gcc: refresh patches for gcc 4.1.2
[openwrt/svn-archive/archive.git] / toolchain / gcc / patches / 4.1.2 / 500-avr32.patch
1 --- a/config.sub
2 +++ b/config.sub
3 @@ -239,7 +239,7 @@ case $basic_machine in
4 | alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \
5 | alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \
6 | am33_2.0 \
7 - | arc | arm | arm[bl]e | arme[lb] | armv[2345] | armv[345][lb] | avr \
8 + | arc | arm | arm[bl]e | arme[lb] | armv[2345] | armv[345][lb] | avr | avr32 \
9 | bfin \
10 | c4x | clipper \
11 | d10v | d30v | dlx | dsp16xx \
12 @@ -316,7 +316,7 @@ case $basic_machine in
13 | alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \
14 | alphapca5[67]-* | alpha64pca5[67]-* | arc-* \
15 | arm-* | armbe-* | armle-* | armeb-* | armv*-* \
16 - | avr-* \
17 + | avr-* | avr32-* \
18 | bfin-* | bs2000-* \
19 | c[123]* | c30-* | [cjt]90-* | c4x-* | c54x-* | c55x-* | c6x-* \
20 | clipper-* | craynv-* | cydra-* \
21 --- a/configure.in
22 +++ b/configure.in
23 @@ -497,6 +497,9 @@ case "${target}" in
24 arm-*-riscix*)
25 noconfigdirs="$noconfigdirs ld target-libgloss ${libgcj}"
26 ;;
27 + avr32-*-*)
28 + noconfigdirs="$noconfigdirs target-libiberty target-libmudflap target-libffi ${libgcj}"
29 + ;;
30 avr-*-*)
31 noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
32 ;;
33 --- a/gcc/builtins.c
34 +++ b/gcc/builtins.c
35 @@ -9228,7 +9228,7 @@ validate_arglist (tree arglist, ...)
36
37 do
38 {
39 - code = va_arg (ap, enum tree_code);
40 + code = va_arg (ap, int);
41 switch (code)
42 {
43 case 0:
44 --- a/gcc/calls.c
45 +++ b/gcc/calls.c
46 @@ -3434,7 +3434,7 @@ emit_library_call_value_1 (int retval, r
47 for (; count < nargs; count++)
48 {
49 rtx val = va_arg (p, rtx);
50 - enum machine_mode mode = va_arg (p, enum machine_mode);
51 + enum machine_mode mode = va_arg (p, int);
52
53 /* We cannot convert the arg value to the mode the library wants here;
54 must do it earlier where we know the signedness of the arg. */
55 --- /dev/null
56 +++ b/gcc/config/avr32/avr32.c
57 @@ -0,0 +1,7273 @@
58 +/*
59 + Target hooks and helper functions for AVR32.
60 + Copyright 2003-2006 Atmel Corporation.
61 +
62 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
63 + Initial porting by Anders �dland.
64 +
65 + This file is part of GCC.
66 +
67 + This program is free software; you can redistribute it and/or modify
68 + it under the terms of the GNU General Public License as published by
69 + the Free Software Foundation; either version 2 of the License, or
70 + (at your option) any later version.
71 +
72 + This program is distributed in the hope that it will be useful,
73 + but WITHOUT ANY WARRANTY; without even the implied warranty of
74 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
75 + GNU General Public License for more details.
76 +
77 + You should have received a copy of the GNU General Public License
78 + along with this program; if not, write to the Free Software
79 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
80 +
81 +#include "config.h"
82 +#include "system.h"
83 +#include "coretypes.h"
84 +#include "tm.h"
85 +#include "rtl.h"
86 +#include "tree.h"
87 +#include "obstack.h"
88 +#include "regs.h"
89 +#include "hard-reg-set.h"
90 +#include "real.h"
91 +#include "insn-config.h"
92 +#include "conditions.h"
93 +#include "output.h"
94 +#include "insn-attr.h"
95 +#include "flags.h"
96 +#include "reload.h"
97 +#include "function.h"
98 +#include "expr.h"
99 +#include "optabs.h"
100 +#include "toplev.h"
101 +#include "recog.h"
102 +#include "ggc.h"
103 +#include "except.h"
104 +#include "c-pragma.h"
105 +#include "integrate.h"
106 +#include "tm_p.h"
107 +#include "langhooks.h"
108 +
109 +#include "target.h"
110 +#include "target-def.h"
111 +
112 +#include <ctype.h>
113 +
114 +/* Forward definitions of types. */
115 +typedef struct minipool_node Mnode;
116 +typedef struct minipool_fixup Mfix;
117 +
118 +/* Obstack for minipool constant handling. */
119 +static struct obstack minipool_obstack;
120 +static char *minipool_startobj;
121 +static rtx minipool_vector_label;
122 +
123 +/* True if we are currently building a constant table. */
124 +int making_const_table;
125 +
126 +/* Some forward function declarations */
127 +static unsigned long avr32_isr_value (tree);
128 +static unsigned long avr32_compute_func_type (void);
129 +static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *);
130 +static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *);
131 +static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args,
132 + int flags, bool * no_add_attrs);
133 +static void avr32_reorg (void);
134 +bool avr32_return_in_msb (tree type);
135 +bool avr32_vector_mode_supported (enum machine_mode mode);
136 +static void avr32_init_libfuncs (void);
137 +void avr32_load_pic_register (void);
138 +
139 +
140 +static void
141 +avr32_add_gc_roots (void)
142 +{
143 + gcc_obstack_init (&minipool_obstack);
144 + minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
145 +}
146 +
147 +
148 +/* List of all known AVR32 parts */
149 +static const struct part_type_s avr32_part_types[] = {
150 + /* name, part_type, architecture type, macro */
151 + {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"},
152 + {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"},
153 + {"ap7010", PART_TYPE_AVR32_AP7010, ARCH_TYPE_AVR32_AP, "__AVR32_AP7010__"},
154 + {"ap7020", PART_TYPE_AVR32_AP7020, ARCH_TYPE_AVR32_AP, "__AVR32_AP7020__"},
155 + {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UC, "__AVR32_UC3A0256__"},
156 + {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UC, "__AVR32_UC3A0512__"},
157 + {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UC, "__AVR32_UC3A1128__"},
158 + {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UC, "__AVR32_UC3A1256__"},
159 + {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UC, "__AVR32_UC3A1512__"},
160 + {NULL, 0, 0, NULL}
161 +};
162 +
163 +/* List of all known AVR32 architectures */
164 +static const struct arch_type_s avr32_arch_types[] = {
165 + /* name, architecture type, microarchitecture type, feature flags, macro */
166 + {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B, FLAG_AVR32_HAS_DSP |
167 + FLAG_AVR32_HAS_SIMD | FLAG_AVR32_HAS_UNALIGNED_WORD |
168 + FLAG_AVR32_HAS_BRANCH_PRED, "__AVR32_AP__"},
169 + {"uc", ARCH_TYPE_AVR32_UC, UARCH_TYPE_AVR32A,
170 + FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW, "__AVR32_UC__"},
171 + {NULL, 0, 0, 0, NULL}
172 +};
173 +
174 +/* Default arch name */
175 +const char *avr32_arch_name = "ap";
176 +const char *avr32_part_name = "none";
177 +
178 +const struct part_type_s *avr32_part;
179 +const struct arch_type_s *avr32_arch;
180 +
181 +
182 +/* Override command line options */
183 +void
184 +avr32_override_options (void)
185 +{
186 + const struct part_type_s *part;
187 + const struct arch_type_s *arch;
188 +
189 + /* Check if part type is set. */
190 + for (part = avr32_part_types; part->name; part++)
191 + if (strcmp (part->name, avr32_part_name) == 0)
192 + break;
193 +
194 + avr32_part = part;
195 +
196 + if (!part->name)
197 + {
198 + fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n",
199 + avr32_part_name);
200 + for (part = avr32_part_types; part->name; part++)
201 + fprintf (stderr, "\t%s\n", part->name);
202 + avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE];
203 + }
204 +
205 + avr32_arch = &avr32_arch_types[avr32_part->arch_type];
206 +
207 + /* If part was set to "none" then check if arch was set. */
208 + if (strcmp (avr32_part->name, "none") == 0)
209 + {
210 + /* Check if arch type is set. */
211 + for (arch = avr32_arch_types; arch->name; arch++)
212 + if (strcmp (arch->name, avr32_arch_name) == 0)
213 + break;
214 +
215 + avr32_arch = arch;
216 +
217 + if (!arch->name)
218 + {
219 + fprintf (stderr, "Unknown arch `%s' specified\nKnown arch names:\n",
220 + avr32_arch_name);
221 + for (arch = avr32_arch_types; arch->name; arch++)
222 + fprintf (stderr, "\t%s\n", arch->name);
223 + avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP];
224 + }
225 + }
226 +
227 + /* If optimization level is two or greater, then align start of loops to a
228 + word boundary since this will allow folding the first insn of the loop.
229 + Do this only for targets supporting branch prediction. */
230 + if (optimize >= 2 && TARGET_BRANCH_PRED)
231 + align_loops = 2;
232 +
233 + if (AVR32_ALWAYS_PIC)
234 + flag_pic = 1;
235 +
236 + if (TARGET_NO_PIC)
237 + flag_pic = 0;
238 +
239 + avr32_add_gc_roots ();
240 +}
241 +
242 +
243 +/*
244 +If defined, a function that outputs the assembler code for entry to a
245 +function. The prologue is responsible for setting up the stack frame,
246 +initializing the frame pointer register, saving registers that must be
247 +saved, and allocating size additional bytes of storage for the
248 +local variables. size is an integer. file is a stdio
249 +stream to which the assembler code should be output.
250 +
251 +The label for the beginning of the function need not be output by this
252 +macro. That has already been done when the macro is run.
253 +
254 +To determine which registers to save, the macro can refer to the array
255 +regs_ever_live: element r is nonzero if hard register
256 +r is used anywhere within the function. This implies the function
257 +prologue should save register r, provided it is not one of the
258 +call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use
259 +regs_ever_live.)
260 +
261 +On machines that have ``register windows'', the function entry code does
262 +not save on the stack the registers that are in the windows, even if
263 +they are supposed to be preserved by function calls; instead it takes
264 +appropriate steps to ``push'' the register stack, if any non-call-used
265 +registers are used in the function.
266 +
267 +On machines where functions may or may not have frame-pointers, the
268 +function entry code must vary accordingly; it must set up the frame
269 +pointer if one is wanted, and not otherwise. To determine whether a
270 +frame pointer is in wanted, the macro can refer to the variable
271 +frame_pointer_needed. The variable's value will be 1 at run
272 +time in a function that needs a frame pointer. (see Elimination).
273 +
274 +The function entry code is responsible for allocating any stack space
275 +required for the function. This stack space consists of the regions
276 +listed below. In most cases, these regions are allocated in the
277 +order listed, with the last listed region closest to the top of the
278 +stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and
279 +the highest address if it is not defined). You can use a different order
280 +for a machine if doing so is more convenient or required for
281 +compatibility reasons. Except in cases where required by standard
282 +or by a debugger, there is no reason why the stack layout used by GCC
283 +need agree with that used by other compilers for a machine.
284 +*/
285 +
286 +#undef TARGET_ASM_FUNCTION_PROLOGUE
287 +#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue
288 +
289 +
290 +#undef TARGET_DEFAULT_SHORT_ENUMS
291 +#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false
292 +
293 +#undef TARGET_PROMOTE_FUNCTION_ARGS
294 +#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
295 +
296 +#undef TARGET_PROMOTE_FUNCTION_RETURN
297 +#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
298 +
299 +#undef TARGET_PROMOTE_PROTOTYPES
300 +#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
301 +
302 +#undef TARGET_MUST_PASS_IN_STACK
303 +#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack
304 +
305 +#undef TARGET_PASS_BY_REFERENCE
306 +#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference
307 +
308 +#undef TARGET_STRICT_ARGUMENT_NAMING
309 +#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming
310 +
311 +#undef TARGET_VECTOR_MODE_SUPPORTED_P
312 +#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported
313 +
314 +#undef TARGET_RETURN_IN_MEMORY
315 +#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory
316 +
317 +#undef TARGET_RETURN_IN_MSB
318 +#define TARGET_RETURN_IN_MSB avr32_return_in_msb
319 +
320 +#undef TARGET_ARG_PARTIAL_BYTES
321 +#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes
322 +
323 +#undef TARGET_STRIP_NAME_ENCODING
324 +#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding
325 +
326 +#define streq(string1, string2) (strcmp (string1, string2) == 0)
327 +
328 +#undef TARGET_ATTRIBUTE_TABLE
329 +#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table
330 +
331 +#undef TARGET_COMP_TYPE_ATTRIBUTES
332 +#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes
333 +
334 +
335 +#undef TARGET_RTX_COSTS
336 +#define TARGET_RTX_COSTS avr32_rtx_costs
337 +
338 +#undef TARGET_CANNOT_FORCE_CONST_MEM
339 +#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem
340 +
341 +#undef TARGET_ASM_INTEGER
342 +#define TARGET_ASM_INTEGER avr32_assemble_integer
343 +
344 +/*
345 + * Switches to the appropriate section for output of constant pool
346 + * entry x in mode. You can assume that x is some kind of constant in
347 + * RTL. The argument mode is redundant except in the case of a
348 + * const_int rtx. Select the section by calling readonly_data_ section
349 + * or one of the alternatives for other sections. align is the
350 + * constant alignment in bits.
