 + */
14255 +static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
14256 + dwc_hc_t *hc,
14257 + dwc_otg_hc_regs_t *hc_regs,
14258 + dwc_otg_qtd_t *qtd)
14259 +{
14260 + struct urb *urb = qtd->urb;
14261 + int pipe_type = usb_pipetype(urb->pipe);
14262 +
14263 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14264 + "STALL Received--\n", hc->hc_num);
14265 +
14266 + if (pipe_type == PIPE_CONTROL) {
14267 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
14268 + }
14269 +
14270 + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
14271 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
14272 + /*
14273 + * USB protocol requires resetting the data toggle for bulk
14274 + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
14275 + * setup command is issued to the endpoint. Anticipate the
14276 + * CLEAR_FEATURE command since a STALL has occurred and reset
14277 + * the data toggle now.
14278 + */
14279 + hc->qh->data_toggle = 0;
14280 + }
14281 +
14282 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
14283 +
14284 + disable_hc_int(hc_regs, stall);
14285 +
14286 + return 1;
14287 +}
14288 +
14289 +/*
14290 + * Updates the state of the URB when a transfer has been stopped due to an
14291 + * abnormal condition before the transfer completes. Modifies the
14292 + * actual_length field of the URB to reflect the number of bytes that have
14293 + * actually been transferred via the host channel.
14294 + */
14295 +static void update_urb_state_xfer_intr(dwc_hc_t *hc,
14296 + dwc_otg_hc_regs_t *hc_regs,
14297 + struct urb *urb,
14298 + dwc_otg_qtd_t *qtd,
14299 + dwc_otg_halt_status_e halt_status)
14300 +{
14301 + uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
14302 + halt_status, NULL);
14303 + urb->actual_length += bytes_transferred;
14304 +
14305 +#ifdef DEBUG
14306 + {
14307 + hctsiz_data_t hctsiz;
14308 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
14309 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
14310 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
14311 + DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
14312 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
14313 + DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
14314 + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
14315 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
14316 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
14317 + urb->transfer_buffer_length);
14318 + }
14319 +#endif
14320 +}
14321 +
14322 +/**
14323 + * Handles a host channel NAK interrupt. This handler may be called in either
14324 + * DMA mode or Slave mode.
14325 + */
14326 +static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
14327 + dwc_hc_t *hc,
14328 + dwc_otg_hc_regs_t *hc_regs,
14329 + dwc_otg_qtd_t *qtd)
14330 +{
14331 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14332 + "NAK Received--\n", hc->hc_num);
14333 +
14334 + /*
14335 + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
14336 + * interrupt. Re-start the SSPLIT transfer.
14337 + */
14338 + if (hc->do_split) {
14339 + if (hc->complete_split) {
14340 + qtd->error_count = 0;
14341 + }
14342 + qtd->complete_split = 0;
14343 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
14344 + goto handle_nak_done;
14345 + }
14346 +
14347 + switch (usb_pipetype(qtd->urb->pipe)) {
14348 + case PIPE_CONTROL:
14349 + case PIPE_BULK:
14350 + if (hcd->core_if->dma_enable && hc->ep_is_in) {
14351 + /*
14352 + * NAK interrupts are enabled on bulk/control IN
14353 + * transfers in DMA mode for the sole purpose of
14354 + * resetting the error count after a transaction error
14355 + * occurs. The core will continue transferring data.
14356 + */
14357 + qtd->error_count = 0;
14358 + goto handle_nak_done;
14359 + }
14360 +
14361 + /*
14362 + * NAK interrupts normally occur during OUT transfers in DMA
14363 + * or Slave mode. For IN transfers, more requests will be
14364 + * queued as request queue space is available.
14365 + */
14366 + qtd->error_count = 0;
14367 +
14368 + if (!hc->qh->ping_state) {
14369 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
14370 + qtd, DWC_OTG_HC_XFER_NAK);
14371 + save_data_toggle(hc, hc_regs, qtd);
14372 + if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
14373 + hc->qh->ping_state = 1;
14374 + }
14375 + }
14376 +
14377 + /*
14378 + * Halt the channel so the transfer can be re-started from
14379 + * the appropriate point or the PING protocol will
14380 + * start/continue.
14381 + */
14382 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
14383 + break;
14384 + case PIPE_INTERRUPT:
14385 + qtd->error_count = 0;
14386 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
14387 + break;
14388 + case PIPE_ISOCHRONOUS:
14389 + /* Should never get called for isochronous transfers. */
14390 + BUG();
14391 + break;
14392 + }
14393 +
14394 + handle_nak_done:
14395 + disable_hc_int(hc_regs, nak);
14396 +
14397 + return 1;
14398 +}
14399 +
14400 +/**
14401 + * Handles a host channel ACK interrupt. This interrupt is enabled when
14402 + * performing the PING protocol in Slave mode, when errors occur during
14403 + * either Slave mode or DMA mode, and during Start Split transactions.
14404 + */
14405 +static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
14406 + dwc_hc_t *hc,
14407 + dwc_otg_hc_regs_t *hc_regs,
14408 + dwc_otg_qtd_t *qtd)
14409 +{
14410 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14411 + "ACK Received--\n", hc->hc_num);
14412 +
14413 + if (hc->do_split) {
14414 + /*
14415 + * Handle ACK on SSPLIT.
14416 + * ACK should not occur in CSPLIT.
14417 + */
14418 + if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
14419 + qtd->ssplit_out_xfer_count = hc->xfer_len;
14420 + }
14421 + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
14422 + /* Don't need complete for isochronous out transfers. */
14423 + qtd->complete_split = 1;
14424 + }
14425 +
14426 + /* ISOC OUT */
14427 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
14428 + switch (hc->xact_pos) {
14429 + case DWC_HCSPLIT_XACTPOS_ALL:
14430 + break;
14431 + case DWC_HCSPLIT_XACTPOS_END:
14432 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
14433 + qtd->isoc_split_offset = 0;
14434 + break;
14435 + case DWC_HCSPLIT_XACTPOS_BEGIN:
14436 + case DWC_HCSPLIT_XACTPOS_MID:
14437 + /*
14438 + * For BEGIN or MID, calculate the length for
14439 + * the next microframe to determine the correct
14440 + * SSPLIT token, either MID or END.
14441 + */
14442 + {
14443 + struct usb_iso_packet_descriptor *frame_desc;
14444 +
14445 + frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
14446 + qtd->isoc_split_offset += 188;
14447 +
14448 + if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
14449 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
14450 + } else {
14451 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
14452 + }
14453 +
14454 + }
14455 + break;
14456 + }
14457 + } else {
14458 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
14459 + }
14460 + } else {
14461 + qtd->error_count = 0;
14462 +
14463 + if (hc->qh->ping_state) {
14464 + hc->qh->ping_state = 0;
14465 + /*
14466 + * Halt the channel so the transfer can be re-started
14467 + * from the appropriate point. This only happens in
14468 + * Slave mode. In DMA mode, the ping_state is cleared
14469 + * when the transfer is started because the core
14470 + * automatically executes the PING, then the transfer.
14471 + */
14472 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
14473 + }
14474 + }
14475 +
14476 + /*
14477 + * If the ACK occurred when _not_ in the PING state, let the channel
14478 + * continue transferring data after clearing the error count.
14479 + */
14480 +
14481 + disable_hc_int(hc_regs, ack);
14482 +
14483 + return 1;
14484 +}
14485 +
14486 +/**
14487 + * Handles a host channel NYET interrupt. This interrupt should only occur on
14488 + * Bulk and Control OUT endpoints and for complete split transactions. If a
14489 + * NYET occurs at the same time as a Transfer Complete interrupt, it is
14490 + * handled in the xfercomp interrupt handler, not here. This handler may be
14491 + * called in either DMA mode or Slave mode.
14492 + */
14493 +static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
14494 + dwc_hc_t *hc,
14495 + dwc_otg_hc_regs_t *hc_regs,
14496 + dwc_otg_qtd_t *qtd)
14497 +{
14498 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14499 + "NYET Received--\n", hc->hc_num);
14500 +
14501 + /*
14502 + * NYET on CSPLIT
14503 + * re-do the CSPLIT immediately on non-periodic
14504 + */
14505 + if (hc->do_split && hc->complete_split) {
14506 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
14507 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
14508 + int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
14509 +
14510 + if (dwc_full_frame_num(frnum) !=
14511 + dwc_full_frame_num(hc->qh->sched_frame)) {
14512 + /*
14513 + * No longer in the same full speed frame.
14514 + * Treat this as a transaction error.
14515 + */
14516 +#if 0
14517 + /** @todo Fix system performance so this can
14518 + * be treated as an error. Right now complete
14519 + * splits cannot be scheduled precisely enough
14520 + * due to other system activity, so this error
14521 + * occurs regularly in Slave mode.
14522 + */
14523 + qtd->error_count++;
14524 +#endif
14525 + qtd->complete_split = 0;
14526 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
14527 + /** @todo add support for isoc release */
14528 + goto handle_nyet_done;
14529 + }
14530 + }
14531 +
14532 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
14533 + goto handle_nyet_done;
14534 + }
14535 +
14536 + hc->qh->ping_state = 1;
14537 + qtd->error_count = 0;
14538 +
14539 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
14540 + DWC_OTG_HC_XFER_NYET);
14541 + save_data_toggle(hc, hc_regs, qtd);
14542 +
14543 + /*
14544 + * Halt the channel and re-start the transfer so the PING
14545 + * protocol will start.
14546 + */
14547 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
14548 +
14549 +handle_nyet_done:
14550 + disable_hc_int(hc_regs, nyet);
14551 + return 1;
14552 +}
14553 +
14554 +/**
14555 + * Handles a host channel babble interrupt. This handler may be called in
14556 + * either DMA mode or Slave mode.
14557 + */
14558 +static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
14559 + dwc_hc_t *hc,
14560 + dwc_otg_hc_regs_t *hc_regs,
14561 + dwc_otg_qtd_t *qtd)
14562 +{
14563 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14564 + "Babble Error--\n", hc->hc_num);
14565 + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
14566 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
14567 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
14568 + } else {
14569 + dwc_otg_halt_status_e halt_status;
14570 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
14571 + DWC_OTG_HC_XFER_BABBLE_ERR);
14572 + halt_channel(hcd, hc, qtd, halt_status);
14573 + }
14574 + disable_hc_int(hc_regs, bblerr);
14575 + return 1;
14576 +}
14577 +
14578 +/**
14579 + * Handles a host channel AHB error interrupt. This handler is only called in
14580 + * DMA mode.
14581 + */
14582 +static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
14583 + dwc_hc_t *hc,
14584 + dwc_otg_hc_regs_t *hc_regs,
14585 + dwc_otg_qtd_t *qtd)
14586 +{
14587 + hcchar_data_t hcchar;
14588 + hcsplt_data_t hcsplt;
14589 + hctsiz_data_t hctsiz;
14590 + uint32_t hcdma;
14591 + struct urb *urb = qtd->urb;
14592 +
14593 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14594 + "AHB Error--\n", hc->hc_num);
14595 +
14596 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
14597 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
14598 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
14599 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
14600 +
14601 + DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
14602 + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
14603 + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
14604 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
14605 + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
14606 + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
14607 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
14608 + DWC_ERROR(" Endpoint type: %s\n",
14609 + ({char *pipetype;
14610 + switch (usb_pipetype(urb->pipe)) {
14611 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
14612 + case PIPE_BULK: pipetype = "BULK"; break;
14613 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
14614 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
14615 + default: pipetype = "UNKNOWN"; break;
14616 + }; pipetype;}));
14617 + DWC_ERROR(" Speed: %s\n",
14618 + ({char *speed;
14619 + switch (urb->dev->speed) {
14620 + case USB_SPEED_HIGH: speed = "HIGH"; break;
14621 + case USB_SPEED_FULL: speed = "FULL"; break;
14622 + case USB_SPEED_LOW: speed = "LOW"; break;
14623 + default: speed = "UNKNOWN"; break;
14624 + }; speed;}));
14625 + DWC_ERROR(" Max packet size: %d\n",
14626 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
14627 + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
14628 + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
14629 + urb->transfer_buffer, (void *)urb->transfer_dma);
14630 + DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
14631 + urb->setup_packet, (void *)urb->setup_dma);
14632 + DWC_ERROR(" Interval: %d\n", urb->interval);
14633 +
14634 + dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
14635 +
14636 + /*
14637 + * Force a channel halt. Don't call halt_channel because that won't
14638 + * write to the HCCHARn register in DMA mode to force the halt.
14639 + */
14640 + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
14641 +
14642 + disable_hc_int(hc_regs, ahberr);
14643 + return 1;
14644 +}
14645 +
14646 +/**
14647 + * Handles a host channel transaction error interrupt. This handler may be
14648 + * called in either DMA mode or Slave mode.
14649 + */
14650 +static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
14651 + dwc_hc_t *hc,
14652 + dwc_otg_hc_regs_t *hc_regs,
14653 + dwc_otg_qtd_t *qtd)
14654 +{
14655 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14656 + "Transaction Error--\n", hc->hc_num);
14657 +
14658 + switch (usb_pipetype(qtd->urb->pipe)) {
14659 + case PIPE_CONTROL:
14660 + case PIPE_BULK:
14661 + qtd->error_count++;
14662 + if (!hc->qh->ping_state) {
14663 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
14664 + qtd, DWC_OTG_HC_XFER_XACT_ERR);
14665 + save_data_toggle(hc, hc_regs, qtd);
14666 + if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
14667 + hc->qh->ping_state = 1;
14668 + }
14669 + }
14670 +
14671 + /*
14672 + * Halt the channel so the transfer can be re-started from
14673 + * the appropriate point or the PING protocol will start.
14674 + */
14675 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
14676 + break;
14677 + case PIPE_INTERRUPT:
14678 + qtd->error_count++;
14679 + if (hc->do_split && hc->complete_split) {
14680 + qtd->complete_split = 0;
14681 + }
14682 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
14683 + break;
14684 + case PIPE_ISOCHRONOUS:
14685 + {
14686 + dwc_otg_halt_status_e halt_status;
14687 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
14688 + DWC_OTG_HC_XFER_XACT_ERR);
14689 +
14690 + halt_channel(hcd, hc, qtd, halt_status);
14691 + }
14692 + break;
14693 + }
14694 +
14695 + disable_hc_int(hc_regs, xacterr);
14696 +
14697 + return 1;
14698 +}
14699 +
14700 +/**
14701 + * Handles a host channel frame overrun interrupt. This handler may be called
14702 + * in either DMA mode or Slave mode.
14703 + */
14704 +static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
14705 + dwc_hc_t *hc,
14706 + dwc_otg_hc_regs_t *hc_regs,
14707 + dwc_otg_qtd_t *qtd)
14708 +{
14709 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14710 + "Frame Overrun--\n", hc->hc_num);
14711 +
14712 + switch (usb_pipetype(qtd->urb->pipe)) {
14713 + case PIPE_CONTROL:
14714 + case PIPE_BULK:
14715 + break;
14716 + case PIPE_INTERRUPT:
14717 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
14718 + break;
14719 + case PIPE_ISOCHRONOUS:
14720 + {
14721 + dwc_otg_halt_status_e halt_status;
14722 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
14723 + DWC_OTG_HC_XFER_FRAME_OVERRUN);
14724 +
14725 + halt_channel(hcd, hc, qtd, halt_status);
14726 + }
14727 + break;
14728 + }
14729 +
14730 + disable_hc_int(hc_regs, frmovrun);
14731 +
14732 + return 1;
14733 +}
14734 +
14735 +/**
14736 + * Handles a host channel data toggle error interrupt. This handler may be
14737 + * called in either DMA mode or Slave mode.
14738 + */
14739 +static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
14740 + dwc_hc_t *hc,
14741 + dwc_otg_hc_regs_t *hc_regs,
14742 + dwc_otg_qtd_t *qtd)
14743 +{
14744 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14745 + "Data Toggle Error--\n", hc->hc_num);
14746 +
14747 + if (hc->ep_is_in) {
14748 + qtd->error_count = 0;
14749 + } else {
14750 + DWC_ERROR("Data Toggle Error on OUT transfer,"
14751 + "channel %d\n", hc->hc_num);
14752 + }
14753 +
14754 + disable_hc_int(hc_regs, datatglerr);
14755 +
14756 + return 1;
14757 +}
14758 +
14759 +#ifdef DEBUG
14760 +/**
14761 + * This function is for debug only. It checks that a valid halt status is set
14762 + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
14763 + * taken and a warning is issued.
14764 + * @return 1 if halt status is ok, 0 otherwise.
14765 + */
14766 +static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
14767 + dwc_hc_t *hc,
14768 + dwc_otg_hc_regs_t *hc_regs,
14769 + dwc_otg_qtd_t *qtd)
14770 +{
14771 + hcchar_data_t hcchar;
14772 + hctsiz_data_t hctsiz;
14773 + hcint_data_t hcint;
14774 + hcintmsk_data_t hcintmsk;
14775 + hcsplt_data_t hcsplt;
14776 +
14777 + if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
14778 + /*
14779 + * This code is here only as a check. This condition should
14780 + * never happen. Ignore the halt if it does occur.
14781 + */
14782 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
14783 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
14784 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
14785 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
14786 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
14787 + DWC_WARN("%s: hc->halt_status == DWC_OTG"
14788 + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
14789 + "hcint 0x%08x, hcintmsk 0x%08x, "
14790 + "hcsplt 0x%08x, qtd->complete_split %d\n",
14791 + __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
14792 + hcint.d32, hcintmsk.d32,
14793 + hcsplt.d32, qtd->complete_split);
14794 +
14795 + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
14796 + __func__, hc->hc_num);
14797 + DWC_WARN("\n");
14798 + clear_hc_int(hc_regs, chhltd);
14799 + return 0;
14800 + }
14801 +
14802 + /*
14803 + * This code is here only as a check. hcchar.chdis should
14804 + * never be set when the halt interrupt occurs. Halt the
14805 + * channel again if it does occur.
14806 + */
14807 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
14808 + if (hcchar.b.chdis) {
14809 + DWC_WARN("%s: hcchar.chdis set unexpectedly, "
14810 + "hcchar 0x%08x, trying to halt again\n",
14811 + __func__, hcchar.d32);
14812 + clear_hc_int(hc_regs, chhltd);
14813 + hc->halt_pending = 0;
14814 + halt_channel(hcd, hc, qtd, hc->halt_status);
14815 + return 0;
14816 + }
14817 +
14818 + return 1;
14819 +}
14820 +#endif
14821 +
14822 +/**
14823 + * Handles a host Channel Halted interrupt in DMA mode. This handler
14824 + * determines the reason the channel halted and proceeds accordingly.
14825 + */
14826 +static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
14827 + dwc_hc_t *hc,
14828 + dwc_otg_hc_regs_t *hc_regs,
14829 + dwc_otg_qtd_t *qtd)
14830 +{
14831 + hcint_data_t hcint;
14832 + hcintmsk_data_t hcintmsk;
14833 + int out_nak_enh = 0;
14834 +
14835 + /* For core with OUT NAK enhancement, the flow for high-
14836 + * speed CONTROL/BULK OUT is handled a little differently.
14837 + */
14838 + if (hcd->core_if->snpsid >= 0x4F54271A) {
14839 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
14840 + (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
14841 + hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
14842 + printk(KERN_DEBUG "OUT NAK enhancement enabled\n");
14843 + out_nak_enh = 1;
14844 + } else {
14845 + printk(KERN_DEBUG "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
14846 + }
14847 + } else {
14848 +// printk(KERN_DEBUG "OUT NAK enhancement disabled, no core support\n");
14849 + }
14850 +
14851 + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
14852 + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
14853 + /*
14854 + * Just release the channel. A dequeue can happen on a
14855 + * transfer timeout. In the case of an AHB Error, the channel
14856 + * was forced to halt because there's no way to gracefully
14857 + * recover.
14858 + */
14859 + release_channel(hcd, hc, qtd, hc->halt_status);
14860 + return;
14861 + }
14862 +
14863 + /* Read the HCINTn register to determine the cause for the halt. */
14864 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
14865 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
14866 +
14867 + if (hcint.b.xfercomp) {
14868 + /** @todo This is here because of a possible hardware bug. Spec
14869 + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
14870 + * interrupt w/ACK bit set should occur, but I only see the
14871 + * XFERCOMP bit, even with it masked out. This is a workaround
14872 + * for that behavior. Should fix this when hardware is fixed.
14873 + */
14874 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
14875 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
14876 + }
14877 + handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
14878 + } else if (hcint.b.stall) {
14879 + handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
14880 + } else if (hcint.b.xacterr) {
14881 + if (out_nak_enh) {
14882 + if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
14883 + printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
14884 + qtd->error_count = 0;
14885 + } else {
14886 + printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
14887 + }
14888 + }
14889 +
14890 + /*
14891 + * Must handle xacterr before nak or ack. Could get a xacterr
14892 + * at the same time as either of these on a BULK/CONTROL OUT
14893 + * that started with a PING. The xacterr takes precedence.
14894 + */
14895 + handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
14896 + } else if (!out_nak_enh) {
14897 + if (hcint.b.nyet) {
14898 + /*
14899 + * Must handle nyet before nak or ack. Could get a nyet at the
14900 + * same time as either of those on a BULK/CONTROL OUT that
14901 + * started with a PING. The nyet takes precedence.
14902 + */
14903 + handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
14904 + } else if (hcint.b.bblerr) {
14905 + handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
14906 + } else if (hcint.b.frmovrun) {
14907 + handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
14908 + } else if (hcint.b.nak && !hcintmsk.b.nak) {
14909 + /*
14910 + * If nak is not masked, it's because a non-split IN transfer
14911 + * is in an error state. In that case, the nak is handled by
14912 + * the nak interrupt handler, not here. Handle nak here for
14913 + * BULK/CONTROL OUT transfers, which halt on a NAK to allow
14914 + * rewinding the buffer pointer.
14915 + */
14916 + handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
14917 + } else if (hcint.b.ack && !hcintmsk.b.ack) {
14918 + /*
14919 + * If ack is not masked, it's because a non-split IN transfer
14920 + * is in an error state. In that case, the ack is handled by
14921 + * the ack interrupt handler, not here. Handle ack here for
14922 + * split transfers. Start splits halt on ACK.
14923 + */
14924 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
14925 + } else {
14926 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
14927 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
14928 + /*
14929 + * A periodic transfer halted with no other channel
14930 + * interrupts set. Assume it was halted by the core
14931 + * because it could not be completed in its scheduled
14932 + * (micro)frame.
14933 + */
14934 +#ifdef DEBUG
14935 + DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
14936 + __func__, hc->hc_num);
14937 +#endif
14938 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
14939 + } else {
14940 + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
14941 + "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
14942 + __func__, hc->hc_num, hcint.d32,
14943 + dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
14944 + }
14945 + }
14946 + } else {
14947 + printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
14948 + }
14949 +}
14950 +
14951 +/**
14952 + * Handles a host channel Channel Halted interrupt.
14953 + *
14954 + * In slave mode, this handler is called only when the driver specifically
14955 + * requests a halt. This occurs during handling other host channel interrupts
14956 + * (e.g. nak, xacterr, stall, nyet, etc.).
14957 + *
14958 + * In DMA mode, this is the interrupt that occurs when the core has finished
14959 + * processing a transfer on a channel. Other host channel interrupts (except
14960 + * ahberr) are disabled in DMA mode.
14961 + */
14962 +static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
14963 + dwc_hc_t *hc,
14964 + dwc_otg_hc_regs_t *hc_regs,
14965 + dwc_otg_qtd_t *qtd)
14966 +{
14967 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
14968 + "Channel Halted--\n", hc->hc_num);
14969 +
14970 + if (hcd->core_if->dma_enable) {
14971 + handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
14972 + } else {
14973 +#ifdef DEBUG
14974 + if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
14975 + return 1;
14976 + }
14977 +#endif
14978 + release_channel(hcd, hc, qtd, hc->halt_status);
14979 + }
14980 +
14981 + return 1;
14982 +}
14983 +
14984 +/** Handles interrupt for a specific Host Channel */
14985 +int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
14986 +{
14987 + int retval = 0;
14988 + hcint_data_t hcint;
14989 + hcintmsk_data_t hcintmsk;
14990 + dwc_hc_t *hc;
14991 + dwc_otg_hc_regs_t *hc_regs;
14992 + dwc_otg_qtd_t *qtd;
14993 +
14994 + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
14995 +
14996 + hc = dwc_otg_hcd->hc_ptr_array[num];
14997 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
14998 + qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
14999 +
15000 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
15001 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
15002 + DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
15003 + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
15004 + hcint.d32 = hcint.d32 & hcintmsk.d32;
15005 +
15006 + if (!dwc_otg_hcd->core_if->dma_enable) {
15007 + if (hcint.b.chhltd && hcint.d32 != 0x2) {
15008 + hcint.b.chhltd = 0;
15009 + }
15010 + }
15011 +
15012 + if (hcint.b.xfercomp) {
15013 + retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15014 + /*
15015 + * If NYET occurred at same time as Xfer Complete, the NYET is
15016 + * handled by the Xfer Complete interrupt handler. Don't want
15017 + * to call the NYET interrupt handler in this case.
15018 + */
15019 + hcint.b.nyet = 0;
15020 + }
15021 + if (hcint.b.chhltd) {
15022 + retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15023 + }
15024 + if (hcint.b.ahberr) {
15025 + retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15026 + }
15027 + if (hcint.b.stall) {
15028 + retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15029 + }
15030 + if (hcint.b.nak) {
15031 + retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15032 + }
15033 + if (hcint.b.ack) {
15034 + retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15035 + }
15036 + if (hcint.b.nyet) {
15037 + retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15038 + }
15039 + if (hcint.b.xacterr) {
15040 + retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15041 + }
15042 + if (hcint.b.bblerr) {
15043 + retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15044 + }
15045 + if (hcint.b.frmovrun) {
15046 + retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15047 + }
15048 + if (hcint.b.datatglerr) {
15049 + retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
15050 + }
15051 +
15052 + return retval;
15053 +}
15054 +
15055 +#endif /* DWC_DEVICE_ONLY */
15056 --- /dev/null
15057 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
15058 @@ -0,0 +1,684 @@
15059 +/* ==========================================================================
15060 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $
15061 + * $Revision: 1.5 $
15062 + * $Date: 2008-12-15 06:51:32 $
15063 + * $Change: 537387 $
15064 + *
15065 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
15066 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
15067 + * otherwise expressly agreed to in writing between Synopsys and you.
15068 + *
15069 + * The Software IS NOT an item of Licensed Software or Licensed Product under
15070 + * any End User Software License Agreement or Agreement for Licensed Product
15071 + * with Synopsys or any supplement thereto. You are permitted to use and
15072 + * redistribute this Software in source and binary forms, with or without
15073 + * modification, provided that redistributions of source code must retain this
15074 + * notice. You may not view, use, disclose, copy or distribute this file or
15075 + * any information contained herein except pursuant to this license grant from
15076 + * Synopsys. If you do not agree with this notice, including the disclaimer
15077 + * below, then you are not authorized to use the Software.
15078 + *
15079 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
15080 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15081 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15082 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
15083 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
15084 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
15085 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
15086 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
15087 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
15088 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
15089 + * DAMAGE.
15090 + * ========================================================================== */
15091 +#ifndef DWC_DEVICE_ONLY
15092 +
15093 +/**
15094 + * @file
15095 + *
15096 + * This file contains the functions to manage Queue Heads and Queue
15097 + * Transfer Descriptors.
15098 + */
15099 +#include <linux/kernel.h>
15100 +#include <linux/module.h>
15101 +#include <linux/moduleparam.h>
15102 +#include <linux/init.h>
15103 +#include <linux/device.h>
15104 +#include <linux/errno.h>
15105 +#include <linux/list.h>
15106 +#include <linux/interrupt.h>
15107 +#include <linux/string.h>
15108 +#include <linux/dma-mapping.h>
15109 +
15110 +#include "dwc_otg_driver.h"
15111 +#include "dwc_otg_hcd.h"
15112 +#include "dwc_otg_regs.h"
15113 +
15114 +/**
15115 + * This function allocates and initializes a QH.
15116 + *
15117 + * @param hcd The HCD state structure for the DWC OTG controller.
15118 + * @param[in] urb Holds the information about the device/endpoint that we need
15119 + * to initialize the QH.
15120 + *
15121 + * @return Returns pointer to the newly allocated QH, or NULL on error. */
15122 +dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
15123 +{
15124 + dwc_otg_qh_t *qh;
15125 +
15126 + /* Allocate memory */
15127 + /** @todo add memflags argument */
15128 + qh = dwc_otg_hcd_qh_alloc ();
15129 + if (qh == NULL) {
15130 + return NULL;
15131 + }
15132 +
15133 + dwc_otg_hcd_qh_init (hcd, qh, urb);
15134 + return qh;
15135 +}
15136 +
15137 +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
15138 + * removed from a list. QTD list should already be empty if called from URB
15139 + * Dequeue.
15140 + *
15141 + * @param[in] hcd HCD instance.
15142 + * @param[in] qh The QH to free.
15143 + */
15144 +void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15145 +{
15146 + dwc_otg_qtd_t *qtd;
15147 + struct list_head *pos;
15148 + unsigned long flags;
15149 +
15150 + /* Free each QTD in the QTD list */
15151 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
15152 + for (pos = qh->qtd_list.next;
15153 + pos != &qh->qtd_list;
15154 + pos = qh->qtd_list.next)
15155 + {
15156 + list_del (pos);
15157 + qtd = dwc_list_to_qtd (pos);
15158 + dwc_otg_hcd_qtd_free (qtd);
15159 + }
15160 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
15161 +
15162 + if (qh->dw_align_buf) {
15163 + dma_free_coherent((dwc_otg_hcd_to_hcd(hcd))->self.controller,
15164 + hcd->core_if->core_params->max_transfer_size,
15165 + qh->dw_align_buf,
15166 + qh->dw_align_buf_dma);
15167 + }
15168 +
15169 + kfree (qh);
15170 + return;
15171 +}
15172 +
15173 +/** Initializes a QH structure.
15174 + *
15175 + * @param[in] hcd The HCD state structure for the DWC OTG controller.
15176 + * @param[in] qh The QH to init.
15177 + * @param[in] urb Holds the information about the device/endpoint that we need
15178 + * to initialize the QH. */
15179 +#define SCHEDULE_SLOP 10
15180 +void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
15181 +{
15182 + char *speed, *type;
15183 + memset (qh, 0, sizeof (dwc_otg_qh_t));
15184 +
15185 + /* Initialize QH */
15186 + switch (usb_pipetype(urb->pipe)) {
15187 + case PIPE_CONTROL:
15188 + qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
15189 + break;
15190 + case PIPE_BULK:
15191 + qh->ep_type = USB_ENDPOINT_XFER_BULK;
15192 + break;
15193 + case PIPE_ISOCHRONOUS:
15194 + qh->ep_type = USB_ENDPOINT_XFER_ISOC;
15195 + break;
15196 + case PIPE_INTERRUPT:
15197 + qh->ep_type = USB_ENDPOINT_XFER_INT;
15198 + break;
15199 + }
15200 +
15201 + qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
15202 +
15203 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
15204 + qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
15205 + INIT_LIST_HEAD(&qh->qtd_list);
15206 + INIT_LIST_HEAD(&qh->qh_list_entry);
15207 + qh->channel = NULL;
15208 +
15209 + /* FS/LS Enpoint on HS Hub
15210 + * NOT virtual root hub */
15211 + qh->do_split = 0;
15212 + if (((urb->dev->speed == USB_SPEED_LOW) ||
15213 + (urb->dev->speed == USB_SPEED_FULL)) &&
15214 + (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
15215 + {
15216 + DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
15217 + usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
15218 + urb->dev->ttport);
15219 + qh->do_split = 1;
15220 + }
15221 +
15222 + if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
15223 + qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
15224 + /* Compute scheduling parameters once and save them. */
15225 + hprt0_data_t hprt;
15226 +
15227 + /** @todo Account for split transfers in the bus time. */
15228 + int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
15229 +
15230 + /* FIXME: work-around patch by Steven */
15231 + qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
15232 + usb_pipein(urb->pipe),
15233 + (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
15234 + bytecount));
15235 +
15236 + /* Start in a slightly future (micro)frame. */
15237 + qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
15238 + SCHEDULE_SLOP);
15239 + qh->interval = urb->interval;
15240 +#if 0
15241 + /* Increase interrupt polling rate for debugging. */
15242 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
15243 + qh->interval = 8;
15244 + }
15245 +#endif
15246 + hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
15247 + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
15248 + ((urb->dev->speed == USB_SPEED_LOW) ||
15249 + (urb->dev->speed == USB_SPEED_FULL))) {
15250 + qh->interval *= 8;
15251 + qh->sched_frame |= 0x7;
15252 + qh->start_split_frame = qh->sched_frame;
15253 + }
15254 +
15255 + }
15256 +
15257 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
15258 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
15259 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
15260 + urb->dev->devnum);
15261 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
15262 + usb_pipeendpoint(urb->pipe),
15263 + usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
15264 +
15265 + switch(urb->dev->speed) {
15266 + case USB_SPEED_LOW:
15267 + speed = "low";
15268 + break;
15269 + case USB_SPEED_FULL:
15270 + speed = "full";
15271 + break;
15272 + case USB_SPEED_HIGH:
15273 + speed = "high";
15274 + break;
15275 + default:
15276 + speed = "?";
15277 + break;
15278 + }
15279 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
15280 +
15281 + switch (qh->ep_type) {
15282 + case USB_ENDPOINT_XFER_ISOC:
15283 + type = "isochronous";
15284 + break;
15285 + case USB_ENDPOINT_XFER_INT:
15286 + type = "interrupt";
15287 + break;
15288 + case USB_ENDPOINT_XFER_CONTROL:
15289 + type = "control";
15290 + break;
15291 + case USB_ENDPOINT_XFER_BULK:
15292 + type = "bulk";
15293 + break;
15294 + default:
15295 + type = "?";
15296 + break;
15297 + }
15298 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
15299 +
15300 +#ifdef DEBUG
15301 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
15302 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
15303 + qh->usecs);
15304 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
15305 + qh->interval);
15306 + }
15307 +#endif
15308 + qh->dw_align_buf = NULL;
15309 + return;
15310 +}
15311 +
15312 +/**
15313 + * Checks that a channel is available for a periodic transfer.
15314 + *
15315 + * @return 0 if successful, negative error code otherise.
15316 + */
15317 +static int periodic_channel_available(dwc_otg_hcd_t *hcd)
15318 +{
15319 + /*
15320 + * Currently assuming that there is a dedicated host channnel for each
15321 + * periodic transaction plus at least one host channel for
15322 + * non-periodic transactions.
15323 + */
15324 + int status;
15325 + int num_channels;
15326 +
15327 + num_channels = hcd->core_if->core_params->host_channels;
15328 + if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) &&
15329 + (hcd->periodic_channels < num_channels - 1)) {
15330 + status = 0;
15331 + }
15332 + else {
15333 + DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
15334 + __func__, num_channels, hcd->periodic_channels,
15335 + hcd->non_periodic_channels);
15336 + status = -ENOSPC;
15337 + }
15338 +
15339 + return status;
15340 +}
15341 +
15342 +/**
15343 + * Checks that there is sufficient bandwidth for the specified QH in the
15344 + * periodic schedule. For simplicity, this calculation assumes that all the
15345 + * transfers in the periodic schedule may occur in the same (micro)frame.
15346 + *
15347 + * @param hcd The HCD state structure for the DWC OTG controller.
15348 + * @param qh QH containing periodic bandwidth required.
15349 + *
15350 + * @return 0 if successful, negative error code otherwise.
15351 + */
15352 +static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15353 +{
15354 + int status;
15355 + uint16_t max_claimed_usecs;
15356 +
15357 + status = 0;
15358 +
15359 + if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
15360 + /*
15361 + * High speed mode.
15362 + * Max periodic usecs is 80% x 125 usec = 100 usec.
15363 + */
15364 + max_claimed_usecs = 100 - qh->usecs;
15365 + } else {
15366 + /*
15367 + * Full speed mode.
15368 + * Max periodic usecs is 90% x 1000 usec = 900 usec.
15369 + */
15370 + max_claimed_usecs = 900 - qh->usecs;
15371 + }
15372 +
15373 + if (hcd->periodic_usecs > max_claimed_usecs) {
15374 + DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
15375 + __func__, hcd->periodic_usecs, qh->usecs);
15376 + status = -ENOSPC;
15377 + }
15378 +
15379 + return status;
15380 +}
15381 +
15382 +/**
15383 + * Checks that the max transfer size allowed in a host channel is large enough
15384 + * to handle the maximum data transfer in a single (micro)frame for a periodic
15385 + * transfer.
15386 + *
15387 + * @param hcd The HCD state structure for the DWC OTG controller.
15388 + * @param qh QH for a periodic endpoint.
15389 + *
15390 + * @return 0 if successful, negative error code otherwise.
15391 + */
15392 +static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15393 +{
15394 + int status;
15395 + uint32_t max_xfer_size;
15396 + uint32_t max_channel_xfer_size;
15397 +
15398 + status = 0;
15399 +
15400 + max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
15401 + max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
15402 +
15403 + if (max_xfer_size > max_channel_xfer_size) {
15404 + DWC_NOTICE("%s: Periodic xfer length %d > "
15405 + "max xfer length for channel %d\n",
15406 + __func__, max_xfer_size, max_channel_xfer_size);
15407 + status = -ENOSPC;
15408 + }
15409 +
15410 + return status;
15411 +}
15412 +
15413 +/**
15414 + * Schedules an interrupt or isochronous transfer in the periodic schedule.
15415 + *
15416 + * @param hcd The HCD state structure for the DWC OTG controller.
15417 + * @param qh QH for the periodic transfer. The QH should already contain the
15418 + * scheduling information.
15419 + *
15420 + * @return 0 if successful, negative error code otherwise.
15421 + */
15422 +static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15423 +{
15424 + int status = 0;
15425 +
15426 + status = periodic_channel_available(hcd);
15427 + if (status) {
15428 + DWC_NOTICE("%s: No host channel available for periodic "
15429 + "transfer.\n", __func__);
15430 + return status;
15431 + }
15432 +
15433 + status = check_periodic_bandwidth(hcd, qh);
15434 + if (status) {
15435 + DWC_NOTICE("%s: Insufficient periodic bandwidth for "
15436 + "periodic transfer.\n", __func__);
15437 + return status;
15438 + }
15439 +
15440 + status = check_max_xfer_size(hcd, qh);
15441 + if (status) {
15442 + DWC_NOTICE("%s: Channel max transfer size too small "
15443 + "for periodic transfer.\n", __func__);
15444 + return status;
15445 + }
15446 +
15447 + /* Always start in the inactive schedule. */
15448 + list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
15449 +
15450 + /* Reserve the periodic channel. */
15451 + hcd->periodic_channels++;
15452 +
15453 + /* Update claimed usecs per (micro)frame. */
15454 + hcd->periodic_usecs += qh->usecs;
15455 +
15456 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
15457 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval;
15458 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
15459 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
15460 + DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
15461 + qh, qh->usecs, qh->interval);
15462 + } else {
15463 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
15464 + DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
15465 + qh, qh->usecs, qh->interval);
15466 + }
15467 +
15468 + return status;
15469 +}
15470 +
15471 +/**
15472 + * This function adds a QH to either the non periodic or periodic schedule if
15473 + * it is not already in the schedule. If the QH is already in the schedule, no
15474 + * action is taken.
15475 + *
15476 + * @return 0 if successful, negative error code otherwise.
15477 + */
15478 +int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15479 +{
15480 + unsigned long flags;
15481 + int status = 0;
15482 +
15483 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
15484 +
15485 + if (!list_empty(&qh->qh_list_entry)) {
15486 + /* QH already in a schedule. */
15487 + goto done;
15488 + }
15489 +
15490 + /* Add the new QH to the appropriate schedule */
15491 + if (dwc_qh_is_non_per(qh)) {
15492 + /* Always start in the inactive schedule. */
15493 + list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
15494 + } else {
15495 + status = schedule_periodic(hcd, qh);
15496 + }
15497 +
15498 + done:
15499 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
15500 +
15501 + return status;
15502 +}
15503 +
15504 +/**
15505 + * Removes an interrupt or isochronous transfer from the periodic schedule.
15506 + *
15507 + * @param hcd The HCD state structure for the DWC OTG controller.
15508 + * @param qh QH for the periodic transfer.
15509 + */
15510 +static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15511 +{
15512 + list_del_init(&qh->qh_list_entry);
15513 +
15514 + /* Release the periodic channel reservation. */
15515 + hcd->periodic_channels--;
15516 +
15517 + /* Update claimed usecs per (micro)frame. */
15518 + hcd->periodic_usecs -= qh->usecs;
15519 +
15520 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
15521 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval;
15522 +
15523 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
15524 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
15525 + DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
15526 + qh, qh->usecs, qh->interval);
15527 + } else {
15528 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
15529 + DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
15530 + qh, qh->usecs, qh->interval);
15531 + }
15532 +}
15533 +
15534 +/**
15535 + * Removes a QH from either the non-periodic or periodic schedule. Memory is
15536 + * not freed.
15537 + *
15538 + * @param[in] hcd The HCD state structure.
15539 + * @param[in] qh QH to remove from schedule. */
15540 +void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
15541 +{
15542 + unsigned long flags;
15543 +
15544 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
15545 +
15546 + if (list_empty(&qh->qh_list_entry)) {
15547 + /* QH is not in a schedule. */
15548 + goto done;
15549 + }
15550 +
15551 + if (dwc_qh_is_non_per(qh)) {
15552 + if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
15553 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
15554 + }
15555 + list_del_init(&qh->qh_list_entry);
15556 + } else {
15557 + deschedule_periodic(hcd, qh);
15558 + }
15559 +
15560 + done:
15561 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
15562 +}
15563 +
15564 +/**
15565 + * Deactivates a QH. For non-periodic QHs, removes the QH from the active
15566 + * non-periodic schedule. The QH is added to the inactive non-periodic
15567 + * schedule if any QTDs are still attached to the QH.