351 + *
352 + * The default version of this function takes care of putting symbolic
353 + * constants in flag_ pic mode in data_section and everything else in
354 + * readonly_data_section.
355 + */
356 +#undef TARGET_ASM_SELECT_RTX_SECTION
357 +#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section
358 +
359 +
360 +/*
361 + * If non-null, this hook performs a target-specific pass over the
362 + * instruction stream. The compiler will run it at all optimization
363 + * levels, just before the point at which it normally does
364 + * delayed-branch scheduling.
365 + *
366 + * The exact purpose of the hook varies from target to target. Some
367 + * use it to do transformations that are necessary for correctness,
368 + * such as laying out in-function constant pools or avoiding hardware
369 + * hazards. Others use it as an opportunity to do some
370 + * machine-dependent optimizations.
371 + *
372 + * You need not implement the hook if it has nothing to do. The
373 + * default definition is null.
374 + */
375 +#undef TARGET_MACHINE_DEPENDENT_REORG
376 +#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg
377 +
378 +/* Target hook for assembling integer objects.
379 + Need to handle integer vectors */
380 +static bool
381 +avr32_assemble_integer (rtx x, unsigned int size, int aligned_p)
382 +{
383 + if (avr32_vector_mode_supported (GET_MODE (x)))
384 + {
385 + int i, units;
386 +
387 + if (GET_CODE (x) != CONST_VECTOR)
388 + abort ();
389 +
390 + units = CONST_VECTOR_NUNITS (x);
391 +
392 + switch (GET_MODE (x))
393 + {
394 + case V2HImode:
395 + size = 2;
396 + break;
397 + case V4QImode:
398 + size = 1;
399 + break;
400 + default:
401 + abort ();
402 + }
403 +
404 + for (i = 0; i < units; i++)
405 + {
406 + rtx elt;
407 +
408 + elt = CONST_VECTOR_ELT (x, i);
409 + assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1);
410 + }
411 +
412 + return true;
413 + }
414 +
415 + return default_assemble_integer (x, size, aligned_p);
416 +}
417 +
418 +/*
419 + * This target hook describes the relative costs of RTL expressions.
420 + *
421 + * The cost may depend on the precise form of the expression, which is
422 + * available for examination in x, and the rtx code of the expression
423 + * in which it is contained, found in outer_code. code is the
424 + * expression code--redundant, since it can be obtained with GET_CODE
425 + * (x).
426 + *
427 + * In implementing this hook, you can use the construct COSTS_N_INSNS
428 + * (n) to specify a cost equal to n fast instructions.
429 + *
430 + * On entry to the hook, *total contains a default estimate for the
431 + * cost of the expression. The hook should modify this value as
432 + * necessary. Traditionally, the default costs are COSTS_N_INSNS (5)
433 + * for multiplications, COSTS_N_INSNS (7) for division and modulus
434 + * operations, and COSTS_N_INSNS (1) for all other operations.
435 + *
436 + * When optimizing for code size, i.e. when optimize_size is non-zero,
437 + * this target hook should be used to estimate the relative size cost
438 + * of an expression, again relative to COSTS_N_INSNS.
439 + *
440 + * The hook returns true when all subexpressions of x have been
441 + * processed, and false when rtx_cost should recurse.
442 + */
443 +
444 +/* Worker routine for avr32_rtx_costs. */
445 +static inline int
446 +avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED,
447 + enum rtx_code outer ATTRIBUTE_UNUSED)
448 +{
449 + enum machine_mode mode = GET_MODE (x);
450 +
451 + switch (GET_CODE (x))
452 + {
453 + case MEM:
454 + /* Using pre decrement / post increment memory operations on the
455 + avr32_uc architecture means that two writebacks must be performed
456 + and hence two cycles are needed. */
457 + if (!optimize_size
458 + && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD
459 + && avr32_arch->arch_type == ARCH_TYPE_AVR32_UC
460 + && (GET_CODE (XEXP (x, 0)) == PRE_DEC
461 + || GET_CODE (XEXP (x, 0)) == POST_INC))
462 + return COSTS_N_INSNS (4);
463 +
464 + /* Memory costs quite a lot for the first word, but subsequent words
465 + load at the equivalent of a single insn each. */
466 + if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
467 + return COSTS_N_INSNS (2 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD));
468 +
469 + return COSTS_N_INSNS (3);
470 + case SYMBOL_REF:
471 + case CONST:
472 + /* These are valid for the pseudo insns: lda.w and call which operates
473 + on direct addresses. We assume that the cost of a lda.w is the same
474 + as the cost of a ld.w insn. */
475 + return (outer == SET) ? COSTS_N_INSNS (3) : COSTS_N_INSNS (1);
476 + case DIV:
477 + case MOD:
478 + case UDIV:
479 + case UMOD:
480 + return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
481 +
482 + case ROTATE:
483 + case ROTATERT:
484 + if (mode == TImode)
485 + return COSTS_N_INSNS (100);
486 +
487 + if (mode == DImode)
488 + return COSTS_N_INSNS (10);
489 + return COSTS_N_INSNS (4);
490 + case ASHIFT:
491 + case LSHIFTRT:
492 + case ASHIFTRT:
493 + case NOT:
494 + if (mode == TImode)
495 + return COSTS_N_INSNS (10);
496 +
497 + if (mode == DImode)
498 + return COSTS_N_INSNS (4);
499 + return COSTS_N_INSNS (1);
500 + case PLUS:
501 + case MINUS:
502 + case NEG:
503 + case COMPARE:
504 + case ABS:
505 + if (GET_MODE_CLASS (mode) == MODE_FLOAT)
506 + return COSTS_N_INSNS (100);
507 +
508 + if (mode == TImode)
509 + return COSTS_N_INSNS (50);
510 +
511 + if (mode == DImode)
512 + return COSTS_N_INSNS (2);
513 + return COSTS_N_INSNS (1);
514 +
515 + case MULT:
516 + {
517 + if (GET_MODE_CLASS (mode) == MODE_FLOAT)
518 + return COSTS_N_INSNS (300);
519 +
520 + if (mode == TImode)
521 + return COSTS_N_INSNS (16);
522 +
523 + if (mode == DImode)
524 + return COSTS_N_INSNS (4);
525 +
526 + if (mode == HImode)
527 + return COSTS_N_INSNS (2);
528 +
529 + return COSTS_N_INSNS (3);
530 + }
531 + case IF_THEN_ELSE:
532 + if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
533 + return COSTS_N_INSNS (4);
534 + return COSTS_N_INSNS (1);
535 + case SIGN_EXTEND:
536 + case ZERO_EXTEND:
537 + /* Sign/Zero extensions of registers cost quite much since these
538 + instrcutions only take one register operand which means that gcc
539 + often must insert some move instrcutions */
540 + if (mode == QImode || mode == HImode)
541 + return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1));
542 + return COSTS_N_INSNS (4);
543 + case UNSPEC:
544 + /* divmod operations */
545 + if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL
546 + || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL)
547 + {
548 + return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
549 + }
550 + /* Fallthrough */
551 + default:
552 + return COSTS_N_INSNS (1);
553 + }
554 +}
555 +
556 +static bool
557 +avr32_rtx_costs (rtx x, int code, int outer_code, int *total)
558 +{
559 + *total = avr32_rtx_costs_1 (x, code, outer_code);
560 + return true;
561 +}
562 +
563 +
564 +bool
565 +avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
566 +{
567 + /* Do not want symbols in the constant pool when compiling pic or if using
568 + address pseudo instructions. */
569 + return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
570 + && avr32_find_symbol (x) != NULL_RTX);
571 +}
572 +
573 +
574 +/* Table of machine attributes. */
575 +const struct attribute_spec avr32_attribute_table[] = {
576 + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
577 + /* Interrupt Service Routines have special prologue and epilogue
578 + requirements. */
579 + {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute},
580 + {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute},
581 + {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute},
582 + {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute},
583 + {NULL, 0, 0, false, false, false, NULL}
584 +};
585 +
586 +
587 +typedef struct
588 +{
589 + const char *const arg;
590 + const unsigned long return_value;
591 +}
592 +isr_attribute_arg;
593 +
594 +static const isr_attribute_arg isr_attribute_args[] = {
595 + {"FULL", AVR32_FT_ISR_FULL},
596 + {"full", AVR32_FT_ISR_FULL},
597 + {"HALF", AVR32_FT_ISR_HALF},
598 + {"half", AVR32_FT_ISR_HALF},
599 + {"NONE", AVR32_FT_ISR_NONE},
600 + {"none", AVR32_FT_ISR_NONE},
601 + {"UNDEF", AVR32_FT_ISR_NONE},
602 + {"undef", AVR32_FT_ISR_NONE},
603 + {"SWI", AVR32_FT_ISR_NONE},
604 + {"swi", AVR32_FT_ISR_NONE},
605 + {NULL, AVR32_FT_ISR_NONE}
606 +};
607 +
608 +/* Returns the (interrupt) function type of the current
609 + function, or AVR32_FT_UNKNOWN if the type cannot be determined. */
610 +
611 +static unsigned long
612 +avr32_isr_value (tree argument)
613 +{
614 + const isr_attribute_arg *ptr;
615 + const char *arg;
616 +
617 + /* No argument - default to ISR_NONE. */
618 + if (argument == NULL_TREE)
619 + return AVR32_FT_ISR_NONE;
620 +
621 + /* Get the value of the argument. */
622 + if (TREE_VALUE (argument) == NULL_TREE
623 + || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
624 + return AVR32_FT_UNKNOWN;
625 +
626 + arg = TREE_STRING_POINTER (TREE_VALUE (argument));
627 +
628 + /* Check it against the list of known arguments. */
629 + for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
630 + if (streq (arg, ptr->arg))
631 + return ptr->return_value;
632 +
633 + /* An unrecognized interrupt type. */
634 + return AVR32_FT_UNKNOWN;
635 +}
636 +
637 +
638 +
639 +/*
640 +These hooks specify assembly directives for creating certain kinds
641 +of integer object. The TARGET_ASM_BYTE_OP directive creates a
642 +byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an
643 +aligned two-byte object, and so on. Any of the hooks may be
644 +NULL, indicating that no suitable directive is available.
645 +
646 +The compiler will print these strings at the start of a new line,
647 +followed immediately by the object's initial value. In most cases,
648 +the string should contain a tab, a pseudo-op, and then another tab.
649 +*/
650 +#undef TARGET_ASM_BYTE_OP
651 +#define TARGET_ASM_BYTE_OP "\t.byte\t"
652 +#undef TARGET_ASM_ALIGNED_HI_OP
653 +#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t"
654 +#undef TARGET_ASM_ALIGNED_SI_OP
655 +#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t"
656 +#undef TARGET_ASM_ALIGNED_DI_OP
657 +#define TARGET_ASM_ALIGNED_DI_OP NULL
658 +#undef TARGET_ASM_ALIGNED_TI_OP
659 +#define TARGET_ASM_ALIGNED_TI_OP NULL
660 +#undef TARGET_ASM_UNALIGNED_HI_OP
661 +#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
662 +#undef TARGET_ASM_UNALIGNED_SI_OP
663 +#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t"
664 +#undef TARGET_ASM_UNALIGNED_DI_OP
665 +#define TARGET_ASM_UNALIGNED_DI_OP NULL
666 +#undef TARGET_ASM_UNALIGNED_TI_OP
667 +#define TARGET_ASM_UNALIGNED_TI_OP NULL
668 +
669 +#undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
670 +#define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE avr32_sched_use_dfa_pipeline_interface
671 +
672 +#undef TARGET_ASM_OUTPUT_MI_THUNK
673 +#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk
674 +
675 +
676 +static void
677 +avr32_output_mi_thunk (FILE * file,
678 + tree thunk ATTRIBUTE_UNUSED,
679 + HOST_WIDE_INT delta,
680 + HOST_WIDE_INT vcall_offset, tree function)
681 +{
682 + int mi_delta = delta;
683 + int this_regno =
684 + (avr32_return_in_memory (DECL_RESULT (function), TREE_TYPE (function)) ?
685 + INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12));
686 +
687 +
688 + if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
689 + || vcall_offset)
690 + {
691 + fprintf (file, "\tpushm\tr10\n");
692 + }
693 +
694 +
695 + if (mi_delta != 0)
696 + {
697 + if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21"))
698 + {
699 + fprintf (file, "\tsub\t%s, -0x%x\n", reg_names[this_regno],
700 + mi_delta);
701 + }
702 + else
703 + {
704 + /* Immediate is larger than k21 we must make us a temp register by
705 + pushing a register to the stack. */
706 + fprintf (file, "\tmov\tr10, lo(%x)\n", mi_delta);
707 + fprintf (file, "\torh\tr10, hi(%x)\n", mi_delta);
708 + fprintf (file, "\tadd\t%s, r10\n", reg_names[this_regno]);
709 + }
710 + }
711 +
712 +
713 + if (vcall_offset != 0)
714 + {
715 + fprintf (file, "\tld.w\tr10, %s[0]\n", reg_names[this_regno]);
716 + fprintf (file, "\tld.w\tr10, r10[%i]\n", (int) vcall_offset);
717 + fprintf (file, "\tadd\t%s, r10\n", reg_names[this_regno]);
718 + }
719 +
720 +
721 + if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
722 + || vcall_offset)
723 + {
724 + fprintf (file, "\tpopm\tr10\n");
725 + }
726 +
727 + if (flag_pic)
728 + {
729 + /* Don't know how we should do this!!! For now we'll just use an
730 + extended branch instruction and hope that the function will be
731 + reached. */
732 + fprintf (file, "\tbral\t");
733 + assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
734 + fputc ('\n', file);
735 + }
736 + else
737 + {
738 + fprintf (file, "\tlddpc\tpc, 0f\n");
739 + fprintf (file, "\t.align 2\n");
740 + fputs ("0:\t.long\t", file);
741 + assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
742 + fputc ('\n', file);
743 + }
744 +}
745 +
746 +/* Implements target hook vector_mode_supported. */
747 +bool
748 +avr32_vector_mode_supported (enum machine_mode mode)
749 +{
750 + if ((mode == V2HImode) || (mode == V4QImode))
751 + return true;
752 +
753 + return false;
754 +}
755 +
756 +
757 +#undef TARGET_INIT_LIBFUNCS
758 +#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs
759 +
760 +#undef TARGET_INIT_BUILTINS
761 +#define TARGET_INIT_BUILTINS avr32_init_builtins
762 +
763 +#undef TARGET_EXPAND_BUILTIN
764 +#define TARGET_EXPAND_BUILTIN avr32_expand_builtin
765 +
766 +tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int,
767 + void_ftype_ptr_int;
768 +tree void_ftype_int, void_ftype_void, int_ftype_ptr_int;
769 +tree short_ftype_short, int_ftype_int_short, int_ftype_short_short,
770 + short_ftype_short_short;
771 +tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short;
772 +tree void_ftype_int_int_int_int_int, void_ftype_int_int_int;
773 +tree longlong_ftype_int_int, void_ftype_int_int_longlong;
774 +tree int_ftype_int_int_int, longlong_ftype_longlong_int_short;
775 +tree longlong_ftype_longlong_short_short, int_ftype_int_short_short;
776 +
777 +#define def_builtin(NAME, TYPE, CODE) \
778 + lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
779 + BUILT_IN_MD, NULL, NULL_TREE)
780 +
781 +#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
782 + do \
783 + { \
784 + if ((MASK)) \
785 + lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
786 + BUILT_IN_MD, NULL, NULL_TREE); \
787 + } \
788 + while (0)
789 +
790 +struct builtin_description
791 +{
792 + const unsigned int mask;
793 + const enum insn_code icode;
794 + const char *const name;
795 + const int code;
796 + const enum rtx_code comparison;
797 + const unsigned int flag;
798 + const tree *ftype;
799 +};
800 +
801 +static const struct builtin_description bdesc_2arg[] = {
802 +#define DSP_BUILTIN(code, builtin, ftype) \
803 + { 1, CODE_FOR_##code, "__builtin_" #code , \
804 + AVR32_BUILTIN_##builtin, 0, 0, ftype }
805 +
806 + DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short),
807 + DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short),
808 + DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short),
809 + DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short),
810 + DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short),
811 + DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short),
812 + DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short),
813 + DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int),
814 + DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int),
815 + DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short),
816 + DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short)
817 +};
818 +
819 +
820 +void
821 +avr32_init_builtins (void)
822 +{
823 + unsigned int i;
824 + const struct builtin_description *d;
825 + tree endlink = void_list_node;
826 + tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink);
827 + tree longlong_endlink =
828 + tree_cons (NULL_TREE, long_long_integer_type_node, endlink);
829 + tree short_endlink =
830 + tree_cons (NULL_TREE, short_integer_type_node, endlink);
831 + tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink);
832 +
833 + /* int func (int) */
834 + int_ftype_int = build_function_type (integer_type_node, int_endlink);
835 +
836 + /* short func (short) */
837 + short_ftype_short
838 + = build_function_type (short_integer_type_node, short_endlink);
839 +
840 + /* short func (short, short) */
841 + short_ftype_short_short
842 + = build_function_type (short_integer_type_node,
843 + tree_cons (NULL_TREE, short_integer_type_node,
844 + short_endlink));
845 +
846 + /* long long func (long long, short, short) */
847 + longlong_ftype_longlong_short_short
848 + = build_function_type (long_long_integer_type_node,
849 + tree_cons (NULL_TREE, long_long_integer_type_node,
850 + tree_cons (NULL_TREE,
851 + short_integer_type_node,
852 + short_endlink)));
853 +
854 + /* long long func (short, short) */
855 + longlong_ftype_short_short
856 + = build_function_type (long_long_integer_type_node,
857 + tree_cons (NULL_TREE, short_integer_type_node,
858 + short_endlink));
859 +
860 + /* int func (int, int) */
861 + int_ftype_int_int
862 + = build_function_type (integer_type_node,
863 + tree_cons (NULL_TREE, integer_type_node,
864 + int_endlink));
865 +
866 + /* long long func (int, int) */
867 + longlong_ftype_int_int
868 + = build_function_type (long_long_integer_type_node,
869 + tree_cons (NULL_TREE, integer_type_node,
870 + int_endlink));
871 +
872 + /* long long int func (long long, int, short) */
873 + longlong_ftype_longlong_int_short
874 + = build_function_type (long_long_integer_type_node,
875 + tree_cons (NULL_TREE, long_long_integer_type_node,
876 + tree_cons (NULL_TREE, integer_type_node,
877 + short_endlink)));
878 +
879 + /* long long int func (int, short) */
880 + longlong_ftype_int_short
881 + = build_function_type (long_long_integer_type_node,
882 + tree_cons (NULL_TREE, integer_type_node,
883 + short_endlink));
884 +
885 + /* int func (int, short, short) */
886 + int_ftype_int_short_short
887 + = build_function_type (integer_type_node,
888 + tree_cons (NULL_TREE, integer_type_node,
889 + tree_cons (NULL_TREE,
890 + short_integer_type_node,
891 + short_endlink)));
892 +
893 + /* int func (short, short) */
894 + int_ftype_short_short
895 + = build_function_type (integer_type_node,
896 + tree_cons (NULL_TREE, short_integer_type_node,
897 + short_endlink));
898 +
899 + /* int func (int, short) */
900 + int_ftype_int_short
901 + = build_function_type (integer_type_node,
902 + tree_cons (NULL_TREE, integer_type_node,
903 + short_endlink));
904 +
905 + /* void func (int, int) */
906 + void_ftype_int_int
907 + = build_function_type (void_type_node,
908 + tree_cons (NULL_TREE, integer_type_node,
909 + int_endlink));
910 +
911 + /* void func (int, int, int) */
912 + void_ftype_int_int_int
913 + = build_function_type (void_type_node,
914 + tree_cons (NULL_TREE, integer_type_node,
915 + tree_cons (NULL_TREE, integer_type_node,
916 + int_endlink)));
917 +
918 + /* void func (int, int, long long) */
919 + void_ftype_int_int_longlong
920 + = build_function_type (void_type_node,
921 + tree_cons (NULL_TREE, integer_type_node,
922 + tree_cons (NULL_TREE, integer_type_node,
923 + longlong_endlink)));
924 +
925 + /* void func (int, int, int, int, int) */
926 + void_ftype_int_int_int_int_int
927 + = build_function_type (void_type_node,
928 + tree_cons (NULL_TREE, integer_type_node,
929 + tree_cons (NULL_TREE, integer_type_node,
930 + tree_cons (NULL_TREE,
931 + integer_type_node,
932 + tree_cons
933 + (NULL_TREE,
934 + integer_type_node,
935 + int_endlink)))));
936 +
937 + /* void func (void *, int) */
938 + void_ftype_ptr_int
939 + = build_function_type (void_type_node,
940 + tree_cons (NULL_TREE, ptr_type_node, int_endlink));
941 +
942 + /* void func (int) */
943 + void_ftype_int = build_function_type (void_type_node, int_endlink);
944 +
945 + /* void func (void) */
946 + void_ftype_void = build_function_type (void_type_node, void_endlink);
947 +
948 + /* int func (void) */
949 + int_ftype_void = build_function_type (integer_type_node, void_endlink);
950 +
951 + /* int func (void *, int) */
952 + int_ftype_ptr_int
953 + = build_function_type (integer_type_node,
954 + tree_cons (NULL_TREE, ptr_type_node, int_endlink));
955 +
956 + /* int func (int, int, int) */
957 + int_ftype_int_int_int
958 + = build_function_type (integer_type_node,
959 + tree_cons (NULL_TREE, integer_type_node,
960 + tree_cons (NULL_TREE, integer_type_node,
961 + int_endlink)));
962 +
963 + /* Initialize avr32 builtins. */
964 + def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR);
965 + def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR);
966 + def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR);
967 + def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR);
968 + def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE);
969 + def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC);
970 + def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR);
971 + def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS);
972 + def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW);
973 + def_builtin ("__builtin_breakpoint", void_ftype_void,
974 + AVR32_BUILTIN_BREAKPOINT);
975 + def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG);
976 + def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI);
977 + def_builtin ("__builtin_bswap_16", short_ftype_short,
978 + AVR32_BUILTIN_BSWAP16);
979 + def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32);
980 + def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int,
981 + AVR32_BUILTIN_COP);
982 + def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W);
983 + def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int,
984 + AVR32_BUILTIN_MVRC_W);
985 + def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int,
986 + AVR32_BUILTIN_MVCR_D);
987 + def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong,
988 + AVR32_BUILTIN_MVRC_D);
989 + def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS);
990 + def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU);
991 + def_builtin ("__builtin_satrnds", int_ftype_int_int_int,
992 + AVR32_BUILTIN_SATRNDS);
993 + def_builtin ("__builtin_satrndu", int_ftype_int_int_int,
994 + AVR32_BUILTIN_SATRNDU);
995 + def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR);
996 + def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR);
997 + def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short,
998 + AVR32_BUILTIN_MACSATHH_W);
999 + def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short,
1000 + AVR32_BUILTIN_MACWH_D);
1001 + def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short,
1002 + AVR32_BUILTIN_MACHH_D);
1003 +
1004 + /* Add all builtins that are more or less simple operations on two
1005 + operands. */
1006 + for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
1007 + {
1008 + /* Use one of the operands; the target can have a different mode for
1009 + mask-generating compares. */
1010 +
1011 + if (d->name == 0)
1012 + continue;
1013 +
1014 + def_mbuiltin (d->mask, d->name, *(d->ftype), d->code);
1015 + }
1016 +}
1017 +
1018 +
1019 +/* Subroutine of avr32_expand_builtin to take care of binop insns. */
1020 +
1021 +static rtx
1022 +avr32_expand_binop_builtin (enum insn_code icode, tree arglist, rtx target)
1023 +{
1024 + rtx pat;
1025 + tree arg0 = TREE_VALUE (arglist);
1026 + tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1027 + rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1028 + rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1029 + enum machine_mode tmode = insn_data[icode].operand[0].mode;
1030 + enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1031 + enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1032 +
1033 + if (!target
1034 + || GET_MODE (target) != tmode
1035 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1036 + target = gen_reg_rtx (tmode);
1037 +
1038 + /* In case the insn wants input operands in modes different from the
1039 + result, abort. */
1040 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1041 + {
1042 + /* If op0 is already a reg we must cast it to the correct mode. */
1043 + if (REG_P (op0))
1044 + op0 = convert_to_mode (mode0, op0, 1);
1045 + else
1046 + op0 = copy_to_mode_reg (mode0, op0);
1047 + }
1048 + if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
1049 + {
1050 + /* If op1 is already a reg we must cast it to the correct mode. */
1051 + if (REG_P (op1))
1052 + op1 = convert_to_mode (mode1, op1, 1);
1053 + else
1054 + op1 = copy_to_mode_reg (mode1, op1);
1055 + }
1056 + pat = GEN_FCN (icode) (target, op0, op1);
1057 + if (!pat)
1058 + return 0;
1059 + emit_insn (pat);
1060 + return target;
1061 +}
1062 +
1063 +/* Expand an expression EXP that calls a built-in function,
1064 + with result going to TARGET if that's convenient
1065 + (and in mode MODE if that's convenient).
1066 + SUBTARGET may be used as the target for computing one of EXP's operands.