15568 + *
15569 + * For periodic QHs, the QH is removed from the periodic queued schedule. If
15570 + * there are any QTDs still attached to the QH, the QH is added to either the
15571 + * periodic inactive schedule or the periodic ready schedule and its next
15572 + * scheduled frame is calculated. The QH is placed in the ready schedule if
15573 + * the scheduled frame has been reached already. Otherwise it's placed in the
15574 + * inactive schedule. If there are no QTDs attached to the QH, the QH is
15575 + * completely removed from the periodic schedule.
15576 + */
15577 +void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
15578 +{
15579 + unsigned long flags;
15580 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
15581 +
15582 + if (dwc_qh_is_non_per(qh)) {
15583 + dwc_otg_hcd_qh_remove(hcd, qh);
15584 + if (!list_empty(&qh->qtd_list)) {
15585 + /* Add back to inactive non-periodic schedule. */
15586 + dwc_otg_hcd_qh_add(hcd, qh);
15587 + }
15588 + } else {
15589 + uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
15590 +
15591 + if (qh->do_split) {
15592 + /* Schedule the next continuing periodic split transfer */
15593 + if (sched_next_periodic_split) {
15594 +
15595 + qh->sched_frame = frame_number;
15596 + if (dwc_frame_num_le(frame_number,
15597 + dwc_frame_num_inc(qh->start_split_frame, 1))) {
15598 + /*
15599 + * Allow one frame to elapse after start
15600 + * split microframe before scheduling
15601 + * complete split, but DONT if we are
15602 + * doing the next start split in the
15603 + * same frame for an ISOC out.
15604 + */
15605 + if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
15606 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
15607 + }
15608 + }
15609 + } else {
15610 + qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
15611 + qh->interval);
15612 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
15613 + qh->sched_frame = frame_number;
15614 + }
15615 + qh->sched_frame |= 0x7;
15616 + qh->start_split_frame = qh->sched_frame;
15617 + }
15618 + } else {
15619 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
15620 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
15621 + qh->sched_frame = frame_number;
15622 + }
15623 + }
15624 +
15625 + if (list_empty(&qh->qtd_list)) {
15626 + dwc_otg_hcd_qh_remove(hcd, qh);
15627 + } else {
15628 + /*
15629 + * Remove from periodic_sched_queued and move to
15630 + * appropriate queue.
15631 + */
15632 + if (qh->sched_frame == frame_number) {
15633 + list_move(&qh->qh_list_entry,
15634 + &hcd->periodic_sched_ready);
15635 + } else {
15636 + list_move(&qh->qh_list_entry,
15637 + &hcd->periodic_sched_inactive);
15638 + }
15639 + }
15640 + }
15641 +
15642 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
15643 +}
15644 +
15645 +/**
15646 + * This function allocates and initializes a QTD.
15647 + *
15648 + * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
15649 + * pointing to each other so each pair should have a unique correlation.
15650 + *
15651 + * @return Returns pointer to the newly allocated QTD, or NULL on error. */
15652 +dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
15653 +{
15654 + dwc_otg_qtd_t *qtd;
15655 +
15656 + qtd = dwc_otg_hcd_qtd_alloc ();
15657 + if (qtd == NULL) {
15658 + return NULL;
15659 + }
15660 +
15661 + dwc_otg_hcd_qtd_init (qtd, urb);
15662 + return qtd;
15663 +}
15664 +
15665 +/**
15666 + * Initializes a QTD structure.
15667 + *
15668 + * @param[in] qtd The QTD to initialize.
15669 + * @param[in] urb The URB to use for initialization. */
15670 +void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
15671 +{
15672 + memset (qtd, 0, sizeof (dwc_otg_qtd_t));
15673 + qtd->urb = urb;
15674 + if (usb_pipecontrol(urb->pipe)) {
15675 + /*
15676 + * The only time the QTD data toggle is used is on the data
15677 + * phase of control transfers. This phase always starts with
15678 + * DATA1.
15679 + */
15680 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
15681 + qtd->control_phase = DWC_OTG_CONTROL_SETUP;
15682 + }
15683 +
15684 + /* start split */
15685 + qtd->complete_split = 0;
15686 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
15687 + qtd->isoc_split_offset = 0;
15688 +
15689 + /* Store the qtd ptr in the urb to reference what QTD. */
15690 + urb->hcpriv = qtd;
15691 + return;
15692 +}
15693 +
15694 +/**
15695 + * This function adds a QTD to the QTD-list of a QH. It will find the correct
15696 + * QH to place the QTD into. If it does not find a QH, then it will create a
15697 + * new QH. If the QH to which the QTD is added is not currently scheduled, it
15698 + * is placed into the proper schedule based on its EP type.
15699 + *
15700 + * @param[in] qtd The QTD to add
15701 + * @param[in] dwc_otg_hcd The DWC HCD structure
15702 + *
15703 + * @return 0 if successful, negative error code otherwise.
15704 + */
15705 +int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
15706 + dwc_otg_hcd_t *dwc_otg_hcd)
15707 +{
15708 + struct usb_host_endpoint *ep;
15709 + dwc_otg_qh_t *qh;
15710 + unsigned long flags;
15711 + int retval = 0;
15712 +
15713 + struct urb *urb = qtd->urb;
15714 +
15715 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
15716 +
15717 + /*
15718 + * Get the QH which holds the QTD-list to insert to. Create QH if it
15719 + * doesn't exist.
15720 + */
15721 + ep = dwc_urb_to_endpoint(urb);
15722 + qh = (dwc_otg_qh_t *)ep->hcpriv;
15723 + if (qh == NULL) {
15724 + qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
15725 + if (qh == NULL) {
15726 + goto done;
15727 + }
15728 + ep->hcpriv = qh;
15729 + }
15730 +
15731 + retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
15732 + if (retval == 0) {
15733 + list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
15734 + }
15735 +
15736 + done:
15737 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
15738 +
15739 + return retval;
15740 +}
15741 +
15742 +#endif /* DWC_DEVICE_ONLY */
15743 --- /dev/null
15744 +++ b/drivers/usb/dwc_otg/dwc_otg_pcd.c
15745 @@ -0,0 +1,2523 @@
15746 +/* ==========================================================================
15747 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
15748 + * $Revision: 1.5 $
15749 + * $Date: 2008-11-27 09:21:25 $
15750 + * $Change: 1115682 $
15751 + *
15752 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
15753 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
15754 + * otherwise expressly agreed to in writing between Synopsys and you.
15755 + *
15756 + * The Software IS NOT an item of Licensed Software or Licensed Product under
15757 + * any End User Software License Agreement or Agreement for Licensed Product
15758 + * with Synopsys or any supplement thereto. You are permitted to use and
15759 + * redistribute this Software in source and binary forms, with or without
15760 + * modification, provided that redistributions of source code must retain this
15761 + * notice. You may not view, use, disclose, copy or distribute this file or
15762 + * any information contained herein except pursuant to this license grant from
15763 + * Synopsys. If you do not agree with this notice, including the disclaimer
15764 + * below, then you are not authorized to use the Software.
15765 + *
15766 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
15767 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15768 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15769 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
15770 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
15771 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
15772 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
15773 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
15774 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
15775 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
15776 + * DAMAGE.
15777 + * ========================================================================== */
15778 +#ifndef DWC_HOST_ONLY
15779 +
15780 +/** @file
15781 + * This file implements the Peripheral Controller Driver.
15782 + *
15783 + * The Peripheral Controller Driver (PCD) is responsible for
15784 + * translating requests from the Function Driver into the appropriate
15785 + * actions on the DWC_otg controller. It isolates the Function Driver
15786 + * from the specifics of the controller by providing an API to the
15787 + * Function Driver.
15788 + *
15789 + * The Peripheral Controller Driver for Linux will implement the
15790 + * Gadget API, so that the existing Gadget drivers can be used.
15791 + * (Gadget Driver is the Linux terminology for a Function Driver.)
15792 + *
15793 + * The Linux Gadget API is defined in the header file
15794 + * <code><linux/usb_gadget.h></code>. The USB EP operations API is
15795 + * defined in the structure <code>usb_ep_ops</code> and the USB
15796 + * Controller API is defined in the structure
15797 + * <code>usb_gadget_ops</code>.
15798 + *
15799 + * An important function of the PCD is managing interrupts generated
15800 + * by the DWC_otg controller. The implementation of the DWC_otg device
15801 + * mode interrupt service routines is in dwc_otg_pcd_intr.c.
15802 + *
15803 + * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
15804 + * @todo Does it work when the request size is greater than DEPTSIZ
15805 + * transfer size
15806 + *
15807 + */
15808 +
15809 +
15810 +#include <linux/kernel.h>
15811 +#include <linux/module.h>
15812 +#include <linux/moduleparam.h>
15813 +#include <linux/init.h>
15814 +#include <linux/device.h>
15815 +#include <linux/errno.h>
15816 +#include <linux/list.h>
15817 +#include <linux/interrupt.h>
15818 +#include <linux/string.h>
15819 +#include <linux/dma-mapping.h>
15820 +#include <linux/version.h>
15821 +
15822 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
15823 +# include <linux/usb/ch9.h>
15824 +#else
15825 +# include <linux/usb_ch9.h>
15826 +#endif
15827 +
15828 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)
15829 +#include <linux/usb/gadget.h>
15830 +#else
15831 +#include <linux/usb_gadget.h>
15832 +#endif
15833 +
15834 +#include "dwc_otg_driver.h"
15835 +#include "dwc_otg_pcd.h"
15836 +
15837 +
15838 +/**
15839 + * Static PCD pointer for use in usb_gadget_register_driver and
15840 + * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
15841 + */
15842 +static dwc_otg_pcd_t *s_pcd = 0;
15843 +
15844 +
15845 +/* Display the contents of the buffer */
15846 +extern void dump_msg(const u8 *buf, unsigned int length);
15847 +
15848 +
15849 +/**
15850 + * This function completes a request. It call's the request call back.
15851 + */
15852 +void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
15853 + int status)
15854 +{
15855 + unsigned stopped = ep->stopped;
15856 +
15857 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
15858 + list_del_init(&req->queue);
15859 +
15860 + if (req->req.status == -EINPROGRESS) {
15861 + req->req.status = status;
15862 + } else {
15863 + status = req->req.status;
15864 + }
15865 +
15866 + /* don't modify queue heads during completion callback */
15867 + ep->stopped = 1;
15868 + SPIN_UNLOCK(&ep->pcd->lock);
15869 + req->req.complete(&ep->ep, &req->req);
15870 + SPIN_LOCK(&ep->pcd->lock);
15871 +
15872 + if (ep->pcd->request_pending > 0) {
15873 + --ep->pcd->request_pending;
15874 + }
15875 +
15876 + ep->stopped = stopped;
15877 +}
15878 +
15879 +/**
15880 + * This function terminates all the requsts in the EP request queue.
15881 + */
15882 +void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
15883 +{
15884 + dwc_otg_pcd_request_t *req;
15885 +
15886 + ep->stopped = 1;
15887 +
15888 + /* called with irqs blocked?? */
15889 + while (!list_empty(&ep->queue)) {
15890 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
15891 + queue);
15892 + dwc_otg_request_done(ep, req, -ESHUTDOWN);
15893 + }
15894 +}
15895 +
15896 +/* USB Endpoint Operations */
15897 +/*
15898 + * The following sections briefly describe the behavior of the Gadget
15899 + * API endpoint operations implemented in the DWC_otg driver
15900 + * software. Detailed descriptions of the generic behavior of each of
15901 + * these functions can be found in the Linux header file
15902 + * include/linux/usb_gadget.h.
15903 + *
15904 + * The Gadget API provides wrapper functions for each of the function
15905 + * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
15906 + * function, which then calls the underlying PCD function. The
15907 + * following sections are named according to the wrapper
15908 + * functions. Within each section, the corresponding DWC_otg PCD
15909 + * function name is specified.
15910 + *
15911 + */
15912 +
15913 +/**
15914 + * This function assigns periodic Tx FIFO to an periodic EP
15915 + * in shared Tx FIFO mode
15916 + */
15917 +static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
15918 +{
15919 + uint32_t PerTxMsk = 1;
15920 + int i;
15921 + for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
15922 + {
15923 + if((PerTxMsk & core_if->p_tx_msk) == 0) {
15924 + core_if->p_tx_msk |= PerTxMsk;
15925 + return i + 1;
15926 + }
15927 + PerTxMsk <<= 1;
15928 + }
15929 + return 0;
15930 +}
15931 +/**
15932 + * This function releases periodic Tx FIFO
15933 + * in shared Tx FIFO mode
15934 + */
15935 +static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
15936 +{
15937 + core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
15938 +}
15939 +/**
15940 + * This function assigns periodic Tx FIFO to an periodic EP
15941 + * in shared Tx FIFO mode
15942 + */
15943 +static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
15944 +{
15945 + uint32_t TxMsk = 1;
15946 + int i;
15947 +
15948 + for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
15949 + {
15950 + if((TxMsk & core_if->tx_msk) == 0) {
15951 + core_if->tx_msk |= TxMsk;
15952 + return i + 1;
15953 + }
15954 + TxMsk <<= 1;
15955 + }
15956 + return 0;
15957 +}
15958 +/**
15959 + * This function releases periodic Tx FIFO
15960 + * in shared Tx FIFO mode
15961 + */
15962 +static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
15963 +{
15964 + core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
15965 +}
15966 +
15967 +/**
15968 + * This function is called by the Gadget Driver for each EP to be
15969 + * configured for the current configuration (SET_CONFIGURATION).
15970 + *
15971 + * This function initializes the dwc_otg_ep_t data structure, and then
15972 + * calls dwc_otg_ep_activate.
15973 + */
15974 +static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
15975 + const struct usb_endpoint_descriptor *ep_desc)
15976 +{
15977 + dwc_otg_pcd_ep_t *ep = 0;
15978 + dwc_otg_pcd_t *pcd = 0;
15979 + unsigned long flags;
15980 +
15981 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
15982 +
15983 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
15984 + if (!usb_ep || !ep_desc || ep->desc ||
15985 + ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
15986 + DWC_WARN("%s, bad ep or descriptor\n", __func__);
15987 + return -EINVAL;
15988 + }
15989 + if (ep == &ep->pcd->ep0) {
15990 + DWC_WARN("%s, bad ep(0)\n", __func__);
15991 + return -EINVAL;
15992 + }
15993 +
15994 + /* Check FIFO size? */
15995 + if (!ep_desc->wMaxPacketSize) {
15996 + DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
15997 + return -ERANGE;
15998 + }
15999 +
16000 + pcd = ep->pcd;
16001 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
16002 + DWC_WARN("%s, bogus device state\n", __func__);
16003 + return -ESHUTDOWN;
16004 + }
16005 +
16006 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
16007 +
16008 + ep->desc = ep_desc;
16009 + ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
16010 +
16011 + /*
16012 + * Activate the EP
16013 + */
16014 + ep->stopped = 0;
16015 +
16016 + ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
16017 + ep->dwc_ep.maxpacket = ep->ep.maxpacket;
16018 +
16019 + ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
16020 +
16021 + if(ep->dwc_ep.is_in) {
16022 + if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
16023 + ep->dwc_ep.tx_fifo_num = 0;
16024 +
16025 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
16026 + /*
16027 + * if ISOC EP then assign a Periodic Tx FIFO.
16028 + */
16029 + ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
16030 + }
16031 + } else {
16032 + /*
16033 + * if Dedicated FIFOs mode is on then assign a Tx FIFO.
16034 + */
16035 + ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
16036 +
16037 + }
16038 + }
16039 + /* Set initial data PID. */
16040 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
16041 + ep->dwc_ep.data_pid_start = 0;
16042 + }
16043 +
16044 + DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
16045 + ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
16046 + ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
16047 +
16048 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
16049 + ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
16050 + }
16051 +
16052 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
16053 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
16054 +
16055 + return 0;
16056 +}
16057 +
16058 +/**
16059 + * This function is called when an EP is disabled due to disconnect or
16060 + * change in configuration. Any pending requests will terminate with a
16061 + * status of -ESHUTDOWN.
16062 + *
16063 + * This function modifies the dwc_otg_ep_t data structure for this EP,
16064 + * and then calls dwc_otg_ep_deactivate.
16065 + */
16066 +static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
16067 +{
16068 + dwc_otg_pcd_ep_t *ep;
16069 + dwc_otg_pcd_t *pcd = 0;
16070 + unsigned long flags;
16071 +
16072 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
16073 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16074 + if (!usb_ep || !ep->desc) {
16075 + DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
16076 + usb_ep ? ep->ep.name : NULL);
16077 + return -EINVAL;
16078 + }
16079 +
16080 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
16081 +
16082 + dwc_otg_request_nuke(ep);
16083 +
16084 + dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
16085 + ep->desc = 0;
16086 + ep->stopped = 1;
16087 +
16088 + if(ep->dwc_ep.is_in) {
16089 + dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
16090 + release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
16091 + release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
16092 + }
16093 +
16094 + /* Free DMA Descriptors */
16095 + pcd = ep->pcd;
16096 +
16097 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
16098 +
16099 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
16100 + dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
16101 + }
16102 +
16103 + DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
16104 + return 0;
16105 +}
16106 +
16107 +
16108 +/**
16109 + * This function allocates a request object to use with the specified
16110 + * endpoint.
16111 + *
16112 + * @param ep The endpoint to be used with with the request
16113 + * @param gfp_flags the GFP_* flags to use.
16114 + */
16115 +static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
16116 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
16117 + int gfp_flags
16118 +#else
16119 + gfp_t gfp_flags
16120 +#endif
16121 + )
16122 +{
16123 + dwc_otg_pcd_request_t *req;
16124 +
16125 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
16126 + if (0 == ep) {
16127 + DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
16128 + return 0;
16129 + }
16130 + req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
16131 + if (0 == req) {
16132 + DWC_WARN("%s() %s\n", __func__,
16133 + "request allocation failed!\n");
16134 + return 0;
16135 + }
16136 + memset(req, 0, sizeof(dwc_otg_pcd_request_t));
16137 + req->req.dma = DMA_ADDR_INVALID;
16138 + INIT_LIST_HEAD(&req->queue);
16139 + return &req->req;
16140 +}
16141 +
16142 +/**
16143 + * This function frees a request object.
16144 + *
16145 + * @param ep The endpoint associated with the request
16146 + * @param req The request being freed
16147 + */
16148 +static void dwc_otg_pcd_free_request(struct usb_ep *ep,
16149 + struct usb_request *req)
16150 +{
16151 + dwc_otg_pcd_request_t *request;
16152 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
16153 +
16154 + if (0 == ep || 0 == req) {
16155 + DWC_WARN("%s() %s\n", __func__,
16156 + "Invalid ep or req argument!\n");
16157 + return;
16158 + }
16159 +
16160 + request = container_of(req, dwc_otg_pcd_request_t, req);
16161 + kfree(request);
16162 +}
16163 +
16164 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
16165 +/**
16166 + * This function allocates an I/O buffer to be used for a transfer
16167 + * to/from the specified endpoint.
16168 + *
16169 + * @param usb_ep The endpoint to be used with with the request
16170 + * @param bytes The desired number of bytes for the buffer
16171 + * @param dma Pointer to the buffer's DMA address; must be valid
16172 + * @param gfp_flags the GFP_* flags to use.
16173 + * @return address of a new buffer or null is buffer could not be allocated.
16174 + */
16175 +static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
16176 + dma_addr_t *dma,
16177 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
16178 + int gfp_flags
16179 +#else
16180 + gfp_t gfp_flags
16181 +#endif
16182 + )
16183 +{
16184 + void *buf;
16185 + dwc_otg_pcd_ep_t *ep;
16186 + dwc_otg_pcd_t *pcd = 0;
16187 +
16188 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16189 + pcd = ep->pcd;
16190 +
16191 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
16192 + dma, gfp_flags);
16193 +
16194 + /* Check dword alignment */
16195 + if ((bytes & 0x3UL) != 0) {
16196 + DWC_WARN("%s() Buffer size is not a multiple of"
16197 + "DWORD size (%d)",__func__, bytes);
16198 + }
16199 +
16200 + if (GET_CORE_IF(pcd)->dma_enable) {
16201 + buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
16202 + }
16203 + else {
16204 + buf = kmalloc(bytes, gfp_flags);
16205 + }
16206 +
16207 + /* Check dword alignment */
16208 + if (((int)buf & 0x3UL) != 0) {
16209 + DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
16210 + __func__, buf);
16211 + }
16212 +
16213 + return buf;
16214 +}
16215 +
16216 +/**
16217 + * This function frees an I/O buffer that was allocated by alloc_buffer.
16218 + *
16219 + * @param usb_ep the endpoint associated with the buffer
16220 + * @param buf address of the buffer
16221 + * @param dma The buffer's DMA address
16222 + * @param bytes The number of bytes of the buffer
16223 + */
16224 +static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
16225 + dma_addr_t dma, unsigned bytes)
16226 +{
16227 + dwc_otg_pcd_ep_t *ep;
16228 + dwc_otg_pcd_t *pcd = 0;
16229 +
16230 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16231 + pcd = ep->pcd;
16232 +
16233 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
16234 +
16235 + if (GET_CORE_IF(pcd)->dma_enable) {
16236 + dma_free_coherent (NULL, bytes, buf, dma);
16237 + }
16238 + else {
16239 + kfree(buf);
16240 + }
16241 +}
16242 +#endif
16243 +
16244 +
16245 +/**
16246 + * This function is used to submit an I/O Request to an EP.
16247 + *
16248 + * - When the request completes the request's completion callback
16249 + * is called to return the request to the driver.
16250 + * - An EP, except control EPs, may have multiple requests
16251 + * pending.
16252 + * - Once submitted the request cannot be examined or modified.
16253 + * - Each request is turned into one or more packets.
16254 + * - A BULK EP can queue any amount of data; the transfer is
16255 + * packetized.
16256 + * - Zero length Packets are specified with the request 'zero'
16257 + * flag.
16258 + */
16259 +static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
16260 + struct usb_request *usb_req,
16261 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
16262 + int gfp_flags
16263 +#else
16264 + gfp_t gfp_flags
16265 +#endif
16266 + )
16267 +{
16268 + int prevented = 0;
16269 + dwc_otg_pcd_request_t *req;
16270 + dwc_otg_pcd_ep_t *ep;
16271 + dwc_otg_pcd_t *pcd;
16272 + unsigned long flags = 0;
16273 + dwc_otg_core_if_t *_core_if;
16274 +
16275 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
16276 + __func__, usb_ep, usb_req, gfp_flags);
16277 +
16278 + req = container_of(usb_req, dwc_otg_pcd_request_t, req);
16279 + if (!usb_req || !usb_req->complete || !usb_req->buf ||
16280 + !list_empty(&req->queue)) {
16281 + DWC_WARN("%s, bad params\n", __func__);
16282 + return -EINVAL;
16283 + }
16284 +
16285 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16286 + if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
16287 + DWC_WARN("%s, bad ep\n", __func__);
16288 + return -EINVAL;
16289 + }
16290 +
16291 + pcd = ep->pcd;
16292 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
16293 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
16294 + DWC_WARN("%s, bogus device state\n", __func__);
16295 + return -ESHUTDOWN;
16296 + }
16297 +
16298 +
16299 + DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
16300 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
16301 +
16302 + if (!GET_CORE_IF(pcd)->core_params->opt) {
16303 + if (ep->dwc_ep.num != 0) {
16304 + DWC_ERROR("%s queue req %p, len %d buf %p\n",
16305 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
16306 + }
16307 + }
16308 +
16309 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
16310 +
16311 +
16312 + /**************************************************
16313 + New add by kaiker ,for DMA mode bug
16314 + ************************************************/
16315 + //by kaiker ,for RT3052 USB OTG device mode
16316 +
16317 + _core_if = GET_CORE_IF(pcd);
16318 +
16319 + if (_core_if->dma_enable)
16320 + {
16321 + usb_req->dma = virt_to_phys((void *)usb_req->buf);
16322 +
16323 + if(ep->dwc_ep.is_in)
16324 + {
16325 +#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24)) || defined(CONFIG_MIPS)
16326 + if(usb_req->length)
16327 + dma_cache_wback_inv((unsigned long)usb_req->buf, usb_req->length + 2);
16328 +#endif
16329 + }
16330 + }
16331 +
16332 +
16333 +
16334 +#if defined(DEBUG) & defined(VERBOSE)
16335 + dump_msg(usb_req->buf, usb_req->length);
16336 +#endif
16337 +
16338 + usb_req->status = -EINPROGRESS;
16339 + usb_req->actual = 0;
16340 +
16341 + /*
16342 + * For EP0 IN without premature status, zlp is required?
16343 + */
16344 + if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
16345 + DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
16346 + //_req->zero = 1;
16347 + }
16348 +
16349 + /* Start the transfer */
16350 + if (list_empty(&ep->queue) && !ep->stopped) {
16351 + /* EP0 Transfer? */
16352 + if (ep->dwc_ep.num == 0) {
16353 + switch (pcd->ep0state) {
16354 + case EP0_IN_DATA_PHASE:
16355 + DWC_DEBUGPL(DBG_PCD,
16356 + "%s ep0: EP0_IN_DATA_PHASE\n",
16357 + __func__);
16358 + break;
16359 +
16360 + case EP0_OUT_DATA_PHASE:
16361 + DWC_DEBUGPL(DBG_PCD,
16362 + "%s ep0: EP0_OUT_DATA_PHASE\n",
16363 + __func__);
16364 + if (pcd->request_config) {
16365 + /* Complete STATUS PHASE */
16366 + ep->dwc_ep.is_in = 1;
16367 + pcd->ep0state = EP0_IN_STATUS_PHASE;
16368 + }
16369 + break;
16370 +
16371 + case EP0_IN_STATUS_PHASE:
16372 + DWC_DEBUGPL(DBG_PCD,
16373 + "%s ep0: EP0_IN_STATUS_PHASE\n",
16374 + __func__);
16375 + break;
16376 +
16377 + default:
16378 + DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
16379 + pcd->ep0state);
16380 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
16381 + return -EL2HLT;
16382 + }
16383 + ep->dwc_ep.dma_addr = usb_req->dma;
16384 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
16385 + ep->dwc_ep.xfer_buff = usb_req->buf;
16386 + ep->dwc_ep.xfer_len = usb_req->length;
16387 + ep->dwc_ep.xfer_count = 0;
16388 + ep->dwc_ep.sent_zlp = 0;
16389 + ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
16390 +
16391 + if(usb_req->zero) {
16392 + if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
16393 + && (ep->dwc_ep.xfer_len != 0)) {
16394 + ep->dwc_ep.sent_zlp = 1;
16395 + }
16396 +
16397 + }
16398 +
16399 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
16400 + }
16401 + else {
16402 +
16403 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
16404 +
16405 + /* Setup and start the Transfer */
16406 + ep->dwc_ep.dma_addr = usb_req->dma;
16407 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
16408 + ep->dwc_ep.xfer_buff = usb_req->buf;
16409 + ep->dwc_ep.sent_zlp = 0;
16410 + ep->dwc_ep.total_len = usb_req->length;
16411 + ep->dwc_ep.xfer_len = 0;
16412 + ep->dwc_ep.xfer_count = 0;
16413 +
16414 + if(max_transfer > MAX_TRANSFER_SIZE) {
16415 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
16416 + } else {
16417 + ep->dwc_ep.maxxfer = max_transfer;
16418 + }
16419 +
16420 + if(usb_req->zero) {
16421 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
16422 + && (ep->dwc_ep.total_len != 0)) {
16423 + ep->dwc_ep.sent_zlp = 1;
16424 + }
16425 +
16426 + }
16427 + dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
16428 + }
16429 + }
16430 +
16431 + if ((req != 0) || prevented) {
16432 + ++pcd->request_pending;
16433 + list_add_tail(&req->queue, &ep->queue);
16434 + if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
16435 + /** @todo NGS Create a function for this. */
16436 + diepmsk_data_t diepmsk = { .d32 = 0};
16437 + diepmsk.b.intktxfemp = 1;
16438 + if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
16439 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
16440 + 0, diepmsk.d32);
16441 + } else {
16442 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
16443 + }
16444 + }
16445 + }
16446 +
16447 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
16448 + return 0;
16449 +}
16450 +
16451 +/**
16452 + * This function cancels an I/O request from an EP.
16453 + */
16454 +static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
16455 + struct usb_request *usb_req)
16456 +{
16457 + dwc_otg_pcd_request_t *req;
16458 + dwc_otg_pcd_ep_t *ep;
16459 + dwc_otg_pcd_t *pcd;
16460 + unsigned long flags;
16461 +
16462 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
16463 +
16464 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16465 + if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
16466 + DWC_WARN("%s, bad argument\n", __func__);
16467 + return -EINVAL;
16468 + }
16469 + pcd = ep->pcd;
16470 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
16471 + DWC_WARN("%s, bogus device state\n", __func__);
16472 + return -ESHUTDOWN;
16473 + }
16474 +
16475 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
16476 + DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
16477 + ep->dwc_ep.is_in ? "IN" : "OUT",
16478 + usb_req);
16479 +
16480 + /* make sure it's actually queued on this endpoint */
16481 + list_for_each_entry(req, &ep->queue, queue)
16482 + {
16483 + if (&req->req == usb_req) {
16484 + break;
16485 + }
16486 + }
16487 +
16488 + if (&req->req != usb_req) {
16489 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
16490 + return -EINVAL;
16491 + }
16492 +
16493 + if (!list_empty(&req->queue)) {
16494 + dwc_otg_request_done(ep, req, -ECONNRESET);
16495 + }
16496 + else {
16497 + req = 0;
16498 + }
16499 +
16500 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
16501 +
16502 + return req ? 0 : -EOPNOTSUPP;
16503 +}
16504 +
16505 +/**
16506 + * usb_ep_set_halt stalls an endpoint.
16507 + *
16508 + * usb_ep_clear_halt clears an endpoint halt and resets its data
16509 + * toggle.
16510 + *
16511 + * Both of these functions are implemented with the same underlying
16512 + * function. The behavior depends on the value argument.
16513 + *
16514 + * @param[in] usb_ep the Endpoint to halt or clear halt.
16515 + * @param[in] value
16516 + * - 0 means clear_halt.
16517 + * - 1 means set_halt,
16518 + * - 2 means clear stall lock flag.
16519 + * - 3 means set stall lock flag.
16520 + */
16521 +static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
16522 +{
16523 + int retval = 0;
16524 + unsigned long flags;
16525 + dwc_otg_pcd_ep_t *ep = 0;
16526 +
16527 +
16528 + DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
16529 +
16530 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
16531 +
16532 + if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
16533 + ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
16534 + DWC_WARN("%s, bad ep\n", __func__);
16535 + return -EINVAL;
16536 + }
16537 +
16538 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
16539 + if (!list_empty(&ep->queue)) {
16540 + DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
16541 + retval = -EAGAIN;
16542 + }
16543 + else if (value == 0) {
16544 + dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
16545 + &ep->dwc_ep);
16546 + }
16547 + else if(value == 1) {
16548 + if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
16549 + dtxfsts_data_t txstatus;
16550 + fifosize_data_t txfifosize;
16551 +
16552 + txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
16553 + txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
16554 +
16555 + if(txstatus.b.txfspcavail < txfifosize.b.depth) {
16556 + DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
16557 + retval = -EAGAIN;
16558 + }
16559 + else {
16560 + if (ep->dwc_ep.num == 0) {
16561 + ep->pcd->ep0state = EP0_STALL;
16562 + }
16563 +
16564 + ep->stopped = 1;
16565 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
16566 + &ep->dwc_ep);
16567 + }
16568 + }
16569 + else {
16570 + if (ep->dwc_ep.num == 0) {
16571 + ep->pcd->ep0state = EP0_STALL;
16572 + }
16573 +
16574 + ep->stopped = 1;
16575 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
16576 + &ep->dwc_ep);
16577 + }
16578 + }
16579 + else if (value == 2) {
16580 + ep->dwc_ep.stall_clear_flag = 0;
16581 + }
16582 + else if (value == 3) {
16583 + ep->dwc_ep.stall_clear_flag = 1;
16584 + }
16585 +
16586 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
16587 + return retval;
16588 +}
16589 +
16590 +/**
16591 + * This function allocates a DMA Descriptor chain for the Endpoint
16592 + * buffer to be used for a transfer to/from the specified endpoint.
16593 + */
16594 +dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
16595 +{
16596 +
16597 + return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
16598 +}
16599 +
16600 +/**
16601 + * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
16602 + */
16603 +void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
16604 +{
16605 + dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
16606 +}
16607 +
16608 +#ifdef DWC_EN_ISOC
16609 +
16610 +/**
16611 + * This function initializes a descriptor chain for Isochronous transfer
16612 + *
16613 + * @param core_if Programming view of DWC_otg controller.
16614 + * @param dwc_ep The EP to start the transfer on.
16615 + *
16616 + */
16617 +void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
16618 +{
16619 +
16620 + dsts_data_t dsts = { .d32 = 0};
16621 + depctl_data_t depctl = { .d32 = 0 };
16622 + volatile uint32_t *addr;
16623 + int i, j;
16624 +
16625 + if(dwc_ep->is_in)
16626 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
16627 + else
16628 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
16629 +
16630 +
16631 + /** Allocate descriptors for double buffering */
16632 + dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
16633 + if(dwc_ep->desc_addr) {
16634 + DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
16635 + return;
16636 + }
16637 +
16638 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
16639 +
16640 + /** ISO OUT EP */
16641 + if(dwc_ep->is_in == 0) {
16642 + desc_sts_data_t sts = { .d32 =0 };
16643 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
16644 + dma_addr_t dma_ad;
16645 + uint32_t data_per_desc;
16646 + dwc_otg_dev_out_ep_regs_t *out_regs =
16647 + core_if->dev_if->out_ep_regs[dwc_ep->num];
16648 + int offset;
16649 +
16650 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
16651 + dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
16652 +
16653 + /** Buffer 0 descriptors setup */
16654 + dma_ad = dwc_ep->dma_addr0;
16655 +
16656 + sts.b_iso_out.bs = BS_HOST_READY;
16657 + sts.b_iso_out.rxsts = 0;
16658 + sts.b_iso_out.l = 0;
16659 + sts.b_iso_out.sp = 0;
16660 + sts.b_iso_out.ioc = 0;
16661 + sts.b_iso_out.pid = 0;
16662 + sts.b_iso_out.framenum = 0;
16663 +
16664 + offset = 0;
16665 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
16666 + {
16667 +
16668 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
16669 + {
16670 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16671 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16672 +
16673 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16674 + sts.b_iso_out.rxbytes = data_per_desc;
16675 + writel((uint32_t)dma_ad, &dma_desc->buf);
16676 + writel(sts.d32, &dma_desc->status);
16677 +
16678 + offset += data_per_desc;
16679 + dma_desc ++;
16680 + (uint32_t)dma_ad += data_per_desc;
16681 + }
16682 + }
16683 +
16684 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
16685 + {
16686 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16687 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16688 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16689 + sts.b_iso_out.rxbytes = data_per_desc;
16690 + writel((uint32_t)dma_ad, &dma_desc->buf);
16691 + writel(sts.d32, &dma_desc->status);
16692 +
16693 + offset += data_per_desc;
16694 + dma_desc ++;
16695 + (uint32_t)dma_ad += data_per_desc;
16696 + }
16697 +
16698 + sts.b_iso_out.ioc = 1;
16699 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16700 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16701 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16702 + sts.b_iso_out.rxbytes = data_per_desc;
16703 +
16704 + writel((uint32_t)dma_ad, &dma_desc->buf);
16705 + writel(sts.d32, &dma_desc->status);
16706 + dma_desc ++;
16707 +
16708 + /** Buffer 1 descriptors setup */
16709 + sts.b_iso_out.ioc = 0;
16710 + dma_ad = dwc_ep->dma_addr1;
16711 +
16712 + offset = 0;
16713 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
16714 + {
16715 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
16716 + {
16717 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16718 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16719 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16720 + sts.b_iso_out.rxbytes = data_per_desc;
16721 + writel((uint32_t)dma_ad, &dma_desc->buf);
16722 + writel(sts.d32, &dma_desc->status);
16723 +
16724 + offset += data_per_desc;
16725 + dma_desc ++;
16726 + (uint32_t)dma_ad += data_per_desc;
16727 + }
16728 + }
16729 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
16730 + {
16731 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16732 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16733 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16734 + sts.b_iso_out.rxbytes = data_per_desc;
16735 + writel((uint32_t)dma_ad, &dma_desc->buf);
16736 + writel(sts.d32, &dma_desc->status);
16737 +
16738 + offset += data_per_desc;
16739 + dma_desc ++;
16740 + (uint32_t)dma_ad += data_per_desc;
16741 + }
16742 +
16743 + sts.b_iso_out.ioc = 1;
16744 + sts.b_iso_out.l = 1;
16745 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
16746 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
16747 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
16748 + sts.b_iso_out.rxbytes = data_per_desc;
16749 +
16750 + writel((uint32_t)dma_ad, &dma_desc->buf);
16751 + writel(sts.d32, &dma_desc->status);
16752 +
16753 + dwc_ep->next_frame = 0;
16754 +
16755 + /** Write dma_ad into DOEPDMA register */
16756 + dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
16757 +
16758 + }
16759 + /** ISO IN EP */
16760 + else {
16761 + desc_sts_data_t sts = { .d32 =0 };
16762 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
16763 + dma_addr_t dma_ad;
16764 + dwc_otg_dev_in_ep_regs_t *in_regs =
16765 + core_if->dev_if->in_ep_regs[dwc_ep->num];
16766 + unsigned int frmnumber;
16767 + fifosize_data_t txfifosize,rxfifosize;
16768 +
16769 + txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
16770 + rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
16771 +
16772 +
16773 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
16774 +
16775 + dma_ad = dwc_ep->dma_addr0;
16776 +
16777 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
16778 +
16779 + sts.b_iso_in.bs = BS_HOST_READY;
16780 + sts.b_iso_in.txsts = 0;
16781 + sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
16782 + sts.b_iso_in.ioc = 0;
16783 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
16784 +
16785 +
16786 + frmnumber = dwc_ep->next_frame;
16787 +
16788 + sts.b_iso_in.framenum = frmnumber;
16789 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
16790 + sts.b_iso_in.l = 0;
16791 +
16792 + /** Buffer 0 descriptors setup */
16793 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
16794 + {
16795 + writel((uint32_t)dma_ad, &dma_desc->buf);
16796 + writel(sts.d32, &dma_desc->status);
16797 + dma_desc ++;
16798 +
16799 + (uint32_t)dma_ad += dwc_ep->data_per_frame;
16800 + sts.b_iso_in.framenum += dwc_ep->bInterval;
16801 + }
16802 +
16803 + sts.b_iso_in.ioc = 1;
16804 + writel((uint32_t)dma_ad, &dma_desc->buf);
16805 + writel(sts.d32, &dma_desc->status);
16806 + ++dma_desc;
16807 +
16808 + /** Buffer 1 descriptors setup */
16809 + sts.b_iso_in.ioc = 0;
16810 + dma_ad = dwc_ep->dma_addr1;
16811 +
16812 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
16813 + {
16814 + writel((uint32_t)dma_ad, &dma_desc->buf);
16815 + writel(sts.d32, &dma_desc->status);
16816 + dma_desc ++;
16817 +
16818 + (uint32_t)dma_ad += dwc_ep->data_per_frame;
16819 + sts.b_iso_in.framenum += dwc_ep->bInterval;
16820 +
16821 + sts.b_iso_in.ioc = 0;
16822 + }
16823 + sts.b_iso_in.ioc = 1;
16824 + sts.b_iso_in.l = 1;
16825 +
16826 + writel((uint32_t)dma_ad, &dma_desc->buf);
16827 + writel(sts.d32, &dma_desc->status);
16828 +
16829 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
16830 +
16831 + /** Write dma_ad into diepdma register */
16832 + dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
16833 + }
16834 + /** Enable endpoint, clear nak */
16835 + depctl.d32 = 0;
16836 + depctl.b.epena = 1;
16837 + depctl.b.usbactep = 1;
16838 + depctl.b.cnak = 1;
16839 +
16840 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
16841 + depctl.d32 = dwc_read_reg32(addr);
16842 +}
16843 +
16844 +/**
16845 + * This function initializes a descriptor chain for Isochronous transfer
16846 + *
16847 + * @param core_if Programming view of DWC_otg controller.
16848 + * @param ep The EP to start the transfer on.
16849 + *
16850 + */
16851 +
16852 +void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
16853 +{
16854 + depctl_data_t depctl = { .d32 = 0 };
16855 + volatile uint32_t *addr;
16856 +
16857 +
16858 + if(ep->is_in) {
16859 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
16860 + } else {
16861 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
16862 + }
16863 +
16864 +
16865 + if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
16866 + return;
16867 + } else {
16868 + deptsiz_data_t deptsiz = { .d32 = 0 };
16869 +
16870 + ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
16871 + ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
16872 + ep->maxpacket;
16873 + ep->xfer_count = 0;
16874 + ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
16875 + ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
16876 +
16877 + if(ep->is_in) {
16878 + /* Program the transfer size and packet count
16879 + * as follows: xfersize = N * maxpacket +
16880 + * short_packet pktcnt = N + (short_packet
16881 + * exist ? 1 : 0)
16882 + */
16883 + deptsiz.b.mc = ep->pkt_per_frm;
16884 + deptsiz.b.xfersize = ep->xfer_len;
16885 + deptsiz.b.pktcnt =
16886 + (ep->xfer_len - 1 + ep->maxpacket) /
16887 + ep->maxpacket;
16888 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
16889 +
16890 + /* Write the DMA register */
16891 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
16892 +
16893 + } else {
16894 + deptsiz.b.pktcnt =
16895 + (ep->xfer_len + (ep->maxpacket - 1)) /
16896 + ep->maxpacket;
16897 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
16898 +
16899 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
16900 +
16901 + /* Write the DMA register */
16902 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
16903 +
16904 + }
16905 + /** Enable endpoint, clear nak */
16906 + depctl.d32 = 0;
16907 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
16908 +
16909 + depctl.b.epena = 1;
16910 + depctl.b.cnak = 1;
16911 +
16912 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
16913 + }
16914 +}
16915 +
16916 +
16917 +/**
16918 + * This function does the setup for a data transfer for an EP and
16919 + * starts the transfer. For an IN transfer, the packets will be
16920 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
16921 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
16922 + *
16923 + * @param core_if Programming view of DWC_otg controller.