1067 + IGNORE is nonzero if the value is to be ignored. */
1068 +
1069 +rtx
1070 +avr32_expand_builtin (tree exp,
1071 + rtx target,
1072 + rtx subtarget ATTRIBUTE_UNUSED,
1073 + enum machine_mode mode ATTRIBUTE_UNUSED,
1074 + int ignore ATTRIBUTE_UNUSED)
1075 +{
1076 + const struct builtin_description *d;
1077 + unsigned int i;
1078 + enum insn_code icode;
1079 + tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
1080 + tree arglist = TREE_OPERAND (exp, 1);
1081 + tree arg0, arg1, arg2;
1082 + rtx op0, op1, op2, pat;
1083 + enum machine_mode tmode, mode0, mode1;
1084 + enum machine_mode arg0_mode;
1085 + int fcode = DECL_FUNCTION_CODE (fndecl);
1086 +
1087 + switch (fcode)
1088 + {
1089 + default:
1090 + break;
1091 +
1092 + case AVR32_BUILTIN_SATS:
1093 + case AVR32_BUILTIN_SATU:
1094 + case AVR32_BUILTIN_SATRNDS:
1095 + case AVR32_BUILTIN_SATRNDU:
1096 + {
1097 + const char *fname;
1098 + switch (fcode)
1099 + {
1100 + default:
1101 + case AVR32_BUILTIN_SATS:
1102 + icode = CODE_FOR_sats;
1103 + fname = "sats";
1104 + break;
1105 + case AVR32_BUILTIN_SATU:
1106 + icode = CODE_FOR_satu;
1107 + fname = "satu";
1108 + break;
1109 + case AVR32_BUILTIN_SATRNDS:
1110 + icode = CODE_FOR_satrnds;
1111 + fname = "satrnds";
1112 + break;
1113 + case AVR32_BUILTIN_SATRNDU:
1114 + icode = CODE_FOR_satrndu;
1115 + fname = "satrndu";
1116 + break;
1117 + }
1118 +
1119 + arg0 = TREE_VALUE (arglist);
1120 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1121 + arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
1122 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1123 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1124 + op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
1125 +
1126 + tmode = insn_data[icode].operand[0].mode;
1127 +
1128 +
1129 + if (target == 0
1130 + || GET_MODE (target) != tmode
1131 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1132 + target = gen_reg_rtx (tmode);
1133 +
1134 +
1135 + if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0)))
1136 + {
1137 + op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0);
1138 + }
1139 +
1140 + if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
1141 + {
1142 + error ("Parameter 2 to __builtin_%s should be a constant number.",
1143 + fname);
1144 + return NULL_RTX;
1145 + }
1146 +
1147 + if (!(*insn_data[icode].operand[1].predicate) (op2, SImode))
1148 + {
1149 + error ("Parameter 3 to __builtin_%s should be a constant number.",
1150 + fname);
1151 + return NULL_RTX;
1152 + }
1153 +
1154 + emit_move_insn (target, op0);
1155 + pat = GEN_FCN (icode) (target, op1, op2);
1156 + if (!pat)
1157 + return 0;
1158 + emit_insn (pat);
1159 +
1160 + return target;
1161 + }
1162 + case AVR32_BUILTIN_MUSTR:
1163 + icode = CODE_FOR_mustr;
1164 + tmode = insn_data[icode].operand[0].mode;
1165 +
1166 + if (target == 0
1167 + || GET_MODE (target) != tmode
1168 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1169 + target = gen_reg_rtx (tmode);
1170 + pat = GEN_FCN (icode) (target);
1171 + if (!pat)
1172 + return 0;
1173 + emit_insn (pat);
1174 + return target;
1175 +
1176 + case AVR32_BUILTIN_MFSR:
1177 + icode = CODE_FOR_mfsr;
1178 + arg0 = TREE_VALUE (arglist);
1179 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1180 + tmode = insn_data[icode].operand[0].mode;
1181 + mode0 = insn_data[icode].operand[1].mode;
1182 +
1183 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1184 + {
1185 + error ("Parameter 1 to __builtin_mfsr must be a constant number");
1186 + }
1187 +
1188 + if (target == 0
1189 + || GET_MODE (target) != tmode
1190 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1191 + target = gen_reg_rtx (tmode);
1192 + pat = GEN_FCN (icode) (target, op0);
1193 + if (!pat)
1194 + return 0;
1195 + emit_insn (pat);
1196 + return target;
1197 + case AVR32_BUILTIN_MTSR:
1198 + icode = CODE_FOR_mtsr;
1199 + arg0 = TREE_VALUE (arglist);
1200 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1201 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1202 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1203 + mode0 = insn_data[icode].operand[0].mode;
1204 + mode1 = insn_data[icode].operand[1].mode;
1205 +
1206 + if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
1207 + {
1208 + error ("Parameter 1 to __builtin_mtsr must be a constant number");
1209 + return gen_reg_rtx (mode0);
1210 + }
1211 + if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
1212 + op1 = copy_to_mode_reg (mode1, op1);
1213 + pat = GEN_FCN (icode) (op0, op1);
1214 + if (!pat)
1215 + return 0;
1216 + emit_insn (pat);
1217 + return NULL_RTX;
1218 + case AVR32_BUILTIN_MFDR:
1219 + icode = CODE_FOR_mfdr;
1220 + arg0 = TREE_VALUE (arglist);
1221 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1222 + tmode = insn_data[icode].operand[0].mode;
1223 + mode0 = insn_data[icode].operand[1].mode;
1224 +
1225 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1226 + {
1227 + error ("Parameter 1 to __builtin_mfdr must be a constant number");
1228 + }
1229 +
1230 + if (target == 0
1231 + || GET_MODE (target) != tmode
1232 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1233 + target = gen_reg_rtx (tmode);
1234 + pat = GEN_FCN (icode) (target, op0);
1235 + if (!pat)
1236 + return 0;
1237 + emit_insn (pat);
1238 + return target;
1239 + case AVR32_BUILTIN_MTDR:
1240 + icode = CODE_FOR_mtdr;
1241 + arg0 = TREE_VALUE (arglist);
1242 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1243 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1244 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1245 + mode0 = insn_data[icode].operand[0].mode;
1246 + mode1 = insn_data[icode].operand[1].mode;
1247 +
1248 + if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
1249 + {
1250 + error ("Parameter 1 to __builtin_mtdr must be a constant number");
1251 + return gen_reg_rtx (mode0);
1252 + }
1253 + if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
1254 + op1 = copy_to_mode_reg (mode1, op1);
1255 + pat = GEN_FCN (icode) (op0, op1);
1256 + if (!pat)
1257 + return 0;
1258 + emit_insn (pat);
1259 + return NULL_RTX;
1260 + case AVR32_BUILTIN_CACHE:
1261 + icode = CODE_FOR_cache;
1262 + arg0 = TREE_VALUE (arglist);
1263 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1264 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1265 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1266 + mode0 = insn_data[icode].operand[0].mode;
1267 + mode1 = insn_data[icode].operand[1].mode;
1268 +
1269 + if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
1270 + {
1271 + error ("Parameter 2 to __builtin_cache must be a constant number");
1272 + return gen_reg_rtx (mode1);
1273 + }
1274 +
1275 + if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
1276 + op0 = copy_to_mode_reg (mode0, op0);
1277 +
1278 + pat = GEN_FCN (icode) (op0, op1);
1279 + if (!pat)
1280 + return 0;
1281 + emit_insn (pat);
1282 + return NULL_RTX;
1283 + case AVR32_BUILTIN_SYNC:
1284 + case AVR32_BUILTIN_MUSFR:
1285 + {
1286 + const char *fname;
1287 + switch (fcode)
1288 + {
1289 + default:
1290 + case AVR32_BUILTIN_SYNC:
1291 + icode = CODE_FOR_sync;
1292 + fname = "sync";
1293 + break;
1294 + case AVR32_BUILTIN_MUSFR:
1295 + icode = CODE_FOR_musfr;
1296 + fname = "musfr";
1297 + break;
1298 + }
1299 +
1300 + arg0 = TREE_VALUE (arglist);
1301 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1302 + mode0 = insn_data[icode].operand[0].mode;
1303 +
1304 + if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
1305 + {
1306 + if (icode == CODE_FOR_musfr)
1307 + op0 = copy_to_mode_reg (mode0, op0);
1308 + else
1309 + {
1310 + error ("Parameter to __builtin_%s is illegal.", fname);
1311 + return gen_reg_rtx (mode0);
1312 + }
1313 + }
1314 + pat = GEN_FCN (icode) (op0);
1315 + if (!pat)
1316 + return 0;
1317 + emit_insn (pat);
1318 + return NULL_RTX;
1319 + }
1320 + case AVR32_BUILTIN_TLBR:
1321 + icode = CODE_FOR_tlbr;
1322 + pat = GEN_FCN (icode) (NULL_RTX);
1323 + if (!pat)
1324 + return 0;
1325 + emit_insn (pat);
1326 + return NULL_RTX;
1327 + case AVR32_BUILTIN_TLBS:
1328 + icode = CODE_FOR_tlbs;
1329 + pat = GEN_FCN (icode) (NULL_RTX);
1330 + if (!pat)
1331 + return 0;
1332 + emit_insn (pat);
1333 + return NULL_RTX;
1334 + case AVR32_BUILTIN_TLBW:
1335 + icode = CODE_FOR_tlbw;
1336 + pat = GEN_FCN (icode) (NULL_RTX);
1337 + if (!pat)
1338 + return 0;
1339 + emit_insn (pat);
1340 + return NULL_RTX;
1341 + case AVR32_BUILTIN_BREAKPOINT:
1342 + icode = CODE_FOR_breakpoint;
1343 + pat = GEN_FCN (icode) (NULL_RTX);
1344 + if (!pat)
1345 + return 0;
1346 + emit_insn (pat);
1347 + return NULL_RTX;
1348 + case AVR32_BUILTIN_XCHG:
1349 + icode = CODE_FOR_xchg;
1350 + arg0 = TREE_VALUE (arglist);
1351 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1352 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1353 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1354 + tmode = insn_data[icode].operand[0].mode;
1355 + mode0 = insn_data[icode].operand[1].mode;
1356 + mode1 = insn_data[icode].operand[3].mode;
1357 +
1358 + if (!(*insn_data[icode].operand[3].predicate) (op1, mode1))
1359 + {
1360 + op1 = copy_to_mode_reg (mode1, op1);
1361 + }
1362 +
1363 + if (!(*insn_data[icode].operand[2].predicate) (op0, mode0))
1364 + {
1365 + op0 = copy_to_mode_reg (mode0, op0);
1366 + }
1367 +
1368 + if (target == 0
1369 + || GET_MODE (target) != tmode
1370 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1371 + target = gen_reg_rtx (tmode);
1372 + pat = GEN_FCN (icode) (target, op0, op0, op1);
1373 + if (!pat)
1374 + return 0;
1375 + emit_insn (pat);
1376 + return target;
1377 + case AVR32_BUILTIN_LDXI:
1378 + icode = CODE_FOR_ldxi;
1379 + arg0 = TREE_VALUE (arglist);
1380 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1381 + arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
1382 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1383 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1384 + op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
1385 + tmode = insn_data[icode].operand[0].mode;
1386 + mode0 = insn_data[icode].operand[1].mode;
1387 + mode1 = insn_data[icode].operand[2].mode;
1388 +
1389 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1390 + {
1391 + op0 = copy_to_mode_reg (mode0, op0);
1392 + }
1393 +
1394 + if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
1395 + {
1396 + op1 = copy_to_mode_reg (mode1, op1);
1397 + }
1398 +
1399 + if (!(*insn_data[icode].operand[3].predicate) (op2, SImode))
1400 + {
1401 + error
1402 + ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)");
1403 + return gen_reg_rtx (mode0);
1404 + }
1405 +
1406 + if (target == 0
1407 + || GET_MODE (target) != tmode
1408 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1409 + target = gen_reg_rtx (tmode);
1410 + pat = GEN_FCN (icode) (target, op0, op1, op2);
1411 + if (!pat)
1412 + return 0;
1413 + emit_insn (pat);
1414 + return target;
1415 + case AVR32_BUILTIN_BSWAP16:
1416 + {
1417 + icode = CODE_FOR_bswap_16;
1418 + arg0 = TREE_VALUE (arglist);
1419 + arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1420 + mode0 = insn_data[icode].operand[1].mode;
1421 + if (arg0_mode != mode0)
1422 + arg0 = build1 (NOP_EXPR,
1423 + (*lang_hooks.types.type_for_mode) (mode0, 0), arg0);
1424 +
1425 + op0 = expand_expr (arg0, NULL_RTX, HImode, 0);
1426 + tmode = insn_data[icode].operand[0].mode;
1427 +
1428 +
1429 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1430 + {
1431 + op0 = copy_to_mode_reg (mode0, op0);
1432 + }
1433 +
1434 + if (target == 0
1435 + || GET_MODE (target) != tmode
1436 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1437 + {
1438 + target = gen_reg_rtx (tmode);
1439 + }
1440 +
1441 +
1442 + pat = GEN_FCN (icode) (target, op0);
1443 + if (!pat)
1444 + return 0;
1445 + emit_insn (pat);
1446 +
1447 + return target;
1448 + }
1449 + case AVR32_BUILTIN_BSWAP32:
1450 + {
1451 + icode = CODE_FOR_bswap_32;
1452 + arg0 = TREE_VALUE (arglist);
1453 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1454 + tmode = insn_data[icode].operand[0].mode;
1455 + mode0 = insn_data[icode].operand[1].mode;
1456 +
1457 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
1458 + {
1459 + op0 = copy_to_mode_reg (mode0, op0);
1460 + }
1461 +
1462 + if (target == 0
1463 + || GET_MODE (target) != tmode
1464 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1465 + target = gen_reg_rtx (tmode);
1466 +
1467 +
1468 + pat = GEN_FCN (icode) (target, op0);
1469 + if (!pat)
1470 + return 0;
1471 + emit_insn (pat);
1472 +
1473 + return target;
1474 + }
1475 + case AVR32_BUILTIN_MVCR_W:
1476 + case AVR32_BUILTIN_MVCR_D:
1477 + {
1478 + arg0 = TREE_VALUE (arglist);
1479 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1480 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1481 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1482 +
1483 + if (fcode == AVR32_BUILTIN_MVCR_W)
1484 + icode = CODE_FOR_mvcrsi;
1485 + else
1486 + icode = CODE_FOR_mvcrdi;
1487 +
1488 + tmode = insn_data[icode].operand[0].mode;
1489 +
1490 + if (target == 0
1491 + || GET_MODE (target) != tmode