16924 + * @param ep The EP to start the transfer on.
16925 + */
16926 +
16927 +void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
16928 +{
16929 + if(core_if->dma_enable) {
16930 + if(core_if->dma_desc_enable) {
16931 + if(ep->is_in) {
16932 + ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
16933 + } else {
16934 + ep->desc_cnt = ep->pkt_cnt;
16935 + }
16936 + dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
16937 + } else {
16938 + if(core_if->pti_enh_enable) {
16939 + dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
16940 + } else {
16941 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
16942 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
16943 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
16944 + }
16945 + }
16946 + } else {
16947 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
16948 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
16949 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
16950 + }
16951 +}
16952 +
16953 +/**
16954 + * This function does the setup for a data transfer for an EP and
16955 + * starts the transfer. For an IN transfer, the packets will be
16956 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
16957 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
16958 + *
16959 + * @param core_if Programming view of DWC_otg controller.
16960 + * @param ep The EP to start the transfer on.
16961 + */
16962 +
16963 +void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
16964 +{
16965 + depctl_data_t depctl = { .d32 = 0 };
16966 + volatile uint32_t *addr;
16967 +
16968 + if(ep->is_in == 1) {
16969 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
16970 + }
16971 + else {
16972 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
16973 + }
16974 +
16975 + /* disable the ep */
16976 + depctl.d32 = dwc_read_reg32(addr);
16977 +
16978 + depctl.b.epdis = 1;
16979 + depctl.b.snak = 1;
16980 +
16981 + dwc_write_reg32(addr, depctl.d32);
16982 +
16983 + if(core_if->dma_desc_enable &&
16984 + ep->iso_desc_addr && ep->iso_dma_desc_addr) {
16985 + dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
16986 + }
16987 +
16988 + /* reset varibales */
16989 + ep->dma_addr0 = 0;
16990 + ep->dma_addr1 = 0;
16991 + ep->xfer_buff0 = 0;
16992 + ep->xfer_buff1 = 0;
16993 + ep->data_per_frame = 0;
16994 + ep->data_pattern_frame = 0;
16995 + ep->sync_frame = 0;
16996 + ep->buf_proc_intrvl = 0;
16997 + ep->bInterval = 0;
16998 + ep->proc_buf_num = 0;
16999 + ep->pkt_per_frm = 0;
17000 + ep->pkt_per_frm = 0;
17001 + ep->desc_cnt = 0;
17002 + ep->iso_desc_addr = 0;
17003 + ep->iso_dma_desc_addr = 0;
17004 +}
17005 +
17006 +
17007 +/**
17008 + * This function is used to submit an ISOC Transfer Request to an EP.
17009 + *
17010 + * - Every time a sync period completes the request's completion callback
17011 + * is called to provide data to the gadget driver.
17012 + * - Once submitted the request cannot be modified.
17013 + * - Each request is turned into periodic data packets untill ISO
17014 + * Transfer is stopped..
17015 + */
17016 +static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
17017 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
17018 + int gfp_flags
17019 +#else
17020 + gfp_t gfp_flags
17021 +#endif
17022 +)
17023 +{
17024 + dwc_otg_pcd_ep_t *ep;
17025 + dwc_otg_pcd_t *pcd;
17026 + dwc_ep_t *dwc_ep;
17027 + unsigned long flags = 0;
17028 + int32_t frm_data;
17029 + dwc_otg_core_if_t *core_if;
17030 + dcfg_data_t dcfg;
17031 + dsts_data_t dsts;
17032 +
17033 +
17034 + if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
17035 + DWC_WARN("%s, bad params\n", __func__);
17036 + return -EINVAL;
17037 + }
17038 +
17039 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
17040 +
17041 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
17042 + DWC_WARN("%s, bad ep\n", __func__);
17043 + return -EINVAL;
17044 + }
17045 +
17046 + pcd = ep->pcd;
17047 + core_if = GET_CORE_IF(pcd);
17048 +
17049 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
17050 +
17051 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
17052 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
17053 + DWC_WARN("%s, bogus device state\n", __func__);
17054 + return -ESHUTDOWN;
17055 + }
17056 +
17057 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
17058 +
17059 + dwc_ep = &ep->dwc_ep;
17060 +
17061 + if(ep->iso_req) {
17062 + DWC_WARN("%s, iso request in progress\n", __func__);
17063 + }
17064 + req->status = -EINPROGRESS;
17065 +
17066 + dwc_ep->dma_addr0 = req->dma0;
17067 + dwc_ep->dma_addr1 = req->dma1;
17068 +
17069 + dwc_ep->xfer_buff0 = req->buf0;
17070 + dwc_ep->xfer_buff1 = req->buf1;
17071 +
17072 + ep->iso_req = req;
17073 +
17074 + dwc_ep->data_per_frame = req->data_per_frame;
17075 +
17076 + /** @todo - pattern data support is to be implemented in the future */
17077 + dwc_ep->data_pattern_frame = req->data_pattern_frame;
17078 + dwc_ep->sync_frame = req->sync_frame;
17079 +
17080 + dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
17081 +
17082 + dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
17083 +
17084 + dwc_ep->proc_buf_num = 0;
17085 +
17086 + dwc_ep->pkt_per_frm = 0;
17087 + frm_data = ep->dwc_ep.data_per_frame;
17088 + while(frm_data > 0) {
17089 + dwc_ep->pkt_per_frm++;
17090 + frm_data -= ep->dwc_ep.maxpacket;
17091 + }
17092 +
17093 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
17094 +
17095 + if(req->flags & USB_REQ_ISO_ASAP) {
17096 + dwc_ep->next_frame = dsts.b.soffn + 1;
17097 + if(dwc_ep->bInterval != 1){
17098 + dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
17099 + }
17100 + } else {
17101 + dwc_ep->next_frame = req->start_frame;
17102 + }
17103 +
17104 +
17105 + if(!core_if->pti_enh_enable) {
17106 + dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
17107 + } else {
17108 + dwc_ep->pkt_cnt =
17109 + (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
17110 + - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
17111 + }
17112 +
17113 + if(core_if->dma_desc_enable) {
17114 + dwc_ep->desc_cnt =
17115 + dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
17116 + }
17117 +
17118 + dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
17119 + if(!dwc_ep->pkt_info) {
17120 + return -ENOMEM;
17121 + }
17122 + if(core_if->pti_enh_enable) {
17123 + memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
17124 + }
17125 +
17126 + dwc_ep->cur_pkt = 0;
17127 +
17128 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
17129 +
17130 + dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
17131 +
17132 + return 0;
17133 +}
17134 +
17135 +/**
17136 + * This function stops ISO EP Periodic Data Transfer.
17137 + */
17138 +static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
17139 +{
17140 + dwc_otg_pcd_ep_t *ep;
17141 + dwc_otg_pcd_t *pcd;
17142 + dwc_ep_t *dwc_ep;
17143 + unsigned long flags;
17144 +
17145 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
17146 +
17147 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
17148 + DWC_WARN("%s, bad ep\n", __func__);
17149 + return -EINVAL;
17150 + }
17151 +
17152 + pcd = ep->pcd;
17153 +
17154 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
17155 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
17156 + DWC_WARN("%s, bogus device state\n", __func__);
17157 + return -ESHUTDOWN;
17158 + }
17159 +
17160 + dwc_ep = &ep->dwc_ep;
17161 +
17162 + dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
17163 +
17164 + kfree(dwc_ep->pkt_info);
17165 +
17166 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
17167 +
17168 + if(ep->iso_req != req) {
17169 + return -EINVAL;
17170 + }
17171 +
17172 + req->status = -ECONNRESET;
17173 +
17174 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
17175 +
17176 +
17177 + ep->iso_req = 0;
17178 +
17179 + return 0;
17180 +}
17181 +
17182 +/**
17183 + * This function is used for perodical data exchnage between PCD and gadget drivers.
17184 + * for Isochronous EPs
17185 + *
17186 + * - Every time a sync period completes this function is called to
17187 + * perform data exchange between PCD and gadget
17188 + */
17189 +void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
17190 +{
17191 + int i;
17192 + struct usb_gadget_iso_packet_descriptor *iso_packet;
17193 + dwc_ep_t *dwc_ep;
17194 +
17195 + dwc_ep = &ep->dwc_ep;
17196 +
17197 + if(ep->iso_req->status == -ECONNRESET) {
17198 + DWC_PRINT("Device has already disconnected\n");
17199 + /*Device has been disconnected*/
17200 + return;
17201 + }
17202 +
17203 + if(dwc_ep->proc_buf_num != 0) {
17204 + iso_packet = ep->iso_req->iso_packet_desc0;
17205 + }
17206 +
17207 + else {
17208 + iso_packet = ep->iso_req->iso_packet_desc1;
17209 + }
17210 +
17211 + /* Fill in ISOC packets descriptors & pass to gadget driver*/
17212 +
17213 + for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
17214 + iso_packet[i].status = dwc_ep->pkt_info[i].status;
17215 + iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
17216 + iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
17217 + dwc_ep->pkt_info[i].status = 0;
17218 + dwc_ep->pkt_info[i].offset = 0;
17219 + dwc_ep->pkt_info[i].length = 0;
17220 + }
17221 +
17222 + /* Call callback function to process data buffer */
17223 + ep->iso_req->status = 0;/* success */
17224 +
17225 + SPIN_UNLOCK(&ep->pcd->lock);
17226 + ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
17227 + SPIN_LOCK(&ep->pcd->lock);
17228 +}
17229 +
17230 +
17231 +static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
17232 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
17233 + int gfp_flags
17234 +#else
17235 + gfp_t gfp_flags
17236 +#endif
17237 +)
17238 +{
17239 + struct usb_iso_request *pReq = NULL;
17240 + uint32_t req_size;
17241 +
17242 +
17243 + req_size = sizeof(struct usb_iso_request);
17244 + req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
17245 +
17246 +
17247 + pReq = kmalloc(req_size, gfp_flags);
17248 + if (!pReq) {
17249 + DWC_WARN("%s, can't allocate Iso Request\n", __func__);
17250 + return 0;
17251 + }
17252 + pReq->iso_packet_desc0 = (void*) (pReq + 1);
17253 +
17254 + pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
17255 +
17256 + return pReq;
17257 +}
17258 +
17259 +static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
17260 +{
17261 + kfree(req);
17262 +}
17263 +
17264 +static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
17265 +{
17266 + .ep_ops =
17267 + {
17268 + .enable = dwc_otg_pcd_ep_enable,
17269 + .disable = dwc_otg_pcd_ep_disable,
17270 +
17271 + .alloc_request = dwc_otg_pcd_alloc_request,
17272 + .free_request = dwc_otg_pcd_free_request,
17273 +
17274 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
17275 + .alloc_buffer = dwc_otg_pcd_alloc_buffer,
17276 + .free_buffer = dwc_otg_pcd_free_buffer,
17277 +#endif
17278 +
17279 + .queue = dwc_otg_pcd_ep_queue,
17280 + .dequeue = dwc_otg_pcd_ep_dequeue,
17281 +
17282 + .set_halt = dwc_otg_pcd_ep_set_halt,
17283 + .fifo_status = 0,
17284 + .fifo_flush = 0,
17285 + },
17286 + .iso_ep_start = dwc_otg_pcd_iso_ep_start,
17287 + .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
17288 + .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
17289 + .free_iso_request = dwc_otg_pcd_free_iso_request,
17290 +};
17291 +
17292 +#else
17293 +
17294 +
17295 +static struct usb_ep_ops dwc_otg_pcd_ep_ops =
17296 +{
17297 + .enable = dwc_otg_pcd_ep_enable,
17298 + .disable = dwc_otg_pcd_ep_disable,
17299 +
17300 + .alloc_request = dwc_otg_pcd_alloc_request,
17301 + .free_request = dwc_otg_pcd_free_request,
17302 +
17303 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
17304 + .alloc_buffer = dwc_otg_pcd_alloc_buffer,
17305 + .free_buffer = dwc_otg_pcd_free_buffer,
17306 +#endif
17307 +
17308 + .queue = dwc_otg_pcd_ep_queue,
17309 + .dequeue = dwc_otg_pcd_ep_dequeue,
17310 +
17311 + .set_halt = dwc_otg_pcd_ep_set_halt,
17312 + .fifo_status = 0,
17313 + .fifo_flush = 0,
17314 +
17315 +
17316 +};
17317 +
17318 +#endif /* DWC_EN_ISOC */
17319 +/* Gadget Operations */
17320 +/**
17321 + * The following gadget operations will be implemented in the DWC_otg
17322 + * PCD. Functions in the API that are not described below are not
17323 + * implemented.
17324 + *
17325 + * The Gadget API provides wrapper functions for each of the function
17326 + * pointers defined in usb_gadget_ops. The Gadget Driver calls the
17327 + * wrapper function, which then calls the underlying PCD function. The
17328 + * following sections are named according to the wrapper functions
17329 + * (except for ioctl, which doesn't have a wrapper function). Within
17330 + * each section, the corresponding DWC_otg PCD function name is
17331 + * specified.
17332 + *
17333 + */
17334 +
17335 +/**
17336 + *Gets the USB Frame number of the last SOF.
17337 + */
17338 +static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
17339 +{
17340 + dwc_otg_pcd_t *pcd;
17341 +
17342 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
17343 +
17344 + if (gadget == 0) {
17345 + return -ENODEV;
17346 + }
17347 + else {
17348 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
17349 + dwc_otg_get_frame_number(GET_CORE_IF(pcd));
17350 + }
17351 +
17352 + return 0;
17353 +}
17354 +
17355 +void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
17356 +{
17357 + uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
17358 + gotgctl_data_t mem;
17359 + gotgctl_data_t val;
17360 +
17361 + val.d32 = dwc_read_reg32(addr);
17362 + if (val.b.sesreq) {
17363 + DWC_ERROR("Session Request Already active!\n");
17364 + return;
17365 + }
17366 +
17367 + DWC_NOTICE("Session Request Initated\n");
17368 + mem.d32 = dwc_read_reg32(addr);
17369 + mem.b.sesreq = 1;
17370 + dwc_write_reg32(addr, mem.d32);
17371 +
17372 + /* Start the SRP timer */
17373 + dwc_otg_pcd_start_srp_timer(pcd);
17374 + return;
17375 +}
17376 +
17377 +void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
17378 +{
17379 + dctl_data_t dctl = {.d32=0};
17380 + volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
17381 +
17382 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
17383 + if (pcd->remote_wakeup_enable) {
17384 + if (set) {
17385 + dctl.b.rmtwkupsig = 1;
17386 + dwc_modify_reg32(addr, 0, dctl.d32);
17387 + DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
17388 + mdelay(1);
17389 + dwc_modify_reg32(addr, dctl.d32, 0);
17390 + DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
17391 + }
17392 + else {
17393 + }
17394 + }
17395 + else {
17396 + DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
17397 + }
17398 + }
17399 + return;
17400 +}
17401 +
17402 +/**
17403 + * Initiates Session Request Protocol (SRP) to wakeup the host if no
17404 + * session is in progress. If a session is already in progress, but
17405 + * the device is suspended, remote wakeup signaling is started.
17406 + *
17407 + */
17408 +static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
17409 +{
17410 + unsigned long flags;
17411 + dwc_otg_pcd_t *pcd;
17412 + dsts_data_t dsts;
17413 + gotgctl_data_t gotgctl;
17414 +
17415 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
17416 +
17417 + if (gadget == 0) {
17418 + return -ENODEV;
17419 + }
17420 + else {
17421 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
17422 + }
17423 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
17424 +
17425 + /*
17426 + * This function starts the Protocol if no session is in progress. If
17427 + * a session is already in progress, but the device is suspended,
17428 + * remote wakeup signaling is started.
17429 + */
17430 +
17431 + /* Check if valid session */
17432 + gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
17433 + if (gotgctl.b.bsesvld) {
17434 + /* Check if suspend state */
17435 + dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
17436 + if (dsts.b.suspsts) {
17437 + dwc_otg_pcd_remote_wakeup(pcd, 1);
17438 + }
17439 + }
17440 + else {
17441 + dwc_otg_pcd_initiate_srp(pcd);
17442 + }
17443 +
17444 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
17445 + return 0;
17446 +}
17447 +
17448 +static const struct usb_gadget_ops dwc_otg_pcd_ops =
17449 +{
17450 + .get_frame = dwc_otg_pcd_get_frame,
17451 + .wakeup = dwc_otg_pcd_wakeup,
17452 + // current versions must always be self-powered
17453 +};
17454 +
17455 +/**
17456 + * This function updates the otg values in the gadget structure.
17457 + */
17458 +void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
17459 +{
17460 +
17461 + if (!pcd->gadget.is_otg)
17462 + return;
17463 +
17464 + if (reset) {
17465 + pcd->b_hnp_enable = 0;
17466 + pcd->a_hnp_support = 0;
17467 + pcd->a_alt_hnp_support = 0;
17468 + }
17469 +
17470 + pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
17471 + pcd->gadget.a_hnp_support = pcd->a_hnp_support;
17472 + pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
17473 +}
17474 +
17475 +/**
17476 + * This function is the top level PCD interrupt handler.
17477 + */
17478 +static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev
17479 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
17480 + , struct pt_regs *r
17481 +#endif
17482 + )
17483 +{
17484 + dwc_otg_pcd_t *pcd = dev;
17485 + int32_t retval = IRQ_NONE;
17486 +
17487 + retval = dwc_otg_pcd_handle_intr(pcd);
17488 + return IRQ_RETVAL(retval);
17489 +}
17490 +
17491 +/**
17492 + * PCD Callback function for initializing the PCD when switching to
17493 + * device mode.
17494 + *
17495 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
17496 + */
17497 +static int32_t dwc_otg_pcd_start_cb(void *p)
17498 +{
17499 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
17500 +
17501 + /*
17502 + * Initialized the Core for Device mode.
17503 + */
17504 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
17505 + dwc_otg_core_dev_init(GET_CORE_IF(pcd));
17506 + }
17507 + return 1;
17508 +}
17509 +
17510 +/**
17511 + * PCD Callback function for stopping the PCD when switching to Host
17512 + * mode.
17513 + *
17514 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
17515 + */
17516 +static int32_t dwc_otg_pcd_stop_cb(void *p)
17517 +{
17518 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
17519 + extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
17520 +
17521 + dwc_otg_pcd_stop(pcd);
17522 + return 1;
17523 +}
17524 +
17525 +
17526 +/**
17527 + * PCD Callback function for notifying the PCD when resuming from
17528 + * suspend.
17529 + *
17530 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
17531 + */
17532 +static int32_t dwc_otg_pcd_suspend_cb(void *p)
17533 +{
17534 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
17535 +
17536 + if (pcd->driver && pcd->driver->resume) {
17537 + SPIN_UNLOCK(&pcd->lock);
17538 + pcd->driver->suspend(&pcd->gadget);
17539 + SPIN_LOCK(&pcd->lock);
17540 + }
17541 +
17542 + return 1;
17543 +}
17544 +
17545 +
17546 +/**
17547 + * PCD Callback function for notifying the PCD when resuming from
17548 + * suspend.
17549 + *
17550 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
17551 + */
17552 +static int32_t dwc_otg_pcd_resume_cb(void *p)
17553 +{
17554 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
17555 +
17556 + if (pcd->driver && pcd->driver->resume) {
17557 + SPIN_UNLOCK(&pcd->lock);
17558 + pcd->driver->resume(&pcd->gadget);
17559 + SPIN_LOCK(&pcd->lock);
17560 + }
17561 +
17562 + /* Stop the SRP timeout timer. */
17563 + if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
17564 + (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
17565 + if (GET_CORE_IF(pcd)->srp_timer_started) {
17566 + GET_CORE_IF(pcd)->srp_timer_started = 0;
17567 + del_timer(&pcd->srp_timer);
17568 + }
17569 + }
17570 + return 1;
17571 +}
17572 +
17573 +
17574 +/**
17575 + * PCD Callback structure for handling mode switching.
17576 + */
17577 +static dwc_otg_cil_callbacks_t pcd_callbacks =
17578 +{
17579 + .start = dwc_otg_pcd_start_cb,
17580 + .stop = dwc_otg_pcd_stop_cb,
17581 + .suspend = dwc_otg_pcd_suspend_cb,
17582 + .resume_wakeup = dwc_otg_pcd_resume_cb,
17583 + .p = 0, /* Set at registration */
17584 +};
17585 +
17586 +/**
17587 + * This function is called when the SRP timer expires. The SRP should
17588 + * complete within 6 seconds.
17589 + */
17590 +static void srp_timeout(unsigned long ptr)
17591 +{
17592 + gotgctl_data_t gotgctl;
17593 + dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
17594 + volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
17595 +
17596 + gotgctl.d32 = dwc_read_reg32(addr);
17597 +
17598 + core_if->srp_timer_started = 0;
17599 +
17600 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
17601 + (core_if->core_params->i2c_enable)) {
17602 + DWC_PRINT("SRP Timeout\n");
17603 +
17604 + if ((core_if->srp_success) &&
17605 + (gotgctl.b.bsesvld)) {
17606 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
17607 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
17608 + }
17609 +
17610 + /* Clear Session Request */
17611 + gotgctl.d32 = 0;
17612 + gotgctl.b.sesreq = 1;
17613 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
17614 + gotgctl.d32, 0);
17615 +
17616 + core_if->srp_success = 0;
17617 + }
17618 + else {
17619 + DWC_ERROR("Device not connected/responding\n");
17620 + gotgctl.b.sesreq = 0;
17621 + dwc_write_reg32(addr, gotgctl.d32);
17622 + }
17623 + }
17624 + else if (gotgctl.b.sesreq) {
17625 + DWC_PRINT("SRP Timeout\n");
17626 +
17627 + DWC_ERROR("Device not connected/responding\n");
17628 + gotgctl.b.sesreq = 0;
17629 + dwc_write_reg32(addr, gotgctl.d32);
17630 + }
17631 + else {
17632 + DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
17633 + }
17634 +}
17635 +
17636 +/**
17637 + * Start the SRP timer to detect when the SRP does not complete within
17638 + * 6 seconds.
17639 + *
17640 + * @param pcd the pcd structure.
17641 + */
17642 +void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
17643 +{
17644 + struct timer_list *srp_timer = &pcd->srp_timer;
17645 + GET_CORE_IF(pcd)->srp_timer_started = 1;
17646 + init_timer(srp_timer);
17647 + srp_timer->function = srp_timeout;
17648 + srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
17649 + srp_timer->expires = jiffies + (HZ*6);
17650 + add_timer(srp_timer);
17651 +}
17652 +
17653 +/**
17654 + * Tasklet
17655 + *
17656 + */
17657 +extern void start_next_request(dwc_otg_pcd_ep_t *ep);
17658 +
17659 +static void start_xfer_tasklet_func (unsigned long data)
17660 +{
17661 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
17662 + dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
17663 +
17664 + int i;
17665 + depctl_data_t diepctl;
17666 +
17667 + DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
17668 +
17669 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
17670 +
17671 + if (pcd->ep0.queue_sof) {
17672 + pcd->ep0.queue_sof = 0;
17673 + start_next_request (&pcd->ep0);
17674 + // break;
17675 + }
17676 +
17677 + for (i=0; i<core_if->dev_if->num_in_eps; i++)
17678 + {
17679 + depctl_data_t diepctl;
17680 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
17681 +
17682 + if (pcd->in_ep[i].queue_sof) {
17683 + pcd->in_ep[i].queue_sof = 0;
17684 + start_next_request (&pcd->in_ep[i]);
17685 + // break;
17686 + }
17687 + }
17688 +
17689 + return;
17690 +}
17691 +
17692 +
17693 +
17694 +
17695 +
17696 +
17697 +
17698 +static struct tasklet_struct start_xfer_tasklet = {
17699 + .next = NULL,
17700 + .state = 0,
17701 + .count = ATOMIC_INIT(0),
17702 + .func = start_xfer_tasklet_func,
17703 + .data = 0,
17704 +};
17705 +/**
17706 + * This function initialized the pcd Dp structures to there default
17707 + * state.
17708 + *
17709 + * @param pcd the pcd structure.
17710 + */
17711 +void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
17712 +{
17713 + static const char * names[] =
17714 + {
17715 +
17716 + "ep0",
17717 + "ep1in",
17718 + "ep2in",
17719 + "ep3in",
17720 + "ep4in",
17721 + "ep5in",
17722 + "ep6in",
17723 + "ep7in",
17724 + "ep8in",
17725 + "ep9in",
17726 + "ep10in",
17727 + "ep11in",
17728 + "ep12in",
17729 + "ep13in",
17730 + "ep14in",
17731 + "ep15in",
17732 + "ep1out",
17733 + "ep2out",
17734 + "ep3out",
17735 + "ep4out",
17736 + "ep5out",
17737 + "ep6out",
17738 + "ep7out",
17739 + "ep8out",
17740 + "ep9out",
17741 + "ep10out",
17742 + "ep11out",
17743 + "ep12out",
17744 + "ep13out",
17745 + "ep14out",
17746 + "ep15out"
17747 +
17748 + };
17749 +
17750 + int i;
17751 + int in_ep_cntr, out_ep_cntr;
17752 + uint32_t hwcfg1;
17753 + uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
17754 + uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
17755 + dwc_otg_pcd_ep_t *ep;
17756 +
17757 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
17758 +
17759 + INIT_LIST_HEAD (&pcd->gadget.ep_list);
17760 + pcd->gadget.ep0 = &pcd->ep0.ep;
17761 + pcd->gadget.speed = USB_SPEED_UNKNOWN;
17762 +
17763 + INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
17764 +
17765 + /**
17766 + * Initialize the EP0 structure.
17767 + */
17768 + ep = &pcd->ep0;
17769 +
17770 + /* Init EP structure */
17771 + ep->desc = 0;
17772 + ep->pcd = pcd;
17773 + ep->stopped = 1;
17774 +
17775 + /* Init DWC ep structure */
17776 + ep->dwc_ep.num = 0;
17777 + ep->dwc_ep.active = 0;
17778 + ep->dwc_ep.tx_fifo_num = 0;
17779 + /* Control until ep is actvated */
17780 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
17781 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
17782 + ep->dwc_ep.dma_addr = 0;
17783 + ep->dwc_ep.start_xfer_buff = 0;
17784 + ep->dwc_ep.xfer_buff = 0;
17785 + ep->dwc_ep.xfer_len = 0;
17786 + ep->dwc_ep.xfer_count = 0;
17787 + ep->dwc_ep.sent_zlp = 0;
17788 + ep->dwc_ep.total_len = 0;
17789 + ep->queue_sof = 0;
17790 + ep->dwc_ep.desc_addr = 0;
17791 + ep->dwc_ep.dma_desc_addr = 0;
17792 +
17793 +
17794 + /* Init the usb_ep structure. */
17795 + ep->ep.name = names[0];
17796 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
17797 +
17798 + /**
17799 + * @todo NGS: What should the max packet size be set to
17800 + * here? Before EP type is set?
17801 + */
17802 + ep->ep.maxpacket = MAX_PACKET_SIZE;
17803 +
17804 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
17805 +
17806 + INIT_LIST_HEAD (&ep->queue);
17807 + /**
17808 + * Initialize the EP structures.
17809 + */
17810 + in_ep_cntr = 0;
17811 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
17812 +
17813 + for (i = 1; in_ep_cntr < num_in_eps; i++)
17814 + {
17815 + if((hwcfg1 & 0x1) == 0) {
17816 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
17817 + in_ep_cntr ++;
17818 +
17819 + /* Init EP structure */
17820 + ep->desc = 0;
17821 + ep->pcd = pcd;
17822 + ep->stopped = 1;
17823 +
17824 + /* Init DWC ep structure */
17825 + ep->dwc_ep.is_in = 1;
17826 + ep->dwc_ep.num = i;
17827 + ep->dwc_ep.active = 0;
17828 + ep->dwc_ep.tx_fifo_num = 0;
17829 +
17830 + /* Control until ep is actvated */
17831 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
17832 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
17833 + ep->dwc_ep.dma_addr = 0;
17834 + ep->dwc_ep.start_xfer_buff = 0;
17835 + ep->dwc_ep.xfer_buff = 0;
17836 + ep->dwc_ep.xfer_len = 0;
17837 + ep->dwc_ep.xfer_count = 0;
17838 + ep->dwc_ep.sent_zlp = 0;
17839 + ep->dwc_ep.total_len = 0;
17840 + ep->queue_sof = 0;
17841 + ep->dwc_ep.desc_addr = 0;
17842 + ep->dwc_ep.dma_desc_addr = 0;
17843 +
17844 + /* Init the usb_ep structure. */
17845 + ep->ep.name = names[i];
17846 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
17847 +
17848 + /**
17849 + * @todo NGS: What should the max packet size be set to
17850 + * here? Before EP type is set?
17851 + */
17852 + ep->ep.maxpacket = MAX_PACKET_SIZE;
17853 +
17854 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
17855 +
17856 + INIT_LIST_HEAD (&ep->queue);
17857 + }
17858 + hwcfg1 >>= 2;
17859 + }
17860 +
17861 + out_ep_cntr = 0;
17862 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
17863 +
17864 + for (i = 1; out_ep_cntr < num_out_eps; i++)
17865 + {
17866 + if((hwcfg1 & 0x1) == 0) {
17867 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
17868 + out_ep_cntr++;
17869 +
17870 + /* Init EP structure */
17871 + ep->desc = 0;
17872 + ep->pcd = pcd;
17873 + ep->stopped = 1;
17874 +
17875 + /* Init DWC ep structure */
17876 + ep->dwc_ep.is_in = 0;
17877 + ep->dwc_ep.num = i;
17878 + ep->dwc_ep.active = 0;
17879 + ep->dwc_ep.tx_fifo_num = 0;
17880 + /* Control until ep is actvated */
17881 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
17882 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
17883 + ep->dwc_ep.dma_addr = 0;
17884 + ep->dwc_ep.start_xfer_buff = 0;
17885 + ep->dwc_ep.xfer_buff = 0;
17886 + ep->dwc_ep.xfer_len = 0;
17887 + ep->dwc_ep.xfer_count = 0;
17888 + ep->dwc_ep.sent_zlp = 0;
17889 + ep->dwc_ep.total_len = 0;
17890 + ep->queue_sof = 0;
17891 +
17892 + /* Init the usb_ep structure. */
17893 + ep->ep.name = names[15 + i];
17894 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
17895 + /**
17896 + * @todo NGS: What should the max packet size be set to
17897 + * here? Before EP type is set?
17898 + */
17899 + ep->ep.maxpacket = MAX_PACKET_SIZE;
17900 +
17901 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
17902 +
17903 + INIT_LIST_HEAD (&ep->queue);
17904 + }
17905 + hwcfg1 >>= 2;
17906 + }
17907 +
17908 + /* remove ep0 from the list. There is a ep0 pointer.*/
17909 + list_del_init (&pcd->ep0.ep.ep_list);
17910 +
17911 + pcd->ep0state = EP0_DISCONNECT;
17912 + pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
17913 + pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
17914 + pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
17915 +}
17916 +
17917 +/**
17918 + * This function releases the Gadget device.
17919 + * required by device_unregister().
17920 + *
17921 + * @todo Should this do something? Should it free the PCD?
17922 + */
17923 +static void dwc_otg_pcd_gadget_release(struct device *dev)
17924 +{
17925 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
17926 +}
17927 +
17928 +
17929 +
17930 +/**
17931 + * This function initialized the PCD portion of the driver.
17932 + *
17933 + */
17934 +
17935 +int dwc_otg_pcd_init(struct device *dev)
17936 +{
17937 + static char pcd_name[] = "dwc_otg_pcd";
17938 + dwc_otg_pcd_t *pcd;
17939 + dwc_otg_core_if_t* core_if;
17940 + dwc_otg_dev_if_t* dev_if;
17941 + dwc_otg_device_t *otg_dev = dev_get_drvdata(dev);
17942 + int retval = 0;
17943 +
17944 +
17945 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, dev);
17946 + /*
17947 + * Allocate PCD structure
17948 + */
17949 + pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
17950 +
17951 + if (pcd == 0) {
17952 + return -ENOMEM;
17953 + }
17954 +
17955 + memset(pcd, 0, sizeof(dwc_otg_pcd_t));
17956 + spin_lock_init(&pcd->lock);
17957 +
17958 + otg_dev->pcd = pcd;
17959 + s_pcd = pcd;
17960 + pcd->gadget.name = pcd_name;
17961 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30)
17962 + strcpy(pcd->gadget.dev.bus_id, "gadget");
17963 +#else
17964 + dev_set_name(&pcd->gadget.dev, "%s", "gadget");
17965 +#endif
17966 +
17967 + pcd->otg_dev = dev_get_drvdata(dev);
17968 +
17969 + pcd->gadget.dev.parent = dev;
17970 + pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
17971 + pcd->gadget.ops = &dwc_otg_pcd_ops;
17972 +
17973 + core_if = GET_CORE_IF(pcd);
17974 + dev_if = core_if->dev_if;
17975 +
17976 + if(core_if->hwcfg4.b.ded_fifo_en) {
17977 + DWC_PRINT("Dedicated Tx FIFOs mode\n");
17978 + }
17979 + else {
17980 + DWC_PRINT("Shared Tx FIFO mode\n");
17981 + }
17982 +
17983 + /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
17984 + * should not report as dual-speed capable. replace the following line
17985 + * with the block of code below it once the software is debugged for
17986 + * this. If is_dualspeed = 0 then the gadget driver should not report
17987 + * a device qualifier descriptor when queried. */
17988 + if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
17989 + ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
17990 + (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
17991 + (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
17992 + pcd->gadget.is_dualspeed = 0;
17993 + }
17994 + else {
17995 + pcd->gadget.is_dualspeed = 1;
17996 + }
17997 +
17998 + if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
17999 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
18000 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
18001 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
18002 + pcd->gadget.is_otg = 0;
18003 + }
18004 + else {
18005 + pcd->gadget.is_otg = 1;
18006 + }
18007 +
18008 +
18009 + pcd->driver = 0;
18010 + /* Register the gadget device */
18011 + retval = device_register(&pcd->gadget.dev);
18012 + if (retval != 0) {
18013 + kfree (pcd);
18014 + return retval;
18015 + }
18016 +
18017 +
18018 + /*
18019 + * Initialized the Core for Device mode.
18020 + */
18021 + if (dwc_otg_is_device_mode(core_if)) {
18022 + dwc_otg_core_dev_init(core_if);
18023 + }
18024 +
18025 + /*
18026 + * Initialize EP structures
18027 + */
18028 + dwc_otg_pcd_reinit(pcd);
18029 +
18030 + /*
18031 + * Register the PCD Callbacks.
18032 + */
18033 + dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
18034 + pcd);
18035 + /*
18036 + * Setup interupt handler
18037 + */
18038 + DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
18039 + retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
18040 + IRQF_SHARED, pcd->gadget.name, pcd);
18041 + if (retval != 0) {
18042 + DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
18043 + device_unregister(&pcd->gadget.dev);
18044 + kfree (pcd);
18045 + return -EBUSY;
18046 + }
18047 +
18048 + /*
18049 + * Initialize the DMA buffer for SETUP packets
18050 + */
18051 + if (GET_CORE_IF(pcd)->dma_enable) {
18052 + pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
18053 + if (pcd->setup_pkt == 0) {
18054 + free_irq(otg_dev->irq, pcd);
18055 + device_unregister(&pcd->gadget.dev);
18056 + kfree (pcd);
18057 + return -ENOMEM;
18058 + }
18059 +
18060 + pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
18061 + if (pcd->status_buf == 0) {
18062 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
18063 + free_irq(otg_dev->irq, pcd);
18064 + device_unregister(&pcd->gadget.dev);
18065 + kfree (pcd);
18066 + return -ENOMEM;
18067 + }
18068 +
18069 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
18070 + dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
18071 + dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
18072 + dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
18073 + dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
18074 +
18075 + if(dev_if->setup_desc_addr[0] == 0
18076 + || dev_if->setup_desc_addr[1] == 0
18077 + || dev_if->in_desc_addr == 0
18078 + || dev_if->out_desc_addr == 0 ) {
18079 +
18080 + if(dev_if->out_desc_addr)
18081 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
18082 + if(dev_if->in_desc_addr)
18083 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
18084 + if(dev_if->setup_desc_addr[1])
18085 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
18086 + if(dev_if->setup_desc_addr[0])
18087 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
18088 +
18089 +
18090 + dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
18091 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
18092 +
18093 + free_irq(otg_dev->irq, pcd);
18094 + device_unregister(&pcd->gadget.dev);
18095 + kfree (pcd);
18096 +
18097 + return -ENOMEM;
18098 + }
18099 + }
18100 + }
18101 + else {
18102 + pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
18103 + if (pcd->setup_pkt == 0) {
18104 + free_irq(otg_dev->irq, pcd);
18105 + device_unregister(&pcd->gadget.dev);
18106 + kfree (pcd);
18107 + return -ENOMEM;
18108 + }
18109 +
18110 + pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
18111 + if (pcd->status_buf == 0) {
18112 + kfree(pcd->setup_pkt);
18113 + free_irq(otg_dev->irq, pcd);
18114 + device_unregister(&pcd->gadget.dev);
18115 + kfree (pcd);
18116 + return -ENOMEM;
18117 + }
18118 + }
18119 +
18120 +
18121 + /* Initialize tasklet */
18122 + start_xfer_tasklet.data = (unsigned long)pcd;
18123 + pcd->start_xfer_tasklet = &start_xfer_tasklet;
18124 +
18125 + return 0;
18126 +}
18127 +
18128 +/**
18129 + * Cleanup the PCD.
18130 + */
18131 +void dwc_otg_pcd_remove(struct device *dev)
18132 +{
18133 + dwc_otg_device_t *otg_dev = dev_get_drvdata(dev);
18134 + dwc_otg_pcd_t *pcd = otg_dev->pcd;
18135 + dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
18136 +
18137 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, dev);
18138 +
18139 + /*
18140 + * Free the IRQ
18141 + */
18142 + free_irq(otg_dev->irq, pcd);
18143 +
18144 + /* start with the driver above us */
18145 + if (pcd->driver) {
18146 + /* should have been done already by driver model core */
18147 + DWC_WARN("driver '%s' is still registered\n",
18148 + pcd->driver->driver.name);
18149 + usb_gadget_unregister_driver(pcd->driver);
18150 + }
18151 + device_unregister(&pcd->gadget.dev);
18152 +
18153 + if (GET_CORE_IF(pcd)->dma_enable) {
18154 + dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
18155 + dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
18156 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
18157 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
18158 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
18159 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
18160 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
18161 + }
18162 + }
18163 + else {
18164 + kfree (pcd->setup_pkt);
18165 + kfree (pcd->status_buf);
18166 + }
18167 +
18168 + kfree(pcd);
18169 + otg_dev->pcd = 0;
18170 +}
18171 +
18172 +/**
18173 + * This function registers a gadget driver with the PCD.
18174 + *
18175 + * When a driver is successfully registered, it will receive control
18176 + * requests including set_configuration(), which enables non-control
18177 + * requests. then usb traffic follows until a disconnect is reported.
18178 + * then a host may connect again, or the driver might get unbound.
18179 + *
18180 + * @param driver The driver being registered
18181 + */
18182 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)
18183 +int usb_gadget_probe_driver(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *))
18184 +#else
18185 +int usb_gadget_register_driver(struct usb_gadget_driver *driver)
18186 +#endif
18187 +{
18188 + int retval;
18189 + int (*d_bind)(struct usb_gadget *);
18190 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)
18191 + d_bind = bind;
18192 +#else
18193 + d_bind = driver->bind;
18194 +#endif
18195 +
18196 + DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
18197 +
18198 + if (!driver || driver->speed == USB_SPEED_UNKNOWN ||
18199 + !d_bind ||
18200 + !driver->unbind ||
18201 + !driver->disconnect ||
18202 + !driver->setup) {
18203 + DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
18204 + return -EINVAL;
18205 + }
18206 + if (s_pcd == 0) {
18207 + DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
18208 + return -ENODEV;
18209 + }
18210 + if (s_pcd->driver != 0) {
18211 + DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
18212 + return -EBUSY;
18213 + }
18214 +
18215 + /* hook up the driver */
18216 + s_pcd->driver = driver;
18217 + s_pcd->gadget.dev.driver = &driver->driver;
18218 +
18219 + DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
18220 + retval = d_bind(&s_pcd->gadget);
18221 + if (retval) {
18222 + DWC_ERROR("bind to driver %s --> error %d\n",
18223 + driver->driver.name, retval);
18224 + s_pcd->driver = 0;
18225 + s_pcd->gadget.dev.driver = 0;
18226 + return retval;
18227 + }
18228 + DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
18229 + driver->driver.name);
18230 + return 0;
18231 +}
18232 +
18233 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)
18234 +EXPORT_SYMBOL(usb_gadget_probe_driver);
18235 +#else
18236 +EXPORT_SYMBOL(usb_gadget_register_driver);
18237 +#endif
18238 +
18239 +/**
18240 + * This function unregisters a gadget driver
18241 + *
18242 + * @param driver The driver being unregistered
18243 + */
18244 +int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
18245 +{
18246 + //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
18247 +
18248 + if (s_pcd == 0) {
18249 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
18250 + -ENODEV);
18251 + return -ENODEV;
18252 + }
18253 + if (driver == 0 || driver != s_pcd->driver) {
18254 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
18255 + -EINVAL);
18256 + return -EINVAL;
18257 + }
18258 +
18259 + driver->unbind(&s_pcd->gadget);
18260 + s_pcd->driver = 0;
18261 +
18262 + DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
18263 + driver->driver.name);
18264 + return 0;
18265 +}
18266 +EXPORT_SYMBOL(usb_gadget_unregister_driver);
18267 +
18268 +#endif /* DWC_HOST_ONLY */
18269 --- /dev/null
18270 +++ b/drivers/usb/dwc_otg/dwc_otg_pcd.h
18271 @@ -0,0 +1,248 @@
18272 +/* ==========================================================================
18273 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
18274 + * $Revision: 1.2 $
18275 + * $Date: 2008-11-21 05:39:15 $
18276 + * $Change: 1103515 $
18277 + *
18278 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
18279 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
18280 + * otherwise expressly agreed to in writing between Synopsys and you.
18281 + *
18282 + * The Software IS NOT an item of Licensed Software or Licensed Product under
18283 + * any End User Software License Agreement or Agreement for Licensed Product
18284 + * with Synopsys or any supplement thereto. You are permitted to use and
18285 + * redistribute this Software in source and binary forms, with or without
18286 + * modification, provided that redistributions of source code must retain this
18287 + * notice. You may not view, use, disclose, copy or distribute this file or
18288 + * any information contained herein except pursuant to this license grant from
18289 + * Synopsys. If you do not agree with this notice, including the disclaimer
18290 + * below, then you are not authorized to use the Software.
18291 + *
18292 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
18293 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18294 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18295 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
18296 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18297 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
18298 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
18299 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18300 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
18301 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
18302 + * DAMAGE.
18303 + * ========================================================================== */
18304 +#ifndef DWC_HOST_ONLY
18305 +#if !defined(__DWC_PCD_H__)
18306 +#define __DWC_PCD_H__
18307 +
18308 +#include <linux/types.h>
18309 +#include <linux/list.h>
18310 +#include <linux/errno.h>
18311 +#include <linux/device.h>
18312 +
18313 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
18314 +# include <linux/usb/ch9.h>
18315 +#else
18316 +# include <linux/usb_ch9.h>
18317 +#endif
18318 +
18319 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)
18320 +#include <linux/usb/gadget.h>
18321 +#else
18322 +#include <linux/usb_gadget.h>
18323 +#endif
18324 +#include <linux/interrupt.h>
18325 +#include <linux/dma-mapping.h>
18326 +
18327 +struct dwc_otg_device;
18328 +
18329 +#include "dwc_otg_cil.h"
18330 +
18331 +/**
18332 + * @file
18333 + *
18334 + * This file contains the structures, constants, and interfaces for
18335 + * the Perpherial Contoller Driver (PCD).
18336 + *
18337 + * The Peripheral Controller Driver (PCD) for Linux will implement the
18338 + * Gadget API, so that the existing Gadget drivers can be used. For
18339 + * the Mass Storage Function driver the File-backed USB Storage Gadget
18340 + * (FBS) driver will be used. The FBS driver supports the
18341 + * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
18342 + * transports.
18343 + *
18344 + */
18345 +
18346 +/** Invalid DMA Address */
18347 +#define DMA_ADDR_INVALID (~(dma_addr_t)0)
18348 +/** Maxpacket size for EP0 */
18349 +#define MAX_EP0_SIZE 64
18350 +/** Maxpacket size for any EP */
18351 +#define MAX_PACKET_SIZE 1024
18352 +
18353 +/** Max Transfer size for any EP */
18354 +#define MAX_TRANSFER_SIZE 65535
18355 +
18356 +/** Max DMA Descriptor count for any EP */
18357 +#define MAX_DMA_DESC_CNT 64
18358 +
18359 +/**
18360 + * Get the pointer to the core_if from the pcd pointer.
18361 + */
18362 +#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
18363 +
18364 +/**
18365 + * States of EP0.
18366 + */
18367 +typedef enum ep0_state
18368 +{
18369 + EP0_DISCONNECT, /* no host */
18370 + EP0_IDLE,
18371 + EP0_IN_DATA_PHASE,
18372 + EP0_OUT_DATA_PHASE,
18373 + EP0_IN_STATUS_PHASE,
18374 + EP0_OUT_STATUS_PHASE,
18375 + EP0_STALL,
18376 +} ep0state_e;
18377 +
18378 +/** Fordward declaration.*/
18379 +struct dwc_otg_pcd;
18380 +
18381 +/** DWC_otg iso request structure.
18382 + *
18383 + */
18384 +typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
18385 +
18386 +/** PCD EP structure.
18387 + * This structure describes an EP, there is an array of EPs in the PCD
18388 + * structure.
18389 + */
18390 +typedef struct dwc_otg_pcd_ep
18391 +{
18392 + /** USB EP data */
18393 + struct usb_ep ep;
18394 + /** USB EP Descriptor */
18395 + const struct usb_endpoint_descriptor *desc;
18396 +
18397 + /** queue of dwc_otg_pcd_requests. */
18398 + struct list_head queue;
18399 + unsigned stopped : 1;
18400 + unsigned disabling : 1;
18401 + unsigned dma : 1;
18402 + unsigned queue_sof : 1;
18403 +
18404 +#ifdef DWC_EN_ISOC
18405 + /** DWC_otg Isochronous Transfer */
18406 + struct usb_iso_request* iso_req;
18407 +#endif //DWC_EN_ISOC
18408 +
18409 + /** DWC_otg ep data. */
18410 + dwc_ep_t dwc_ep;
18411 +
18412 + /** Pointer to PCD */
18413 + struct dwc_otg_pcd *pcd;
18414 +}dwc_otg_pcd_ep_t;
18415 +
18416 +
18417 +
18418 +/** DWC_otg PCD Structure.
18419 + * This structure encapsulates the data for the dwc_otg PCD.
18420 + */
18421 +typedef struct dwc_otg_pcd
18422 +{
18423 + /** USB gadget */
18424 + struct usb_gadget gadget;
18425 + /** USB gadget driver pointer*/
18426 + struct usb_gadget_driver *driver;
18427 + /** The DWC otg device pointer. */
18428 + struct dwc_otg_device *otg_dev;
18429 +
18430 + /** State of EP0 */
18431 + ep0state_e ep0state;
18432 + /** EP0 Request is pending */
18433 + unsigned ep0_pending : 1;
18434 + /** Indicates when SET CONFIGURATION Request is in process */
18435 + unsigned request_config : 1;
18436 + /** The state of the Remote Wakeup Enable. */
18437 + unsigned remote_wakeup_enable : 1;
18438 + /** The state of the B-Device HNP Enable. */
18439 + unsigned b_hnp_enable : 1;
18440 + /** The state of A-Device HNP Support. */
18441 + unsigned a_hnp_support : 1;
18442 + /** The state of the A-Device Alt HNP support. */
18443 + unsigned a_alt_hnp_support : 1;
18444 + /** Count of pending Requests */
18445 + unsigned request_pending;
18446 +
18447 + /** SETUP packet for EP0
18448 + * This structure is allocated as a DMA buffer on PCD initialization
18449 + * with enough space for up to 3 setup packets.
18450 + */
18451 + union
18452 + {
18453 + struct usb_ctrlrequest req;
18454 + uint32_t d32[2];
18455 + } *setup_pkt;
18456 +
18457 + dma_addr_t setup_pkt_dma_handle;
18458 +
18459 + /** 2-byte dma buffer used to return status from GET_STATUS */
18460 + uint16_t *status_buf;
18461 + dma_addr_t status_buf_dma_handle;
18462 +
18463 + /** EP0 */
18464 + dwc_otg_pcd_ep_t ep0;
18465 +
18466 + /** Array of IN EPs. */
18467 + dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
18468 + /** Array of OUT EPs. */
18469 + dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
18470 + /** number of valid EPs in the above array. */
18471 +// unsigned num_eps : 4;
18472 + spinlock_t lock;
18473 + /** Timer for SRP. If it expires before SRP is successful
18474 + * clear the SRP. */
18475 + struct timer_list srp_timer;
18476 +
18477 + /** Tasklet to defer starting of TEST mode transmissions until
18478 + * Status Phase has been completed.
18479 + */
18480 + struct tasklet_struct test_mode_tasklet;
18481 +
18482 + /** Tasklet to delay starting of xfer in DMA mode */
18483 + struct tasklet_struct *start_xfer_tasklet;
18484 +
18485 + /** The test mode to enter when the tasklet is executed. */
18486 + unsigned test_mode;
18487 +
18488 +} dwc_otg_pcd_t;
18489 +
18490 +
18491 +/** DWC_otg request structure.
18492 + * This structure is a list of requests.
18493 + */
18494 +typedef struct
18495 +{
18496 + struct usb_request req; /**< USB Request. */
18497 + struct list_head queue; /**< queue of these requests. */
18498 +} dwc_otg_pcd_request_t;
18499 +
18500 +
18501 +extern int dwc_otg_pcd_init(struct device *dev);
18502 +
18503 +//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
18504 +extern void dwc_otg_pcd_remove( struct device *dev);
18505 +extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
18506 +extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
18507 +
18508 +extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
18509 +extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
18510 +
18511 +extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
18512 +extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
18513 + int status);
18514 +extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
18515 +extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
18516 + const unsigned reset);
18517 +
18518 +#endif
18519 +#endif /* DWC_HOST_ONLY */
18520 --- /dev/null
18521 +++ b/drivers/usb/dwc_otg/dwc_otg_pcd_intr.c
18522 @@ -0,0 +1,3654 @@
18523 +/* ==========================================================================
18524 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
18525 + * $Revision: 1.2 $
18526 + * $Date: 2008-11-21 05:39:15 $
18527 + * $Change: 1115682 $
18528 + *
18529 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
18530 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
18531 + * otherwise expressly agreed to in writing between Synopsys and you.
18532 + *
18533 + * The Software IS NOT an item of Licensed Software or Licensed Product under
18534 + * any End User Software License Agreement or Agreement for Licensed Product
18535 + * with Synopsys or any supplement thereto. You are permitted to use and
18536 + * redistribute this Software in source and binary forms, with or without
18537 + * modification, provided that redistributions of source code must retain this
18538 + * notice. You may not view, use, disclose, copy or distribute this file or
18539 + * any information contained herein except pursuant to this license grant from
18540 + * Synopsys. If you do not agree with this notice, including the disclaimer
18541 + * below, then you are not authorized to use the Software.
18542 + *
18543 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
18544 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18545 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18546 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
18547 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18548 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
18549 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
18550 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18551 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
18552 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
18553 + * DAMAGE.
18554 + * ========================================================================== */
18555 +#ifndef DWC_HOST_ONLY
18556 +#include <linux/interrupt.h>
18557 +#include <linux/dma-mapping.h>
18558 +#include <linux/version.h>
18559 +
18560 +#include "dwc_otg_driver.h"
18561 +#include "dwc_otg_pcd.h"
18562 +
18563 +
18564 +#define DEBUG_EP0
18565 +
18566 +/* request functions defined in "dwc_otg_pcd.c" */
18567 +
18568 +/** @file
18569 + * This file contains the implementation of the PCD Interrupt handlers.
18570 + *
18571 + * The PCD handles the device interrupts. Many conditions can cause a
18572 + * device interrupt. When an interrupt occurs, the device interrupt
18573 + * service routine determines the cause of the interrupt and
18574 + * dispatches handling to the appropriate function. These interrupt
18575 + * handling functions are described below.
18576 + * All interrupt registers are processed from LSB to MSB.
18577 + */
18578 +
18579 +
18580 +/**
18581 + * This function prints the ep0 state for debug purposes.
18582 + */
18583 +static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
18584 +{
18585 +#ifdef DEBUG
18586 + char str[40];
18587 +
18588 + switch (pcd->ep0state) {
18589 + case EP0_DISCONNECT:
18590 + strcpy(str, "EP0_DISCONNECT");
18591 + break;
18592 + case EP0_IDLE:
18593 + strcpy(str, "EP0_IDLE");
18594 + break;
18595 + case EP0_IN_DATA_PHASE:
18596 + strcpy(str, "EP0_IN_DATA_PHASE");
18597 + break;
18598 + case EP0_OUT_DATA_PHASE:
18599 + strcpy(str, "EP0_OUT_DATA_PHASE");
18600 + break;
18601 + case EP0_IN_STATUS_PHASE:
18602 + strcpy(str,"EP0_IN_STATUS_PHASE");
18603 + break;
18604 + case EP0_OUT_STATUS_PHASE:
18605 + strcpy(str,"EP0_OUT_STATUS_PHASE");
18606 + break;
18607 + case EP0_STALL:
18608 + strcpy(str,"EP0_STALL");
18609 + break;
18610 + default:
18611 + strcpy(str,"EP0_INVALID");
18612 + }
18613 +
18614 + DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
18615 +#endif
18616 +}
18617 +
18618 +/**
18619 + * This function returns pointer to in ep struct with number ep_num
18620 + */
18621 +static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
18622 +{
18623 + int i;
18624 + int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
18625 + if(ep_num == 0) {
18626 + return &pcd->ep0;
18627 + }
18628 + else {
18629 + for(i = 0; i < num_in_eps; ++i)
18630 + {
18631 + if(pcd->in_ep[i].dwc_ep.num == ep_num)
18632 + return &pcd->in_ep[i];
18633 + }
18634 + return 0;
18635 + }
18636 +}
18637 +/**
18638 + * This function returns pointer to out ep struct with number ep_num
18639 + */
18640 +static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
18641 +{
18642 + int i;
18643 + int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
18644 + if(ep_num == 0) {
18645 + return &pcd->ep0;
18646 + }
18647 + else {
18648 + for(i = 0; i < num_out_eps; ++i)
18649 + {
18650 + if(pcd->out_ep[i].dwc_ep.num == ep_num)
18651 + return &pcd->out_ep[i];
18652 + }
18653 + return 0;
18654 + }
18655 +}
18656 +/**
18657 + * This functions gets a pointer to an EP from the wIndex address
18658 + * value of the control request.
18659 + */
18660 +static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
18661 +{
18662 + dwc_otg_pcd_ep_t *ep;
18663 +
18664 + if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
18665 + return &pcd->ep0;
18666 + list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
18667 + {
18668 + u8 bEndpointAddress;
18669 +
18670 + if (!ep->desc)
18671 + continue;
18672 +
18673 + bEndpointAddress = ep->desc->bEndpointAddress;
18674 + if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
18675 + == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
18676 + return ep;
18677 + }
18678 + return NULL;
18679 +}
18680 +
18681 +/**
18682 + * This function checks the EP request queue, if the queue is not
18683 + * empty the next request is started.
18684 + */
18685 +void start_next_request(dwc_otg_pcd_ep_t *ep)
18686 +{
18687 + dwc_otg_pcd_request_t *req = 0;
18688 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
18689 +
18690 + if (!list_empty(&ep->queue)) {
18691 + req = list_entry(ep->queue.next,
18692 + dwc_otg_pcd_request_t, queue);
18693 +
18694 + /* Setup and start the Transfer */
18695 + ep->dwc_ep.dma_addr = req->req.dma;
18696 + ep->dwc_ep.start_xfer_buff = req->req.buf;
18697 + ep->dwc_ep.xfer_buff = req->req.buf;
18698 + ep->dwc_ep.sent_zlp = 0;
18699 + ep->dwc_ep.total_len = req->req.length;
18700 + ep->dwc_ep.xfer_len = 0;
18701 + ep->dwc_ep.xfer_count = 0;
18702 +
18703 + if(max_transfer > MAX_TRANSFER_SIZE) {
18704 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
18705 + } else {
18706 + ep->dwc_ep.maxxfer = max_transfer;
18707 + }
18708 +
18709 + if(req->req.zero) {
18710 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
18711 + && (ep->dwc_ep.total_len != 0)) {
18712 + ep->dwc_ep.sent_zlp = 1;
18713 + }
18714 +
18715 + }
18716 +
18717 + dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
18718 + }
18719 +}
18720 +
18721 +/**
18722 + * This function handles the SOF Interrupts. At this time the SOF
18723 + * Interrupt is disabled.
18724 + */
18725 +int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
18726 +{
18727 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18728 +
18729 + gintsts_data_t gintsts;
18730 +
18731 + DWC_DEBUGPL(DBG_PCD, "SOF\n");
18732 +
18733 + /* Clear interrupt */
18734 + gintsts.d32 = 0;
18735 + gintsts.b.sofintr = 1;
18736 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
18737 +
18738 + return 1;
18739 +}
18740 +
18741 +
18742 +/**
18743 + * This function handles the Rx Status Queue Level Interrupt, which
18744 + * indicates that there is a least one packet in the Rx FIFO. The
18745 + * packets are moved from the FIFO to memory, where they will be
18746 + * processed when the Endpoint Interrupt Register indicates Transfer
18747 + * Complete or SETUP Phase Done.
18748 + *
18749 + * Repeat the following until the Rx Status Queue is empty:
18750 + * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
18751 + * info
18752 + * -# If Receive FIFO is empty then skip to step Clear the interrupt
18753 + * and exit
18754 + * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
18755 + * SETUP data to the buffer
18756 + * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
18757 + * to the destination buffer
18758 + */
18759 +int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
18760 +{
18761 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18762 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
18763 + gintmsk_data_t gintmask = {.d32=0};
18764 + device_grxsts_data_t status;
18765 + dwc_otg_pcd_ep_t *ep;
18766 + gintsts_data_t gintsts;
18767 +#ifdef DEBUG
18768 + static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
18769 +#endif
18770 +
18771 + //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
18772 + /* Disable the Rx Status Queue Level interrupt */
18773 + gintmask.b.rxstsqlvl= 1;
18774 + dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
18775 +
18776 + /* Get the Status from the top of the FIFO */
18777 + status.d32 = dwc_read_reg32(&global_regs->grxstsp);
18778 +
18779 + DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
18780 + "pktsts:%x Frame:%d(0x%0x)\n",
18781 + status.b.epnum, status.b.bcnt,
18782 + dpid_str[status.b.dpid],
18783 + status.b.pktsts, status.b.fn, status.b.fn);
18784 + /* Get pointer to EP structure */
18785 + ep = get_out_ep(pcd, status.b.epnum);
18786 +
18787 + switch (status.b.pktsts) {
18788 + case DWC_DSTS_GOUT_NAK:
18789 + DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
18790 + break;
18791 + case DWC_STS_DATA_UPDT:
18792 + DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
18793 + if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
18794 + /** @todo NGS Check for buffer overflow? */
18795 + dwc_otg_read_packet(core_if,
18796 + ep->dwc_ep.xfer_buff,
18797 + status.b.bcnt);
18798 + ep->dwc_ep.xfer_count += status.b.bcnt;
18799 + ep->dwc_ep.xfer_buff += status.b.bcnt;
18800 + }
18801 + break;
18802 + case DWC_STS_XFER_COMP:
18803 + DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
18804 + break;
18805 + case DWC_DSTS_SETUP_COMP:
18806 +#ifdef DEBUG_EP0
18807 + DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
18808 +#endif
18809 + break;
18810 +case DWC_DSTS_SETUP_UPDT:
18811 + dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
18812 +#ifdef DEBUG_EP0
18813 + DWC_DEBUGPL(DBG_PCD,
18814 + "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
18815 + pcd->setup_pkt->req.bRequestType,
18816 + pcd->setup_pkt->req.bRequest,
18817 + pcd->setup_pkt->req.wValue,
18818 + pcd->setup_pkt->req.wIndex,
18819 + pcd->setup_pkt->req.wLength);
18820 +#endif
18821 + ep->dwc_ep.xfer_count += status.b.bcnt;
18822 + break;
18823 + default:
18824 + DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
18825 + status.b.pktsts);
18826 + break;
18827 + }
18828 +
18829 + /* Enable the Rx Status Queue Level interrupt */
18830 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
18831 + /* Clear interrupt */
18832 + gintsts.d32 = 0;
18833 + gintsts.b.rxstsqlvl = 1;
18834 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
18835 +
18836 + //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
18837 + return 1;
18838 +}
18839 +/**
18840 + * This function examines the Device IN Token Learning Queue to
18841 + * determine the EP number of the last IN token received. This
18842 + * implementation is for the Mass Storage device where there are only
18843 + * 2 IN EPs (Control-IN and BULK-IN).
18844 + *
18845 + * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
18846 + * are 8 EP Numbers in each of the other possible DTKNQ Registers.
18847 + *
18848 + * @param core_if Programming view of DWC_otg controller.
18849 + *
18850 + */
18851 +static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
18852 +{
18853 + dwc_otg_device_global_regs_t *dev_global_regs =
18854 + core_if->dev_if->dev_global_regs;
18855 + const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
18856 + /* Number of Token Queue Registers */
18857 + const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
18858 + dtknq1_data_t dtknqr1;
18859 + uint32_t in_tkn_epnums[4];
18860 + int ndx = 0;
18861 + int i = 0;
18862 + volatile uint32_t *addr = &dev_global_regs->dtknqr1;
18863 + int epnum = 0;
18864 +
18865 + //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
18866 +
18867 +
18868 + /* Read the DTKNQ Registers */
18869 + for (i = 0; i < DTKNQ_REG_CNT; i++)
18870 + {
18871 + in_tkn_epnums[ i ] = dwc_read_reg32(addr);
18872 + DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
18873 + in_tkn_epnums[i]);
18874 + if (addr == &dev_global_regs->dvbusdis) {
18875 + addr = &dev_global_regs->dtknqr3_dthrctl;
18876 + }
18877 + else {
18878 + ++addr;
18879 + }
18880 +
18881 + }
18882 +
18883 + /* Copy the DTKNQR1 data to the bit field. */
18884 + dtknqr1.d32 = in_tkn_epnums[0];
18885 + /* Get the EP numbers */
18886 + in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
18887 + ndx = dtknqr1.b.intknwptr - 1;
18888 +
18889 + //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
18890 + if (ndx == -1) {
18891 + /** @todo Find a simpler way to calculate the max
18892 + * queue position.*/
18893 + int cnt = TOKEN_Q_DEPTH;
18894 + if (TOKEN_Q_DEPTH <= 6) {
18895 + cnt = TOKEN_Q_DEPTH - 1;
18896 + }
18897 + else if (TOKEN_Q_DEPTH <= 14) {
18898 + cnt = TOKEN_Q_DEPTH - 7;
18899 + }
18900 + else if (TOKEN_Q_DEPTH <= 22) {
18901 + cnt = TOKEN_Q_DEPTH - 15;
18902 + }
18903 + else {
18904 + cnt = TOKEN_Q_DEPTH - 23;
18905 + }
18906 + epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
18907 + }
18908 + else {
18909 + if (ndx <= 5) {
18910 + epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
18911 + }
18912 + else if (ndx <= 13) {
18913 + ndx -= 6;
18914 + epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
18915 + }
18916 + else if (ndx <= 21) {
18917 + ndx -= 14;
18918 + epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
18919 + }
18920 + else if (ndx <= 29) {
18921 + ndx -= 22;
18922 + epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
18923 + }
18924 + }
18925 + //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
18926 + return epnum;
18927 +}
18928 +
18929 +/**
18930 + * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
18931 + * The active request is checked for the next packet to be loaded into
18932 + * the non-periodic Tx FIFO.
18933 + */
18934 +int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
18935 +{
18936 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18937 + dwc_otg_core_global_regs_t *global_regs =
18938 + core_if->core_global_regs;
18939 + dwc_otg_dev_in_ep_regs_t *ep_regs;
18940 + gnptxsts_data_t txstatus = {.d32 = 0};
18941 + gintsts_data_t gintsts;
18942 +
18943 + int epnum = 0;
18944 + dwc_otg_pcd_ep_t *ep = 0;
18945 + uint32_t len = 0;
18946 + int dwords;
18947 +
18948 + /* Get the epnum from the IN Token Learning Queue. */
18949 + epnum = get_ep_of_last_in_token(core_if);
18950 + ep = get_in_ep(pcd, epnum);
18951 +
18952 + DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
18953 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
18954 +
18955 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
18956 + if (len > ep->dwc_ep.maxpacket) {
18957 + len = ep->dwc_ep.maxpacket;
18958 + }
18959 + dwords = (len + 3)/4;
18960 +
18961 +
18962 + /* While there is space in the queue and space in the FIFO and
18963 + * More data to tranfer, Write packets to the Tx FIFO */
18964 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
18965 + DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
18966 +
18967 + while (txstatus.b.nptxqspcavail > 0 &&
18968 + txstatus.b.nptxfspcavail > dwords &&
18969 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
18970 + /* Write the FIFO */
18971 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
18972 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
18973 +
18974 + if (len > ep->dwc_ep.maxpacket) {
18975 + len = ep->dwc_ep.maxpacket;
18976 + }
18977 +
18978 + dwords = (len + 3)/4;
18979 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
18980 + DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
18981 + }
18982 +
18983 + DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
18984 + dwc_read_reg32(&global_regs->gnptxsts));
18985 +
18986 + /* Clear interrupt */
18987 + gintsts.d32 = 0;
18988 + gintsts.b.nptxfempty = 1;
18989 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
18990 +
18991 + return 1;
18992 +}
18993 +
18994 +/**
18995 + * This function is called when dedicated Tx FIFO Empty interrupt occurs.
18996 + * The active request is checked for the next packet to be loaded into
18997 + * apropriate Tx FIFO.
18998 + */
18999 +static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
19000 +{
19001 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19002 + dwc_otg_dev_if_t* dev_if = core_if->dev_if;
19003 + dwc_otg_dev_in_ep_regs_t *ep_regs;
19004 + dtxfsts_data_t txstatus = {.d32 = 0};
19005 + dwc_otg_pcd_ep_t *ep = 0;
19006 + uint32_t len = 0;
19007 + int dwords;
19008 +
19009 + ep = get_in_ep(pcd, epnum);
19010 +
19011 + DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
19012 +
19013 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
19014 +
19015 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
19016 +
19017 + if (len > ep->dwc_ep.maxpacket) {
19018 + len = ep->dwc_ep.maxpacket;
19019 + }
19020 +
19021 + dwords = (len + 3)/4;
19022 +
19023 + /* While there is space in the queue and space in the FIFO and
19024 + * More data to tranfer, Write packets to the Tx FIFO */
19025 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
19026 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
19027 +
19028 + while (txstatus.b.txfspcavail > dwords &&
19029 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
19030 + ep->dwc_ep.xfer_len != 0) {
19031 + /* Write the FIFO */
19032 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
19033 +
19034 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
19035 + if (len > ep->dwc_ep.maxpacket) {
19036 + len = ep->dwc_ep.maxpacket;
19037 + }
19038 +
19039 + dwords = (len + 3)/4;
19040 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
19041 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
19042 + }
19043 +
19044 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
19045 +
19046 + return 1;
19047 +}
19048 +
19049 +
19050 +/**
19051 + * This function is called when the Device is disconnected. It stops
19052 + * any active requests and informs the Gadget driver of the
19053 + * disconnect.
19054 + */
19055 +void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
19056 +{
19057 + int i, num_in_eps, num_out_eps;
19058 + dwc_otg_pcd_ep_t *ep;
19059 +
19060 + gintmsk_data_t intr_mask = {.d32 = 0};
19061 +
19062 + num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
19063 + num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
19064 +
19065 + DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
19066 + /* don't disconnect drivers more than once */
19067 + if (pcd->ep0state == EP0_DISCONNECT) {
19068 + DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
19069 + return;
19070 + }
19071 + pcd->ep0state = EP0_DISCONNECT;
19072 +
19073 + /* Reset the OTG state. */
19074 + dwc_otg_pcd_update_otg(pcd, 1);
19075 +
19076 + /* Disable the NP Tx Fifo Empty Interrupt. */
19077 + intr_mask.b.nptxfempty = 1;
19078 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
19079 + intr_mask.d32, 0);
19080 +
19081 + /* Flush the FIFOs */
19082 + /**@todo NGS Flush Periodic FIFOs */
19083 + dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
19084 + dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
19085 +
19086 + /* prevent new request submissions, kill any outstanding requests */
19087 + ep = &pcd->ep0;
19088 + dwc_otg_request_nuke(ep);
19089 + /* prevent new request submissions, kill any outstanding requests */
19090 + for (i = 0; i < num_in_eps; i++)
19091 + {
19092 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
19093 + dwc_otg_request_nuke(ep);
19094 + }
19095 + /* prevent new request submissions, kill any outstanding requests */
19096 + for (i = 0; i < num_out_eps; i++)
19097 + {
19098 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
19099 + dwc_otg_request_nuke(ep);
19100 + }
19101 +
19102 + /* report disconnect; the driver is already quiesced */
19103 + if (pcd->driver && pcd->driver->disconnect) {
19104 + SPIN_UNLOCK(&pcd->lock);
19105 + pcd->driver->disconnect(&pcd->gadget);
19106 + SPIN_LOCK(&pcd->lock);
19107 + }
19108 +}
19109 +
19110 +/**
19111 + * This interrupt indicates that ...
19112 + */
19113 +int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
19114 +{
19115 + gintmsk_data_t intr_mask = { .d32 = 0};
19116 + gintsts_data_t gintsts;
19117 +
19118 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
19119 + intr_mask.b.i2cintr = 1;
19120 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
19121 + intr_mask.d32, 0);
19122 +
19123 + /* Clear interrupt */
19124 + gintsts.d32 = 0;
19125 + gintsts.b.i2cintr = 1;
19126 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
19127 + gintsts.d32);
19128 + return 1;
19129 +}
19130 +
19131 +
19132 +/**
19133 + * This interrupt indicates that ...
19134 + */
19135 +int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
19136 +{
19137 + gintsts_data_t gintsts;
19138 +#if defined(VERBOSE)
19139 + DWC_PRINT("Early Suspend Detected\n");
19140 +#endif
19141 + /* Clear interrupt */
19142 + gintsts.d32 = 0;
19143 + gintsts.b.erlysuspend = 1;
19144 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
19145 + gintsts.d32);
19146 + return 1;
19147 +}
19148 +
19149 +/**
19150 + * This function configures EPO to receive SETUP packets.
19151 + *
19152 + * @todo NGS: Update the comments from the HW FS.
19153 + *
19154 + * -# Program the following fields in the endpoint specific registers
19155 + * for Control OUT EP 0, in order to receive a setup packet
19156 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
19157 + * setup packets)
19158 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
19159 + * to back setup packets)
19160 + * - In DMA mode, DOEPDMA0 Register with a memory address to
19161 + * store any setup packets received
19162 + *
19163 + * @param core_if Programming view of DWC_otg controller.
19164 + * @param pcd Programming view of the PCD.
19165 + */
19166 +static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
19167 +{
19168 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19169 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
19170 + dwc_otg_dma_desc_t* dma_desc;
19171 + depctl_data_t doepctl = { .d32 = 0 };
19172 +
19173 +#ifdef VERBOSE
19174 + DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
19175 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
19176 +#endif
19177 +
19178 + doeptsize0.b.supcnt = 3;
19179 + doeptsize0.b.pktcnt = 1;
19180 + doeptsize0.b.xfersize = 8*3;
19181 +
19182 +
19183 + if (core_if->dma_enable) {
19184 + if (!core_if->dma_desc_enable) {
19185 + /** put here as for Hermes mode deptisz register should not be written */
19186 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
19187 + doeptsize0.d32);
19188 +
19189 + /** @todo dma needs to handle multiple setup packets (up to 3) */
19190 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
19191 + pcd->setup_pkt_dma_handle);
19192 + } else {
19193 + dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
19194 + dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
19195 +
19196 + /** DMA Descriptor Setup */
19197 + dma_desc->status.b.bs = BS_HOST_BUSY;
19198 + dma_desc->status.b.l = 1;
19199 + dma_desc->status.b.ioc = 1;
19200 + dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
19201 + dma_desc->buf = pcd->setup_pkt_dma_handle;
19202 + dma_desc->status.b.bs = BS_HOST_READY;
19203 +
19204 + /** DOEPDMA0 Register write */
19205 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
19206 + }
19207 +
19208 + } else {
19209 + /** put here as for Hermes mode deptisz register should not be written */
19210 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
19211 + doeptsize0.d32);
19212 + }
19213 +
19214 + /** DOEPCTL0 Register write */
19215 + doepctl.b.epena = 1;
19216 + doepctl.b.cnak = 1;
19217 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
19218 +
19219 +#ifdef VERBOSE
19220 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
19221 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
19222 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
19223 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
19224 +#endif
19225 +}
19226 +
19227 +
19228 +/**
19229 + * This interrupt occurs when a USB Reset is detected. When the USB
19230 + * Reset Interrupt occurs the device state is set to DEFAULT and the
19231 + * EP0 state is set to IDLE.
19232 + * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
19233 + * -# Unmask the following interrupt bits
19234 + * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
19235 + * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
19236 + * - DOEPMSK.SETUP = 1
19237 + * - DOEPMSK.XferCompl = 1
19238 + * - DIEPMSK.XferCompl = 1
19239 + * - DIEPMSK.TimeOut = 1
19240 + * -# Program the following fields in the endpoint specific registers
19241 + * for Control OUT EP 0, in order to receive a setup packet
19242 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
19243 + * setup packets)
19244 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
19245 + * to back setup packets)
19246 + * - In DMA mode, DOEPDMA0 Register with a memory address to
19247 + * store any setup packets received
19248 + * At this point, all the required initialization, except for enabling
19249 + * the control 0 OUT endpoint is done, for receiving SETUP packets.
19250 + */
19251 +int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
19252 +{
19253 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19254 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19255 + depctl_data_t doepctl = { .d32 = 0};
19256 +
19257 + daint_data_t daintmsk = { .d32 = 0};
19258 + doepmsk_data_t doepmsk = { .d32 = 0};
19259 + diepmsk_data_t diepmsk = { .d32 = 0};
19260 +
19261 + dcfg_data_t dcfg = { .d32=0 };
19262 + grstctl_t resetctl = { .d32=0 };
19263 + dctl_data_t dctl = {.d32=0};
19264 + int i = 0;
19265 + gintsts_data_t gintsts;
19266 +
19267 + DWC_PRINT("USB RESET\n");
19268 +#ifdef DWC_EN_ISOC
19269 + for(i = 1;i < 16; ++i)
19270 + {
19271 + dwc_otg_pcd_ep_t *ep;
19272 + dwc_ep_t *dwc_ep;
19273 + ep = get_in_ep(pcd,i);
19274 + if(ep != 0){
19275 + dwc_ep = &ep->dwc_ep;
19276 + dwc_ep->next_frame = 0xffffffff;
19277 + }
19278 + }
19279 +#endif /* DWC_EN_ISOC */
19280 +
19281 + /* reset the HNP settings */
19282 + dwc_otg_pcd_update_otg(pcd, 1);
19283 +
19284 + /* Clear the Remote Wakeup Signalling */
19285 + dctl.b.rmtwkupsig = 1;
19286 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
19287 + dctl.d32, 0);
19288 +
19289 + /* Set NAK for all OUT EPs */
19290 + doepctl.b.snak = 1;
19291 + for (i=0; i <= dev_if->num_out_eps; i++)
19292 + {
19293 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
19294 + doepctl.d32);
19295 + }
19296 +
19297 + /* Flush the NP Tx FIFO */
19298 + dwc_otg_flush_tx_fifo(core_if, 0x10);
19299 + /* Flush the Learning Queue */
19300 + resetctl.b.intknqflsh = 1;
19301 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
19302 +
19303 + if(core_if->multiproc_int_enable) {
19304 + daintmsk.b.inep0 = 1;
19305 + daintmsk.b.outep0 = 1;
19306 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
19307 +
19308 + doepmsk.b.setup = 1;
19309 + doepmsk.b.xfercompl = 1;
19310 + doepmsk.b.ahberr = 1;
19311 + doepmsk.b.epdisabled = 1;
19312 +
19313 + if(core_if->dma_desc_enable) {
19314 + doepmsk.b.stsphsercvd = 1;
19315 + doepmsk.b.bna = 1;
19316 + }
19317 +/*
19318 + doepmsk.b.babble = 1;
19319 + doepmsk.b.nyet = 1;
19320 +
19321 + if(core_if->dma_enable) {
19322 + doepmsk.b.nak = 1;
19323 + }
19324 +*/
19325 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
19326 +
19327 + diepmsk.b.xfercompl = 1;
19328 + diepmsk.b.timeout = 1;
19329 + diepmsk.b.epdisabled = 1;
19330 + diepmsk.b.ahberr = 1;
19331 + diepmsk.b.intknepmis = 1;
19332 +
19333 + if(core_if->dma_desc_enable) {
19334 + diepmsk.b.bna = 1;
19335 + }
19336 +/*
19337 + if(core_if->dma_enable) {
19338 + diepmsk.b.nak = 1;
19339 + }
19340 +*/
19341 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
19342 + } else{
19343 + daintmsk.b.inep0 = 1;
19344 + daintmsk.b.outep0 = 1;
19345 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
19346 +
19347 + doepmsk.b.setup = 1;
19348 + doepmsk.b.xfercompl = 1;
19349 + doepmsk.b.ahberr = 1;
19350 + doepmsk.b.epdisabled = 1;
19351 +
19352 + if(core_if->dma_desc_enable) {
19353 + doepmsk.b.stsphsercvd = 1;
19354 + doepmsk.b.bna = 1;
19355 + }
19356 +/*
19357 + doepmsk.b.babble = 1;
19358 + doepmsk.b.nyet = 1;
19359 + doepmsk.b.nak = 1;
19360 +*/
19361 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
19362 +
19363 + diepmsk.b.xfercompl = 1;
19364 + diepmsk.b.timeout = 1;
19365 + diepmsk.b.epdisabled = 1;
19366 + diepmsk.b.ahberr = 1;
19367 + diepmsk.b.intknepmis = 1;
19368 +
19369 + if(core_if->dma_desc_enable) {
19370 + diepmsk.b.bna = 1;
19371 + }
19372 +
19373 +// diepmsk.b.nak = 1;
19374 +
19375 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
19376 + }
19377 +
19378 + /* Reset Device Address */
19379 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
19380 + dcfg.b.devaddr = 0;
19381 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
19382 +
19383 + /* setup EP0 to receive SETUP packets */
19384 + ep0_out_start(core_if, pcd);
19385 +
19386 + /* Clear interrupt */
19387 + gintsts.d32 = 0;
19388 + gintsts.b.usbreset = 1;
19389 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
19390 +
19391 + return 1;
19392 +}
19393 +
19394 +/**
19395 + * Get the device speed from the device status register and convert it
19396 + * to USB speed constant.
19397 + *
19398 + * @param core_if Programming view of DWC_otg controller.
19399 + */
19400 +static int get_device_speed(dwc_otg_core_if_t *core_if)
19401 +{
19402 + dsts_data_t dsts;
19403 + enum usb_device_speed speed = USB_SPEED_UNKNOWN;
19404 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
19405 +
19406 + switch (dsts.b.enumspd) {
19407 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
19408 + speed = USB_SPEED_HIGH;
19409 + break;
19410 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
19411 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
19412 + speed = USB_SPEED_FULL;
19413 + break;
19414 +
19415 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
19416 + speed = USB_SPEED_LOW;
19417 + break;
19418 + }
19419 +
19420 + return speed;
19421 +}
19422 +
19423 +/**
19424 + * Read the device status register and set the device speed in the
19425 + * data structure.
19426 + * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
19427 + */
19428 +int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
19429 +{
19430 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19431 + gintsts_data_t gintsts;
19432 + gusbcfg_data_t gusbcfg;
19433 + dwc_otg_core_global_regs_t *global_regs =
19434 + GET_CORE_IF(pcd)->core_global_regs;
19435 + uint8_t utmi16b, utmi8b;
19436 + DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
19437 +
19438 + if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
19439 + utmi16b = 6;
19440 + utmi8b = 9;
19441 + } else {
19442 + utmi16b = 4;
19443 + utmi8b = 8;
19444 + }
19445 + dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
19446 +
19447 +#ifdef DEBUG_EP0
19448 + print_ep0_state(pcd);
19449 +#endif
19450 +
19451 + if (pcd->ep0state == EP0_DISCONNECT) {
19452 + pcd->ep0state = EP0_IDLE;
19453 + }
19454 + else if (pcd->ep0state == EP0_STALL) {
19455 + pcd->ep0state = EP0_IDLE;
19456 + }
19457 +
19458 + pcd->ep0state = EP0_IDLE;
19459 +
19460 + ep0->stopped = 0;
19461 +
19462 + pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
19463 +
19464 + /* Set USB turnaround time based on device speed and PHY interface. */
19465 + gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
19466 + if (pcd->gadget.speed == USB_SPEED_HIGH) {
19467 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
19468 + /* ULPI interface */
19469 + gusbcfg.b.usbtrdtim = 9;
19470 + }
19471 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
19472 + /* UTMI+ interface */
19473 + if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
19474 + gusbcfg.b.usbtrdtim = utmi8b;
19475 + }
19476 + else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
19477 + gusbcfg.b.usbtrdtim = utmi16b;
19478 + }
19479 + else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
19480 + gusbcfg.b.usbtrdtim = utmi8b;
19481 + }
19482 + else {
19483 + gusbcfg.b.usbtrdtim = utmi16b;
19484 + }
19485 + }
19486 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
19487 + /* UTMI+ OR ULPI interface */
19488 + if (gusbcfg.b.ulpi_utmi_sel == 1) {
19489 + /* ULPI interface */
19490 + gusbcfg.b.usbtrdtim = 9;
19491 + }
19492 + else {
19493 + /* UTMI+ interface */
19494 + if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
19495 + gusbcfg.b.usbtrdtim = utmi16b;
19496 + }
19497 + else {
19498 + gusbcfg.b.usbtrdtim = utmi8b;
19499 + }
19500 + }
19501 + }
19502 + }
19503 + else {
19504 + /* Full or low speed */
19505 + gusbcfg.b.usbtrdtim = 9;
19506 + }
19507 + dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
19508 +
19509 + /* Clear interrupt */
19510 + gintsts.d32 = 0;
19511 + gintsts.b.enumdone = 1;
19512 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
19513 + gintsts.d32);
19514 + return 1;
19515 +}
19516 +
19517 +/**
19518 + * This interrupt indicates that the ISO OUT Packet was dropped due to
19519 + * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
19520 + * read all the data from the Rx FIFO.