1492 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1493 + target = gen_reg_rtx (tmode);
1494 +
1495 + if (!(*insn_data[icode].operand[1].predicate) (op0, SImode))
1496 + {
1497 + error
1498 + ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
1499 + error ("Number should be between 0 and 7.");
1500 + return NULL_RTX;
1501 + }
1502 +
1503 + if (!(*insn_data[icode].operand[2].predicate) (op1, SImode))
1504 + {
1505 + error
1506 + ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
1507 + error ("Number should be between 0 and 15.");
1508 + return NULL_RTX;
1509 + }
1510 +
1511 + pat = GEN_FCN (icode) (target, op0, op1);
1512 + if (!pat)
1513 + return 0;
1514 + emit_insn (pat);
1515 +
1516 + return target;
1517 + }
1518 + case AVR32_BUILTIN_MACSATHH_W:
1519 + case AVR32_BUILTIN_MACWH_D:
1520 + case AVR32_BUILTIN_MACHH_D:
1521 + {
1522 + arg0 = TREE_VALUE (arglist);
1523 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1524 + arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
1525 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1526 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1527 + op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
1528 +
1529 + icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w :
1530 + (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d :
1531 + CODE_FOR_machh_d);
1532 +
1533 + tmode = insn_data[icode].operand[0].mode;
1534 + mode0 = insn_data[icode].operand[1].mode;
1535 + mode1 = insn_data[icode].operand[2].mode;
1536 +
1537 +
1538 + if (!target
1539 + || GET_MODE (target) != tmode
1540 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
1541 + target = gen_reg_rtx (tmode);
1542 +
1543 + if (!(*insn_data[icode].operand[0].predicate) (op0, tmode))
1544 + {
1545 + /* If op0 is already a reg we must cast it to the correct mode. */
1546 + if (REG_P (op0))
1547 + op0 = convert_to_mode (tmode, op0, 1);
1548 + else
1549 + op0 = copy_to_mode_reg (tmode, op0);
1550 + }
1551 +
1552 + if (!(*insn_data[icode].operand[1].predicate) (op1, mode0))
1553 + {
1554 + /* If op1 is already a reg we must cast it to the correct mode. */
1555 + if (REG_P (op1))
1556 + op1 = convert_to_mode (mode0, op1, 1);
1557 + else
1558 + op1 = copy_to_mode_reg (mode0, op1);
1559 + }
1560 +
1561 + if (!(*insn_data[icode].operand[2].predicate) (op2, mode1))
1562 + {
1563 + /* If op1 is already a reg we must cast it to the correct mode. */
1564 + if (REG_P (op2))
1565 + op2 = convert_to_mode (mode1, op2, 1);
1566 + else
1567 + op2 = copy_to_mode_reg (mode1, op2);
1568 + }
1569 +
1570 + emit_move_insn (target, op0);
1571 +
1572 + pat = GEN_FCN (icode) (target, op1, op2);
1573 + if (!pat)
1574 + return 0;
1575 + emit_insn (pat);
1576 + return target;
1577 + }
1578 + case AVR32_BUILTIN_MVRC_W:
1579 + case AVR32_BUILTIN_MVRC_D:
1580 + {
1581 + arg0 = TREE_VALUE (arglist);
1582 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1583 + arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
1584 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1585 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1586 + op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
1587 +
1588 + if (fcode == AVR32_BUILTIN_MVRC_W)
1589 + icode = CODE_FOR_mvrcsi;
1590 + else
1591 + icode = CODE_FOR_mvrcdi;
1592 +
1593 + if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
1594 + {
1595 + error ("Parameter 1 is not a valid coprocessor number.");
1596 + error ("Number should be between 0 and 7.");
1597 + return NULL_RTX;
1598 + }
1599 +
1600 + if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
1601 + {
1602 + error ("Parameter 2 is not a valid coprocessor register number.");
1603 + error ("Number should be between 0 and 15.");
1604 + return NULL_RTX;
1605 + }
1606 +
1607 + if (GET_CODE (op2) == CONST_INT
1608 + || GET_CODE (op2) == CONST
1609 + || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF)
1610 + {
1611 + op2 = force_const_mem (insn_data[icode].operand[2].mode, op2);
1612 + }
1613 +
1614 + if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2)))
1615 + op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
1616 +
1617 +
1618 + pat = GEN_FCN (icode) (op0, op1, op2);
1619 + if (!pat)
1620 + return 0;
1621 + emit_insn (pat);
1622 +
1623 + return NULL_RTX;
1624 + }
1625 + case AVR32_BUILTIN_COP:
1626 + {
1627 + rtx op3, op4;
1628 + tree arg3, arg4;
1629 + icode = CODE_FOR_cop;
1630 + arg0 = TREE_VALUE (arglist);
1631 + arg1 = TREE_VALUE (TREE_CHAIN (arglist));
1632 + arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
1633 + arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
1634 + arg4 =
1635 + TREE_VALUE (TREE_CHAIN
1636 + (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist)))));
1637 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
1638 + op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
1639 + op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
1640 + op3 = expand_expr (arg3, NULL_RTX, VOIDmode, 0);
1641 + op4 = expand_expr (arg4, NULL_RTX, VOIDmode, 0);
1642 +
1643 + if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
1644 + {
1645 + error
1646 + ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
1647 + error ("Number should be between 0 and 7.");
1648 + return NULL_RTX;
1649 + }
1650 +
1651 + if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
1652 + {
1653 + error
1654 + ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
1655 + error ("Number should be between 0 and 15.");
1656 + return NULL_RTX;
1657 + }
1658 +
1659 + if (!(*insn_data[icode].operand[2].predicate) (op2, SImode))
1660 + {
1661 + error
1662 + ("Parameter 3 to __builtin_cop is not a valid coprocessor register number.");
1663 + error ("Number should be between 0 and 15.");
1664 + return NULL_RTX;
1665 + }
1666 +
1667 + if (!(*insn_data[icode].operand[3].predicate) (op3, SImode))
1668 + {
1669 + error
1670 + ("Parameter 4 to __builtin_cop is not a valid coprocessor register number.");
1671 + error ("Number should be between 0 and 15.");
1672 + return NULL_RTX;
1673 + }
1674 +
1675 + if (!(*insn_data[icode].operand[4].predicate) (op4, SImode))
1676 + {
1677 + error
1678 + ("Parameter 5 to __builtin_cop is not a valid coprocessor operation.");
1679 + error ("Number should be between 0 and 127.");
1680 + return NULL_RTX;
1681 + }
1682 +
1683 + pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
1684 + if (!pat)
1685 + return 0;
1686 + emit_insn (pat);
1687 +
1688 + return target;
1689 + }
1690 + }
1691 +
1692 + for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
1693 + if (d->code == fcode)
1694 + return avr32_expand_binop_builtin (d->icode, arglist, target);
1695 +
1696 +
1697 + /* @@@ Should really do something sensible here. */
1698 + return NULL_RTX;
1699 +}
1700 +
1701 +
1702 +/* Handle an "interrupt" or "isr" attribute;
1703 + arguments as in struct attribute_spec.handler. */
1704 +
1705 +static tree
1706 +avr32_handle_isr_attribute (tree * node, tree name, tree args,
1707 + int flags, bool * no_add_attrs)
1708 +{
1709 + if (DECL_P (*node))
1710 + {
1711 + if (TREE_CODE (*node) != FUNCTION_DECL)
1712 + {
1713 + warning ("`%s' attribute only applies to functions",
1714 + IDENTIFIER_POINTER (name));
1715 + *no_add_attrs = true;
1716 + }
1717 + /* FIXME: the argument if any is checked for type attributes; should it
1718 + be checked for decl ones? */
1719 + }
1720 + else
1721 + {
1722 + if (TREE_CODE (*node) == FUNCTION_TYPE
1723 + || TREE_CODE (*node) == METHOD_TYPE)
1724 + {
1725 + if (avr32_isr_value (args) == AVR32_FT_UNKNOWN)
1726 + {
1727 + warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
1728 + *no_add_attrs = true;
1729 + }
1730 + }
1731 + else if (TREE_CODE (*node) == POINTER_TYPE
1732 + && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
1733 + || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
1734 + && avr32_isr_value (args) != AVR32_FT_UNKNOWN)
1735 + {
1736 + *node = build_variant_type_copy (*node);
1737 + TREE_TYPE (*node) = build_type_attribute_variant
1738 + (TREE_TYPE (*node),
1739 + tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
1740 + *no_add_attrs = true;
1741 + }
1742 + else
1743 + {
1744 + /* Possibly pass this attribute on from the type to a decl. */
1745 + if (flags & ((int) ATTR_FLAG_DECL_NEXT
1746 + | (int) ATTR_FLAG_FUNCTION_NEXT
1747 + | (int) ATTR_FLAG_ARRAY_NEXT))
1748 + {
1749 + *no_add_attrs = true;
1750 + return tree_cons (name, args, NULL_TREE);
1751 + }
1752 + else
1753 + {
1754 + warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
1755 + }
1756 + }
1757 + }
1758 +
1759 + return NULL_TREE;
1760 +}
1761 +
1762 +/* Handle an attribute requiring a FUNCTION_DECL;
1763 + arguments as in struct attribute_spec.handler. */
1764 +static tree
1765 +avr32_handle_fndecl_attribute (tree * node, tree name,
1766 + tree args ATTRIBUTE_UNUSED,
1767 + int flags ATTRIBUTE_UNUSED,
1768 + bool * no_add_attrs)
1769 +{
1770 + if (TREE_CODE (*node) != FUNCTION_DECL)
1771 + {
1772 + warning ("%qs attribute only applies to functions",
1773 + IDENTIFIER_POINTER (name));
1774 + *no_add_attrs = true;
1775 + }
1776 +
1777 + return NULL_TREE;
1778 +}
1779 +
1780 +
1781 +/* Handle an acall attribute;
1782 + arguments as in struct attribute_spec.handler. */
1783 +
1784 +static tree
1785 +avr32_handle_acall_attribute (tree * node, tree name,
1786 + tree args ATTRIBUTE_UNUSED,
1787 + int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
1788 +{
1789 + if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE)
1790 + {
1791 + warning ("`%s' attribute not yet supported...",
1792 + IDENTIFIER_POINTER (name));
1793 + *no_add_attrs = true;
1794 + return NULL_TREE;
1795 + }
1796 +
1797 + warning ("`%s' attribute only applies to functions",
1798 + IDENTIFIER_POINTER (name));
1799 + *no_add_attrs = true;
1800 + return NULL_TREE;
1801 +}
1802 +
1803 +
1804 +/* Return 0 if the attributes for two types are incompatible, 1 if they
1805 + are compatible, and 2 if they are nearly compatible (which causes a
1806 + warning to be generated). */
1807 +
1808 +static int
1809 +avr32_comp_type_attributes (tree type1, tree type2)
1810 +{
1811 + int acall1, acall2, isr1, isr2, naked1, naked2;
1812 +
1813 + /* Check for mismatch of non-default calling convention. */
1814 + if (TREE_CODE (type1) != FUNCTION_TYPE)
1815 + return 1;
1816 +
1817 + /* Check for mismatched call attributes. */
1818 + acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL;
1819 + acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL;
1820 + naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL;
1821 + naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL;
1822 + isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
1823 + if (!isr1)
1824 + isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
1825 +
1826 + isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
1827 + if (!isr2)
1828 + isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
1829 +
1830 + if ((acall1 && isr2)
1831 + || (acall2 && isr1) || (naked1 && isr2) || (naked2 && isr1))
1832 + return 0;
1833 +
1834 + return 1;
1835 +}
1836 +
1837 +
1838 +/* Computes the type of the current function. */
1839 +
1840 +static unsigned long
1841 +avr32_compute_func_type (void)
1842 +{
1843 + unsigned long type = AVR32_FT_UNKNOWN;
1844 + tree a;
1845 + tree attr;
1846 +
1847 + if (TREE_CODE (current_function_decl) != FUNCTION_DECL)
1848 + abort ();
1849 +
1850 + /* Decide if the current function is volatile. Such functions never
1851 + return, and many memory cycles can be saved by not storing register
1852 + values that will never be needed again. This optimization was added to
1853 + speed up context switching in a kernel application. */
1854 + if (optimize > 0
1855 + && TREE_NOTHROW (current_function_decl)
1856 + && TREE_THIS_VOLATILE (current_function_decl))
1857 + type |= AVR32_FT_VOLATILE;
1858 +
1859 + if (cfun->static_chain_decl != NULL)
1860 + type |= AVR32_FT_NESTED;
1861 +
1862 + attr = DECL_ATTRIBUTES (current_function_decl);
1863 +
1864 + a = lookup_attribute ("isr", attr);
1865 + if (a == NULL_TREE)
1866 + a = lookup_attribute ("interrupt", attr);
1867 +
1868 + if (a == NULL_TREE)
1869 + type |= AVR32_FT_NORMAL;
1870 + else
1871 + type |= avr32_isr_value (TREE_VALUE (a));
1872 +
1873 +
1874 + a = lookup_attribute ("acall", attr);
1875 + if (a != NULL_TREE)
1876 + type |= AVR32_FT_ACALL;
1877 +
1878 + a = lookup_attribute ("naked", attr);
1879 + if (a != NULL_TREE)
1880 + type |= AVR32_FT_NAKED;
1881 +
1882 + return type;
1883 +}
1884 +
1885 +/* Returns the type of the current function. */
1886 +
1887 +static unsigned long
1888 +avr32_current_func_type (void)
1889 +{
1890 + if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN)
1891 + cfun->machine->func_type = avr32_compute_func_type ();
1892 +
1893 + return cfun->machine->func_type;
1894 +}
1895 +
1896 +/*
1897 + This target hook should return true if we should not pass type solely
1898 + in registers. The file expr.h defines a definition that is usually appropriate,
1899 + refer to expr.h for additional documentation.