19521 + */
19522 +int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
19523 +{
19524 + gintmsk_data_t intr_mask = { .d32 = 0};
19525 + gintsts_data_t gintsts;
19526 +
19527 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
19528 + "ISOC Out Dropped");
19529 +
19530 + intr_mask.b.isooutdrop = 1;
19531 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
19532 + intr_mask.d32, 0);
19533 +
19534 + /* Clear interrupt */
19535 +
19536 + gintsts.d32 = 0;
19537 + gintsts.b.isooutdrop = 1;
19538 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
19539 + gintsts.d32);
19540 +
19541 + return 1;
19542 +}
19543 +
19544 +/**
19545 + * This interrupt indicates the end of the portion of the micro-frame
19546 + * for periodic transactions. If there is a periodic transaction for
19547 + * the next frame, load the packets into the EP periodic Tx FIFO.
19548 + */
19549 +int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
19550 +{
19551 + gintmsk_data_t intr_mask = { .d32 = 0};
19552 + gintsts_data_t gintsts;
19553 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
19554 +
19555 + intr_mask.b.eopframe = 1;
19556 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
19557 + intr_mask.d32, 0);
19558 +
19559 + /* Clear interrupt */
19560 + gintsts.d32 = 0;
19561 + gintsts.b.eopframe = 1;
19562 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
19563 +
19564 + return 1;
19565 +}
19566 +
19567 +/**
19568 + * This interrupt indicates that EP of the packet on the top of the
19569 + * non-periodic Tx FIFO does not match EP of the IN Token received.
19570 + *
19571 + * The "Device IN Token Queue" Registers are read to determine the
19572 + * order the IN Tokens have been received. The non-periodic Tx FIFO
19573 + * is flushed, so it can be reloaded in the order seen in the IN Token
19574 + * Queue.
19575 + */
19576 +int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
19577 +{
19578 + gintsts_data_t gintsts;
19579 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
19580 +
19581 + /* Clear interrupt */
19582 + gintsts.d32 = 0;
19583 + gintsts.b.epmismatch = 1;
19584 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
19585 +
19586 + return 1;
19587 +}
19588 +
19589 +/**
19590 + * This funcion stalls EP0.
19591 + */
19592 +static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
19593 +{
19594 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19595 + struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
19596 + DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
19597 + ctrl->bRequestType, ctrl->bRequest, err_val);
19598 +
19599 + ep0->dwc_ep.is_in = 1;
19600 + dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
19601 + pcd->ep0.stopped = 1;
19602 + pcd->ep0state = EP0_IDLE;
19603 + ep0_out_start(GET_CORE_IF(pcd), pcd);
19604 +}
19605 +
19606 +/**
19607 + * This functions delegates the setup command to the gadget driver.
19608 + */
19609 +static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
19610 + struct usb_ctrlrequest * ctrl)
19611 +{
19612 + int ret = 0;
19613 + if (pcd->driver && pcd->driver->setup) {
19614 + SPIN_UNLOCK(&pcd->lock);
19615 + ret = pcd->driver->setup(&pcd->gadget, ctrl);
19616 + SPIN_LOCK(&pcd->lock);
19617 + if (ret < 0) {
19618 + ep0_do_stall(pcd, ret);
19619 + }
19620 +
19621 + /** @todo This is a g_file_storage gadget driver specific
19622 + * workaround: a DELAYED_STATUS result from the fsg_setup
19623 + * routine will result in the gadget queueing a EP0 IN status
19624 + * phase for a two-stage control transfer. Exactly the same as
19625 + * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
19626 + * specific request. Need a generic way to know when the gadget
19627 + * driver will queue the status phase. Can we assume when we
19628 + * call the gadget driver setup() function that it will always
19629 + * queue and require the following flag? Need to look into
19630 + * this.
19631 + */
19632 +
19633 + if (ret == 256 + 999) {
19634 + pcd->request_config = 1;
19635 + }
19636 + }
19637 +}
19638 +
19639 +/**
19640 + * This function starts the Zero-Length Packet for the IN status phase
19641 + * of a 2 stage control transfer.
19642 + */
19643 +static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
19644 +{
19645 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19646 + if (pcd->ep0state == EP0_STALL) {
19647 + return;
19648 + }
19649 +
19650 + pcd->ep0state = EP0_IN_STATUS_PHASE;
19651 +
19652 + /* Prepare for more SETUP Packets */
19653 + DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
19654 + ep0->dwc_ep.xfer_len = 0;
19655 + ep0->dwc_ep.xfer_count = 0;
19656 + ep0->dwc_ep.is_in = 1;
19657 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
19658 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
19659 +
19660 + /* Prepare for more SETUP Packets */
19661 +// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
19662 +}
19663 +
19664 +/**
19665 + * This function starts the Zero-Length Packet for the OUT status phase
19666 + * of a 2 stage control transfer.
19667 + */
19668 +static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
19669 +{
19670 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19671 + if (pcd->ep0state == EP0_STALL) {
19672 + DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
19673 + return;
19674 + }
19675 + pcd->ep0state = EP0_OUT_STATUS_PHASE;
19676 +
19677 + DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
19678 + ep0->dwc_ep.xfer_len = 0;
19679 + ep0->dwc_ep.xfer_count = 0;
19680 + ep0->dwc_ep.is_in = 0;
19681 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
19682 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
19683 +
19684 + /* Prepare for more SETUP Packets */
19685 + if(GET_CORE_IF(pcd)->dma_enable == 0) {
19686 + ep0_out_start(GET_CORE_IF(pcd), pcd);
19687 + }
19688 +}
19689 +
19690 +/**
19691 + * Clear the EP halt (STALL) and if pending requests start the
19692 + * transfer.
19693 + */
19694 +static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
19695 +{
19696 + if(ep->dwc_ep.stall_clear_flag == 0)
19697 + dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
19698 +
19699 + /* Reactive the EP */
19700 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
19701 + if (ep->stopped) {
19702 + ep->stopped = 0;
19703 + /* If there is a request in the EP queue start it */
19704 +
19705 + /** @todo FIXME: this causes an EP mismatch in DMA mode.
19706 + * epmismatch not yet implemented. */
19707 +
19708 + /*
19709 + * Above fixme is solved by implmenting a tasklet to call the
19710 + * start_next_request(), outside of interrupt context at some
19711 + * time after the current time, after a clear-halt setup packet.
19712 + * Still need to implement ep mismatch in the future if a gadget
19713 + * ever uses more than one endpoint at once
19714 + */
19715 + ep->queue_sof = 1;
19716 + tasklet_schedule (pcd->start_xfer_tasklet);
19717 + }
19718 + /* Start Control Status Phase */
19719 + do_setup_in_status_phase(pcd);
19720 +}
19721 +
19722 +/**
19723 + * This function is called when the SET_FEATURE TEST_MODE Setup packet
19724 + * is sent from the host. The Device Control register is written with
19725 + * the Test Mode bits set to the specified Test Mode. This is done as
19726 + * a tasklet so that the "Status" phase of the control transfer
19727 + * completes before transmitting the TEST packets.
19728 + *
19729 + * @todo This has not been tested since the tasklet struct was put
19730 + * into the PCD struct!
19731 + *
19732 + */
19733 +static void do_test_mode(unsigned long data)
19734 +{
19735 + dctl_data_t dctl;
19736 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
19737 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19738 + int test_mode = pcd->test_mode;
19739 +
19740 +
19741 +// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
19742 +
19743 + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
19744 + switch (test_mode) {
19745 + case 1: // TEST_J
19746 + dctl.b.tstctl = 1;
19747 + break;
19748 +
19749 + case 2: // TEST_K
19750 + dctl.b.tstctl = 2;
19751 + break;
19752 +
19753 + case 3: // TEST_SE0_NAK
19754 + dctl.b.tstctl = 3;
19755 + break;
19756 +
19757 + case 4: // TEST_PACKET
19758 + dctl.b.tstctl = 4;
19759 + break;
19760 +
19761 + case 5: // TEST_FORCE_ENABLE
19762 + dctl.b.tstctl = 5;
19763 + break;
19764 + }
19765 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
19766 +}
19767 +
19768 +/**
19769 + * This function process the GET_STATUS Setup Commands.
19770 + */
19771 +static inline void do_get_status(dwc_otg_pcd_t *pcd)
19772 +{
19773 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
19774 + dwc_otg_pcd_ep_t *ep;
19775 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19776 + uint16_t *status = pcd->status_buf;
19777 +
19778 +#ifdef DEBUG_EP0
19779 + DWC_DEBUGPL(DBG_PCD,
19780 + "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
19781 + ctrl.bRequestType, ctrl.bRequest,
19782 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
19783 +#endif
19784 +
19785 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
19786 + case USB_RECIP_DEVICE:
19787 + *status = 0x1; /* Self powered */
19788 + *status |= pcd->remote_wakeup_enable << 1;
19789 + break;
19790 +
19791 + case USB_RECIP_INTERFACE:
19792 + *status = 0;
19793 + break;
19794 +
19795 + case USB_RECIP_ENDPOINT:
19796 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
19797 + if (ep == 0 || ctrl.wLength > 2) {
19798 + ep0_do_stall(pcd, -EOPNOTSUPP);
19799 + return;
19800 + }
19801 + /** @todo check for EP stall */
19802 + *status = ep->stopped;
19803 + break;
19804 + }
19805 + pcd->ep0_pending = 1;
19806 + ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
19807 + ep0->dwc_ep.xfer_buff = (uint8_t *)status;
19808 + ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
19809 + ep0->dwc_ep.xfer_len = 2;
19810 + ep0->dwc_ep.xfer_count = 0;
19811 + ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
19812 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
19813 +}
19814 +/**
19815 + * This function process the SET_FEATURE Setup Commands.
19816 + */
19817 +static inline void do_set_feature(dwc_otg_pcd_t *pcd)
19818 +{
19819 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19820 + dwc_otg_core_global_regs_t *global_regs =
19821 + core_if->core_global_regs;
19822 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
19823 + dwc_otg_pcd_ep_t *ep = 0;
19824 + int32_t otg_cap_param = core_if->core_params->otg_cap;
19825 + gotgctl_data_t gotgctl = { .d32 = 0 };
19826 +
19827 + DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
19828 + ctrl.bRequestType, ctrl.bRequest,
19829 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
19830 + DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
19831 +
19832 +
19833 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
19834 + case USB_RECIP_DEVICE:
19835 + switch (ctrl.wValue) {
19836 + case USB_DEVICE_REMOTE_WAKEUP:
19837 + pcd->remote_wakeup_enable = 1;
19838 + break;
19839 +
19840 + case USB_DEVICE_TEST_MODE:
19841 + /* Setup the Test Mode tasklet to do the Test
19842 + * Packet generation after the SETUP Status
19843 + * phase has completed. */
19844 +
19845 + /** @todo This has not been tested since the
19846 + * tasklet struct was put into the PCD
19847 + * struct! */
19848 + pcd->test_mode_tasklet.next = 0;
19849 + pcd->test_mode_tasklet.state = 0;
19850 + atomic_set(&pcd->test_mode_tasklet.count, 0);
19851 + pcd->test_mode_tasklet.func = do_test_mode;
19852 + pcd->test_mode_tasklet.data = (unsigned long)pcd;
19853 + pcd->test_mode = ctrl.wIndex >> 8;
19854 + tasklet_schedule(&pcd->test_mode_tasklet);
19855 + break;
19856 +
19857 + case USB_DEVICE_B_HNP_ENABLE:
19858 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
19859 +
19860 + /* dev may initiate HNP */
19861 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
19862 + pcd->b_hnp_enable = 1;
19863 + dwc_otg_pcd_update_otg(pcd, 0);
19864 + DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
19865 + /**@todo Is the gotgctl.devhnpen cleared
19866 + * by a USB Reset? */
19867 + gotgctl.b.devhnpen = 1;
19868 + gotgctl.b.hnpreq = 1;
19869 + dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
19870 + }
19871 + else {
19872 + ep0_do_stall(pcd, -EOPNOTSUPP);
19873 + }
19874 + break;
19875 +
19876 + case USB_DEVICE_A_HNP_SUPPORT:
19877 + /* RH port supports HNP */
19878 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
19879 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
19880 + pcd->a_hnp_support = 1;
19881 + dwc_otg_pcd_update_otg(pcd, 0);
19882 + }
19883 + else {
19884 + ep0_do_stall(pcd, -EOPNOTSUPP);
19885 + }
19886 + break;
19887 +
19888 + case USB_DEVICE_A_ALT_HNP_SUPPORT:
19889 + /* other RH port does */
19890 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
19891 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
19892 + pcd->a_alt_hnp_support = 1;
19893 + dwc_otg_pcd_update_otg(pcd, 0);
19894 + }
19895 + else {
19896 + ep0_do_stall(pcd, -EOPNOTSUPP);
19897 + }
19898 + break;
19899 + }
19900 + do_setup_in_status_phase(pcd);
19901 + break;
19902 +
19903 + case USB_RECIP_INTERFACE:
19904 + do_gadget_setup(pcd, &ctrl);
19905 + break;
19906 +
19907 + case USB_RECIP_ENDPOINT:
19908 + if (ctrl.wValue == USB_ENDPOINT_HALT) {
19909 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
19910 + if (ep == 0) {
19911 + ep0_do_stall(pcd, -EOPNOTSUPP);
19912 + return;
19913 + }
19914 + ep->stopped = 1;
19915 + dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
19916 + }
19917 + do_setup_in_status_phase(pcd);
19918 + break;
19919 + }
19920 +}
19921 +
19922 +/**
19923 + * This function process the CLEAR_FEATURE Setup Commands.
19924 + */
19925 +static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
19926 +{
19927 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
19928 + dwc_otg_pcd_ep_t *ep = 0;
19929 +
19930 + DWC_DEBUGPL(DBG_PCD,
19931 + "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
19932 + ctrl.bRequestType, ctrl.bRequest,
19933 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
19934 +
19935 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
19936 + case USB_RECIP_DEVICE:
19937 + switch (ctrl.wValue) {
19938 + case USB_DEVICE_REMOTE_WAKEUP:
19939 + pcd->remote_wakeup_enable = 0;
19940 + break;
19941 +
19942 + case USB_DEVICE_TEST_MODE:
19943 + /** @todo Add CLEAR_FEATURE for TEST modes. */
19944 + break;
19945 + }
19946 + do_setup_in_status_phase(pcd);
19947 + break;
19948 +
19949 + case USB_RECIP_ENDPOINT:
19950 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
19951 + if (ep == 0) {
19952 + ep0_do_stall(pcd, -EOPNOTSUPP);
19953 + return;
19954 + }
19955 +
19956 + pcd_clear_halt(pcd, ep);
19957 +
19958 + break;
19959 + }
19960 +}
19961 +
19962 +/**
19963 + * This function process the SET_ADDRESS Setup Commands.
19964 + */
19965 +static inline void do_set_address(dwc_otg_pcd_t *pcd)
19966 +{
19967 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
19968 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
19969 +
19970 + if (ctrl.bRequestType == USB_RECIP_DEVICE) {
19971 + dcfg_data_t dcfg = {.d32=0};
19972 +
19973 +#ifdef DEBUG_EP0
19974 +// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
19975 +#endif
19976 + dcfg.b.devaddr = ctrl.wValue;
19977 + dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
19978 + do_setup_in_status_phase(pcd);
19979 + }
19980 +}
19981 +
19982 +/**
19983 + * This function processes SETUP commands. In Linux, the USB Command
19984 + * processing is done in two places - the first being the PCD and the
19985 + * second in the Gadget Driver (for example, the File-Backed Storage
19986 + * Gadget Driver).
19987 + *
19988 + * <table>
19989 + * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
19990 + *
19991 + * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
19992 + * defined in chapter 9 of the USB 2.0 Specification chapter 9
19993 + * </td></tr>
19994 + *
19995 + * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
19996 + * requests are the ENDPOINT_HALT feature is procesed, all others the
19997 + * interface requests are ignored.</td></tr>
19998 + *
19999 + * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
20000 + * requests are processed by the PCD. Interface requests are passed
20001 + * to the Gadget Driver.</td></tr>
20002 + *
20003 + * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
20004 + * with device address received </td></tr>
20005 + *
20006 + * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
20007 + * requested descriptor</td></tr>
20008 + *
20009 + * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
20010 + * not implemented by any of the existing Gadget Drivers.</td></tr>
20011 + *
20012 + * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
20013 + * all EPs and enable EPs for new configuration.</td></tr>
20014 + *
20015 + * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
20016 + * the current configuration</td></tr>
20017 + *
20018 + * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
20019 + * EPs and enable EPs for new configuration.</td></tr>
20020 + *
20021 + * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
20022 + * current interface.</td></tr>
20023 + *
20024 + * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
20025 + * message.</td></tr>
20026 + * </table>
20027 + *
20028 + * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
20029 + * processed by pcd_setup. Calling the Function Driver's setup function from
20030 + * pcd_setup processes the gadget SETUP commands.
20031 + */
20032 +static inline void pcd_setup(dwc_otg_pcd_t *pcd)
20033 +{
20034 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
20035 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
20036 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
20037 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
20038 +
20039 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
20040 +
20041 +#ifdef DEBUG_EP0
20042 + DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
20043 + ctrl.bRequestType, ctrl.bRequest,
20044 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
20045 +#endif
20046 +
20047 + doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
20048 +
20049 + /** @todo handle > 1 setup packet , assert error for now */
20050 +
20051 + if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
20052 + DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
20053 + }
20054 +
20055 + /* Clean up the request queue */
20056 + dwc_otg_request_nuke(ep0);
20057 + ep0->stopped = 0;
20058 +
20059 + if (ctrl.bRequestType & USB_DIR_IN) {
20060 + ep0->dwc_ep.is_in = 1;
20061 + pcd->ep0state = EP0_IN_DATA_PHASE;
20062 + }
20063 + else {
20064 + ep0->dwc_ep.is_in = 0;
20065 + pcd->ep0state = EP0_OUT_DATA_PHASE;
20066 + }
20067 +
20068 + if(ctrl.wLength == 0) {
20069 + ep0->dwc_ep.is_in = 1;
20070 + pcd->ep0state = EP0_IN_STATUS_PHASE;
20071 + }
20072 +
20073 + if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
20074 + /* handle non-standard (class/vendor) requests in the gadget driver */
20075 + do_gadget_setup(pcd, &ctrl);
20076 + return;
20077 + }
20078 +
20079 + /** @todo NGS: Handle bad setup packet? */
20080 +
20081 +///////////////////////////////////////////
20082 +//// --- Standard Request handling --- ////
20083 +
20084 + switch (ctrl.bRequest) {
20085 + case USB_REQ_GET_STATUS:
20086 + do_get_status(pcd);
20087 + break;
20088 +
20089 + case USB_REQ_CLEAR_FEATURE:
20090 + do_clear_feature(pcd);
20091 + break;
20092 +
20093 + case USB_REQ_SET_FEATURE:
20094 + do_set_feature(pcd);
20095 + break;
20096 +
20097 + case USB_REQ_SET_ADDRESS:
20098 + do_set_address(pcd);
20099 + break;
20100 +
20101 + case USB_REQ_SET_INTERFACE:
20102 + case USB_REQ_SET_CONFIGURATION:
20103 +// _pcd->request_config = 1; /* Configuration changed */
20104 + do_gadget_setup(pcd, &ctrl);
20105 + break;
20106 +
20107 + case USB_REQ_SYNCH_FRAME:
20108 + do_gadget_setup(pcd, &ctrl);
20109 + break;
20110 +
20111 + default:
20112 + /* Call the Gadget Driver's setup functions */
20113 + do_gadget_setup(pcd, &ctrl);
20114 + break;
20115 + }
20116 +}
20117 +
20118 +/**
20119 + * This function completes the ep0 control transfer.
20120 + */
20121 +static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
20122 +{
20123 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
20124 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
20125 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
20126 + dev_if->in_ep_regs[ep->dwc_ep.num];
20127 +#ifdef DEBUG_EP0
20128 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
20129 + dev_if->out_ep_regs[ep->dwc_ep.num];
20130 +#endif
20131 + deptsiz0_data_t deptsiz;
20132 + desc_sts_data_t desc_sts;
20133 + dwc_otg_pcd_request_t *req;
20134 + int is_last = 0;
20135 + dwc_otg_pcd_t *pcd = ep->pcd;
20136 +
20137 + //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
20138 +
20139 + if (pcd->ep0_pending && list_empty(&ep->queue)) {
20140 + if (ep->dwc_ep.is_in) {
20141 +#ifdef DEBUG_EP0
20142 + DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
20143 +#endif
20144 + do_setup_out_status_phase(pcd);
20145 + }
20146 + else {
20147 +#ifdef DEBUG_EP0
20148 + DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
20149 +#endif
20150 + do_setup_in_status_phase(pcd);
20151 + }
20152 + pcd->ep0_pending = 0;
20153 + return 1;
20154 + }
20155 +
20156 + if (list_empty(&ep->queue)) {
20157 + return 0;
20158 + }
20159 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
20160 +
20161 +
20162 + if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
20163 + is_last = 1;
20164 + }
20165 + else if (ep->dwc_ep.is_in) {
20166 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
20167 + if(core_if->dma_desc_enable != 0)
20168 + desc_sts.d32 = readl(dev_if->in_desc_addr);
20169 +#ifdef DEBUG_EP0
20170 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
20171 + ep->ep.name, ep->dwc_ep.xfer_len,
20172 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
20173 +#endif
20174 +
20175 + if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
20176 + ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
20177 + req->req.actual = ep->dwc_ep.xfer_count;
20178 + /* Is a Zero Len Packet needed? */
20179 + if (req->req.zero) {
20180 +#ifdef DEBUG_EP0
20181 + DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
20182 +#endif
20183 + req->req.zero = 0;
20184 + }
20185 + do_setup_out_status_phase(pcd);
20186 + }
20187 + }
20188 + else {
20189 + /* ep0-OUT */
20190 +#ifdef DEBUG_EP0
20191 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
20192 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
20193 + ep->ep.name, ep->dwc_ep.xfer_len,
20194 + deptsiz.b.xfersize,
20195 + deptsiz.b.pktcnt);
20196 +#endif
20197 + req->req.actual = ep->dwc_ep.xfer_count;
20198 + /* Is a Zero Len Packet needed? */
20199 + if (req->req.zero) {
20200 +#ifdef DEBUG_EP0
20201 + DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
20202 +#endif
20203 + req->req.zero = 0;
20204 + }
20205 + if(core_if->dma_desc_enable == 0)
20206 + do_setup_in_status_phase(pcd);
20207 + }
20208 +
20209 + /* Complete the request */
20210 + if (is_last) {
20211 + dwc_otg_request_done(ep, req, 0);
20212 + ep->dwc_ep.start_xfer_buff = 0;
20213 + ep->dwc_ep.xfer_buff = 0;
20214 + ep->dwc_ep.xfer_len = 0;
20215 + return 1;
20216 + }
20217 + return 0;
20218 +}
20219 +
20220 +/**
20221 + * This function completes the request for the EP. If there are
20222 + * additional requests for the EP in the queue they will be started.
20223 + */
20224 +static void complete_ep(dwc_otg_pcd_ep_t *ep)
20225 +{
20226 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
20227 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
20228 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
20229 + dev_if->in_ep_regs[ep->dwc_ep.num];
20230 + deptsiz_data_t deptsiz;
20231 + desc_sts_data_t desc_sts;
20232 + dwc_otg_pcd_request_t *req = 0;
20233 + dwc_otg_dma_desc_t* dma_desc;
20234 + uint32_t byte_count = 0;
20235 + int is_last = 0;
20236 + int i;
20237 +
20238 + DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
20239 + (ep->dwc_ep.is_in?"IN":"OUT"));
20240 +
20241 + /* Get any pending requests */
20242 + if (!list_empty(&ep->queue)) {
20243 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
20244 + queue);
20245 + if (!req) {
20246 + printk("complete_ep 0x%p, req = NULL!\n", ep);
20247 + return;
20248 + }
20249 + }
20250 + else {
20251 + printk("complete_ep 0x%p, ep->queue empty!\n", ep);
20252 + return;
20253 + }
20254 + DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
20255 +
20256 + if (ep->dwc_ep.is_in) {
20257 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
20258 +
20259 + if (core_if->dma_enable) {
20260 + if(core_if->dma_desc_enable == 0) {
20261 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
20262 + byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
20263 +
20264 + ep->dwc_ep.xfer_buff += byte_count;
20265 + ep->dwc_ep.dma_addr += byte_count;
20266 + ep->dwc_ep.xfer_count += byte_count;
20267 +
20268 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
20269 + ep->ep.name, ep->dwc_ep.xfer_len,
20270 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
20271 +
20272 +
20273 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
20274 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
20275 + } else if(ep->dwc_ep.sent_zlp) {
20276 + /*
20277 + * This fragment of code should initiate 0
20278 + * length trasfer in case if it is queued
20279 + * a trasfer with size divisible to EPs max
20280 + * packet size and with usb_request zero field
20281 + * is set, which means that after data is transfered,
20282 + * it is also should be transfered
20283 + * a 0 length packet at the end. For Slave and
20284 + * Buffer DMA modes in this case SW has
20285 + * to initiate 2 transfers one with transfer size,
20286 + * and the second with 0 size. For Desriptor
20287 + * DMA mode SW is able to initiate a transfer,
20288 + * which will handle all the packets including
20289 + * the last 0 legth.
20290 + */
20291 + ep->dwc_ep.sent_zlp = 0;
20292 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
20293 + } else {
20294 + is_last = 1;
20295 + }
20296 + } else {
20297 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
20298 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
20299 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
20300 + }
20301 + } else {
20302 + dma_desc = ep->dwc_ep.desc_addr;
20303 + byte_count = 0;
20304 + ep->dwc_ep.sent_zlp = 0;
20305 +
20306 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
20307 + desc_sts.d32 = readl(dma_desc);
20308 + byte_count += desc_sts.b.bytes;
20309 + dma_desc++;
20310 + }
20311 +
20312 + if(byte_count == 0) {
20313 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
20314 + is_last = 1;
20315 + } else {
20316 + DWC_WARN("Incomplete transfer\n");
20317 + }
20318 + }
20319 + } else {
20320 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
20321 + /* Check if the whole transfer was completed,
20322 + * if no, setup transfer for next portion of data
20323 + */
20324 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
20325 + ep->ep.name, ep->dwc_ep.xfer_len,
20326 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
20327 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
20328 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
20329 + } else if(ep->dwc_ep.sent_zlp) {
20330 + /*
20331 + * This fragment of code should initiate 0
20332 + * length trasfer in case if it is queued
20333 + * a trasfer with size divisible to EPs max
20334 + * packet size and with usb_request zero field
20335 + * is set, which means that after data is transfered,
20336 + * it is also should be transfered
20337 + * a 0 length packet at the end. For Slave and
20338 + * Buffer DMA modes in this case SW has
20339 + * to initiate 2 transfers one with transfer size,
20340 + * and the second with 0 size. For Desriptor
20341 + * DMA mode SW is able to initiate a transfer,
20342 + * which will handle all the packets including
20343 + * the last 0 legth.
20344 + */
20345 + ep->dwc_ep.sent_zlp = 0;
20346 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
20347 + } else {
20348 + is_last = 1;
20349 + }
20350 + }
20351 + else {
20352 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
20353 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
20354 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
20355 + }
20356 + }
20357 + } else {
20358 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
20359 + dev_if->out_ep_regs[ep->dwc_ep.num];
20360 + desc_sts.d32 = 0;
20361 + if(core_if->dma_enable) {
20362 + if(core_if->dma_desc_enable) {
20363 + dma_desc = ep->dwc_ep.desc_addr;
20364 + byte_count = 0;
20365 + ep->dwc_ep.sent_zlp = 0;
20366 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
20367 + desc_sts.d32 = readl(dma_desc);
20368 + byte_count += desc_sts.b.bytes;
20369 + dma_desc++;
20370 + }
20371 +
20372 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
20373 + - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
20374 + is_last = 1;
20375 + } else {
20376 + deptsiz.d32 = 0;
20377 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
20378 +
20379 + byte_count = (ep->dwc_ep.xfer_len -
20380 + ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
20381 + ep->dwc_ep.xfer_buff += byte_count;
20382 + ep->dwc_ep.dma_addr += byte_count;
20383 + ep->dwc_ep.xfer_count += byte_count;
20384 +
20385 + /* Check if the whole transfer was completed,
20386 + * if no, setup transfer for next portion of data
20387 + */
20388 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
20389 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
20390 + }
20391 + else if(ep->dwc_ep.sent_zlp) {
20392 + /*
20393 + * This fragment of code should initiate 0
20394 + * length trasfer in case if it is queued
20395 + * a trasfer with size divisible to EPs max
20396 + * packet size and with usb_request zero field
20397 + * is set, which means that after data is transfered,
20398 + * it is also should be transfered
20399 + * a 0 length packet at the end. For Slave and
20400 + * Buffer DMA modes in this case SW has
20401 + * to initiate 2 transfers one with transfer size,
20402 + * and the second with 0 size. For Desriptor
20403 + * DMA mode SW is able to initiate a transfer,
20404 + * which will handle all the packets including
20405 + * the last 0 legth.
20406 + */
20407 + ep->dwc_ep.sent_zlp = 0;
20408 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
20409 + } else {
20410 + is_last = 1;
20411 + }
20412 + }
20413 + } else {
20414 + /* Check if the whole transfer was completed,
20415 + * if no, setup transfer for next portion of data
20416 + */
20417 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
20418 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
20419 + }
20420 + else if(ep->dwc_ep.sent_zlp) {
20421 + /*
20422 + * This fragment of code should initiate 0
20423 + * length trasfer in case if it is queued
20424 + * a trasfer with size divisible to EPs max
20425 + * packet size and with usb_request zero field
20426 + * is set, which means that after data is transfered,
20427 + * it is also should be transfered
20428 + * a 0 length packet at the end. For Slave and
20429 + * Buffer DMA modes in this case SW has
20430 + * to initiate 2 transfers one with transfer size,
20431 + * and the second with 0 size. For Desriptor
20432 + * DMA mode SW is able to initiate a transfer,
20433 + * which will handle all the packets including
20434 + * the last 0 legth.
20435 + */
20436 + ep->dwc_ep.sent_zlp = 0;
20437 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
20438 + } else {
20439 + is_last = 1;
20440 + }
20441 + }
20442 +
20443 +#ifdef DEBUG
20444 +
20445 + DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
20446 + &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
20447 + ep->dwc_ep.xfer_count,
20448 + deptsiz.b.xfersize,
20449 + deptsiz.b.pktcnt);
20450 +#endif
20451 + }
20452 +
20453 + /* Complete the request */
20454 + if (is_last) {
20455 + req->req.actual = ep->dwc_ep.xfer_count;
20456 +
20457 + dwc_otg_request_done(ep, req, 0);
20458 +
20459 + ep->dwc_ep.start_xfer_buff = 0;
20460 + ep->dwc_ep.xfer_buff = 0;
20461 + ep->dwc_ep.xfer_len = 0;
20462 +
20463 + /* If there is a request in the queue start it.*/
20464 + start_next_request(ep);
20465 + }
20466 +}
20467 +
20468 +
20469 +#ifdef DWC_EN_ISOC
20470 +
20471 +/**
20472 + * This function BNA interrupt for Isochronous EPs
20473 + *
20474 + */
20475 +static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
20476 +{
20477 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
20478 + volatile uint32_t *addr;
20479 + depctl_data_t depctl = {.d32 = 0};
20480 + dwc_otg_pcd_t *pcd = ep->pcd;
20481 + dwc_otg_dma_desc_t *dma_desc;
20482 + int i;
20483 +
20484 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
20485 +
20486 + if(dwc_ep->is_in) {
20487 + desc_sts_data_t sts = {.d32 = 0};
20488 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
20489 + {
20490 + sts.d32 = readl(&dma_desc->status);
20491 + sts.b_iso_in.bs = BS_HOST_READY;
20492 + writel(sts.d32,&dma_desc->status);
20493 + }
20494 + }
20495 + else {
20496 + desc_sts_data_t sts = {.d32 = 0};
20497 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
20498 + {
20499 + sts.d32 = readl(&dma_desc->status);
20500 + sts.b_iso_out.bs = BS_HOST_READY;
20501 + writel(sts.d32,&dma_desc->status);
20502 + }
20503 + }
20504 +
20505 + if(dwc_ep->is_in == 0){
20506 + addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
20507 + }
20508 + else{
20509 + addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
20510 + }
20511 + depctl.b.epena = 1;
20512 + dwc_modify_reg32(addr,depctl.d32,depctl.d32);
20513 +}
20514 +
20515 +/**
20516 + * This function sets latest iso packet information(non-PTI mode)
20517 + *
20518 + * @param core_if Programming view of DWC_otg controller.
20519 + * @param ep The EP to start the transfer on.
20520 + *
20521 + */
20522 +void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
20523 +{
20524 + deptsiz_data_t deptsiz = { .d32 = 0 };
20525 + dma_addr_t dma_addr;
20526 + uint32_t offset;
20527 +
20528 + if(ep->proc_buf_num)
20529 + dma_addr = ep->dma_addr1;
20530 + else
20531 + dma_addr = ep->dma_addr0;
20532 +
20533 +
20534 + if(ep->is_in) {
20535 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
20536 + offset = ep->data_per_frame;
20537 + } else {
20538 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
20539 + offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
20540 + }
20541 +
20542 + if(!deptsiz.b.xfersize) {
20543 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
20544 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
20545 + ep->pkt_info[ep->cur_pkt].status = 0;
20546 + } else {
20547 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
20548 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
20549 + ep->pkt_info[ep->cur_pkt].status = -ENODATA;
20550 + }
20551 + ep->cur_pkt_addr += offset;
20552 + ep->cur_pkt_dma_addr += offset;
20553 + ep->cur_pkt++;
20554 +}
20555 +
20556 +/**
20557 + * This function sets latest iso packet information(DDMA mode)
20558 + *
20559 + * @param core_if Programming view of DWC_otg controller.
20560 + * @param dwc_ep The EP to start the transfer on.
20561 + *
20562 + */
20563 +static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
20564 +{
20565 + dwc_otg_dma_desc_t* dma_desc;
20566 + desc_sts_data_t sts = {.d32 = 0};
20567 + iso_pkt_info_t *iso_packet;
20568 + uint32_t data_per_desc;
20569 + uint32_t offset;
20570 + int i, j;
20571 +
20572 + iso_packet = dwc_ep->pkt_info;
20573 +
20574 + /** Reinit closed DMA Descriptors*/
20575 + /** ISO OUT EP */
20576 + if(dwc_ep->is_in == 0) {
20577 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
20578 + offset = 0;
20579 +
20580 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
20581 + {
20582 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
20583 + {
20584 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
20585 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
20586 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
20587 +
20588 + sts.d32 = readl(&dma_desc->status);
20589 +
20590 + /* Write status in iso_packet_decsriptor */
20591 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
20592 + if(iso_packet->status) {
20593 + iso_packet->status = -ENODATA;
20594 + }
20595 +
20596 + /* Received data length */
20597 + if(!sts.b_iso_out.rxbytes){
20598 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
20599 + } else {
20600 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
20601 + (4 - dwc_ep->data_per_frame % 4);
20602 + }
20603 +
20604 + iso_packet->offset = offset;
20605 +
20606 + offset += data_per_desc;
20607 + dma_desc ++;
20608 + iso_packet ++;
20609 + }
20610 + }
20611 +
20612 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
20613 + {
20614 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
20615 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
20616 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
20617 +
20618 + sts.d32 = readl(&dma_desc->status);
20619 +
20620 + /* Write status in iso_packet_decsriptor */
20621 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
20622 + if(iso_packet->status) {
20623 + iso_packet->status = -ENODATA;
20624 + }
20625 +
20626 + /* Received data length */
20627 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
20628 +
20629 + iso_packet->offset = offset;
20630 +
20631 + offset += data_per_desc;
20632 + iso_packet++;
20633 + dma_desc++;
20634 + }
20635 +
20636 + sts.d32 = readl(&dma_desc->status);
20637 +
20638 + /* Write status in iso_packet_decsriptor */
20639 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
20640 + if(iso_packet->status) {
20641 + iso_packet->status = -ENODATA;
20642 + }
20643 + /* Received data length */
20644 + if(!sts.b_iso_out.rxbytes){
20645 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
20646 + } else {
20647 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
20648 + (4 - dwc_ep->data_per_frame % 4);
20649 + }
20650 +
20651 + iso_packet->offset = offset;
20652 + }
20653 + else /** ISO IN EP */
20654 + {
20655 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
20656 +
20657 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
20658 + {
20659 + sts.d32 = readl(&dma_desc->status);
20660 +
20661 + /* Write status in iso packet descriptor */
20662 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
20663 + if(iso_packet->status != 0) {
20664 + iso_packet->status = -ENODATA;
20665 +
20666 + }
20667 + /* Bytes has been transfered */
20668 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
20669 +
20670 + dma_desc ++;
20671 + iso_packet++;
20672 + }
20673 +
20674 + sts.d32 = readl(&dma_desc->status);
20675 + while(sts.b_iso_in.bs == BS_DMA_BUSY) {
20676 + sts.d32 = readl(&dma_desc->status);
20677 + }
20678 +
20679 + /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
20680 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
20681 + if(iso_packet->status != 0) {
20682 + iso_packet->status = -ENODATA;
20683 + }
20684 +
20685 + /* Bytes has been transfered */
20686 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
20687 + }
20688 +}
20689 +
20690 +/**
20691 + * This function reinitialize DMA Descriptors for Isochronous transfer
20692 + *
20693 + * @param core_if Programming view of DWC_otg controller.
20694 + * @param dwc_ep The EP to start the transfer on.
20695 + *
20696 + */
20697 +static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
20698 +{
20699 + int i, j;
20700 + dwc_otg_dma_desc_t* dma_desc;
20701 + dma_addr_t dma_ad;
20702 + volatile uint32_t *addr;
20703 + desc_sts_data_t sts = { .d32 =0 };
20704 + uint32_t data_per_desc;
20705 +
20706 + if(dwc_ep->is_in == 0) {
20707 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
20708 + }
20709 + else {
20710 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
20711 + }
20712 +
20713 +
20714 + if(dwc_ep->proc_buf_num == 0) {
20715 + /** Buffer 0 descriptors setup */
20716 + dma_ad = dwc_ep->dma_addr0;
20717 + }
20718 + else {
20719 + /** Buffer 1 descriptors setup */
20720 + dma_ad = dwc_ep->dma_addr1;
20721 + }
20722 +
20723 +
20724 + /** Reinit closed DMA Descriptors*/
20725 + /** ISO OUT EP */
20726 + if(dwc_ep->is_in == 0) {
20727 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
20728 +
20729 + sts.b_iso_out.bs = BS_HOST_READY;
20730 + sts.b_iso_out.rxsts = 0;
20731 + sts.b_iso_out.l = 0;
20732 + sts.b_iso_out.sp = 0;
20733 + sts.b_iso_out.ioc = 0;
20734 + sts.b_iso_out.pid = 0;
20735 + sts.b_iso_out.framenum = 0;
20736 +
20737 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
20738 + {
20739 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
20740 + {
20741 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
20742 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
20743 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
20744 + sts.b_iso_out.rxbytes = data_per_desc;
20745 + writel((uint32_t)dma_ad, &dma_desc->buf);
20746 + writel(sts.d32, &dma_desc->status);
20747 +
20748 + (uint32_t)dma_ad += data_per_desc;
20749 + dma_desc ++;
20750 + }
20751 + }
20752 +
20753 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
20754 + {
20755 +
20756 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
20757 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
20758 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
20759 + sts.b_iso_out.rxbytes = data_per_desc;
20760 +
20761 + writel((uint32_t)dma_ad, &dma_desc->buf);
20762 + writel(sts.d32, &dma_desc->status);
20763 +
20764 + dma_desc++;
20765 + (uint32_t)dma_ad += data_per_desc;
20766 + }
20767 +
20768 + sts.b_iso_out.ioc = 1;
20769 + sts.b_iso_out.l = dwc_ep->proc_buf_num;
20770 +
20771 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
20772 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
20773 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
20774 + sts.b_iso_out.rxbytes = data_per_desc;
20775 +
20776 + writel((uint32_t)dma_ad, &dma_desc->buf);
20777 + writel(sts.d32, &dma_desc->status);
20778 + }
20779 + else /** ISO IN EP */
20780 + {
20781 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
20782 +
20783 + sts.b_iso_in.bs = BS_HOST_READY;
20784 + sts.b_iso_in.txsts = 0;
20785 + sts.b_iso_in.sp = 0;
20786 + sts.b_iso_in.ioc = 0;
20787 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
20788 + sts.b_iso_in.framenum = dwc_ep->next_frame;
20789 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
20790 + sts.b_iso_in.l = 0;
20791 +
20792 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
20793 + {
20794 + writel((uint32_t)dma_ad, &dma_desc->buf);
20795 + writel(sts.d32, &dma_desc->status);
20796 +
20797 + sts.b_iso_in.framenum += dwc_ep->bInterval;
20798 + (uint32_t)dma_ad += dwc_ep->data_per_frame;
20799 + dma_desc ++;
20800 + }
20801 +
20802 + sts.b_iso_in.ioc = 1;
20803 + sts.b_iso_in.l = dwc_ep->proc_buf_num;
20804 +
20805 + writel((uint32_t)dma_ad, &dma_desc->buf);
20806 + writel(sts.d32, &dma_desc->status);
20807 +
20808 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
20809 + }
20810 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20811 +}
20812 +
20813 +
20814 +/**
20815 + * This function is to handle Iso EP transfer complete interrupt
20816 + * in case Iso out packet was dropped
20817 + *
20818 + * @param core_if Programming view of DWC_otg controller.