1900 +*/
1901 +bool
1902 +avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type)
1903 +{
1904 + if (type && AGGREGATE_TYPE_P (type)
1905 + /* If the alignment is less than the size then pass in the struct on
1906 + the stack. */
1907 + && ((unsigned int) TYPE_ALIGN_UNIT (type) <
1908 + (unsigned int) int_size_in_bytes (type))
1909 + /* If we support unaligned word accesses then structs of size 4 and 8
1910 + can have any alignment and still be passed in registers. */
1911 + && !(TARGET_UNALIGNED_WORD
1912 + && (int_size_in_bytes (type) == 4
1913 + || int_size_in_bytes (type) == 8))
1914 + /* Double word structs need only a word alignment. */
1915 + && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4))
1916 + return true;
1917 +
1918 + if (type && AGGREGATE_TYPE_P (type)
1919 + /* Structs of size 3,5,6,7 are always passed in registers. */
1920 + && (int_size_in_bytes (type) == 3
1921 + || int_size_in_bytes (type) == 5
1922 + || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7))
1923 + return true;
1924 +
1925 +
1926 + return (type && TREE_ADDRESSABLE (type));
1927 +}
1928 +
1929 +
1930 +bool
1931 +avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
1932 +{
1933 + return true;
1934 +}
1935 +
1936 +/*
1937 + This target hook should return true if an argument at the position indicated
1938 + by cum should be passed by reference. This predicate is queried after target
1939 + independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type).
1940 +
1941 + If the hook returns true, a copy of that argument is made in memory and a
1942 + pointer to the argument is passed instead of the argument itself. The pointer
1943 + is passed in whatever way is appropriate for passing a pointer to that type.
1944 +*/
1945 +bool
1946 +avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED,
1947 + enum machine_mode mode ATTRIBUTE_UNUSED,
1948 + tree type, bool named ATTRIBUTE_UNUSED)
1949 +{
1950 + return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST));
1951 +}
1952 +
1953 +static int
1954 +avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED,
1955 + enum machine_mode mode ATTRIBUTE_UNUSED,
1956 + tree type ATTRIBUTE_UNUSED,
1957 + bool named ATTRIBUTE_UNUSED)
1958 +{
1959 + return 0;
1960 +}
1961 +
1962 +
1963 +struct gcc_target targetm = TARGET_INITIALIZER;
1964 +
1965 +/*
1966 + Table used to convert from register number in the assembler instructions and
1967 + the register numbers used in gcc.
1968 +*/
1969 +const int avr32_function_arg_reglist[] =
1970 +{
1971 + INTERNAL_REGNUM (12),
1972 + INTERNAL_REGNUM (11),
1973 + INTERNAL_REGNUM (10),
1974 + INTERNAL_REGNUM (9),
1975 + INTERNAL_REGNUM (8)
1976 +};
1977 +
1978 +rtx avr32_compare_op0 = NULL_RTX;
1979 +rtx avr32_compare_op1 = NULL_RTX;
1980 +rtx avr32_compare_operator = NULL_RTX;
1981 +rtx avr32_acc_cache = NULL_RTX;
1982 +
1983 +/*
1984 + Returns nonzero if it is allowed to store a value of mode mode in hard
1985 + register number regno.
1986 +*/
1987 +int
1988 +avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode)
1989 +{
1990 + /* We allow only float modes in the fp-registers */
1991 + if (regnr >= FIRST_FP_REGNUM
1992 + && regnr <= LAST_FP_REGNUM && GET_MODE_CLASS (mode) != MODE_FLOAT)
1993 + {
1994 + return 0;
1995 + }
1996 +
1997 + switch (mode)
1998 + {
1999 + case DImode: /* long long */
2000 + case DFmode: /* double */
2001 + case SCmode: /* __complex__ float */
2002 + case CSImode: /* __complex__ int */
2003 + if (regnr < 4)
2004 + { /* long long int not supported in r12, sp, lr
2005 + or pc. */
2006 + return 0;
2007 + }
2008 + else
2009 + {
2010 + if (regnr % 2) /* long long int has to be refered in even
2011 + registers. */
2012 + return 0;
2013 + else
2014 + return 1;
2015 + }
2016 + case CDImode: /* __complex__ long long */
2017 + case DCmode: /* __complex__ double */
2018 + case TImode: /* 16 bytes */
2019 + if (regnr < 7)
2020 + return 0;
2021 + else if (regnr % 2)
2022 + return 0;
2023 + else
2024 + return 1;
2025 + default:
2026 + return 1;
2027 + }
2028 +}
2029 +
2030 +
2031 +int
2032 +avr32_rnd_operands (rtx add, rtx shift)
2033 +{
2034 + if (GET_CODE (shift) == CONST_INT &&
2035 + GET_CODE (add) == CONST_INT && INTVAL (shift) > 0)
2036 + {
2037 + if ((1 << (INTVAL (shift) - 1)) == INTVAL (add))
2038 + return TRUE;
2039 + }
2040 +
2041 + return FALSE;
2042 +}
2043 +
2044 +
2045 +
2046 +int
2047 +avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str)
2048 +{
2049 + switch (c)
2050 + {
2051 + case 'K':
2052 + case 'I':
2053 + {
2054 + HOST_WIDE_INT min_value = 0, max_value = 0;
2055 + char size_str[3];
2056 + int const_size;
2057 +
2058 + size_str[0] = str[2];
2059 + size_str[1] = str[3];
2060 + size_str[2] = '\0';
2061 + const_size = atoi (size_str);
2062 +
2063 + if (toupper (str[1]) == 'U')
2064 + {
2065 + min_value = 0;
2066 + max_value = (1 << const_size) - 1;
2067 + }
2068 + else if (toupper (str[1]) == 'S')
2069 + {
2070 + min_value = -(1 << (const_size - 1));
2071 + max_value = (1 << (const_size - 1)) - 1;
2072 + }
2073 +
2074 + if (c == 'I')
2075 + {
2076 + value = -value;
2077 + }
2078 +
2079 + if (value >= min_value && value <= max_value)
2080 + {
2081 + return 1;
2082 + }
2083 + break;
2084 + }
2085 + case 'M':
2086 + return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode);
2087 + }
2088 +
2089 + return 0;
2090 +}
2091 +
2092 +
2093 +/*Compute mask of which floating-point registers needs saving upon
2094 + entry to this function*/
2095 +static unsigned long
2096 +avr32_compute_save_fp_reg_mask (void)
2097 +{
2098 + unsigned long func_type = avr32_current_func_type ();
2099 + unsigned int save_reg_mask = 0;
2100 + unsigned int reg;
2101 + unsigned int max_reg = 7;
2102 + int save_all_call_used_regs = FALSE;
2103 +
2104 + /* This only applies for hardware floating-point implementation. */
2105 + if (!TARGET_HARD_FLOAT)
2106 + return 0;
2107 +
2108 + if (IS_INTERRUPT (func_type))
2109 + {
2110 +
2111 + /* Interrupt functions must not corrupt any registers, even call
2112 + clobbered ones. If this is a leaf function we can just examine the
2113 + registers used by the RTL, but otherwise we have to assume that
2114 + whatever function is called might clobber anything, and so we have
2115 + to save all the call-clobbered registers as well. */
2116 + max_reg = 13;
2117 + save_all_call_used_regs = !current_function_is_leaf;
2118 + }
2119 +
2120 + /* All used registers used must be saved */
2121 + for (reg = 0; reg <= max_reg; reg++)
2122 + if (regs_ever_live[INTERNAL_FP_REGNUM (reg)]
2123 + || (save_all_call_used_regs
2124 + && call_used_regs[INTERNAL_FP_REGNUM (reg)]))
2125 + save_reg_mask |= (1 << reg);
2126 +
2127 + return save_reg_mask;
2128 +}
2129 +
2130 +/*Compute mask of registers which needs saving upon function entry */
2131 +static unsigned long
2132 +avr32_compute_save_reg_mask (int push)
2133 +{
2134 + unsigned long func_type;
2135 + unsigned int save_reg_mask = 0;
2136 + unsigned int reg;
2137 +
2138 + func_type = avr32_current_func_type ();
2139 +
2140 + if (IS_INTERRUPT (func_type))
2141 + {
2142 + unsigned int max_reg = 12;
2143 +
2144 +
2145 + /* Get the banking scheme for the interrupt */
2146 + switch (func_type)
2147 + {
2148 + case AVR32_FT_ISR_FULL:
2149 + max_reg = 0;
2150 + break;
2151 + case AVR32_FT_ISR_HALF:
2152 + max_reg = 7;
2153 + break;
2154 + case AVR32_FT_ISR_NONE:
2155 + max_reg = 12;
2156 + break;
2157 + }
2158 +
2159 + /* Interrupt functions must not corrupt any registers, even call
2160 + clobbered ones. If this is a leaf function we can just examine the
2161 + registers used by the RTL, but otherwise we have to assume that
2162 + whatever function is called might clobber anything, and so we have
2163 + to save all the call-clobbered registers as well. */
2164 +
2165 + /* Need not push the registers r8-r12 for AVR32A architectures, as this
2166 + is automatially done in hardware. We also do not have any shadow
2167 + registers. */
2168 + if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A)
2169 + {
2170 + max_reg = 7;
2171 + func_type = AVR32_FT_ISR_NONE;
2172 + }
2173 +
2174 + /* All registers which are used and is not shadowed must be saved */
2175 + for (reg = 0; reg <= max_reg; reg++)
2176 + if (regs_ever_live[INTERNAL_REGNUM (reg)]
2177 + || (!current_function_is_leaf
2178 + && call_used_regs[INTERNAL_REGNUM (reg)]))
2179 + save_reg_mask |= (1 << reg);
2180 +
2181 + /* Check LR */
2182 + if ((regs_ever_live[LR_REGNUM] || !current_function_is_leaf || frame_pointer_needed) && (func_type == AVR32_FT_ISR_NONE) /* Only
2183 + non-shadowed
2184 + register
2185 + models
2186 + */ )
2187 + save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
2188 +
2189 + /* Make sure that the GOT register is pushed. */
2190 + if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)
2191 + && current_function_uses_pic_offset_table)
2192 + save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
2193 +
2194 + }
2195 + else
2196 + {
2197 + int use_pushm = optimize_size;
2198 +
2199 + /* In the normal case we only need to save those registers which are
2200 + call saved and which are used by this function. */
2201 + for (reg = 0; reg <= 7; reg++)
2202 + if (regs_ever_live[INTERNAL_REGNUM (reg)]
2203 + && !call_used_regs[INTERNAL_REGNUM (reg)])
2204 + save_reg_mask |= (1 << reg);
2205 +
2206 + /* Make sure that the GOT register is pushed. */
2207 + if (current_function_uses_pic_offset_table)
2208 + save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
2209 +
2210 +
2211 + /* If we optimize for size and do not have anonymous arguments: use
2212 + popm/pushm always */
2213 + if (use_pushm)
2214 + {
2215 + if ((save_reg_mask & (1 << 0))
2216 + || (save_reg_mask & (1 << 1))
2217 + || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3)))
2218 + save_reg_mask |= 0xf;
2219 +
2220 + if ((save_reg_mask & (1 << 4))
2221 + || (save_reg_mask & (1 << 5))
2222 + || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7)))
2223 + save_reg_mask |= 0xf0;
2224 +
2225 + if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9)))
2226 + save_reg_mask |= 0x300;
2227 + }
2228 +
2229 +
2230 + /* Check LR */
2231 + if ((regs_ever_live[LR_REGNUM] || !current_function_is_leaf ||
2232 + (optimize_size && save_reg_mask) || frame_pointer_needed))
2233 + {
2234 + if (push)
2235 + {
2236 + /* Push/Pop LR */
2237 + save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
2238 + }
2239 + else
2240 + {
2241 + /* Pop PC */
2242 + save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM));
2243 + }
2244 + }
2245 + }
2246 +
2247 + return save_reg_mask;
2248 +}
2249 +
2250 +/*Compute total size in bytes of all saved registers */
2251 +static int
2252 +avr32_get_reg_mask_size (int reg_mask)
2253 +{
2254 + int reg, size;
2255 + size = 0;
2256 +
2257 + for (reg = 0; reg <= 15; reg++)
2258 + if (reg_mask & (1 << reg))
2259 + size += 4;
2260 +
2261 + return size;
2262 +}
2263 +
2264 +/*Get a register from one of the registers which are saved onto the stack
2265 + upon function entry */
2266 +
2267 +static int
2268 +avr32_get_saved_reg (int save_reg_mask)
2269 +{
2270 + unsigned int reg;
2271 +
2272 + /* Find the first register which is saved in the saved_reg_mask */
2273 + for (reg = 0; reg <= 15; reg++)
2274 + if (save_reg_mask & (1 << reg))
2275 + return reg;
2276 +
2277 + return -1;
2278 +}
2279 +
2280 +/* Return 1 if it is possible to return using a single instruction. */
2281 +int
2282 +avr32_use_return_insn (int iscond)
2283 +{
2284 + unsigned int func_type = avr32_current_func_type ();
2285 + unsigned long saved_int_regs;
2286 + unsigned long saved_fp_regs;
2287 +
2288 + /* Never use a return instruction before reload has run. */
2289 + if (!reload_completed)
2290 + return 0;
2291 +
2292 + /* Must adjust the stack for vararg functions. */
2293 + if (current_function_args_info.uses_anonymous_args)
2294 + return 0;
2295 +
2296 + /* If there a stack adjstment. */
2297 + if (get_frame_size ())
2298 + return 0;
2299 +
2300 + saved_int_regs = avr32_compute_save_reg_mask (TRUE);
2301 + saved_fp_regs = avr32_compute_save_fp_reg_mask ();
2302 +
2303 + /* Functions which have saved fp-regs on the stack can not be performed in
2304 + one instruction */
2305 + if (saved_fp_regs)
2306 + return 0;
2307 +
2308 + /* Conditional returns can not be performed in one instruction if we need
2309 + to restore registers from the stack */
2310 + if (iscond && saved_int_regs)
2311 + return 0;
2312 +
2313 + /* Conditional return can not be used for interrupt handlers. */
2314 + if (iscond && IS_INTERRUPT (func_type))
2315 + return 0;
2316 +
2317 + /* For interrupt handlers which needs to pop registers */
2318 + if (saved_int_regs && IS_INTERRUPT (func_type))
2319 + return 0;
2320 +
2321 +
2322 + /* If there are saved registers but the LR isn't saved, then we need two
2323 + instructions for the return. */
2324 + if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM))))
2325 + return 0;
2326 +
2327 +
2328 + return 1;
2329 +}
2330 +
2331 +
2332 +/*Generate some function prologue info in the assembly file*/
2333 +
2334 +void
2335 +avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size)
2336 +{
2337 + if (IS_NAKED (avr32_current_func_type ()))
2338 + fprintf (f,
2339 + "\t# Function is naked: Prologue and epilogue provided by programmer\n");
2340 +
2341 + if (IS_INTERRUPT (avr32_current_func_type ()))
2342 + {
2343 + switch (avr32_current_func_type ())
2344 + {
2345 + case AVR32_FT_ISR_FULL:
2346 + fprintf (f,
2347 + "\t# Interrupt Function: Fully shadowed register file\n");
2348 + break;
2349 + case AVR32_FT_ISR_HALF:
2350 + fprintf (f,
2351 + "\t# Interrupt Function: Half shadowed register file\n");
2352 + break;
2353 + default:
2354 + case AVR32_FT_ISR_NONE:
2355 + fprintf (f, "\t# Interrupt Function: No shadowed register file\n");
2356 + break;
2357 + }
2358 + }
2359 +
2360 +
2361 + fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n",
2362 + current_function_args_size, frame_size,
2363 + current_function_pretend_args_size);
2364 +
2365 + fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n",
2366 + frame_pointer_needed, current_function_is_leaf);
2367 +
2368 + fprintf (f, "\t# uses_anonymous_args = %i\n",
2369 + current_function_args_info.uses_anonymous_args);
2370 +}
2371 +
2372 +
2373 +/* Generate and emit an insn that we will recognize as a pushm or stm.