20819 + * @param dwc_ep The EP for wihich transfer complete was asserted
20820 + *
20821 + */
20822 +static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
20823 +{
20824 + uint32_t dma_addr;
20825 + uint32_t drp_pkt;
20826 + uint32_t drp_pkt_cnt;
20827 + deptsiz_data_t deptsiz = { .d32 = 0 };
20828 + depctl_data_t depctl = { .d32 = 0 };
20829 + int i;
20830 +
20831 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
20832 +
20833 + drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
20834 + drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
20835 +
20836 + /* Setting dropped packets status */
20837 + for(i = 0; i < drp_pkt_cnt; ++i) {
20838 + dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
20839 + drp_pkt ++;
20840 + deptsiz.b.pktcnt--;
20841 + }
20842 +
20843 +
20844 + if(deptsiz.b.pktcnt > 0) {
20845 + deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
20846 + } else {
20847 + deptsiz.b.xfersize = 0;
20848 + deptsiz.b.pktcnt = 0;
20849 + }
20850 +
20851 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
20852 +
20853 + if(deptsiz.b.pktcnt > 0) {
20854 + if(dwc_ep->proc_buf_num) {
20855 + dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
20856 + } else {
20857 + dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
20858 + }
20859 +
20860 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
20861 +
20862 + /** Re-enable endpoint, clear nak */
20863 + depctl.d32 = 0;
20864 + depctl.b.epena = 1;
20865 + depctl.b.cnak = 1;
20866 +
20867 + dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
20868 + depctl.d32,depctl.d32);
20869 + return 0;
20870 + } else {
20871 + return 1;
20872 + }
20873 +}
20874 +
20875 +/**
20876 + * This function sets iso packets information(PTI mode)
20877 + *
20878 + * @param core_if Programming view of DWC_otg controller.
20879 + * @param ep The EP to start the transfer on.
20880 + *
20881 + */
20882 +static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
20883 +{
20884 + int i, j;
20885 + dma_addr_t dma_ad;
20886 + iso_pkt_info_t *packet_info = ep->pkt_info;
20887 + uint32_t offset;
20888 + uint32_t frame_data;
20889 + deptsiz_data_t deptsiz;
20890 +
20891 + if(ep->proc_buf_num == 0) {
20892 + /** Buffer 0 descriptors setup */
20893 + dma_ad = ep->dma_addr0;
20894 + }
20895 + else {
20896 + /** Buffer 1 descriptors setup */
20897 + dma_ad = ep->dma_addr1;
20898 + }
20899 +
20900 +
20901 + if(ep->is_in) {
20902 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
20903 + } else {
20904 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
20905 + }
20906 +
20907 + if(!deptsiz.b.xfersize) {
20908 + offset = 0;
20909 + for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
20910 + {
20911 + frame_data = ep->data_per_frame;
20912 + for(j = 0; j < ep->pkt_per_frm; ++j) {
20913 +
20914 + /* Packet status - is not set as initially
20915 + * it is set to 0 and if packet was sent
20916 + successfully, status field will remain 0*/
20917 +
20918 +
20919 + /* Bytes has been transfered */
20920 + packet_info->length = (ep->maxpacket < frame_data) ?
20921 + ep->maxpacket : frame_data;
20922 +
20923 + /* Received packet offset */
20924 + packet_info->offset = offset;
20925 + offset += packet_info->length;
20926 + frame_data -= packet_info->length;
20927 +
20928 + packet_info ++;
20929 + }
20930 + }
20931 + return 1;
20932 + } else {
20933 + /* This is a workaround for in case of Transfer Complete with
20934 + * PktDrpSts interrupts merging - in this case Transfer complete
20935 + * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
20936 + * set and with DOEPTSIZ register non zero. Investigations showed,
20937 + * that this happens when Out packet is dropped, but because of
20938 + * interrupts merging during first interrupt handling PktDrpSts
20939 + * bit is cleared and for next merged interrupts it is not reset.
20940 + * In this case SW hadles the interrupt as if PktDrpSts bit is set.
20941 + */
20942 + if(ep->is_in) {
20943 + return 1;
20944 + } else {
20945 + return handle_iso_out_pkt_dropped(core_if, ep);
20946 + }
20947 + }
20948 +}
20949 +
20950 +/**
20951 + * This function is to handle Iso EP transfer complete interrupt
20952 + *
20953 + * @param ep The EP for which transfer complete was asserted
20954 + *
20955 + */
20956 +static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
20957 +{
20958 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
20959 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
20960 + uint8_t is_last = 0;
20961 +
20962 + if(core_if->dma_enable) {
20963 + if(core_if->dma_desc_enable) {
20964 + set_ddma_iso_pkts_info(core_if, dwc_ep);
20965 + reinit_ddma_iso_xfer(core_if, dwc_ep);
20966 + is_last = 1;
20967 + } else {
20968 + if(core_if->pti_enh_enable) {
20969 + if(set_iso_pkts_info(core_if, dwc_ep)) {
20970 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20971 + dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
20972 + is_last = 1;
20973 + }
20974 + } else {
20975 + set_current_pkt_info(core_if, dwc_ep);
20976 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
20977 + is_last = 1;
20978 + dwc_ep->cur_pkt = 0;
20979 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20980 + if(dwc_ep->proc_buf_num) {
20981 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
20982 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
20983 + } else {
20984 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
20985 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
20986 + }
20987 +
20988 + }
20989 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
20990 + }
20991 + }
20992 + } else {
20993 + set_current_pkt_info(core_if, dwc_ep);
20994 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
20995 + is_last = 1;
20996 + dwc_ep->cur_pkt = 0;
20997 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20998 + if(dwc_ep->proc_buf_num) {
20999 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
21000 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
21001 + } else {
21002 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
21003 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
21004 + }
21005 +
21006 + }
21007 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
21008 + }
21009 + if(is_last)
21010 + dwc_otg_iso_buffer_done(ep, ep->iso_req);
21011 +}
21012 +
21013 +#endif //DWC_EN_ISOC
21014 +
21015 +
21016 +/**
21017 + * This function handles EP0 Control transfers.
21018 + *
21019 + * The state of the control tranfers are tracked in
21020 + * <code>ep0state</code>.
21021 + */
21022 +static void handle_ep0(dwc_otg_pcd_t *pcd)
21023 +{
21024 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
21025 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
21026 + desc_sts_data_t desc_sts;
21027 + deptsiz0_data_t deptsiz;
21028 + uint32_t byte_count;
21029 +
21030 +#ifdef DEBUG_EP0
21031 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
21032 + print_ep0_state(pcd);
21033 +#endif
21034 +
21035 + switch (pcd->ep0state) {
21036 + case EP0_DISCONNECT:
21037 + break;
21038 +
21039 + case EP0_IDLE:
21040 + pcd->request_config = 0;
21041 +
21042 + pcd_setup(pcd);
21043 + break;
21044 +
21045 + case EP0_IN_DATA_PHASE:
21046 +#ifdef DEBUG_EP0
21047 + DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
21048 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
21049 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
21050 +#endif
21051 +
21052 + if (core_if->dma_enable != 0) {
21053 + /*
21054 + * For EP0 we can only program 1 packet at a time so we
21055 + * need to do the make calculations after each complete.
21056 + * Call write_packet to make the calculations, as in
21057 + * slave mode, and use those values to determine if we
21058 + * can complete.
21059 + */
21060 + if(core_if->dma_desc_enable == 0) {
21061 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
21062 + byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
21063 + }
21064 + else {
21065 + desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
21066 + byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
21067 + }
21068 + ep0->dwc_ep.xfer_count += byte_count;
21069 + ep0->dwc_ep.xfer_buff += byte_count;
21070 + ep0->dwc_ep.dma_addr += byte_count;
21071 + }
21072 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
21073 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
21074 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
21075 + }
21076 + else if(ep0->dwc_ep.sent_zlp) {
21077 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
21078 + ep0->dwc_ep.sent_zlp = 0;
21079 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
21080 + }
21081 + else {
21082 + ep0_complete_request(ep0);
21083 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
21084 + }
21085 + break;
21086 + case EP0_OUT_DATA_PHASE:
21087 +#ifdef DEBUG_EP0
21088 + DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
21089 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
21090 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
21091 +#endif
21092 + if (core_if->dma_enable != 0) {
21093 + if(core_if->dma_desc_enable == 0) {
21094 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
21095 + byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
21096 + }
21097 + else {
21098 + desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
21099 + byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
21100 + }
21101 + ep0->dwc_ep.xfer_count += byte_count;
21102 + ep0->dwc_ep.xfer_buff += byte_count;
21103 + ep0->dwc_ep.dma_addr += byte_count;
21104 + }
21105 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
21106 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
21107 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
21108 + }
21109 + else if(ep0->dwc_ep.sent_zlp) {
21110 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
21111 + ep0->dwc_ep.sent_zlp = 0;
21112 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
21113 + }
21114 + else {
21115 + ep0_complete_request(ep0);
21116 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
21117 + }
21118 + break;
21119 +
21120 +
21121 + case EP0_IN_STATUS_PHASE:
21122 + case EP0_OUT_STATUS_PHASE:
21123 + DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
21124 + ep0_complete_request(ep0);
21125 + pcd->ep0state = EP0_IDLE;
21126 + ep0->stopped = 1;
21127 + ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
21128 +
21129 + /* Prepare for more SETUP Packets */
21130 + if(core_if->dma_enable) {
21131 + ep0_out_start(core_if, pcd);
21132 + }
21133 + break;
21134 +
21135 + case EP0_STALL:
21136 + DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
21137 + break;
21138 + }
21139 +#ifdef DEBUG_EP0
21140 + print_ep0_state(pcd);
21141 +#endif
21142 +}
21143 +
21144 +
21145 +/**
21146 + * Restart transfer
21147 + */
21148 +static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
21149 +{
21150 + dwc_otg_core_if_t *core_if;
21151 + dwc_otg_dev_if_t *dev_if;
21152 + deptsiz_data_t dieptsiz = {.d32=0};
21153 + dwc_otg_pcd_ep_t *ep;
21154 +
21155 + ep = get_in_ep(pcd, epnum);
21156 +
21157 +#ifdef DWC_EN_ISOC
21158 + if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
21159 + return;
21160 + }
21161 +#endif /* DWC_EN_ISOC */
21162 +
21163 + core_if = GET_CORE_IF(pcd);
21164 + dev_if = core_if->dev_if;
21165 +
21166 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
21167 +
21168 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
21169 + " stopped=%d\n", ep->dwc_ep.xfer_buff,
21170 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
21171 + ep->stopped);
21172 + /*
21173 + * If xfersize is 0 and pktcnt in not 0, resend the last packet.
21174 + */
21175 + if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
21176 + ep->dwc_ep.start_xfer_buff != 0) {
21177 + if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
21178 + ep->dwc_ep.xfer_count = 0;
21179 + ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
21180 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
21181 + }
21182 + else {
21183 + ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
21184 + /* convert packet size to dwords. */
21185 + ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
21186 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
21187 + }
21188 + ep->stopped = 0;
21189 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
21190 + "xfer_len=%0x stopped=%d\n",
21191 + ep->dwc_ep.xfer_buff,
21192 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
21193 + ep->stopped
21194 + );
21195 + if (epnum == 0) {
21196 + dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
21197 + }
21198 + else {
21199 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
21200 + }
21201 + }
21202 +}
21203 +
21204 +
21205 +/**
21206 + * handle the IN EP disable interrupt.
21207 + */
21208 +static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
21209 + const uint32_t epnum)
21210 +{
21211 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
21212 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
21213 + deptsiz_data_t dieptsiz = {.d32=0};
21214 + dctl_data_t dctl = {.d32=0};
21215 + dwc_otg_pcd_ep_t *ep;
21216 + dwc_ep_t *dwc_ep;
21217 +
21218 + ep = get_in_ep(pcd, epnum);
21219 + dwc_ep = &ep->dwc_ep;
21220 +
21221 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
21222 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
21223 + return;
21224 + }
21225 +
21226 + DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
21227 + dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
21228 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
21229 +
21230 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
21231 + dieptsiz.b.pktcnt,
21232 + dieptsiz.b.xfersize);
21233 +
21234 + if (ep->stopped) {
21235 + /* Flush the Tx FIFO */
21236 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
21237 + /* Clear the Global IN NP NAK */
21238 + dctl.d32 = 0;
21239 + dctl.b.cgnpinnak = 1;
21240 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
21241 + dctl.d32, 0);
21242 + /* Restart the transaction */
21243 + if (dieptsiz.b.pktcnt != 0 ||
21244 + dieptsiz.b.xfersize != 0) {
21245 + restart_transfer(pcd, epnum);
21246 + }
21247 + }
21248 + else {
21249 + /* Restart the transaction */
21250 + if (dieptsiz.b.pktcnt != 0 ||
21251 + dieptsiz.b.xfersize != 0) {
21252 + restart_transfer(pcd, epnum);
21253 + }
21254 + DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
21255 + }
21256 +}
21257 +
21258 +/**
21259 + * Handler for the IN EP timeout handshake interrupt.
21260 + */
21261 +static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
21262 + const uint32_t epnum)
21263 +{
21264 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
21265 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
21266 +
21267 +#ifdef DEBUG
21268 + deptsiz_data_t dieptsiz = {.d32=0};
21269 + uint32_t num = 0;
21270 +#endif
21271 + dctl_data_t dctl = {.d32=0};
21272 + dwc_otg_pcd_ep_t *ep;
21273 +
21274 + gintmsk_data_t intr_mask = {.d32 = 0};
21275 +
21276 + ep = get_in_ep(pcd, epnum);
21277 +
21278 + /* Disable the NP Tx Fifo Empty Interrrupt */
21279 + if (!core_if->dma_enable) {
21280 + intr_mask.b.nptxfempty = 1;
21281 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
21282 + }
21283 + /** @todo NGS Check EP type.
21284 + * Implement for Periodic EPs */
21285 + /*
21286 + * Non-periodic EP
21287 + */
21288 + /* Enable the Global IN NAK Effective Interrupt */
21289 + intr_mask.b.ginnakeff = 1;
21290 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
21291 + 0, intr_mask.d32);
21292 +
21293 + /* Set Global IN NAK */
21294 + dctl.b.sgnpinnak = 1;
21295 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
21296 + dctl.d32, dctl.d32);
21297 +
21298 + ep->stopped = 1;
21299 +
21300 +#ifdef DEBUG
21301 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
21302 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
21303 + dieptsiz.b.pktcnt,
21304 + dieptsiz.b.xfersize);
21305 +#endif
21306 +
21307 +#ifdef DISABLE_PERIODIC_EP
21308 + /*
21309 + * Set the NAK bit for this EP to
21310 + * start the disable process.
21311 + */
21312 + diepctl.d32 = 0;
21313 + diepctl.b.snak = 1;
21314 + dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
21315 + ep->disabling = 1;
21316 + ep->stopped = 1;
21317 +#endif
21318 +}
21319 +
21320 +/**
21321 + * Handler for the IN EP NAK interrupt.
21322 + */
21323 +static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
21324 + const uint32_t epnum)
21325 +{
21326 + /** @todo implement ISR */
21327 + dwc_otg_core_if_t* core_if;
21328 + diepmsk_data_t intr_mask = { .d32 = 0};
21329 +
21330 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
21331 + core_if = GET_CORE_IF(pcd);
21332 + intr_mask.b.nak = 1;
21333 +
21334 + if(core_if->multiproc_int_enable) {
21335 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
21336 + intr_mask.d32, 0);
21337 + } else {
21338 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
21339 + intr_mask.d32, 0);
21340 + }
21341 +
21342 + return 1;
21343 +}
21344 +
21345 +/**
21346 + * Handler for the OUT EP Babble interrupt.
21347 + */
21348 +static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
21349 + const uint32_t epnum)
21350 +{
21351 + /** @todo implement ISR */
21352 + dwc_otg_core_if_t* core_if;
21353 + doepmsk_data_t intr_mask = { .d32 = 0};
21354 +
21355 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
21356 + core_if = GET_CORE_IF(pcd);
21357 + intr_mask.b.babble = 1;
21358 +
21359 + if(core_if->multiproc_int_enable) {
21360 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
21361 + intr_mask.d32, 0);
21362 + } else {
21363 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
21364 + intr_mask.d32, 0);
21365 + }
21366 +
21367 + return 1;
21368 +}
21369 +
21370 +/**
21371 + * Handler for the OUT EP NAK interrupt.
21372 + */
21373 +static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
21374 + const uint32_t epnum)
21375 +{
21376 + /** @todo implement ISR */
21377 + dwc_otg_core_if_t* core_if;
21378 + doepmsk_data_t intr_mask = { .d32 = 0};
21379 +
21380 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
21381 + core_if = GET_CORE_IF(pcd);
21382 + intr_mask.b.nak = 1;
21383 +
21384 + if(core_if->multiproc_int_enable) {
21385 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
21386 + intr_mask.d32, 0);
21387 + } else {
21388 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
21389 + intr_mask.d32, 0);
21390 + }
21391 +
21392 + return 1;
21393 +}
21394 +
21395 +/**
21396 + * Handler for the OUT EP NYET interrupt.
21397 + */
21398 +static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
21399 + const uint32_t epnum)
21400 +{
21401 + /** @todo implement ISR */
21402 + dwc_otg_core_if_t* core_if;
21403 + doepmsk_data_t intr_mask = { .d32 = 0};
21404 +
21405 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
21406 + core_if = GET_CORE_IF(pcd);
21407 + intr_mask.b.nyet = 1;
21408 +
21409 + if(core_if->multiproc_int_enable) {
21410 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
21411 + intr_mask.d32, 0);
21412 + } else {
21413 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
21414 + intr_mask.d32, 0);
21415 + }
21416 +
21417 + return 1;
21418 +}
21419 +
21420 +/**
21421 + * This interrupt indicates that an IN EP has a pending Interrupt.
21422 + * The sequence for handling the IN EP interrupt is shown below:
21423 + * -# Read the Device All Endpoint Interrupt register
21424 + * -# Repeat the following for each IN EP interrupt bit set (from
21425 + * LSB to MSB).
21426 + * -# Read the Device Endpoint Interrupt (DIEPINTn) register
21427 + * -# If "Transfer Complete" call the request complete function
21428 + * -# If "Endpoint Disabled" complete the EP disable procedure.
21429 + * -# If "AHB Error Interrupt" log error
21430 + * -# If "Time-out Handshake" log error
21431 + * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
21432 + * FIFO.
21433 + * -# If "IN Token EP Mismatch" (disable, this is handled by EP
21434 + * Mismatch Interrupt)
21435 + */
21436 +static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
21437 +{
21438 +#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
21439 +do { \
21440 + diepint_data_t diepint = {.d32=0}; \
21441 + diepint.b.__intr = 1; \
21442 + dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
21443 + diepint.d32); \
21444 +} while (0)
21445 +
21446 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
21447 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
21448 + diepint_data_t diepint = {.d32=0};
21449 + dctl_data_t dctl = {.d32=0};
21450 + depctl_data_t depctl = {.d32=0};
21451 + uint32_t ep_intr;
21452 + uint32_t epnum = 0;
21453 + dwc_otg_pcd_ep_t *ep;
21454 + dwc_ep_t *dwc_ep;
21455 + gintmsk_data_t intr_mask = {.d32 = 0};
21456 +
21457 +
21458 +
21459 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
21460 +
21461 + /* Read in the device interrupt bits */
21462 + ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
21463 +
21464 + /* Service the Device IN interrupts for each endpoint */
21465 + while(ep_intr) {
21466 + if (ep_intr&0x1) {
21467 + uint32_t empty_msk;
21468 + /* Get EP pointer */
21469 + ep = get_in_ep(pcd, epnum);
21470 + dwc_ep = &ep->dwc_ep;
21471 +
21472 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
21473 + empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
21474 +
21475 + DWC_DEBUGPL(DBG_PCDV,
21476 + "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
21477 + epnum,
21478 + empty_msk,
21479 + depctl.d32);
21480 +
21481 + DWC_DEBUGPL(DBG_PCD,
21482 + "EP%d-%s: type=%d, mps=%d\n",
21483 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
21484 + dwc_ep->type, dwc_ep->maxpacket);
21485 +
21486 + diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
21487 +
21488 + DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
21489 + /* Transfer complete */
21490 + if (diepint.b.xfercompl) {
21491 + /* Disable the NP Tx FIFO Empty
21492 + * Interrrupt */
21493 + if(core_if->en_multiple_tx_fifo == 0) {
21494 + intr_mask.b.nptxfempty = 1;
21495 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
21496 + }
21497 + else {
21498 + /* Disable the Tx FIFO Empty Interrupt for this EP */
21499 + uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
21500 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
21501 + fifoemptymsk, 0);
21502 + }
21503 + /* Clear the bit in DIEPINTn for this interrupt */
21504 + CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
21505 +
21506 + /* Complete the transfer */
21507 + if (epnum == 0) {
21508 + handle_ep0(pcd);
21509 + }
21510 +#ifdef DWC_EN_ISOC
21511 + else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
21512 + if(!ep->stopped)
21513 + complete_iso_ep(ep);
21514 + }
21515 +#endif //DWC_EN_ISOC
21516 + else {
21517 +
21518 + complete_ep(ep);
21519 + }
21520 + }
21521 + /* Endpoint disable */
21522 + if (diepint.b.epdisabled) {
21523 + DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
21524 + handle_in_ep_disable_intr(pcd, epnum);
21525 +
21526 + /* Clear the bit in DIEPINTn for this interrupt */
21527 + CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
21528 + }
21529 + /* AHB Error */
21530 + if (diepint.b.ahberr) {
21531 + DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
21532 + /* Clear the bit in DIEPINTn for this interrupt */
21533 + CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
21534 + }
21535 + /* TimeOUT Handshake (non-ISOC IN EPs) */
21536 + if (diepint.b.timeout) {
21537 + DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
21538 + handle_in_ep_timeout_intr(pcd, epnum);
21539 +
21540 + CLEAR_IN_EP_INTR(core_if,epnum,timeout);
21541 + }
21542 + /** IN Token received with TxF Empty */
21543 + if (diepint.b.intktxfemp) {
21544 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
21545 + epnum);
21546 + if (!ep->stopped && epnum != 0) {
21547 +
21548 + diepmsk_data_t diepmsk = { .d32 = 0};
21549 + diepmsk.b.intktxfemp = 1;
21550 +
21551 + if(core_if->multiproc_int_enable) {
21552 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
21553 + diepmsk.d32, 0);
21554 + } else {
21555 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
21556 + }
21557 + start_next_request(ep);
21558 + }
21559 + else if(core_if->dma_desc_enable && epnum == 0 &&
21560 + pcd->ep0state == EP0_OUT_STATUS_PHASE) {
21561 + // EP0 IN set STALL
21562 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
21563 +
21564 + /* set the disable and stall bits */
21565 + if (depctl.b.epena) {
21566 + depctl.b.epdis = 1;
21567 + }
21568 + depctl.b.stall = 1;
21569 + dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
21570 + }
21571 + CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
21572 + }
21573 + /** IN Token Received with EP mismatch */
21574 + if (diepint.b.intknepmis) {
21575 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
21576 + CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
21577 + }
21578 + /** IN Endpoint NAK Effective */
21579 + if (diepint.b.inepnakeff) {
21580 + DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
21581 + /* Periodic EP */
21582 + if (ep->disabling) {
21583 + depctl.d32 = 0;
21584 + depctl.b.snak = 1;
21585 + depctl.b.epdis = 1;
21586 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
21587 + }
21588 + CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
21589 +
21590 + }
21591 +
21592 + /** IN EP Tx FIFO Empty Intr */
21593 + if (diepint.b.emptyintr) {
21594 + DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
21595 + write_empty_tx_fifo(pcd, epnum);
21596 +
21597 + CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
21598 +
21599 + }
21600 +
21601 + /** IN EP BNA Intr */
21602 + if (diepint.b.bna) {
21603 + CLEAR_IN_EP_INTR(core_if,epnum,bna);
21604 + if(core_if->dma_desc_enable) {
21605 +#ifdef DWC_EN_ISOC
21606 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
21607 + /*
21608 + * This checking is performed to prevent first "false" BNA
21609 + * handling occuring right after reconnect
21610 + */
21611 + if(dwc_ep->next_frame != 0xffffffff)
21612 + dwc_otg_pcd_handle_iso_bna(ep);
21613 + }
21614 + else
21615 +#endif //DWC_EN_ISOC
21616 + {
21617 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
21618 +
21619 + /* If Global Continue on BNA is disabled - disable EP */
21620 + if(!dctl.b.gcontbna) {
21621 + depctl.d32 = 0;
21622 + depctl.b.snak = 1;
21623 + depctl.b.epdis = 1;
21624 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
21625 + } else {
21626 + start_next_request(ep);
21627 + }
21628 + }
21629 + }
21630 + }
21631 + /* NAK Interrutp */
21632 + if (diepint.b.nak) {
21633 + DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
21634 + handle_in_ep_nak_intr(pcd, epnum);
21635 +
21636 + CLEAR_IN_EP_INTR(core_if,epnum,nak);
21637 + }
21638 + }
21639 + epnum++;
21640 + ep_intr >>=1;
21641 + }
21642 +
21643 + return 1;
21644 +#undef CLEAR_IN_EP_INTR
21645 +}
21646 +
21647 +/**
21648 + * This interrupt indicates that an OUT EP has a pending Interrupt.
21649 + * The sequence for handling the OUT EP interrupt is shown below:
21650 + * -# Read the Device All Endpoint Interrupt register
21651 + * -# Repeat the following for each OUT EP interrupt bit set (from
21652 + * LSB to MSB).
21653 + * -# Read the Device Endpoint Interrupt (DOEPINTn) register
21654 + * -# If "Transfer Complete" call the request complete function
21655 + * -# If "Endpoint Disabled" complete the EP disable procedure.
21656 + * -# If "AHB Error Interrupt" log error
21657 + * -# If "Setup Phase Done" process Setup Packet (See Standard USB
21658 + * Command Processing)
21659 + */
21660 +static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
21661 +{
21662 +#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
21663 +do { \
21664 + doepint_data_t doepint = {.d32=0}; \
21665 + doepint.b.__intr = 1; \
21666 + dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
21667 + doepint.d32); \
21668 +} while (0)
21669 +
21670 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
21671 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
21672 + uint32_t ep_intr;
21673 + doepint_data_t doepint = {.d32=0};
21674 + dctl_data_t dctl = {.d32=0};
21675 + depctl_data_t doepctl = {.d32=0};
21676 + uint32_t epnum = 0;
21677 + dwc_otg_pcd_ep_t *ep;
21678 + dwc_ep_t *dwc_ep;
21679 +
21680 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
21681 +
21682 + /* Read in the device interrupt bits */
21683 + ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
21684 +
21685 + while(ep_intr) {
21686 + if (ep_intr&0x1) {
21687 + /* Get EP pointer */
21688 + ep = get_out_ep(pcd, epnum);
21689 + dwc_ep = &ep->dwc_ep;
21690 +
21691 +#ifdef VERBOSE
21692 + DWC_DEBUGPL(DBG_PCDV,
21693 + "EP%d-%s: type=%d, mps=%d\n",
21694 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
21695 + dwc_ep->type, dwc_ep->maxpacket);
21696 +#endif
21697 + doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
21698 +
21699 + /* Transfer complete */
21700 + if (doepint.b.xfercompl) {
21701 +
21702 + if (epnum == 0) {
21703 + /* Clear the bit in DOEPINTn for this interrupt */
21704 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
21705 + if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
21706 + handle_ep0(pcd);
21707 +#ifdef DWC_EN_ISOC
21708 + } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
21709 + if (doepint.b.pktdrpsts == 0) {
21710 + /* Clear the bit in DOEPINTn for this interrupt */
21711 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
21712 + complete_iso_ep(ep);
21713 + } else {
21714 +
21715 + doepint_data_t doepint = {.d32=0};
21716 + doepint.b.xfercompl = 1;
21717 + doepint.b.pktdrpsts = 1;
21718 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
21719 + doepint.d32);
21720 + if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
21721 + complete_iso_ep(ep);
21722 + }
21723 + }
21724 +#endif //DWC_EN_ISOC
21725 + } else {
21726 + /* Clear the bit in DOEPINTn for this interrupt */
21727 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
21728 + complete_ep(ep);
21729 + }
21730 +
21731 + }
21732 +
21733 + /* Endpoint disable */
21734 + if (doepint.b.epdisabled) {
21735 +
21736 + /* Clear the bit in DOEPINTn for this interrupt */
21737 + CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
21738 + }
21739 + /* AHB Error */
21740 + if (doepint.b.ahberr) {
21741 + DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
21742 + DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
21743 + CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
21744 + }
21745 + /* Setup Phase Done (contorl EPs) */
21746 + if (doepint.b.setup) {
21747 +#ifdef DEBUG_EP0
21748 + DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
21749 + epnum);
21750 +#endif
21751 + CLEAR_OUT_EP_INTR(core_if,epnum,setup);
21752 +
21753 + handle_ep0(pcd);
21754 + }
21755 +
21756 + /** OUT EP BNA Intr */
21757 + if (doepint.b.bna) {
21758 + CLEAR_OUT_EP_INTR(core_if,epnum,bna);
21759 + if(core_if->dma_desc_enable) {
21760 +#ifdef DWC_EN_ISOC
21761 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
21762 + /*
21763 + * This checking is performed to prevent first "false" BNA
21764 + * handling occuring right after reconnect
21765 + */
21766 + if(dwc_ep->next_frame != 0xffffffff)
21767 + dwc_otg_pcd_handle_iso_bna(ep);
21768 + }
21769 + else
21770 +#endif //DWC_EN_ISOC
21771 + {
21772 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
21773 +
21774 + /* If Global Continue on BNA is disabled - disable EP*/
21775 + if(!dctl.b.gcontbna) {
21776 + doepctl.d32 = 0;
21777 + doepctl.b.snak = 1;
21778 + doepctl.b.epdis = 1;
21779 + dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
21780 + } else {
21781 + start_next_request(ep);
21782 + }
21783 + }
21784 + }
21785 + }
21786 + if (doepint.b.stsphsercvd) {
21787 + CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
21788 + if(core_if->dma_desc_enable) {
21789 + do_setup_in_status_phase(pcd);
21790 + }
21791 + }
21792 + /* Babble Interrutp */
21793 + if (doepint.b.babble) {
21794 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
21795 + handle_out_ep_babble_intr(pcd, epnum);
21796 +
21797 + CLEAR_OUT_EP_INTR(core_if,epnum,babble);
21798 + }
21799 + /* NAK Interrutp */
21800 + if (doepint.b.nak) {
21801 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
21802 + handle_out_ep_nak_intr(pcd, epnum);
21803 +
21804 + CLEAR_OUT_EP_INTR(core_if,epnum,nak);
21805 + }
21806 + /* NYET Interrutp */
21807 + if (doepint.b.nyet) {
21808 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
21809 + handle_out_ep_nyet_intr(pcd, epnum);
21810 +
21811 + CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
21812 + }
21813 + }
21814 +
21815 + epnum++;
21816 + ep_intr >>=1;
21817 + }
21818 +
21819 + return 1;
21820 +
21821 +#undef CLEAR_OUT_EP_INTR
21822 +}
21823 +
21824 +
21825 +/**
21826 + * Incomplete ISO IN Transfer Interrupt.
21827 + * This interrupt indicates one of the following conditions occurred
21828 + * while transmitting an ISOC transaction.
21829 + * - Corrupted IN Token for ISOC EP.
21830 + * - Packet not complete in FIFO.
21831 + * The follow actions will be taken:
21832 + * -# Determine the EP
21833 + * -# Set incomplete flag in dwc_ep structure
21834 + * -# Disable EP; when "Endpoint Disabled" interrupt is received
21835 + * Flush FIFO
21836 + */
21837 +int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
21838 +{
21839 + gintsts_data_t gintsts;
21840 +
21841 +
21842 +#ifdef DWC_EN_ISOC
21843 + dwc_otg_dev_if_t *dev_if;
21844 + deptsiz_data_t deptsiz = { .d32 = 0};
21845 + depctl_data_t depctl = { .d32 = 0};
21846 + dsts_data_t dsts = { .d32 = 0};
21847 + dwc_ep_t *dwc_ep;
21848 + int i;
21849 +
21850 + dev_if = GET_CORE_IF(pcd)->dev_if;
21851 +
21852 + for(i = 1; i <= dev_if->num_in_eps; ++i) {
21853 + dwc_ep = &pcd->in_ep[i].dwc_ep;
21854 + if(dwc_ep->active &&
21855 + dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
21856 + {
21857 + deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
21858 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
21859 +
21860 + if(depctl.b.epdis && deptsiz.d32) {
21861 + set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
21862 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
21863 + dwc_ep->cur_pkt = 0;
21864 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
21865 +
21866 + if(dwc_ep->proc_buf_num) {
21867 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
21868 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
21869 + } else {
21870 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
21871 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
21872 + }
21873 +
21874 + }
21875 +
21876 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
21877 + dwc_ep->next_frame = dsts.b.soffn;
21878 +
21879 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
21880 + }
21881 + }
21882 + }
21883 +
21884 +#else
21885 + gintmsk_data_t intr_mask = { .d32 = 0};
21886 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
21887 + "IN ISOC Incomplete");
21888 +
21889 + intr_mask.b.incomplisoin = 1;
21890 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
21891 + intr_mask.d32, 0);
21892 +#endif //DWC_EN_ISOC
21893 +
21894 + /* Clear interrupt */
21895 + gintsts.d32 = 0;
21896 + gintsts.b.incomplisoin = 1;
21897 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
21898 + gintsts.d32);
21899 +
21900 + return 1;
21901 +}
21902 +
21903 +/**
21904 + * Incomplete ISO OUT Transfer Interrupt.
21905 + *
21906 + * This interrupt indicates that the core has dropped an ISO OUT
21907 + * packet. The following conditions can be the cause:
21908 + * - FIFO Full, the entire packet would not fit in the FIFO.
21909 + * - CRC Error
21910 + * - Corrupted Token
21911 + * The follow actions will be taken:
21912 + * -# Determine the EP
21913 + * -# Set incomplete flag in dwc_ep structure
21914 + * -# Read any data from the FIFO
21915 + * -# Disable EP. when "Endpoint Disabled" interrupt is received
21916 + * re-enable EP.
21917 + */
21918 +int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
21919 +{
21920 + /* @todo implement ISR */
21921 + gintsts_data_t gintsts;
21922 +
21923 +#ifdef DWC_EN_ISOC
21924 + dwc_otg_dev_if_t *dev_if;
21925 + deptsiz_data_t deptsiz = { .d32 = 0};
21926 + depctl_data_t depctl = { .d32 = 0};
21927 + dsts_data_t dsts = { .d32 = 0};
21928 + dwc_ep_t *dwc_ep;
21929 + int i;
21930 +
21931 + dev_if = GET_CORE_IF(pcd)->dev_if;
21932 +
21933 + for(i = 1; i <= dev_if->num_out_eps; ++i) {
21934 + dwc_ep = &pcd->in_ep[i].dwc_ep;
21935 + if(pcd->out_ep[i].dwc_ep.active &&
21936 + pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
21937 + {
21938 + deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
21939 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
21940 +
21941 + if(depctl.b.epdis && deptsiz.d32) {
21942 + set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
21943 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
21944 + dwc_ep->cur_pkt = 0;
21945 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
21946 +
21947 + if(dwc_ep->proc_buf_num) {
21948 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
21949 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
21950 + } else {
21951 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
21952 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
21953 + }
21954 +
21955 + }
21956 +
21957 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
21958 + dwc_ep->next_frame = dsts.b.soffn;
21959 +
21960 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
21961 + }
21962 + }
21963 + }
21964 +#else
21965 + /** @todo implement ISR */
21966 + gintmsk_data_t intr_mask = { .d32 = 0};
21967 +
21968 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
21969 + "OUT ISOC Incomplete");
21970 +
21971 + intr_mask.b.incomplisoout = 1;
21972 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
21973 + intr_mask.d32, 0);
21974 +
21975 +#endif // DWC_EN_ISOC
21976 +
21977 + /* Clear interrupt */
21978 + gintsts.d32 = 0;
21979 + gintsts.b.incomplisoout = 1;
21980 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
21981 + gintsts.d32);
21982 +
21983 + return 1;
21984 +}
21985 +
21986 +/**
21987 + * This function handles the Global IN NAK Effective interrupt.
21988 + *
21989 + */
21990 +int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
21991 +{
21992 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
21993 + depctl_data_t diepctl = { .d32 = 0};
21994 + depctl_data_t diepctl_rd = { .d32 = 0};
21995 + gintmsk_data_t intr_mask = { .d32 = 0};
21996 + gintsts_data_t gintsts;
21997 + int i;
21998 +
21999 + DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
22000 +
22001 + /* Disable all active IN EPs */
22002 + diepctl.b.epdis = 1;
22003 + diepctl.b.snak = 1;
22004 +
22005 + for (i=0; i <= dev_if->num_in_eps; i++)
22006 + {
22007 + diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
22008 + if (diepctl_rd.b.epena) {
22009 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
22010 + diepctl.d32);
22011 + }
22012 + }
22013 + /* Disable the Global IN NAK Effective Interrupt */
22014 + intr_mask.b.ginnakeff = 1;
22015 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
22016 + intr_mask.d32, 0);
22017 +
22018 + /* Clear interrupt */
22019 + gintsts.d32 = 0;
22020 + gintsts.b.ginnakeff = 1;
22021 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
22022 + gintsts.d32);
22023 +
22024 + return 1;
22025 +}
22026 +
22027 +/**
22028 + * OUT NAK Effective.
22029 + *
22030 + */
22031 +int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
22032 +{
22033 + gintmsk_data_t intr_mask = { .d32 = 0};
22034 + gintsts_data_t gintsts;
22035 +
22036 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
22037 + "Global IN NAK Effective\n");
22038 + /* Disable the Global IN NAK Effective Interrupt */
22039 + intr_mask.b.goutnakeff = 1;
22040 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
22041 + intr_mask.d32, 0);
22042 +
22043 + /* Clear interrupt */
22044 + gintsts.d32 = 0;
22045 + gintsts.b.goutnakeff = 1;
22046 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
22047 + gintsts.d32);
22048 +
22049 + return 1;
22050 +}
22051 +
22052 +
22053 +/**
22054 + * PCD interrupt handler.
22055 + *
22056 + * The PCD handles the device interrupts. Many conditions can cause a
22057 + * device interrupt. When an interrupt occurs, the device interrupt
22058 + * service routine determines the cause of the interrupt and
22059 + * dispatches handling to the appropriate function. These interrupt
22060 + * handling functions are described below.
22061 + *
22062 + * All interrupt registers are processed from LSB to MSB.
22063 + *
22064 + */
22065 +int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
22066 +{
22067 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
22068 +#ifdef VERBOSE
22069 + dwc_otg_core_global_regs_t *global_regs =
22070 + core_if->core_global_regs;
22071 +#endif
22072 + gintsts_data_t gintr_status;
22073 + int32_t retval = 0;
22074 +
22075 +
22076 +#ifdef VERBOSE
22077 + DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
22078 + __func__,
22079 + dwc_read_reg32(&global_regs->gintsts),
22080 + dwc_read_reg32(&global_regs->gintmsk));
22081 +#endif
22082 +
22083 + if (dwc_otg_is_device_mode(core_if)) {
22084 + SPIN_LOCK(&pcd->lock);
22085 +#ifdef VERBOSE
22086 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
22087 + __func__,
22088 + dwc_read_reg32(&global_regs->gintsts),
22089 + dwc_read_reg32(&global_regs->gintmsk));
22090 +#endif
22091 +
22092 + gintr_status.d32 = dwc_otg_read_core_intr(core_if);
22093 +
22094 +/*
22095 + if (!gintr_status.d32) {
22096 + SPIN_UNLOCK(&pcd->lock);
22097 + return 0;
22098 + }
22099 +*/
22100 + DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
22101 + __func__, gintr_status.d32);
22102 +
22103 + if (gintr_status.b.sofintr) {
22104 + retval |= dwc_otg_pcd_handle_sof_intr(pcd);
22105 + }
22106 + if (gintr_status.b.rxstsqlvl) {
22107 + retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
22108 + }
22109 + if (gintr_status.b.nptxfempty) {
22110 + retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
22111 + }
22112 + if (gintr_status.b.ginnakeff) {
22113 + retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
22114 + }
22115 + if (gintr_status.b.goutnakeff) {
22116 + retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
22117 + }
22118 + if (gintr_status.b.i2cintr) {
22119 + retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
22120 + }
22121 + if (gintr_status.b.erlysuspend) {
22122 + retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
22123 + }
22124 + if (gintr_status.b.usbreset) {
22125 + retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
22126 + }
22127 + if (gintr_status.b.enumdone) {
22128 + retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
22129 + }
22130 + if (gintr_status.b.isooutdrop) {
22131 + retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
22132 + }
22133 + if (gintr_status.b.eopframe) {
22134 + retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
22135 + }
22136 + if (gintr_status.b.epmismatch) {
22137 + retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
22138 + }
22139 + if (gintr_status.b.inepint) {
22140 + if(!core_if->multiproc_int_enable) {
22141 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
22142 + }
22143 + }
22144 + if (gintr_status.b.outepintr) {
22145 + if(!core_if->multiproc_int_enable) {
22146 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
22147 + }
22148 + }
22149 + if (gintr_status.b.incomplisoin) {
22150 + retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
22151 + }
22152 + if (gintr_status.b.incomplisoout) {
22153 + retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
22154 + }
22155 +
22156 + /* In MPI mode De vice Endpoints intterrupts are asserted
22157 + * without setting outepintr and inepint bits set, so these
22158 + * Interrupt handlers are called without checking these bit-fields
22159 + */
22160 + if(core_if->multiproc_int_enable) {
22161 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
22162 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
22163 + }
22164 +#ifdef VERBOSE
22165 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
22166 + dwc_read_reg32(&global_regs->gintsts));
22167 +#endif
22168 + SPIN_UNLOCK(&pcd->lock);
22169 + }
22170 +
22171 + S3C2410X_CLEAR_EINTPEND();
22172 +
22173 + return retval;
22174 +}
22175 +
22176 +#endif /* DWC_HOST_ONLY */
22177 --- /dev/null
22178 +++ b/drivers/usb/dwc_otg/dwc_otg_regs.h
22179 @@ -0,0 +1,2075 @@
22180 +/* ==========================================================================
22181 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
22182 + * $Revision: 1.2 $
22183 + * $Date: 2008-11-21 05:39:15 $
22184 + * $Change: 1099526 $
22185 + *
22186 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
22187 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
22188 + * otherwise expressly agreed to in writing between Synopsys and you.