2374 + Unfortunately, since this insn does not reflect very well the actual
2375 + semantics of the operation, we need to annotate the insn for the benefit
2376 + of DWARF2 frame unwind information. */
2377 +
2378 +int avr32_convert_to_reglist16 (int reglist8_vect);
2379 +
2380 +static rtx
2381 +emit_multi_reg_push (int reglist, int usePUSHM)
2382 +{
2383 + rtx insn;
2384 + rtx dwarf;
2385 + rtx tmp;
2386 + rtx reg;
2387 + int i;
2388 + int nr_regs;
2389 + int index = 0;
2390 +
2391 + if (usePUSHM)
2392 + {
2393 + insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist)));
2394 + reglist = avr32_convert_to_reglist16 (reglist);
2395 + }
2396 + else
2397 + {
2398 + insn = emit_insn (gen_stm (stack_pointer_rtx,
2399 + gen_rtx_CONST_INT (SImode, reglist),
2400 + gen_rtx_CONST_INT (SImode, 1)));
2401 + }
2402 +
2403 + nr_regs = avr32_get_reg_mask_size (reglist) / 4;
2404 + dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
2405 +
2406 + for (i = 15; i >= 0; i--)
2407 + {
2408 + if (reglist & (1 << i))
2409 + {
2410 + reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i));
2411 + tmp = gen_rtx_SET (VOIDmode,
2412 + gen_rtx_MEM (SImode,
2413 + plus_constant (stack_pointer_rtx,
2414 + 4 * index)), reg);
2415 + RTX_FRAME_RELATED_P (tmp) = 1;
2416 + XVECEXP (dwarf, 0, 1 + index++) = tmp;
2417 + }
2418 + }
2419 +
2420 + tmp = gen_rtx_SET (SImode,
2421 + stack_pointer_rtx,
2422 + gen_rtx_PLUS (SImode,
2423 + stack_pointer_rtx,
2424 + GEN_INT (-4 * nr_regs)));
2425 + RTX_FRAME_RELATED_P (tmp) = 1;
2426 + XVECEXP (dwarf, 0, 0) = tmp;
2427 + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
2428 + REG_NOTES (insn));
2429 + return insn;
2430 +}
2431 +
2432 +
2433 +static rtx
2434 +emit_multi_fp_reg_push (int reglist)
2435 +{
2436 + rtx insn;
2437 + rtx dwarf;
2438 + rtx tmp;
2439 + rtx reg;
2440 + int i;
2441 + int nr_regs;
2442 + int index = 0;
2443 +
2444 + insn = emit_insn (gen_stm_fp (stack_pointer_rtx,
2445 + gen_rtx_CONST_INT (SImode, reglist),
2446 + gen_rtx_CONST_INT (SImode, 1)));
2447 +
2448 + nr_regs = avr32_get_reg_mask_size (reglist) / 4;
2449 + dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
2450 +
2451 + for (i = 15; i >= 0; i--)
2452 + {
2453 + if (reglist & (1 << i))
2454 + {
2455 + reg = gen_rtx_REG (SImode, INTERNAL_FP_REGNUM (i));
2456 + tmp = gen_rtx_SET (VOIDmode,
2457 + gen_rtx_MEM (SImode,
2458 + plus_constant (stack_pointer_rtx,
2459 + 4 * index)), reg);
2460 + RTX_FRAME_RELATED_P (tmp) = 1;
2461 + XVECEXP (dwarf, 0, 1 + index++) = tmp;
2462 + }
2463 + }
2464 +
2465 + tmp = gen_rtx_SET (SImode,
2466 + stack_pointer_rtx,
2467 + gen_rtx_PLUS (SImode,
2468 + stack_pointer_rtx,
2469 + GEN_INT (-4 * nr_regs)));
2470 + RTX_FRAME_RELATED_P (tmp) = 1;
2471 + XVECEXP (dwarf, 0, 0) = tmp;
2472 + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
2473 + REG_NOTES (insn));
2474 + return insn;
2475 +}
2476 +
2477 +rtx
2478 +avr32_gen_load_multiple (rtx * regs, int count, rtx from,
2479 + int write_back, int in_struct_p, int scalar_p)
2480 +{
2481 +
2482 + rtx result;
2483 + int i = 0, j;
2484 +
2485 + result =
2486 + gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0)));
2487 +
2488 + if (write_back)
2489 + {
2490 + XVECEXP (result, 0, 0)
2491 + = gen_rtx_SET (GET_MODE (from), from,
2492 + plus_constant (from, count * 4));
2493 + i = 1;
2494 + count++;
2495 + }
2496 +
2497 +
2498 + for (j = 0; i < count; i++, j++)
2499 + {
2500 + rtx unspec;
2501 + rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4));
2502 + MEM_IN_STRUCT_P (mem) = in_struct_p;
2503 + MEM_SCALAR_P (mem) = scalar_p;
2504 + unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM);
2505 + XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec);
2506 + }
2507 +
2508 + return result;
2509 +}
2510 +
2511 +
2512 +rtx
2513 +avr32_gen_store_multiple (rtx * regs, int count, rtx to,
2514 + int in_struct_p, int scalar_p)
2515 +{
2516 + rtx result;
2517 + int i = 0, j;
2518 +
2519 + result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
2520 +
2521 + for (j = 0; i < count; i++, j++)
2522 + {
2523 + rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4));
2524 + MEM_IN_STRUCT_P (mem) = in_struct_p;
2525 + MEM_SCALAR_P (mem) = scalar_p;
2526 + XVECEXP (result, 0, i)
2527 + = gen_rtx_SET (VOIDmode, mem,
2528 + gen_rtx_UNSPEC (VOIDmode,
2529 + gen_rtvec (1, regs[j]),
2530 + UNSPEC_STORE_MULTIPLE));
2531 + }
2532 +
2533 + return result;
2534 +}
2535 +
2536 +
2537 +/* Move a block of memory if it is word aligned or we support unaligned
2538 + word memory accesses. The size must be maximum 64 bytes. */
2539 +
2540 +int
2541 +avr32_gen_movmemsi (rtx * operands)
2542 +{
2543 + HOST_WIDE_INT bytes_to_go;
2544 + rtx src, dst;
2545 + rtx st_src, st_dst;
2546 + int ptr_offset = 0;
2547 + int block_size;
2548 + int dst_in_struct_p, src_in_struct_p;
2549 + int dst_scalar_p, src_scalar_p;
2550 + int unaligned;
2551 +
2552 + if (GET_CODE (operands[2]) != CONST_INT
2553 + || GET_CODE (operands[3]) != CONST_INT
2554 + || INTVAL (operands[2]) > 64
2555 + || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD))
2556 + return 0;
2557 +
2558 + unaligned = (INTVAL (operands[3]) & 3) != 0;
2559 +
2560 + block_size = 4;
2561 +
2562 + st_dst = XEXP (operands[0], 0);
2563 + st_src = XEXP (operands[1], 0);
2564 +
2565 + dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]);
2566 + dst_scalar_p = MEM_SCALAR_P (operands[0]);
2567 + src_in_struct_p = MEM_IN_STRUCT_P (operands[1]);
2568 + src_scalar_p = MEM_SCALAR_P (operands[1]);
2569 +
2570 + dst = copy_to_mode_reg (SImode, st_dst);
2571 + src = copy_to_mode_reg (SImode, st_src);
2572 +
2573 + bytes_to_go = INTVAL (operands[2]);
2574 +
2575 + while (bytes_to_go)
2576 + {
2577 + enum machine_mode move_mode;
2578 + /* Seems to be a problem with reloads for the movti pattern so this is
2579 + disabled until that problem is resolved */
2580 +
2581 + /* if ( bytes_to_go >= GET_MODE_SIZE(TImode) ) move_mode = TImode; else
2582 + */
2583 + if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned)
2584 + move_mode = DImode;
2585 + else if (bytes_to_go >= GET_MODE_SIZE (SImode))
2586 + move_mode = SImode;
2587 + else
2588 + move_mode = QImode;
2589 +
2590 + {
2591 + rtx dst_mem = gen_rtx_MEM (move_mode,
2592 + gen_rtx_PLUS (SImode, dst,
2593 + GEN_INT (ptr_offset)));
2594 + rtx src_mem = gen_rtx_MEM (move_mode,
2595 + gen_rtx_PLUS (SImode, src,
2596 + GEN_INT (ptr_offset)));
2597 + ptr_offset += GET_MODE_SIZE (move_mode);
2598 + bytes_to_go -= GET_MODE_SIZE (move_mode);
2599 +
2600 + MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p;
2601 + MEM_SCALAR_P (dst_mem) = dst_scalar_p;
2602 +
2603 + MEM_IN_STRUCT_P (src_mem) = src_in_struct_p;
2604 + MEM_SCALAR_P (src_mem) = src_scalar_p;
2605 + emit_move_insn (dst_mem, src_mem);
2606 +
2607 + }
2608 + }
2609 +
2610 + return 1;
2611 +}
2612 +
2613 +
2614 +
2615 +/*Expand the prologue instruction*/
2616 +void
2617 +avr32_expand_prologue (void)
2618 +{
2619 + rtx insn, dwarf;
2620 + unsigned long saved_reg_mask, saved_fp_reg_mask;
2621 + int reglist8 = 0;
2622 +
2623 + /* Naked functions does not have a prologue */
2624 + if (IS_NAKED (avr32_current_func_type ()))
2625 + return;
2626 +
2627 + saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
2628 +
2629 + if (saved_reg_mask)
2630 + {
2631 + /* Must push used registers */
2632 +
2633 + /* Should we use POPM or LDM? */
2634 + int usePUSHM = TRUE;
2635 + reglist8 = 0;
2636 + if (((saved_reg_mask & (1 << 0)) ||
2637 + (saved_reg_mask & (1 << 1)) ||
2638 + (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
2639 + {
2640 + /* One of R0-R3 should at least be pushed */
2641 + if (((saved_reg_mask & (1 << 0)) &&
2642 + (saved_reg_mask & (1 << 1)) &&
2643 + (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
2644 + {
2645 + /* All should be pushed */
2646 + reglist8 |= 0x01;
2647 + }
2648 + else
2649 + {
2650 + usePUSHM = FALSE;
2651 + }
2652 + }
2653 +
2654 + if (((saved_reg_mask & (1 << 4)) ||
2655 + (saved_reg_mask & (1 << 5)) ||
2656 + (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
2657 + {
2658 + /* One of R4-R7 should at least be pushed */
2659 + if (((saved_reg_mask & (1 << 4)) &&
2660 + (saved_reg_mask & (1 << 5)) &&
2661 + (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
2662 + {
2663 + if (usePUSHM)
2664 + /* All should be pushed */
2665 + reglist8 |= 0x02;
2666 + }
2667 + else
2668 + {
2669 + usePUSHM = FALSE;
2670 + }
2671 + }
2672 +
2673 + if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
2674 + {
2675 + /* One of R8-R9 should at least be pushed */
2676 + if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
2677 + {
2678 + if (usePUSHM)
2679 + /* All should be pushed */
2680 + reglist8 |= 0x04;
2681 + }
2682 + else
2683 + {
2684 + usePUSHM = FALSE;
2685 + }
2686 + }
2687 +
2688 + if (saved_reg_mask & (1 << 10))
2689 + reglist8 |= 0x08;
2690 +
2691 + if (saved_reg_mask & (1 << 11))
2692 + reglist8 |= 0x10;
2693 +
2694 + if (saved_reg_mask & (1 << 12))
2695 + reglist8 |= 0x20;
2696 +
2697 + if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
2698 + {
2699 + /* Push LR */
2700 + reglist8 |= 0x40;
2701 + }
2702 +
2703 + if (usePUSHM)
2704 + {
2705 + insn = emit_multi_reg_push (reglist8, TRUE);
2706 + }
2707 + else
2708 + {
2709 + insn = emit_multi_reg_push (saved_reg_mask, FALSE);
2710 + }
2711 + RTX_FRAME_RELATED_P (insn) = 1;
2712 +
2713 + /* Prevent this instruction from being scheduled after any other