22189 + *
22190 + * The Software IS NOT an item of Licensed Software or Licensed Product under
22191 + * any End User Software License Agreement or Agreement for Licensed Product
22192 + * with Synopsys or any supplement thereto. You are permitted to use and
22193 + * redistribute this Software in source and binary forms, with or without
22194 + * modification, provided that redistributions of source code must retain this
22195 + * notice. You may not view, use, disclose, copy or distribute this file or
22196 + * any information contained herein except pursuant to this license grant from
22197 + * Synopsys. If you do not agree with this notice, including the disclaimer
22198 + * below, then you are not authorized to use the Software.
22199 + *
22200 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
22201 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22202 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22203 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
22204 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22205 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22206 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
22207 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22208 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22209 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
22210 + * DAMAGE.
22211 + * ========================================================================== */
22212 +
22213 +#ifndef __DWC_OTG_REGS_H__
22214 +#define __DWC_OTG_REGS_H__
22215 +
22216 +/**
22217 + * @file
22218 + *
22219 + * This file contains the data structures for accessing the DWC_otg core registers.
22220 + *
22221 + * The application interfaces with the HS OTG core by reading from and
22222 + * writing to the Control and Status Register (CSR) space through the
22223 + * AHB Slave interface. These registers are 32 bits wide, and the
22224 + * addresses are 32-bit-block aligned.
22225 + * CSRs are classified as follows:
22226 + * - Core Global Registers
22227 + * - Device Mode Registers
22228 + * - Device Global Registers
22229 + * - Device Endpoint Specific Registers
22230 + * - Host Mode Registers
22231 + * - Host Global Registers
22232 + * - Host Port CSRs
22233 + * - Host Channel Specific Registers
22234 + *
22235 + * Only the Core Global registers can be accessed in both Device and
22236 + * Host modes. When the HS OTG core is operating in one mode, either
22237 + * Device or Host, the application must not access registers from the
22238 + * other mode. When the core switches from one mode to another, the
22239 + * registers in the new mode of operation must be reprogrammed as they
22240 + * would be after a power-on reset.
22241 + */
22242 +
22243 +/** Maximum number of Periodic FIFOs */
22244 +#define MAX_PERIO_FIFOS 15
22245 +/** Maximum number of Transmit FIFOs */
22246 +#define MAX_TX_FIFOS 15
22247 +
22248 +/** Maximum number of Endpoints/HostChannels */
22249 +#define MAX_EPS_CHANNELS 16
22250 +
22251 +/****************************************************************************/
22252 +/** DWC_otg Core registers .
22253 + * The dwc_otg_core_global_regs structure defines the size
22254 + * and relative field offsets for the Core Global registers.
22255 + */
22256 +typedef struct dwc_otg_core_global_regs
22257 +{
22258 + /** OTG Control and Status Register. <i>Offset: 000h</i> */
22259 + volatile uint32_t gotgctl;
22260 + /** OTG Interrupt Register. <i>Offset: 004h</i> */
22261 + volatile uint32_t gotgint;
22262 + /**Core AHB Configuration Register. <i>Offset: 008h</i> */
22263 + volatile uint32_t gahbcfg;
22264 +
22265 +#define DWC_GLBINTRMASK 0x0001
22266 +#define DWC_DMAENABLE 0x0020
22267 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
22268 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
22269 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100
22270 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
22271 +
22272 + /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
22273 + volatile uint32_t gusbcfg;
22274 + /**Core Reset Register. <i>Offset: 010h</i> */
22275 + volatile uint32_t grstctl;
22276 + /**Core Interrupt Register. <i>Offset: 014h</i> */
22277 + volatile uint32_t gintsts;
22278 + /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
22279 + volatile uint32_t gintmsk;
22280 + /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
22281 + volatile uint32_t grxstsr;
22282 + /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
22283 + volatile uint32_t grxstsp;
22284 + /**Receive FIFO Size Register. <i>Offset: 024h</i> */
22285 + volatile uint32_t grxfsiz;
22286 + /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
22287 + volatile uint32_t gnptxfsiz;
22288 + /**Non Periodic Transmit FIFO/Queue Status Register (Read
22289 + * Only). <i>Offset: 02Ch</i> */
22290 + volatile uint32_t gnptxsts;
22291 + /**I2C Access Register. <i>Offset: 030h</i> */
22292 + volatile uint32_t gi2cctl;
22293 + /**PHY Vendor Control Register. <i>Offset: 034h</i> */
22294 + volatile uint32_t gpvndctl;
22295 + /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
22296 + volatile uint32_t ggpio;
22297 + /**User ID Register. <i>Offset: 03Ch</i> */
22298 + volatile uint32_t guid;
22299 + /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
22300 + volatile uint32_t gsnpsid;
22301 + /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
22302 + volatile uint32_t ghwcfg1;
22303 + /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
22304 + volatile uint32_t ghwcfg2;
22305 +#define DWC_SLAVE_ONLY_ARCH 0
22306 +#define DWC_EXT_DMA_ARCH 1
22307 +#define DWC_INT_DMA_ARCH 2
22308 +
22309 +#define DWC_MODE_HNP_SRP_CAPABLE 0
22310 +#define DWC_MODE_SRP_ONLY_CAPABLE 1
22311 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
22312 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3
22313 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
22314 +#define DWC_MODE_SRP_CAPABLE_HOST 5
22315 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
22316 +
22317 + /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
22318 + volatile uint32_t ghwcfg3;
22319 + /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
22320 + volatile uint32_t ghwcfg4;
22321 + /** Reserved <i>Offset: 054h-0FFh</i> */
22322 + volatile uint32_t reserved[43];
22323 + /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
22324 + volatile uint32_t hptxfsiz;
22325 + /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
22326 + otherwise Device Transmit FIFO#n Register.
22327 + * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
22328 + volatile uint32_t dptxfsiz_dieptxf[15];
22329 +} dwc_otg_core_global_regs_t;
22330 +
22331 +/**
22332 + * This union represents the bit fields of the Core OTG Control
22333 + * and Status Register (GOTGCTL). Set the bits using the bit
22334 + * fields then write the <i>d32</i> value to the register.
22335 + */
22336 +typedef union gotgctl_data
22337 +{
22338 + /** raw register data */
22339 + uint32_t d32;
22340 + /** register bits */
22341 + struct
22342 + {
22343 + unsigned sesreqscs : 1;
22344 + unsigned sesreq : 1;
22345 + unsigned reserved2_7 : 6;
22346 + unsigned hstnegscs : 1;
22347 + unsigned hnpreq : 1;
22348 + unsigned hstsethnpen : 1;
22349 + unsigned devhnpen : 1;
22350 + unsigned reserved12_15 : 4;
22351 + unsigned conidsts : 1;
22352 + unsigned reserved17 : 1;
22353 + unsigned asesvld : 1;
22354 + unsigned bsesvld : 1;
22355 + unsigned currmod : 1;
22356 + unsigned reserved21_31 : 11;
22357 + } b;
22358 +} gotgctl_data_t;
22359 +
22360 +/**
22361 + * This union represents the bit fields of the Core OTG Interrupt Register
22362 + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
22363 + * value to the register.
22364 + */
22365 +typedef union gotgint_data
22366 +{
22367 + /** raw register data */
22368 + uint32_t d32;
22369 + /** register bits */
22370 + struct
22371 + {
22372 + /** Current Mode */
22373 + unsigned reserved0_1 : 2;
22374 +
22375 + /** Session End Detected */
22376 + unsigned sesenddet : 1;
22377 +
22378 + unsigned reserved3_7 : 5;
22379 +
22380 + /** Session Request Success Status Change */
22381 + unsigned sesreqsucstschng : 1;
22382 + /** Host Negotiation Success Status Change */
22383 + unsigned hstnegsucstschng : 1;
22384 +
22385 + unsigned reserver10_16 : 7;
22386 +
22387 + /** Host Negotiation Detected */
22388 + unsigned hstnegdet : 1;
22389 + /** A-Device Timeout Change */
22390 + unsigned adevtoutchng : 1;
22391 + /** Debounce Done */
22392 + unsigned debdone : 1;
22393 +
22394 + unsigned reserved31_20 : 12;
22395 +
22396 + } b;
22397 +} gotgint_data_t;
22398 +
22399 +
22400 +/**
22401 + * This union represents the bit fields of the Core AHB Configuration
22402 + * Register (GAHBCFG). Set/clear the bits using the bit fields then
22403 + * write the <i>d32</i> value to the register.
22404 + */
22405 +typedef union gahbcfg_data
22406 +{
22407 + /** raw register data */
22408 + uint32_t d32;
22409 + /** register bits */
22410 + struct
22411 + {
22412 + unsigned glblintrmsk : 1;
22413 +#define DWC_GAHBCFG_GLBINT_ENABLE 1
22414 +
22415 + unsigned hburstlen : 4;
22416 +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
22417 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
22418 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
22419 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
22420 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
22421 +
22422 + unsigned dmaenable : 1;
22423 +#define DWC_GAHBCFG_DMAENABLE 1
22424 + unsigned reserved : 1;
22425 + unsigned nptxfemplvl_txfemplvl : 1;
22426 + unsigned ptxfemplvl : 1;
22427 +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
22428 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
22429 + unsigned reserved9_31 : 23;
22430 + } b;
22431 +} gahbcfg_data_t;
22432 +
22433 +/**
22434 + * This union represents the bit fields of the Core USB Configuration
22435 + * Register (GUSBCFG). Set the bits using the bit fields then write
22436 + * the <i>d32</i> value to the register.
22437 + */
22438 +typedef union gusbcfg_data
22439 +{
22440 + /** raw register data */
22441 + uint32_t d32;
22442 + /** register bits */
22443 + struct
22444 + {
22445 + unsigned toutcal : 3;
22446 + unsigned phyif : 1;
22447 + unsigned ulpi_utmi_sel : 1;
22448 + unsigned fsintf : 1;
22449 + unsigned physel : 1;
22450 + unsigned ddrsel : 1;
22451 + unsigned srpcap : 1;
22452 + unsigned hnpcap : 1;
22453 + unsigned usbtrdtim : 4;
22454 + unsigned nptxfrwnden : 1;
22455 + unsigned phylpwrclksel : 1;
22456 + unsigned otgutmifssel : 1;
22457 + unsigned ulpi_fsls : 1;
22458 + unsigned ulpi_auto_res : 1;
22459 + unsigned ulpi_clk_sus_m : 1;
22460 + unsigned ulpi_ext_vbus_drv : 1;
22461 + unsigned ulpi_int_vbus_indicator : 1;
22462 + unsigned term_sel_dl_pulse : 1;
22463 + unsigned reserved23_27 : 5;
22464 + unsigned tx_end_delay : 1;
22465 + unsigned reserved29_31 : 3;
22466 + } b;
22467 +} gusbcfg_data_t;
22468 +
22469 +/**
22470 + * This union represents the bit fields of the Core Reset Register
22471 + * (GRSTCTL). Set/clear the bits using the bit fields then write the
22472 + * <i>d32</i> value to the register.
22473 + */
22474 +typedef union grstctl_data
22475 +{
22476 + /** raw register data */
22477 + uint32_t d32;
22478 + /** register bits */
22479 + struct
22480 + {
22481 + /** Core Soft Reset (CSftRst) (Device and Host)
22482 + *
22483 + * The application can flush the control logic in the
22484 + * entire core using this bit. This bit resets the
22485 + * pipelines in the AHB Clock domain as well as the
22486 + * PHY Clock domain.
22487 + *
22488 + * The state machines are reset to an IDLE state, the
22489 + * control bits in the CSRs are cleared, all the
22490 + * transmit FIFOs and the receive FIFO are flushed.
22491 + *
22492 + * The status mask bits that control the generation of
22493 + * the interrupt, are cleared, to clear the
22494 + * interrupt. The interrupt status bits are not
22495 + * cleared, so the application can get the status of
22496 + * any events that occurred in the core after it has
22497 + * set this bit.
22498 + *
22499 + * Any transactions on the AHB are terminated as soon
22500 + * as possible following the protocol. Any
22501 + * transactions on the USB are terminated immediately.
22502 + *
22503 + * The configuration settings in the CSRs are
22504 + * unchanged, so the software doesn't have to
22505 + * reprogram these registers (Device
22506 + * Configuration/Host Configuration/Core System
22507 + * Configuration/Core PHY Configuration).
22508 + *
22509 + * The application can write to this bit, any time it
22510 + * wants to reset the core. This is a self clearing
22511 + * bit and the core clears this bit after all the
22512 + * necessary logic is reset in the core, which may
22513 + * take several clocks, depending on the current state
22514 + * of the core.
22515 + */
22516 + unsigned csftrst : 1;
22517 + /** Hclk Soft Reset
22518 + *
22519 + * The application uses this bit to reset the control logic in
22520 + * the AHB clock domain. Only AHB clock domain pipelines are
22521 + * reset.
22522 + */
22523 + unsigned hsftrst : 1;
22524 + /** Host Frame Counter Reset (Host Only)<br>
22525 + *
22526 + * The application can reset the (micro)frame number
22527 + * counter inside the core, using this bit. When the
22528 + * (micro)frame counter is reset, the subsequent SOF
22529 + * sent out by the core, will have a (micro)frame
22530 + * number of 0.
22531 + */
22532 + unsigned hstfrm : 1;
22533 + /** In Token Sequence Learning Queue Flush
22534 + * (INTknQFlsh) (Device Only)
22535 + */
22536 + unsigned intknqflsh : 1;
22537 + /** RxFIFO Flush (RxFFlsh) (Device and Host)
22538 + *
22539 + * The application can flush the entire Receive FIFO
22540 + * using this bit. <p>The application must first
22541 + * ensure that the core is not in the middle of a
22542 + * transaction. <p>The application should write into
22543 + * this bit, only after making sure that neither the
22544 + * DMA engine is reading from the RxFIFO nor the MAC
22545 + * is writing the data in to the FIFO. <p>The
22546 + * application should wait until the bit is cleared
22547 + * before performing any other operations. This bit
22548 + * will takes 8 clocks (slowest of PHY or AHB clock)
22549 + * to clear.
22550 + */
22551 + unsigned rxfflsh : 1;
22552 + /** TxFIFO Flush (TxFFlsh) (Device and Host).
22553 + *
22554 + * This bit is used to selectively flush a single or
22555 + * all transmit FIFOs. The application must first
22556 + * ensure that the core is not in the middle of a
22557 + * transaction. <p>The application should write into
22558 + * this bit, only after making sure that neither the
22559 + * DMA engine is writing into the TxFIFO nor the MAC
22560 + * is reading the data out of the FIFO. <p>The
22561 + * application should wait until the core clears this
22562 + * bit, before performing any operations. This bit
22563 + * will takes 8 clocks (slowest of PHY or AHB clock)
22564 + * to clear.
22565 + */
22566 + unsigned txfflsh : 1;
22567 +
22568 + /** TxFIFO Number (TxFNum) (Device and Host).
22569 + *
22570 + * This is the FIFO number which needs to be flushed,
22571 + * using the TxFIFO Flush bit. This field should not
22572 + * be changed until the TxFIFO Flush bit is cleared by
22573 + * the core.
22574 + * - 0x0 : Non Periodic TxFIFO Flush
22575 + * - 0x1 : Periodic TxFIFO #1 Flush in device mode
22576 + * or Periodic TxFIFO in host mode
22577 + * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
22578 + * - ...
22579 + * - 0xF : Periodic TxFIFO #15 Flush in device mode
22580 + * - 0x10: Flush all the Transmit NonPeriodic and
22581 + * Transmit Periodic FIFOs in the core
22582 + */
22583 + unsigned txfnum : 5;
22584 + /** Reserved */
22585 + unsigned reserved11_29 : 19;
22586 + /** DMA Request Signal. Indicated DMA request is in
22587 + * probress. Used for debug purpose. */
22588 + unsigned dmareq : 1;
22589 + /** AHB Master Idle. Indicates the AHB Master State
22590 + * Machine is in IDLE condition. */
22591 + unsigned ahbidle : 1;
22592 + } b;
22593 +} grstctl_t;
22594 +
22595 +
22596 +/**
22597 + * This union represents the bit fields of the Core Interrupt Mask
22598 + * Register (GINTMSK). Set/clear the bits using the bit fields then
22599 + * write the <i>d32</i> value to the register.
22600 + */
22601 +typedef union gintmsk_data
22602 +{
22603 + /** raw register data */
22604 + uint32_t d32;
22605 + /** register bits */
22606 + struct
22607 + {
22608 + unsigned reserved0 : 1;
22609 + unsigned modemismatch : 1;
22610 + unsigned otgintr : 1;
22611 + unsigned sofintr : 1;
22612 + unsigned rxstsqlvl : 1;
22613 + unsigned nptxfempty : 1;
22614 + unsigned ginnakeff : 1;
22615 + unsigned goutnakeff : 1;
22616 + unsigned reserved8 : 1;
22617 + unsigned i2cintr : 1;
22618 + unsigned erlysuspend : 1;
22619 + unsigned usbsuspend : 1;
22620 + unsigned usbreset : 1;
22621 + unsigned enumdone : 1;
22622 + unsigned isooutdrop : 1;
22623 + unsigned eopframe : 1;
22624 + unsigned reserved16 : 1;
22625 + unsigned epmismatch : 1;
22626 + unsigned inepintr : 1;
22627 + unsigned outepintr : 1;
22628 + unsigned incomplisoin : 1;
22629 + unsigned incomplisoout : 1;
22630 + unsigned reserved22_23 : 2;
22631 + unsigned portintr : 1;
22632 + unsigned hcintr : 1;
22633 + unsigned ptxfempty : 1;
22634 + unsigned reserved27 : 1;
22635 + unsigned conidstschng : 1;
22636 + unsigned disconnect : 1;
22637 + unsigned sessreqintr : 1;
22638 + unsigned wkupintr : 1;
22639 + } b;
22640 +} gintmsk_data_t;
22641 +/**
22642 + * This union represents the bit fields of the Core Interrupt Register
22643 + * (GINTSTS). Set/clear the bits using the bit fields then write the
22644 + * <i>d32</i> value to the register.
22645 + */
22646 +typedef union gintsts_data
22647 +{
22648 + /** raw register data */
22649 + uint32_t d32;
22650 +#define DWC_SOF_INTR_MASK 0x0008
22651 + /** register bits */
22652 + struct
22653 + {
22654 +#define DWC_HOST_MODE 1
22655 + unsigned curmode : 1;
22656 + unsigned modemismatch : 1;
22657 + unsigned otgintr : 1;
22658 + unsigned sofintr : 1;
22659 + unsigned rxstsqlvl : 1;
22660 + unsigned nptxfempty : 1;
22661 + unsigned ginnakeff : 1;
22662 + unsigned goutnakeff : 1;
22663 + unsigned reserved8 : 1;
22664 + unsigned i2cintr : 1;
22665 + unsigned erlysuspend : 1;
22666 + unsigned usbsuspend : 1;
22667 + unsigned usbreset : 1;
22668 + unsigned enumdone : 1;
22669 + unsigned isooutdrop : 1;
22670 + unsigned eopframe : 1;
22671 + unsigned intokenrx : 1;
22672 + unsigned epmismatch : 1;
22673 + unsigned inepint: 1;
22674 + unsigned outepintr : 1;
22675 + unsigned incomplisoin : 1;
22676 + unsigned incomplisoout : 1;
22677 + unsigned reserved22_23 : 2;
22678 + unsigned portintr : 1;
22679 + unsigned hcintr : 1;
22680 + unsigned ptxfempty : 1;
22681 + unsigned reserved27 : 1;
22682 + unsigned conidstschng : 1;
22683 + unsigned disconnect : 1;
22684 + unsigned sessreqintr : 1;
22685 + unsigned wkupintr : 1;
22686 + } b;
22687 +} gintsts_data_t;
22688 +
22689 +
22690 +/**
22691 + * This union represents the bit fields in the Device Receive Status Read and
22692 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
22693 + * element then read out the bits using the <i>b</i>it elements.
22694 + */
22695 +typedef union device_grxsts_data
22696 +{
22697 + /** raw register data */
22698 + uint32_t d32;
22699 + /** register bits */
22700 + struct
22701 + {
22702 + unsigned epnum : 4;
22703 + unsigned bcnt : 11;
22704 + unsigned dpid : 2;
22705 +
22706 +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
22707 +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
22708 +
22709 +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
22710 +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
22711 +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
22712 + unsigned pktsts : 4;
22713 + unsigned fn : 4;
22714 + unsigned reserved : 7;
22715 + } b;
22716 +} device_grxsts_data_t;
22717 +
22718 +/**
22719 + * This union represents the bit fields in the Host Receive Status Read and
22720 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
22721 + * element then read out the bits using the <i>b</i>it elements.
22722 + */
22723 +typedef union host_grxsts_data
22724 +{
22725 + /** raw register data */
22726 + uint32_t d32;
22727 + /** register bits */
22728 + struct
22729 + {
22730 + unsigned chnum : 4;
22731 + unsigned bcnt : 11;
22732 + unsigned dpid : 2;
22733 +
22734 + unsigned pktsts : 4;
22735 +#define DWC_GRXSTS_PKTSTS_IN 0x2
22736 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
22737 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
22738 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
22739 +
22740 + unsigned reserved : 11;
22741 + } b;
22742 +} host_grxsts_data_t;
22743 +
22744 +/**
22745 + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
22746 + * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
22747 + * read out the bits using the <i>b</i>it elements.
22748 + */
22749 +typedef union fifosize_data
22750 +{
22751 + /** raw register data */
22752 + uint32_t d32;
22753 + /** register bits */
22754 + struct
22755 + {
22756 + unsigned startaddr : 16;
22757 + unsigned depth : 16;
22758 + } b;
22759 +} fifosize_data_t;
22760 +
22761 +/**
22762 + * This union represents the bit fields in the Non-Periodic Transmit
22763 + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
22764 + * <i>d32</i> element then read out the bits using the <i>b</i>it
22765 + * elements.
22766 + */
22767 +typedef union gnptxsts_data
22768 +{
22769 + /** raw register data */
22770 + uint32_t d32;
22771 + /** register bits */
22772 + struct
22773 + {
22774 + unsigned nptxfspcavail : 16;
22775 + unsigned nptxqspcavail : 8;
22776 + /** Top of the Non-Periodic Transmit Request Queue
22777 + * - bit 24 - Terminate (Last entry for the selected
22778 + * channel/EP)
22779 + * - bits 26:25 - Token Type
22780 + * - 2'b00 - IN/OUT
22781 + * - 2'b01 - Zero Length OUT
22782 + * - 2'b10 - PING/Complete Split
22783 + * - 2'b11 - Channel Halt
22784 + * - bits 30:27 - Channel/EP Number
22785 + */
22786 + unsigned nptxqtop_terminate : 1;
22787 + unsigned nptxqtop_token : 2;
22788 + unsigned nptxqtop_chnep : 4;
22789 + unsigned reserved : 1;
22790 + } b;
22791 +} gnptxsts_data_t;
22792 +
22793 +/**
22794 + * This union represents the bit fields in the Transmit
22795 + * FIFO Status Register (DTXFSTS). Read the register into the
22796 + * <i>d32</i> element then read out the bits using the <i>b</i>it
22797 + * elements.
22798 + */
22799 +typedef union dtxfsts_data
22800 +{
22801 + /** raw register data */
22802 + uint32_t d32;
22803 + /** register bits */
22804 + struct
22805 + {
22806 + unsigned txfspcavail : 16;
22807 + unsigned reserved : 16;
22808 + } b;
22809 +} dtxfsts_data_t;
22810 +
22811 +/**
22812 + * This union represents the bit fields in the I2C Control Register
22813 + * (I2CCTL). Read the register into the <i>d32</i> element then read out the
22814 + * bits using the <i>b</i>it elements.
22815 + */
22816 +typedef union gi2cctl_data
22817 +{
22818 + /** raw register data */
22819 + uint32_t d32;
22820 + /** register bits */
22821 + struct
22822 + {
22823 + unsigned rwdata : 8;
22824 + unsigned regaddr : 8;
22825 + unsigned addr : 7;
22826 + unsigned i2cen : 1;
22827 + unsigned ack : 1;
22828 + unsigned i2csuspctl : 1;
22829 + unsigned i2cdevaddr : 2;
22830 + unsigned reserved : 2;
22831 + unsigned rw : 1;
22832 + unsigned bsydne : 1;
22833 + } b;
22834 +} gi2cctl_data_t;
22835 +
22836 +/**
22837 + * This union represents the bit fields in the User HW Config1
22838 + * Register. Read the register into the <i>d32</i> element then read
22839 + * out the bits using the <i>b</i>it elements.
22840 + */
22841 +typedef union hwcfg1_data
22842 +{
22843 + /** raw register data */
22844 + uint32_t d32;
22845 + /** register bits */
22846 + struct
22847 + {
22848 + unsigned ep_dir0 : 2;
22849 + unsigned ep_dir1 : 2;
22850 + unsigned ep_dir2 : 2;
22851 + unsigned ep_dir3 : 2;
22852 + unsigned ep_dir4 : 2;
22853 + unsigned ep_dir5 : 2;
22854 + unsigned ep_dir6 : 2;
22855 + unsigned ep_dir7 : 2;
22856 + unsigned ep_dir8 : 2;
22857 + unsigned ep_dir9 : 2;
22858 + unsigned ep_dir10 : 2;
22859 + unsigned ep_dir11 : 2;
22860 + unsigned ep_dir12 : 2;
22861 + unsigned ep_dir13 : 2;
22862 + unsigned ep_dir14 : 2;
22863 + unsigned ep_dir15 : 2;
22864 + } b;
22865 +} hwcfg1_data_t;
22866 +
22867 +/**
22868 + * This union represents the bit fields in the User HW Config2
22869 + * Register. Read the register into the <i>d32</i> element then read
22870 + * out the bits using the <i>b</i>it elements.
22871 + */
22872 +typedef union hwcfg2_data
22873 +{
22874 + /** raw register data */
22875 + uint32_t d32;
22876 + /** register bits */
22877 + struct
22878 + {
22879 + /* GHWCFG2 */
22880 + unsigned op_mode : 3;
22881 +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
22882 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
22883 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
22884 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
22885 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
22886 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
22887 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
22888 +
22889 + unsigned architecture : 2;
22890 + unsigned point2point : 1;
22891 + unsigned hs_phy_type : 2;
22892 +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
22893 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
22894 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
22895 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
22896 +
22897 + unsigned fs_phy_type : 2;
22898 + unsigned num_dev_ep : 4;
22899 + unsigned num_host_chan : 4;
22900 + unsigned perio_ep_supported : 1;
22901 + unsigned dynamic_fifo : 1;
22902 + unsigned multi_proc_int : 1;
22903 + unsigned reserved21 : 1;
22904 + unsigned nonperio_tx_q_depth : 2;
22905 + unsigned host_perio_tx_q_depth : 2;
22906 + unsigned dev_token_q_depth : 5;
22907 + unsigned reserved31 : 1;
22908 + } b;
22909 +} hwcfg2_data_t;
22910 +
22911 +/**
22912 + * This union represents the bit fields in the User HW Config3
22913 + * Register. Read the register into the <i>d32</i> element then read
22914 + * out the bits using the <i>b</i>it elements.
22915 + */
22916 +typedef union hwcfg3_data
22917 +{
22918 + /** raw register data */
22919 + uint32_t d32;
22920 + /** register bits */
22921 + struct
22922 + {
22923 + /* GHWCFG3 */
22924 + unsigned xfer_size_cntr_width : 4;
22925 + unsigned packet_size_cntr_width : 3;
22926 + unsigned otg_func : 1;
22927 + unsigned i2c : 1;
22928 + unsigned vendor_ctrl_if : 1;
22929 + unsigned optional_features : 1;
22930 + unsigned synch_reset_type : 1;
22931 + unsigned ahb_phy_clock_synch : 1;
22932 + unsigned reserved15_13 : 3;
22933 + unsigned dfifo_depth : 16;
22934 + } b;
22935 +} hwcfg3_data_t;
22936 +
22937 +/**
22938 + * This union represents the bit fields in the User HW Config4
22939 + * Register. Read the register into the <i>d32</i> element then read
22940 + * out the bits using the <i>b</i>it elements.
22941 + */
22942 +typedef union hwcfg4_data
22943 +{
22944 + /** raw register data */
22945 + uint32_t d32;
22946 + /** register bits */
22947 + struct
22948 + {
22949 + unsigned num_dev_perio_in_ep : 4;
22950 + unsigned power_optimiz : 1;
22951 + unsigned min_ahb_freq : 9;
22952 + unsigned utmi_phy_data_width : 2;
22953 + unsigned num_dev_mode_ctrl_ep : 4;
22954 + unsigned iddig_filt_en : 1;
22955 + unsigned vbus_valid_filt_en : 1;
22956 + unsigned a_valid_filt_en : 1;
22957 + unsigned b_valid_filt_en : 1;
22958 + unsigned session_end_filt_en : 1;
22959 + unsigned ded_fifo_en : 1;
22960 + unsigned num_in_eps : 4;
22961 + unsigned desc_dma : 1;
22962 + unsigned desc_dma_dyn : 1;
22963 + } b;
22964 +} hwcfg4_data_t;
22965 +
22966 +////////////////////////////////////////////
22967 +// Device Registers
22968 +/**
22969 + * Device Global Registers. <i>Offsets 800h-BFFh</i>
22970 + *
22971 + * The following structures define the size and relative field offsets
22972 + * for the Device Mode Registers.
22973 + *
22974 + * <i>These registers are visible only in Device mode and must not be
22975 + * accessed in Host mode, as the results are unknown.</i>
22976 + */
22977 +typedef struct dwc_otg_dev_global_regs
22978 +{
22979 + /** Device Configuration Register. <i>Offset 800h</i> */
22980 + volatile uint32_t dcfg;
22981 + /** Device Control Register. <i>Offset: 804h</i> */
22982 + volatile uint32_t dctl;
22983 + /** Device Status Register (Read Only). <i>Offset: 808h</i> */
22984 + volatile uint32_t dsts;
22985 + /** Reserved. <i>Offset: 80Ch</i> */
22986 + uint32_t unused;
22987 + /** Device IN Endpoint Common Interrupt Mask
22988 + * Register. <i>Offset: 810h</i> */
22989 + volatile uint32_t diepmsk;
22990 + /** Device OUT Endpoint Common Interrupt Mask
22991 + * Register. <i>Offset: 814h</i> */
22992 + volatile uint32_t doepmsk;
22993 + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
22994 + volatile uint32_t daint;
22995 + /** Device All Endpoints Interrupt Mask Register. <i>Offset:
22996 + * 81Ch</i> */
22997 + volatile uint32_t daintmsk;
22998 + /** Device IN Token Queue Read Register-1 (Read Only).
22999 + * <i>Offset: 820h</i> */
23000 + volatile uint32_t dtknqr1;
23001 + /** Device IN Token Queue Read Register-2 (Read Only).
23002 + * <i>Offset: 824h</i> */
23003 + volatile uint32_t dtknqr2;
23004 + /** Device VBUS discharge Register. <i>Offset: 828h</i> */
23005 + volatile uint32_t dvbusdis;
23006 + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
23007 + volatile uint32_t dvbuspulse;
23008 + /** Device IN Token Queue Read Register-3 (Read Only). /
23009 + * Device Thresholding control register (Read/Write)
23010 + * <i>Offset: 830h</i> */
23011 + volatile uint32_t dtknqr3_dthrctl;
23012 + /** Device IN Token Queue Read Register-4 (Read Only). /
23013 + * Device IN EPs empty Inr. Mask Register (Read/Write)
23014 + * <i>Offset: 834h</i> */
23015 + volatile uint32_t dtknqr4_fifoemptymsk;
23016 + /** Device Each Endpoint Interrupt Register (Read Only). /
23017 + * <i>Offset: 838h</i> */
23018 + volatile uint32_t deachint;
23019 + /** Device Each Endpoint Interrupt mask Register (Read/Write). /
23020 + * <i>Offset: 83Ch</i> */
23021 + volatile uint32_t deachintmsk;
23022 + /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
23023 + * <i>Offset: 840h</i> */
23024 + volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
23025 + /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
23026 + * <i>Offset: 880h</i> */
23027 + volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
23028 +} dwc_otg_device_global_regs_t;
23029 +
23030 +/**
23031 + * This union represents the bit fields in the Device Configuration
23032 + * Register. Read the register into the <i>d32</i> member then
23033 + * set/clear the bits using the <i>b</i>it elements. Write the
23034 + * <i>d32</i> member to the dcfg register.
23035 + */
23036 +typedef union dcfg_data
23037 +{
23038 + /** raw register data */
23039 + uint32_t d32;
23040 + /** register bits */
23041 + struct
23042 + {
23043 + /** Device Speed */
23044 + unsigned devspd : 2;
23045 + /** Non Zero Length Status OUT Handshake */
23046 + unsigned nzstsouthshk : 1;
23047 +#define DWC_DCFG_SEND_STALL 1
23048 +
23049 + unsigned reserved3 : 1;
23050 + /** Device Addresses */
23051 + unsigned devaddr : 7;
23052 + /** Periodic Frame Interval */
23053 + unsigned perfrint : 2;
23054 +#define DWC_DCFG_FRAME_INTERVAL_80 0
23055 +#define DWC_DCFG_FRAME_INTERVAL_85 1
23056 +#define DWC_DCFG_FRAME_INTERVAL_90 2
23057 +#define DWC_DCFG_FRAME_INTERVAL_95 3
23058 +
23059 + unsigned reserved13_17 : 5;
23060 + /** In Endpoint Mis-match count */
23061 + unsigned epmscnt : 5;
23062 + /** Enable Descriptor DMA in Device mode */
23063 + unsigned descdma : 1;
23064 + } b;
23065 +} dcfg_data_t;
23066 +
23067 +/**
23068 + * This union represents the bit fields in the Device Control
23069 + * Register. Read the register into the <i>d32</i> member then
23070 + * set/clear the bits using the <i>b</i>it elements.
23071 + */
23072 +typedef union dctl_data
23073 +{
23074 + /** raw register data */
23075 + uint32_t d32;
23076 + /** register bits */
23077 + struct
23078 + {
23079 + /** Remote Wakeup */
23080 + unsigned rmtwkupsig : 1;
23081 + /** Soft Disconnect */
23082 + unsigned sftdiscon : 1;
23083 + /** Global Non-Periodic IN NAK Status */
23084 + unsigned gnpinnaksts : 1;
23085 + /** Global OUT NAK Status */
23086 + unsigned goutnaksts : 1;
23087 + /** Test Control */
23088 + unsigned tstctl : 3;
23089 + /** Set Global Non-Periodic IN NAK */
23090 + unsigned sgnpinnak : 1;
23091 + /** Clear Global Non-Periodic IN NAK */
23092 + unsigned cgnpinnak : 1;
23093 + /** Set Global OUT NAK */
23094 + unsigned sgoutnak : 1;
23095 + /** Clear Global OUT NAK */
23096 + unsigned cgoutnak : 1;
23097 +
23098 + /** Power-On Programming Done */
23099 + unsigned pwronprgdone : 1;
23100 + /** Global Continue on BNA */
23101 + unsigned gcontbna : 1;
23102 + /** Global Multi Count */
23103 + unsigned gmc : 2;
23104 + /** Ignore Frame Number for ISOC EPs */
23105 + unsigned ifrmnum : 1;
23106 + /** NAK on Babble */
23107 + unsigned nakonbble : 1;
23108 +
23109 + unsigned reserved16_31 : 16;
23110 + } b;
23111 +} dctl_data_t;
23112 +
23113 +/**
23114 + * This union represents the bit fields in the Device Status
23115 + * Register. Read the register into the <i>d32</i> member then
23116 + * set/clear the bits using the <i>b</i>it elements.
23117 + */
23118 +typedef union dsts_data
23119 +{
23120 + /** raw register data */
23121 + uint32_t d32;
23122 + /** register bits */
23123 + struct
23124 + {
23125 + /** Suspend Status */
23126 + unsigned suspsts : 1;
23127 + /** Enumerated Speed */
23128 + unsigned enumspd : 2;
23129 +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
23130 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
23131 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
23132 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
23133 + /** Erratic Error */
23134 + unsigned errticerr : 1;
23135 + unsigned reserved4_7: 4;
23136 + /** Frame or Microframe Number of the received SOF */
23137 + unsigned soffn : 14;
23138 + unsigned reserved22_31 : 10;
23139 + } b;
23140 +} dsts_data_t;
23141 +
23142 +
23143 +/**
23144 + * This union represents the bit fields in the Device IN EP Interrupt
23145 + * Register and the Device IN EP Common Mask Register.
23146 + *
23147 + * - Read the register into the <i>d32</i> member then set/clear the
23148 + * bits using the <i>b</i>it elements.
23149 + */
23150 +typedef union diepint_data
23151 +{
23152 + /** raw register data */
23153 + uint32_t d32;
23154 + /** register bits */
23155 + struct
23156 + {
23157 + /** Transfer complete mask */
23158 + unsigned xfercompl : 1;
23159 + /** Endpoint disable mask */
23160 + unsigned epdisabled : 1;
23161 + /** AHB Error mask */
23162 + unsigned ahberr : 1;
23163 + /** TimeOUT Handshake mask (non-ISOC EPs) */
23164 + unsigned timeout : 1;
23165 + /** IN Token received with TxF Empty mask */
23166 + unsigned intktxfemp : 1;
23167 + /** IN Token Received with EP mismatch mask */
23168 + unsigned intknepmis : 1;
23169 + /** IN Endpoint HAK Effective mask */
23170 + unsigned inepnakeff : 1;
23171 + /** IN Endpoint HAK Effective mask */
23172 + unsigned emptyintr : 1;
23173 +
23174 + unsigned txfifoundrn : 1;
23175 +
23176 + /** BNA Interrupt mask */
23177 + unsigned bna : 1;
23178 +
23179 + unsigned reserved10_12 : 3;
23180 + /** BNA Interrupt mask */
23181 + unsigned nak : 1;
23182 +
23183 + unsigned reserved14_31 : 18;
23184 + } b;
23185 +} diepint_data_t;
23186 +
23187 +/**
23188 + * This union represents the bit fields in the Device IN EP
23189 + * Common/Dedicated Interrupt Mask Register.
23190 + */
23191 +typedef union diepint_data diepmsk_data_t;
23192 +
23193 +/**
23194 + * This union represents the bit fields in the Device OUT EP Interrupt
23195 + * Registerand Device OUT EP Common Interrupt Mask Register.
23196 + *
23197 + * - Read the register into the <i>d32</i> member then set/clear the
23198 + * bits using the <i>b</i>it elements.
23199 + */
23200 +typedef union doepint_data
23201 +{
23202 + /** raw register data */
23203 + uint32_t d32;
23204 + /** register bits */
23205 + struct
23206 + {
23207 + /** Transfer complete */
23208 + unsigned xfercompl : 1;
23209 + /** Endpoint disable */
23210 + unsigned epdisabled : 1;
23211 + /** AHB Error */
23212 + unsigned ahberr : 1;
23213 + /** Setup Phase Done (contorl EPs) */
23214 + unsigned setup : 1;
23215 + /** OUT Token Received when Endpoint Disabled */
23216 + unsigned outtknepdis : 1;
23217 +
23218 + unsigned stsphsercvd : 1;
23219 + /** Back-to-Back SETUP Packets Received */
23220 + unsigned back2backsetup : 1;
23221 +
23222 + unsigned reserved7 : 1;
23223 + /** OUT packet Error */
23224 + unsigned outpkterr : 1;
23225 + /** BNA Interrupt */
23226 + unsigned bna : 1;
23227 +
23228 + unsigned reserved10 : 1;
23229 + /** Packet Drop Status */
23230 + unsigned pktdrpsts : 1;
23231 + /** Babble Interrupt */
23232 + unsigned babble : 1;
23233 + /** NAK Interrupt */
23234 + unsigned nak : 1;
23235 + /** NYET Interrupt */
23236 + unsigned nyet : 1;
23237 +
23238 + unsigned reserved15_31 : 17;
23239 + } b;
23240 +} doepint_data_t;
23241 +
23242 +/**
23243 + * This union represents the bit fields in the Device OUT EP
23244 + * Common/Dedicated Interrupt Mask Register.
23245 + */
23246 +typedef union doepint_data doepmsk_data_t;
23247 +
23248 +/**
23249 + * This union represents the bit fields in the Device All EP Interrupt
23250 + * and Mask Registers.
23251 + * - Read the register into the <i>d32</i> member then set/clear the
23252 + * bits using the <i>b</i>it elements.
23253 + */
23254 +typedef union daint_data
23255 +{
23256 + /** raw register data */
23257 + uint32_t d32;
23258 + /** register bits */
23259 + struct
23260 + {
23261 + /** IN Endpoint bits */
23262 + unsigned in : 16;
23263 + /** OUT Endpoint bits */
23264 + unsigned out : 16;
23265 + } ep;
23266 + struct
23267 + {
23268 + /** IN Endpoint bits */
23269 + unsigned inep0 : 1;
23270 + unsigned inep1 : 1;
23271 + unsigned inep2 : 1;
23272 + unsigned inep3 : 1;
23273 + unsigned inep4 : 1;
23274 + unsigned inep5 : 1;
23275 + unsigned inep6 : 1;
23276 + unsigned inep7 : 1;
23277 + unsigned inep8 : 1;
23278 + unsigned inep9 : 1;
23279 + unsigned inep10 : 1;
23280 + unsigned inep11 : 1;
23281 + unsigned inep12 : 1;
23282 + unsigned inep13 : 1;
23283 + unsigned inep14 : 1;
23284 + unsigned inep15 : 1;
23285 + /** OUT Endpoint bits */
23286 + unsigned outep0 : 1;
23287 + unsigned outep1 : 1;
23288 + unsigned outep2 : 1;
23289 + unsigned outep3 : 1;
23290 + unsigned outep4 : 1;
23291 + unsigned outep5 : 1;
23292 + unsigned outep6 : 1;
23293 + unsigned outep7 : 1;
23294 + unsigned outep8 : 1;
23295 + unsigned outep9 : 1;
23296 + unsigned outep10 : 1;
23297 + unsigned outep11 : 1;
23298 + unsigned outep12 : 1;
23299 + unsigned outep13 : 1;
23300 + unsigned outep14 : 1;
23301 + unsigned outep15 : 1;
23302 + } b;
23303 +} daint_data_t;
23304 +
23305 +/**
23306 + * This union represents the bit fields in the Device IN Token Queue
23307 + * Read Registers.
23308 + * - Read the register into the <i>d32</i> member.
23309 + * - READ-ONLY Register
23310 + */
23311 +typedef union dtknq1_data
23312 +{
23313 + /** raw register data */
23314 + uint32_t d32;
23315 + /** register bits */
23316 + struct
23317 + {
23318 + /** In Token Queue Write Pointer */
23319 + unsigned intknwptr : 5;
23320 + /** Reserved */
23321 + unsigned reserved05_06 : 2;
23322 + /** write pointer has wrapped. */
23323 + unsigned wrap_bit : 1;
23324 + /** EP Numbers of IN Tokens 0 ... 4 */
23325 + unsigned epnums0_5 : 24;
23326 + }b;
23327 +} dtknq1_data_t;
23328 +
23329 +/**
23330 + * This union represents Threshold control Register
23331 + * - Read and write the register into the <i>d32</i> member.
23332 + * - READ-WRITABLE Register
23333 + */
23334 +typedef union dthrctl_data
23335 +{
23336 + /** raw register data */
23337 + uint32_t d32;
23338 + /** register bits */
23339 + struct
23340 + {
23341 + /** non ISO Tx Thr. Enable */
23342 + unsigned non_iso_thr_en : 1;
23343 + /** ISO Tx Thr. Enable */
23344 + unsigned iso_thr_en : 1;
23345 + /** Tx Thr. Length */
23346 + unsigned tx_thr_len : 9;
23347 + /** Reserved */
23348 + unsigned reserved11_15 : 5;
23349 + /** Rx Thr. Enable */
23350 + unsigned rx_thr_en : 1;
23351 + /** Rx Thr. Length */
23352 + unsigned rx_thr_len : 9;
23353 + /** Reserved */
23354 + unsigned reserved26_31 : 6;
23355 + }b;
23356 +} dthrctl_data_t;
23357 +
23358 +
23359 +/**
23360 + * Device Logical IN Endpoint-Specific Registers. <i>Offsets
23361 + * 900h-AFCh</i>
23362 + *
23363 + * There will be one set of endpoint registers per logical endpoint
23364 + * implemented.
23365 + *
23366 + * <i>These registers are visible only in Device mode and must not be
23367 + * accessed in Host mode, as the results are unknown.</i>
23368 + */
23369 +typedef struct dwc_otg_dev_in_ep_regs
23370 +{
23371 + /** Device IN Endpoint Control Register. <i>Offset:900h +
23372 + * (ep_num * 20h) + 00h</i> */
23373 + volatile uint32_t diepctl;
23374 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
23375 + uint32_t reserved04;
23376 + /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
23377 + * (ep_num * 20h) + 08h</i> */
23378 + volatile uint32_t diepint;
23379 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
23380 + uint32_t reserved0C;
23381 + /** Device IN Endpoint Transfer Size
23382 + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
23383 + volatile uint32_t dieptsiz;
23384 + /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
23385 + * (ep_num * 20h) + 14h</i> */
23386 + volatile uint32_t diepdma;
23387 + /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
23388 + * (ep_num * 20h) + 18h</i> */
23389 + volatile uint32_t dtxfsts;
23390 + /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
23391 + * (ep_num * 20h) + 1Ch</i> */
23392 + volatile uint32_t diepdmab;
23393 +} dwc_otg_dev_in_ep_regs_t;
23394 +
23395 +/**
23396 + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
23397 + * B00h-CFCh</i>
23398 + *
23399 + * There will be one set of endpoint registers per logical endpoint
23400 + * implemented.
23401 + *
23402 + * <i>These registers are visible only in Device mode and must not be
23403 + * accessed in Host mode, as the results are unknown.</i>
23404 + */
23405 +typedef struct dwc_otg_dev_out_ep_regs
23406 +{
23407 + /** Device OUT Endpoint Control Register. <i>Offset:B00h +
23408 + * (ep_num * 20h) + 00h</i> */
23409 + volatile uint32_t doepctl;
23410 + /** Device OUT Endpoint Frame number Register. <i>Offset:
23411 + * B00h + (ep_num * 20h) + 04h</i> */
23412 + volatile uint32_t doepfn;
23413 + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
23414 + * (ep_num * 20h) + 08h</i> */
23415 + volatile uint32_t doepint;
23416 + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
23417 + uint32_t reserved0C;
23418 + /** Device OUT Endpoint Transfer Size Register. <i>Offset:
23419 + * B00h + (ep_num * 20h) + 10h</i> */
23420 + volatile uint32_t doeptsiz;
23421 + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
23422 + * + (ep_num * 20h) + 14h</i> */
23423 + volatile uint32_t doepdma;
23424 + /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
23425 + uint32_t unused;
23426 + /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
23427 + * + (ep_num * 20h) + 1Ch</i> */
23428 + uint32_t doepdmab;
23429 +} dwc_otg_dev_out_ep_regs_t;
23430 +
23431 +/**
23432 + * This union represents the bit fields in the Device EP Control
23433 + * Register. Read the register into the <i>d32</i> member then
23434 + * set/clear the bits using the <i>b</i>it elements.
23435 + */
23436 +typedef union depctl_data
23437 +{
23438 + /** raw register data */
23439 + uint32_t d32;
23440 + /** register bits */
23441 + struct
23442 + {
23443 + /** Maximum Packet Size
23444 + * IN/OUT EPn
23445 + * IN/OUT EP0 - 2 bits
23446 + * 2'b00: 64 Bytes
23447 + * 2'b01: 32
23448 + * 2'b10: 16
23449 + * 2'b11: 8 */
23450 + unsigned mps : 11;
23451 +#define DWC_DEP0CTL_MPS_64 0
23452 +#define DWC_DEP0CTL_MPS_32 1
23453 +#define DWC_DEP0CTL_MPS_16 2
23454 +#define DWC_DEP0CTL_MPS_8 3
23455 +
23456 + /** Next Endpoint
23457 + * IN EPn/IN EP0
23458 + * OUT EPn/OUT EP0 - reserved */
23459 + unsigned nextep : 4;
23460 +
23461 + /** USB Active Endpoint */
23462 + unsigned usbactep : 1;
23463 +
23464 + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
23465 + * This field contains the PID of the packet going to
23466 + * be received or transmitted on this endpoint. The
23467 + * application should program the PID of the first
23468 + * packet going to be received or transmitted on this
23469 + * endpoint , after the endpoint is
23470 + * activated. Application use the SetD1PID and
23471 + * SetD0PID fields of this register to program either
23472 + * D0 or D1 PID.
23473 + *
23474 + * The encoding for this field is
23475 + * - 0: D0
23476 + * - 1: D1
23477 + */
23478 + unsigned dpid : 1;
23479 +
23480 + /** NAK Status */
23481 + unsigned naksts : 1;
23482 +
23483 + /** Endpoint Type
23484 + * 2'b00: Control
23485 + * 2'b01: Isochronous
23486 + * 2'b10: Bulk
23487 + * 2'b11: Interrupt */
23488 + unsigned eptype : 2;
23489 +
23490 + /** Snoop Mode
23491 + * OUT EPn/OUT EP0
23492 + * IN EPn/IN EP0 - reserved */
23493 + unsigned snp : 1;
23494 +
23495 + /** Stall Handshake */
23496 + unsigned stall : 1;
23497 +
23498 + /** Tx Fifo Number
23499 + * IN EPn/IN EP0
23500 + * OUT EPn/OUT EP0 - reserved */
23501 + unsigned txfnum : 4;
23502 +
23503 + /** Clear NAK */
23504 + unsigned cnak : 1;
23505 + /** Set NAK */
23506 + unsigned snak : 1;
23507 + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
23508 + * Writing to this field sets the Endpoint DPID (DPID)
23509 + * field in this register to DATA0. Set Even
23510 + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
23511 + * Writing to this field sets the Even/Odd
23512 + * (micro)frame (EO_FrNum) field to even (micro)
23513 + * frame.
23514 + */
23515 + unsigned setd0pid : 1;
23516 + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
23517 + * Writing to this field sets the Endpoint DPID (DPID)
23518 + * field in this register to DATA1 Set Odd
23519 + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
23520 + * Writing to this field sets the Even/Odd
23521 + * (micro)frame (EO_FrNum) field to odd (micro) frame.
23522 + */
23523 + unsigned setd1pid : 1;
23524 +
23525 + /** Endpoint Disable */
23526 + unsigned epdis : 1;
23527 + /** Endpoint Enable */
23528 + unsigned epena : 1;
23529 + } b;
23530 +} depctl_data_t;
23531 +
23532 +/**
23533 + * This union represents the bit fields in the Device EP Transfer
23534 + * Size Register. Read the register into the <i>d32</i> member then
23535 + * set/clear the bits using the <i>b</i>it elements.
23536 + */
23537 +typedef union deptsiz_data
23538 +{
23539 + /** raw register data */
23540 + uint32_t d32;
23541 + /** register bits */
23542 + struct {
23543 + /** Transfer size */
23544 + unsigned xfersize : 19;
23545 + /** Packet Count */
23546 + unsigned pktcnt : 10;
23547 + /** Multi Count - Periodic IN endpoints */
23548 + unsigned mc : 2;
23549 + unsigned reserved : 1;
23550 + } b;
23551 +} deptsiz_data_t;
23552 +
23553 +/**
23554 + * This union represents the bit fields in the Device EP 0 Transfer
23555 + * Size Register. Read the register into the <i>d32</i> member then
23556 + * set/clear the bits using the <i>b</i>it elements.
23557 + */
23558 +typedef union deptsiz0_data
23559 +{
23560 + /** raw register data */
23561 + uint32_t d32;
23562 + /** register bits */
23563 + struct {
23564 + /** Transfer size */
23565 + unsigned xfersize : 7;
23566 + /** Reserved */
23567 + unsigned reserved7_18 : 12;
23568 + /** Packet Count */
23569 + unsigned pktcnt : 1;
23570 + /** Reserved */
23571 + unsigned reserved20_28 : 9;
23572 + /**Setup Packet Count (DOEPTSIZ0 Only) */
23573 + unsigned supcnt : 2;
23574 + unsigned reserved31;
23575 + } b;
23576 +} deptsiz0_data_t;
23577 +
23578 +
23579 +/////////////////////////////////////////////////
23580 +// DMA Descriptor Specific Structures
23581 +//
23582 +
23583 +/** Buffer status definitions */
23584 +
23585 +#define BS_HOST_READY 0x0
23586 +#define BS_DMA_BUSY 0x1
23587 +#define BS_DMA_DONE 0x2
23588 +#define BS_HOST_BUSY 0x3
23589 +
23590 +/** Receive/Transmit status definitions */
23591 +
23592 +#define RTS_SUCCESS 0x0
23593 +#define RTS_BUFFLUSH 0x1
23594 +#define RTS_RESERVED 0x2
23595 +#define RTS_BUFERR 0x3
23596 +
23597 +
23598 +/**
23599 + * This union represents the bit fields in the DMA Descriptor
23600 + * status quadlet. Read the quadlet into the <i>d32</i> member then
23601 + * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
23602 + * <i>b_iso_in</i> elements.
23603 + */
23604 +typedef union desc_sts_data
23605 +{
23606 + /** raw register data */
23607 + uint32_t d32;
23608 + /** quadlet bits */
23609 + struct {
23610 + /** Received number of bytes */
23611 + unsigned bytes : 16;
23612 +
23613 + unsigned reserved16_22 : 7;
23614 + /** Multiple Transfer - only for OUT EPs */
23615 + unsigned mtrf : 1;
23616 + /** Setup Packet received - only for OUT EPs */
23617 + unsigned sr : 1;
23618 + /** Interrupt On Complete */
23619 + unsigned ioc : 1;
23620 + /** Short Packet */
23621 + unsigned sp : 1;
23622 + /** Last */
23623 + unsigned l : 1;
23624 + /** Receive Status */
23625 + unsigned sts : 2;
23626 + /** Buffer Status */
23627 + unsigned bs : 2;
23628 + } b;
23629 +
23630 +#ifdef DWC_EN_ISOC
23631 + /** iso out quadlet bits */
23632 + struct {
23633 + /** Received number of bytes */
23634 + unsigned rxbytes : 11;
23635 +
23636 + unsigned reserved11 : 1;
23637 + /** Frame Number */
23638 + unsigned framenum : 11;
23639 + /** Received ISO Data PID */
23640 + unsigned pid : 2;
23641 + /** Interrupt On Complete */
23642 + unsigned ioc : 1;
23643 + /** Short Packet */
23644 + unsigned sp : 1;
23645 + /** Last */
23646 + unsigned l : 1;
23647 + /** Receive Status */
23648 + unsigned rxsts : 2;
23649 + /** Buffer Status */
23650 + unsigned bs : 2;
23651 + } b_iso_out;
23652 +
23653 + /** iso in quadlet bits */
23654 + struct {
23655 + /** Transmited number of bytes */
23656 + unsigned txbytes : 12;
23657 + /** Frame Number */
23658 + unsigned framenum : 11;
23659 + /** Transmited ISO Data PID */
23660 + unsigned pid : 2;
23661 + /** Interrupt On Complete */
23662 + unsigned ioc : 1;
23663 + /** Short Packet */
23664 + unsigned sp : 1;
23665 + /** Last */
23666 + unsigned l : 1;
23667 + /** Transmit Status */
23668 + unsigned txsts : 2;
23669 + /** Buffer Status */
23670 + unsigned bs : 2;
23671 + } b_iso_in;
23672 +#endif //DWC_EN_ISOC
23673 +} desc_sts_data_t;
23674 +
23675 +/**
23676 + * DMA Descriptor structure
23677 + *
23678 + * DMA Descriptor structure contains two quadlets:
23679 + * Status quadlet and Data buffer pointer.
23680 + */
23681 +typedef struct dwc_otg_dma_desc
23682 +{
23683 + /** DMA Descriptor status quadlet */
23684 + desc_sts_data_t status;
23685 + /** DMA Descriptor data buffer pointer */
23686 + dma_addr_t buf;
23687 +} dwc_otg_dma_desc_t;
23688 +
23689 +/**
23690 + * The dwc_otg_dev_if structure contains information needed to manage
23691 + * the DWC_otg controller acting in device mode. It represents the
23692 + * programming view of the device-specific aspects of the controller.
23693 + */
23694 +typedef struct dwc_otg_dev_if
23695 +{
23696 + /** Pointer to device Global registers.
23697 + * Device Global Registers starting at offset 800h
23698 + */
23699 + dwc_otg_device_global_regs_t *dev_global_regs;
23700 +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
23701 +
23702 + /**
23703 + * Device Logical IN Endpoint-Specific Registers 900h-AFCh
23704 + */
23705 + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
23706 +#define DWC_DEV_IN_EP_REG_OFFSET 0x900
23707 +#define DWC_EP_REG_OFFSET 0x20
23708 +
23709 + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
23710 + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
23711 +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
23712 +
23713 + /* Device configuration information*/
23714 + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
23715 + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
23716 + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
23717 +
23718 + /** Size of periodic FIFOs (Bytes) */
23719 + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
23720 +
23721 + /** Size of Tx FIFOs (Bytes) */
23722 + uint16_t tx_fifo_size[MAX_TX_FIFOS];
23723 +
23724 + /** Thresholding enable flags and length varaiables **/
23725 + uint16_t rx_thr_en;
23726 + uint16_t iso_tx_thr_en;
23727 + uint16_t non_iso_tx_thr_en;
23728 +
23729 + uint16_t rx_thr_length;
23730 + uint16_t tx_thr_length;
23731 +
23732 + /**
23733 + * Pointers to the DMA Descriptors for EP0 Control
23734 + * transfers (virtual and physical)
23735 + */
23736 +
23737 + /** 2 descriptors for SETUP packets */
23738 + uint32_t dma_setup_desc_addr[2];
23739 + dwc_otg_dma_desc_t* setup_desc_addr[2];
23740 +
23741 + /** Pointer to Descriptor with latest SETUP packet */
23742 + dwc_otg_dma_desc_t* psetup;
23743 +
23744 + /** Index of current SETUP handler descriptor */
23745 + uint32_t setup_desc_index;
23746 +
23747 + /** Descriptor for Data In or Status In phases */
23748 + uint32_t dma_in_desc_addr;
23749 + dwc_otg_dma_desc_t* in_desc_addr;;
23750 +
23751 + /** Descriptor for Data Out or Status Out phases */
23752 + uint32_t dma_out_desc_addr;
23753 + dwc_otg_dma_desc_t* out_desc_addr;
23754 +
23755 +} dwc_otg_dev_if_t;
23756 +
23757 +
23758 +
23759 +
23760 +/////////////////////////////////////////////////
23761 +// Host Mode Register Structures
23762 +//
23763 +/**
23764 + * The Host Global Registers structure defines the size and relative
23765 + * field offsets for the Host Mode Global Registers. Host Global
23766 + * Registers offsets 400h-7FFh.
23767 +*/
23768 +typedef struct dwc_otg_host_global_regs
23769 +{
23770 + /** Host Configuration Register. <i>Offset: 400h</i> */
23771 + volatile uint32_t hcfg;
23772 + /** Host Frame Interval Register. <i>Offset: 404h</i> */
23773 + volatile uint32_t hfir;
23774 + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
23775 + volatile uint32_t hfnum;
23776 + /** Reserved. <i>Offset: 40Ch</i> */
23777 + uint32_t reserved40C;
23778 + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
23779 + volatile uint32_t hptxsts;
23780 + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
23781 + volatile uint32_t haint;
23782 + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
23783 + volatile uint32_t haintmsk;
23784 +} dwc_otg_host_global_regs_t;
23785 +
23786 +/**
23787 + * This union represents the bit fields in the Host Configuration Register.
23788 + * Read the register into the <i>d32</i> member then set/clear the bits using
23789 + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
23790 + */
23791 +typedef union hcfg_data
23792 +{
23793 + /** raw register data */
23794 + uint32_t d32;
23795 +
23796 + /** register bits */
23797 + struct
23798 + {
23799 + /** FS/LS Phy Clock Select */
23800 + unsigned fslspclksel : 2;
23801 +#define DWC_HCFG_30_60_MHZ 0
23802 +#define DWC_HCFG_48_MHZ 1
23803 +#define DWC_HCFG_6_MHZ 2
23804 +
23805 + /** FS/LS Only Support */
23806 + unsigned fslssupp : 1;
23807 + } b;
23808 +} hcfg_data_t;
23809 +
23810 +/**
23811 + * This union represents the bit fields in the Host Frame Remaing/Number
23812 + * Register.
23813 + */
23814 +typedef union hfir_data
23815 +{
23816 + /** raw register data */
23817 + uint32_t d32;
23818 +
23819 + /** register bits */
23820 + struct
23821 + {
23822 + unsigned frint : 16;
23823 + unsigned reserved : 16;
23824 + } b;
23825 +} hfir_data_t;
23826 +
23827 +/**
23828 + * This union represents the bit fields in the Host Frame Remaing/Number
23829 + * Register.
23830 + */
23831 +typedef union hfnum_data
23832 +{
23833 + /** raw register data */
23834 + uint32_t d32;
23835 +
23836 + /** register bits */
23837 + struct
23838 + {
23839 + unsigned frnum : 16;
23840 +#define DWC_HFNUM_MAX_FRNUM 0x3FFF
23841 + unsigned frrem : 16;
23842 + } b;
23843 +} hfnum_data_t;
23844 +
23845 +typedef union hptxsts_data
23846 +{
23847 + /** raw register data */
23848 + uint32_t d32;
23849 +
23850 + /** register bits */
23851 + struct
23852 + {
23853 + unsigned ptxfspcavail : 16;
23854 + unsigned ptxqspcavail : 8;
23855 + /** Top of the Periodic Transmit Request Queue
23856 + * - bit 24 - Terminate (last entry for the selected channel)
23857 + * - bits 26:25 - Token Type
23858 + * - 2'b00 - Zero length
23859 + * - 2'b01 - Ping
23860 + * - 2'b10 - Disable
23861 + * - bits 30:27 - Channel Number
23862 + * - bit 31 - Odd/even microframe
23863 + */
23864 + unsigned ptxqtop_terminate : 1;
23865 + unsigned ptxqtop_token : 2;
23866 + unsigned ptxqtop_chnum : 4;
23867 + unsigned ptxqtop_odd : 1;
23868 + } b;
23869 +} hptxsts_data_t;
23870 +
23871 +/**
23872 + * This union represents the bit fields in the Host Port Control and Status
23873 + * Register. Read the register into the <i>d32</i> member then set/clear the
23874 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
23875 + * hprt0 register.
23876 + */
23877 +typedef union hprt0_data
23878 +{
23879 + /** raw register data */
23880 + uint32_t d32;
23881 + /** register bits */
23882 + struct
23883 + {
23884 + unsigned prtconnsts : 1;
23885 + unsigned prtconndet : 1;
23886 + unsigned prtena : 1;
23887 + unsigned prtenchng : 1;
23888 + unsigned prtovrcurract : 1;
23889 + unsigned prtovrcurrchng : 1;
23890 + unsigned prtres : 1;
23891 + unsigned prtsusp : 1;
23892 + unsigned prtrst : 1;
23893 + unsigned reserved9 : 1;
23894 + unsigned prtlnsts : 2;
23895 + unsigned prtpwr : 1;
23896 + unsigned prttstctl : 4;
23897 + unsigned prtspd : 2;
23898 +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
23899 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
23900 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
23901 + unsigned reserved19_31 : 13;
23902 + } b;
23903 +} hprt0_data_t;
23904 +
23905 +/**
23906 + * This union represents the bit fields in the Host All Interrupt
23907 + * Register.
23908 + */
23909 +typedef union haint_data
23910 +{
23911 + /** raw register data */
23912 + uint32_t d32;
23913 + /** register bits */
23914 + struct
23915 + {
23916 + unsigned ch0 : 1;
23917 + unsigned ch1 : 1;
23918 + unsigned ch2 : 1;
23919 + unsigned ch3 : 1;
23920 + unsigned ch4 : 1;
23921 + unsigned ch5 : 1;
23922 + unsigned ch6 : 1;
23923 + unsigned ch7 : 1;
23924 + unsigned ch8 : 1;
23925 + unsigned ch9 : 1;
23926 + unsigned ch10 : 1;
23927 + unsigned ch11 : 1;
23928 + unsigned ch12 : 1;
23929 + unsigned ch13 : 1;
23930 + unsigned ch14 : 1;
23931 + unsigned ch15 : 1;
23932 + unsigned reserved : 16;
23933 + } b;
23934 +
23935 + struct
23936 + {
23937 + unsigned chint : 16;
23938 + unsigned reserved : 16;
23939 + } b2;
23940 +} haint_data_t;
23941 +
23942 +/**
23943 + * This union represents the bit fields in the Host All Interrupt
23944 + * Register.
23945 + */
23946 +typedef union haintmsk_data
23947 +{
23948 + /** raw register data */
23949 + uint32_t d32;
23950 + /** register bits */
23951 + struct
23952 + {
23953 + unsigned ch0 : 1;
23954 + unsigned ch1 : 1;
23955 + unsigned ch2 : 1;
23956 + unsigned ch3 : 1;
23957 + unsigned ch4 : 1;
23958 + unsigned ch5 : 1;
23959 + unsigned ch6 : 1;
23960 + unsigned ch7 : 1;
23961 + unsigned ch8 : 1;
23962 + unsigned ch9 : 1;
23963 + unsigned ch10 : 1;
23964 + unsigned ch11 : 1;
23965 + unsigned ch12 : 1;
23966 + unsigned ch13 : 1;
23967 + unsigned ch14 : 1;
23968 + unsigned ch15 : 1;
23969 + unsigned reserved : 16;
23970 + } b;
23971 +
23972 + struct
23973 + {
23974 + unsigned chint : 16;
23975 + unsigned reserved : 16;
23976 + } b2;
23977 +} haintmsk_data_t;
23978 +
23979 +/**
23980 + * Host Channel Specific Registers. <i>500h-5FCh</i>
23981 + */
23982 +typedef struct dwc_otg_hc_regs
23983 +{
23984 + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
23985 + volatile uint32_t hcchar;
23986 + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
23987 + volatile uint32_t hcsplt;
23988 + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
23989 + volatile uint32_t hcint;
23990 + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
23991 + volatile uint32_t hcintmsk;
23992 + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
23993 + volatile uint32_t hctsiz;
23994 + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
23995 + volatile uint32_t hcdma;
23996 + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
23997 + uint32_t reserved[2];
23998 +} dwc_otg_hc_regs_t;
23999 +
24000 +/**
24001 + * This union represents the bit fields in the Host Channel Characteristics
24002 + * Register. Read the register into the <i>d32</i> member then set/clear the
24003 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
24004 + * hcchar register.
24005 + */
24006 +typedef union hcchar_data
24007 +{
24008 + /** raw register data */
24009 + uint32_t d32;
24010 +
24011 + /** register bits */
24012 + struct
24013 + {
24014 + /** Maximum packet size in bytes */
24015 + unsigned mps : 11;
24016 +
24017 + /** Endpoint number */
24018 + unsigned epnum : 4;
24019 +
24020 + /** 0: OUT, 1: IN */
24021 + unsigned epdir : 1;
24022 +
24023 + unsigned reserved : 1;
24024 +
24025 + /** 0: Full/high speed device, 1: Low speed device */
24026 + unsigned lspddev : 1;
24027 +
24028 + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
24029 + unsigned eptype : 2;
24030 +
24031 + /** Packets per frame for periodic transfers. 0 is reserved. */
24032 + unsigned multicnt : 2;
24033 +
24034 + /** Device address */
24035 + unsigned devaddr : 7;
24036 +
24037 + /**
24038 + * Frame to transmit periodic transaction.
24039 + * 0: even, 1: odd
24040 + */
24041 + unsigned oddfrm : 1;
24042 +
24043 + /** Channel disable */
24044 + unsigned chdis : 1;
24045 +
24046 + /** Channel enable */
24047 + unsigned chen : 1;
24048 + } b;
24049 +} hcchar_data_t;
24050 +
24051 +typedef union hcsplt_data
24052 +{
24053 + /** raw register data */
24054 + uint32_t d32;
24055 +
24056 + /** register bits */
24057 + struct
24058 + {
24059 + /** Port Address */
24060 + unsigned prtaddr : 7;
24061 +
24062 + /** Hub Address */
24063 + unsigned hubaddr : 7;
24064 +
24065 + /** Transaction Position */
24066 + unsigned xactpos : 2;
24067 +#define DWC_HCSPLIT_XACTPOS_MID 0
24068 +#define DWC_HCSPLIT_XACTPOS_END 1
24069 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2
24070 +#define DWC_HCSPLIT_XACTPOS_ALL 3
24071 +
24072 + /** Do Complete Split */
24073 + unsigned compsplt : 1;
24074 +
24075 + /** Reserved */
24076 + unsigned reserved : 14;
24077 +
24078 + /** Split Enble */
24079 + unsigned spltena : 1;
24080 + } b;
24081 +} hcsplt_data_t;
24082 +
24083 +
24084 +/**
24085 + * This union represents the bit fields in the Host All Interrupt
24086 + * Register.
24087 + */
24088 +typedef union hcint_data
24089 +{
24090 + /** raw register data */
24091 + uint32_t d32;
24092 + /** register bits */
24093 + struct
24094 + {
24095 + /** Transfer Complete */
24096 + unsigned xfercomp : 1;
24097 + /** Channel Halted */
24098 + unsigned chhltd : 1;
24099 + /** AHB Error */
24100 + unsigned ahberr : 1;
24101 + /** STALL Response Received */
24102 + unsigned stall : 1;
24103 + /** NAK Response Received */
24104 + unsigned nak : 1;
24105 + /** ACK Response Received */
24106 + unsigned ack : 1;
24107 + /** NYET Response Received */
24108 + unsigned nyet : 1;
24109 + /** Transaction Err */
24110 + unsigned xacterr : 1;
24111 + /** Babble Error */
24112 + unsigned bblerr : 1;
24113 + /** Frame Overrun */
24114 + unsigned frmovrun : 1;
24115 + /** Data Toggle Error */
24116 + unsigned datatglerr : 1;
24117 + /** Reserved */
24118 + unsigned reserved : 21;
24119 + } b;
24120 +} hcint_data_t;
24121 +
24122 +/**
24123 + * This union represents the bit fields in the Host Channel Transfer Size
24124 + * Register. Read the register into the <i>d32</i> member then set/clear the
24125 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
24126 + * hcchar register.
24127 + */
24128 +typedef union hctsiz_data
24129 +{
24130 + /** raw register data */
24131 + uint32_t d32;
24132 +
24133 + /** register bits */
24134 + struct
24135 + {
24136 + /** Total transfer size in bytes */
24137 + unsigned xfersize : 19;
24138 +
24139 + /** Data packets to transfer */
24140 + unsigned pktcnt : 10;
24141 +
24142 + /**
24143 + * Packet ID for next data packet
24144 + * 0: DATA0
24145 + * 1: DATA2
24146 + * 2: DATA1
24147 + * 3: MDATA (non-Control), SETUP (Control)
24148 + */
24149 + unsigned pid : 2;
24150 +#define DWC_HCTSIZ_DATA0 0
24151 +#define DWC_HCTSIZ_DATA1 2
24152 +#define DWC_HCTSIZ_DATA2 1
24153 +#define DWC_HCTSIZ_MDATA 3
24154 +#define DWC_HCTSIZ_SETUP 3
24155 +
24156 + /** Do PING protocol when 1 */
24157 + unsigned dopng : 1;
24158 + } b;
24159 +} hctsiz_data_t;
24160 +
24161 +/**
24162 + * This union represents the bit fields in the Host Channel Interrupt Mask
24163 + * Register. Read the register into the <i>d32</i> member then set/clear the
24164 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
24165 + * hcintmsk register.
24166 + */
24167 +typedef union hcintmsk_data
24168 +{
24169 + /** raw register data */
24170 + uint32_t d32;
24171 +
24172 + /** register bits */
24173 + struct
24174 + {
24175 + unsigned xfercompl : 1;
24176 + unsigned chhltd : 1;
24177 + unsigned ahberr : 1;
24178 + unsigned stall : 1;
24179 + unsigned nak : 1;
24180 + unsigned ack : 1;
24181 + unsigned nyet : 1;
24182 + unsigned xacterr : 1;
24183 + unsigned bblerr : 1;
24184 + unsigned frmovrun : 1;
24185 + unsigned datatglerr : 1;
24186 + unsigned reserved : 21;
24187 + } b;
24188 +} hcintmsk_data_t;
24189 +
24190 +/** OTG Host Interface Structure.
24191 + *
24192 + * The OTG Host Interface Structure structure contains information
24193 + * needed to manage the DWC_otg controller acting in host mode. It
24194 + * represents the programming view of the host-specific aspects of the
24195 + * controller.
24196 + */
24197 +typedef struct dwc_otg_host_if
24198 +{
24199 + /** Host Global Registers starting at offset 400h.*/
24200 + dwc_otg_host_global_regs_t *host_global_regs;
24201 +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
24202 +
24203 + /** Host Port 0 Control and Status Register */
24204 + volatile uint32_t *hprt0;
24205 +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
24206 +
24207 +
24208 + /** Host Channel Specific Registers at offsets 500h-5FCh. */
24209 + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
24210 +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
24211 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20
24212 +
24213 +
24214 + /* Host configuration information */
24215 + /** Number of Host Channels (range: 1-16) */
24216 + uint8_t num_host_channels;
24217 + /** Periodic EPs supported (0: no, 1: yes) */
24218 + uint8_t perio_eps_supported;
24219 + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
24220 + uint16_t perio_tx_fifo_size;
24221 +
24222 +} dwc_otg_host_if_t;
24223 +
24224 +
24225 +/**
24226 + * This union represents the bit fields in the Power and Clock Gating Control
24227 + * Register. Read the register into the <i>d32</i> member then set/clear the
24228 + * bits using the <i>b</i>it elements.
24229 + */
24230 +typedef union pcgcctl_data
24231 +{
24232 + /** raw register data */
24233 + uint32_t d32;
24234 +
24235 + /** register bits */
24236 + struct
24237 + {
24238 + /** Stop Pclk */
24239 + unsigned stoppclk : 1;
24240 + /** Gate Hclk */
24241 + unsigned gatehclk : 1;
24242 + /** Power Clamp */
24243 + unsigned pwrclmp : 1;
24244 + /** Reset Power Down Modules */
24245 + unsigned rstpdwnmodule : 1;
24246 + /** PHY Suspended */
24247 + unsigned physuspended : 1;
24248 +
24249 + unsigned reserved : 27;
24250 + } b;
24251 +} pcgcctl_data_t;
24252 +
24253 +
24254 +#endif
24255 --- /dev/null
24256 +++ b/drivers/usb/dwc_otg/linux/dwc_otg_plat.h
24257 @@ -0,0 +1,260 @@
24258 +/* ==========================================================================
24259 + * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
24260 + * $Revision: 1.2 $
24261 + * $Date: 2008-11-21 05:39:16 $
24262 + * $Change: 1064915 $
24263 + *
24264 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
24265 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
24266 + * otherwise expressly agreed to in writing between Synopsys and you.
24267 + *
24268 + * The Software IS NOT an item of Licensed Software or Licensed Product under
24269 + * any End User Software License Agreement or Agreement for Licensed Product
24270 + * with Synopsys or any supplement thereto. You are permitted to use and
24271 + * redistribute this Software in source and binary forms, with or without
24272 + * modification, provided that redistributions of source code must retain this
24273 + * notice. You may not view, use, disclose, copy or distribute this file or
24274 + * any information contained herein except pursuant to this license grant from
24275 + * Synopsys. If you do not agree with this notice, including the disclaimer
24276 + * below, then you are not authorized to use the Software.
24277 + *
24278 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
24279 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24280 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24281 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
24282 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24283 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24284 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
24285 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24286 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24287 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
24288 + * DAMAGE.
24289 + * ========================================================================== */
24290 +
24291 +#if !defined(__DWC_OTG_PLAT_H__)
24292 +#define __DWC_OTG_PLAT_H__
24293 +
24294 +#include <linux/types.h>
24295 +#include <linux/slab.h>
24296 +#include <linux/list.h>
24297 +#include <linux/delay.h>
24298 +#include <asm/io.h>
24299 +
24300 +/**
24301 + * @file
24302 + *
24303 + * This file contains the Platform Specific constants, interfaces
24304 + * (functions and macros) for Linux.
24305 + *
24306 + */
24307 +//#if !defined(__LINUX_ARM_ARCH__)
24308 +//#error "The contents of this file is Linux specific!!!"
24309 +//#endif
24310 +
24311 +/**
24312 + * Reads the content of a register.
24313 + *
24314 + * @param reg address of register to read.
24315 + * @return contents of the register.
24316 + *
24317 +
24318 + * Usage:<br>
24319 + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
24320 + */
24321 +static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
24322 +{
24323 + return readl(reg);
24324 +};
24325 +
24326 +/**
24327 + * Writes a register with a 32 bit value.
24328 + *
24329 + * @param reg address of register to read.
24330 + * @param value to write to _reg.
24331 + *
24332 + * Usage:<br>
24333 + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
24334 + */
24335 +static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
24336 +{
24337 + writel( value, reg );
24338 +};
24339 +
24340 +/**
24341 + * This function modifies bit values in a register. Using the
24342 + * algorithm: (reg_contents & ~clear_mask) | set_mask.
24343 + *
24344 + * @param reg address of register to read.
24345 + * @param clear_mask bit mask to be cleared.
24346 + * @param set_mask bit mask to be set.
24347 + *
24348 + * Usage:<br>
24349 + * <code> // Clear the SOF Interrupt Mask bit and <br>
24350 + * // set the OTG Interrupt mask bit, leaving all others as they were.
24351 + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
24352 + */
24353 +static __inline__
24354 + void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
24355 +{
24356 + writel( (readl(reg) & ~clear_mask) | set_mask, reg );
24357 +};
24358 +
24359 +
24360 +/**
24361 + * Wrapper for the OS micro-second delay function.
24362 + * @param[in] usecs Microseconds of delay
24363 + */
24364 +static __inline__ void UDELAY( const uint32_t usecs )
24365 +{
24366 + udelay( usecs );
24367 +}
24368 +
24369 +/**
24370 + * Wrapper for the OS milli-second delay function.
24371 + * @param[in] msecs milliseconds of delay
24372 + */
24373 +static __inline__ void MDELAY( const uint32_t msecs )
24374 +{
24375 + mdelay( msecs );
24376 +}
24377 +
24378 +/**
24379 + * Wrapper for the Linux spin_lock. On the ARM (Integrator)
24380 + * spin_lock() is a nop.
24381 + *
24382 + * @param lock Pointer to the spinlock.
24383 + */
24384 +static __inline__ void SPIN_LOCK( spinlock_t *lock )
24385 +{
24386 + spin_lock(lock);
24387 +}
24388 +
24389 +/**
24390 + * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
24391 + * spin_lock() is a nop.
24392 + *
24393 + * @param lock Pointer to the spinlock.
24394 + */
24395 +static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
24396 +{
24397 + spin_unlock(lock);
24398 +}
24399 +
24400 +/**
24401 + * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
24402 + * (Integrator) spin_lock() is a nop.
24403 + *
24404 + * @param l Pointer to the spinlock.
24405 + * @param f unsigned long for irq flags storage.
24406 + */
24407 +#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
24408 +
24409 +/**
24410 + * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
24411 + * (Integrator) spin_lock() is a nop.
24412 + *
24413 + * @param l Pointer to the spinlock.
24414 + * @param f unsigned long for irq flags storage.
24415 + */
24416 +#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
24417 +
24418 +/*
24419 + * Debugging support vanishes in non-debug builds.
24420 + */
24421 +
24422 +
24423 +/**
24424 + * The Debug Level bit-mask variable.
24425 + */
24426 +extern uint32_t g_dbg_lvl;
24427 +/**
24428 + * Set the Debug Level variable.
24429 + */
24430 +static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
24431 +{
24432 + uint32_t old = g_dbg_lvl;
24433 + g_dbg_lvl = new;
24434 + return old;
24435 +}
24436 +
24437 +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
24438 +#define DBG_CIL (0x2)
24439 +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
24440 + * messages */
24441 +#define DBG_CILV (0x20)
24442 +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
24443 + * messages */
24444 +#define DBG_PCD (0x4)
24445 +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
24446 + * messages */
24447 +#define DBG_PCDV (0x40)
24448 +/** When debug level has the DBG_HCD bit set, display Host debug messages */
24449 +#define DBG_HCD (0x8)
24450 +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
24451 + * messages */
24452 +#define DBG_HCDV (0x80)
24453 +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
24454 + * mode. */
24455 +#define DBG_HCD_URB (0x800)
24456 +
24457 +/** When debug level has any bit set, display debug messages */
24458 +#define DBG_ANY (0xFF)
24459 +
24460 +/** All debug messages off */
24461 +#define DBG_OFF 0
24462 +
24463 +/** Prefix string for DWC_DEBUG print macros. */
24464 +#define USB_DWC "dwc_otg: "
24465 +
24466 +/**
24467 + * Print a debug message when the Global debug level variable contains
24468 + * the bit defined in <code>lvl</code>.
24469 + *
24470 + * @param[in] lvl - Debug level, use one of the DBG_ constants above.
24471 + * @param[in] x - like printf
24472 + *
24473 + * Example:<p>
24474 + * <code>
24475 + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
24476 + * </code>
24477 + * <br>
24478 + * results in:<br>
24479 + * <code>
24480 + * usb-DWC_otg: dwc_otg_cil_init(ca867000)
24481 + * </code>
24482 + */
24483 +#ifdef DEBUG
24484 +
24485 +# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
24486 +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
24487 +
24488 +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
24489 +
24490 +#else
24491 +
24492 +# define DWC_DEBUGPL(lvl, x...) do{}while(0)
24493 +# define DWC_DEBUGP(x...)
24494 +
24495 +# define CHK_DEBUG_LEVEL(level) (0)
24496 +
24497 +#endif /*DEBUG*/
24498 +
24499 +/**
24500 + * Print an Error message.
24501 + */
24502 +#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
24503 +/**
24504 + * Print a Warning message.
24505 + */
24506 +#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
24507 +/**
24508 + * Print a notice (normal but significant message).
24509 + */
24510 +#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
24511 +/**
24512 + * Basic message printing.
24513 + */
24514 +#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
24515 +
24516 +#endif
24517 +