2714 + instructions. */
2715 + emit_insn (gen_blockage ());
2716 + }
2717 +
2718 + saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
2719 + if (saved_fp_reg_mask)
2720 + {
2721 + insn = emit_multi_fp_reg_push (saved_fp_reg_mask);
2722 + RTX_FRAME_RELATED_P (insn) = 1;
2723 +
2724 + /* Prevent this instruction from being scheduled after any other
2725 + instructions. */
2726 + emit_insn (gen_blockage ());
2727 + }
2728 +
2729 + /* Set frame pointer */
2730 + if (frame_pointer_needed)
2731 + {
2732 + insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
2733 + RTX_FRAME_RELATED_P (insn) = 1;
2734 + }
2735 +
2736 + if (get_frame_size () > 0)
2737 + {
2738 + if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21"))
2739 + {
2740 + insn = emit_insn (gen_rtx_SET (SImode,
2741 + stack_pointer_rtx,
2742 + gen_rtx_PLUS (SImode,
2743 + stack_pointer_rtx,
2744 + gen_rtx_CONST_INT
2745 + (SImode,
2746 + -get_frame_size
2747 + ()))));
2748 + RTX_FRAME_RELATED_P (insn) = 1;
2749 + }
2750 + else
2751 + {
2752 + /* Immediate is larger than k21 We must either check if we can use
2753 + one of the pushed reegisters as temporary storage or we must
2754 + make us a temp register by pushing a register to the stack. */
2755 + rtx temp_reg, const_pool_entry, insn;
2756 + if (saved_reg_mask)
2757 + {
2758 + temp_reg =
2759 + gen_rtx_REG (SImode,
2760 + INTERNAL_REGNUM (avr32_get_saved_reg
2761 + (saved_reg_mask)));
2762 + }
2763 + else
2764 + {
2765 + temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7));
2766 + emit_move_insn (gen_rtx_MEM
2767 + (SImode,
2768 + gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)),
2769 + temp_reg);
2770 + }
2771 +
2772 + const_pool_entry =
2773 + force_const_mem (SImode,
2774 + gen_rtx_CONST_INT (SImode, get_frame_size ()));
2775 + emit_move_insn (temp_reg, const_pool_entry);
2776 +
2777 + insn = emit_insn (gen_rtx_SET (SImode,
2778 + stack_pointer_rtx,
2779 + gen_rtx_MINUS (SImode,
2780 + stack_pointer_rtx,
2781 + temp_reg)));
2782 +
2783 + dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
2784 + gen_rtx_PLUS (SImode, stack_pointer_rtx,
2785 + GEN_INT (-get_frame_size ())));
2786 + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
2787 + dwarf, REG_NOTES (insn));
2788 + RTX_FRAME_RELATED_P (insn) = 1;
2789 +
2790 + if (!saved_reg_mask)
2791 + {
2792 + insn =
2793 + emit_move_insn (temp_reg,
2794 + gen_rtx_MEM (SImode,
2795 + gen_rtx_POST_INC (SImode,
2796 + gen_rtx_REG
2797 + (SImode,
2798 + 13))));
2799 + }
2800 +
2801 + /* Mark the temp register as dead */
2802 + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg,
2803 + REG_NOTES (insn));
2804 +
2805 +
2806 + }
2807 +
2808 + /* Prevent the the stack adjustment to be scheduled after any
2809 + instructions using the frame pointer. */
2810 + emit_insn (gen_blockage ());
2811 + }
2812 +
2813 + /* Load GOT */
2814 + if (flag_pic)
2815 + {
2816 + avr32_load_pic_register ();
2817 +
2818 + /* gcc does not know that load or call instructions might use the pic
2819 + register so it might schedule these instructions before the loading
2820 + of the pic register. To avoid this emit a barrier for now. TODO!
2821 + Find out a better way to let gcc know which instructions might use
2822 + the pic register. */
2823 + emit_insn (gen_blockage ());
2824 + }
2825 + return;
2826 +}
2827 +
2828 +void
2829 +avr32_set_return_address (rtx source)
2830 +{
2831 + rtx addr;
2832 + unsigned long saved_regs;
2833 +
2834 + saved_regs = avr32_compute_save_reg_mask (TRUE);
2835 +
2836 + if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM))))
2837 + emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
2838 + else
2839 + {
2840 + if (frame_pointer_needed)
2841 + addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM);
2842 + else
2843 + /* FIXME: Need to use scratch register if frame is large */
2844 + addr = plus_constant (stack_pointer_rtx, get_frame_size ());
2845 +
2846 + emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
2847 + }
2848 +}
2849 +
2850 +
2851 +
2852 +/* Return the length of INSN. LENGTH is the initial length computed by
2853 + attributes in the machine-description file. */
2854 +
2855 +int
2856 +avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED,
2857 + int length ATTRIBUTE_UNUSED)
2858 +{
2859 + return length;
2860 +}
2861 +
2862 +void
2863 +avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED,
2864 + int iscond ATTRIBUTE_UNUSED,
2865 + rtx cond ATTRIBUTE_UNUSED, rtx r12_imm)
2866 +{
2867 +
2868 + unsigned long saved_reg_mask, saved_fp_reg_mask;
2869 + int insert_ret = TRUE;
2870 + int reglist8 = 0;
2871 + int stack_adjustment = get_frame_size ();
2872 + unsigned int func_type = avr32_current_func_type ();
2873 + FILE *f = asm_out_file;
2874 +
2875 + /* Naked functions does not have an epilogue */
2876 + if (IS_NAKED (func_type))
2877 + return;
2878 +
2879 + saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
2880 +
2881 + saved_reg_mask = avr32_compute_save_reg_mask (FALSE);
2882 +
2883 + /* Reset frame pointer */
2884 + if (stack_adjustment > 0)
2885 + {
2886 + if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21"))
2887 + {
2888 + fprintf (f, "\tsub sp, %i # Reset Frame Pointer\n",
2889 + -stack_adjustment);
2890 + }
2891 + else
2892 + {
2893 + /* TODO! Is it safe to use r8 as scratch?? */
2894 + fprintf (f, "\tmov r8, lo(%i) # Reset Frame Pointer\n",
2895 + -stack_adjustment);
2896 + fprintf (f, "\torh r8, hi(%i) # Reset Frame Pointer\n",
2897 + -stack_adjustment);
2898 + fprintf (f, "\tadd sp,r8 # Reset Frame Pointer\n");
2899 + }
2900 + }
2901 +
2902 + if (saved_fp_reg_mask)
2903 + {
2904 + char reglist[64]; /* 64 bytes should be enough... */
2905 + avr32_make_fp_reglist_w (saved_fp_reg_mask, (char *) reglist);
2906 + fprintf (f, "\tldcm.w\tcp0, sp++, %s\n", reglist);
2907 + if (saved_fp_reg_mask & ~0xff)
2908 + {
2909 + saved_fp_reg_mask &= ~0xff;
2910 + avr32_make_fp_reglist_d (saved_fp_reg_mask, (char *) reglist);
2911 + fprintf (f, "\tldcm.d\tcp0, sp++, %s\n", reglist);
2912 + }
2913 + }
2914 +
2915 + if (saved_reg_mask)
2916 + {
2917 + /* Must pop used registers */
2918 +
2919 + /* Should we use POPM or LDM? */
2920 + int usePOPM = TRUE;
2921 + if (((saved_reg_mask & (1 << 0)) ||
2922 + (saved_reg_mask & (1 << 1)) ||
2923 + (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
2924 + {
2925 + /* One of R0-R3 should at least be popped */
2926 + if (((saved_reg_mask & (1 << 0)) &&
2927 + (saved_reg_mask & (1 << 1)) &&
2928 + (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
2929 + {
2930 + /* All should be popped */
2931 + reglist8 |= 0x01;
2932 + }
2933 + else
2934 + {
2935 + usePOPM = FALSE;
2936 + }
2937 + }
2938 +
2939 + if (((saved_reg_mask & (1 << 4)) ||
2940 + (saved_reg_mask & (1 << 5)) ||
2941 + (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
2942 + {
2943 + /* One of R0-R3 should at least be popped */
2944 + if (((saved_reg_mask & (1 << 4)) &&
2945 + (saved_reg_mask & (1 << 5)) &&
2946 + (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
2947 + {
2948 + if (usePOPM)
2949 + /* All should be popped */
2950 + reglist8 |= 0x02;
2951 + }
2952 + else
2953 + {
2954 + usePOPM = FALSE;
2955 + }
2956 + }
2957 +
2958 + if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
2959 + {
2960 + /* One of R8-R9 should at least be pushed */
2961 + if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
2962 + {
2963 + if (usePOPM)
2964 + /* All should be pushed */
2965 + reglist8 |= 0x04;
2966 + }
2967 + else
2968 + {
2969 + usePOPM = FALSE;
2970 + }
2971 + }
2972 +
2973 + if (saved_reg_mask & (1 << 10))
2974 + reglist8 |= 0x08;
2975 +
2976 + if (saved_reg_mask & (1 << 11))
2977 + reglist8 |= 0x10;
2978 +
2979 + if (saved_reg_mask & (1 << 12))
2980 + reglist8 |= 0x20;
2981 +
2982 + if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
2983 + /* Pop LR */
2984 + reglist8 |= 0x40;
2985 +
2986 + if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
2987 + /* Pop LR into PC. */
2988 + reglist8 |= 0x80;
2989 +
2990 + if (usePOPM)
2991 + {
2992 + char reglist[64]; /* 64 bytes should be enough... */
2993 + avr32_make_reglist8 (reglist8, (char *) reglist);
2994 +
2995 + if (reglist8 & 0x80)
2996 + /* This instruction is also a return */
2997 + insert_ret = FALSE;
2998 +
2999 + if (r12_imm && !insert_ret)
3000 + fprintf (f, "\tpopm %s, r12=%li\n", reglist, INTVAL (r12_imm));
3001 + else
3002 + fprintf (f, "\tpopm %s\n", reglist);
3003 +
3004 + }
3005 + else
3006 + {
3007 + char reglist[64]; /* 64 bytes should be enough... */
3008 + avr32_make_reglist16 (saved_reg_mask, (char *) reglist);
3009 + if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
3010 + /* This instruction is also a return */
3011 + insert_ret = FALSE;
3012 +
3013 + if (r12_imm && !insert_ret)
3014 + fprintf (f, "\tldm sp++, %s, r12=%li\n", reglist,
3015 + INTVAL (r12_imm));
3016 + else
3017 + fprintf (f, "\tldm sp++, %s\n", reglist);
3018 +
3019 + }
3020 +
3021 + }
3022 +
3023 + if (IS_INTERRUPT (func_type))
3024 + {
3025 + fprintf (f, "\trete\n");
3026 + }
3027 + else if (insert_ret)
3028 + {
3029 + if (r12_imm)
3030 + fprintf (f, "\tretal %li\n", INTVAL (r12_imm));
3031 + else
3032 + fprintf (f, "\tretal r12\n");
3033 + }
3034 +}
3035 +
3036 +/* Function for converting a fp-register mask to a
3037 + reglistCPD8 register list string. */
3038 +void
3039 +avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string)
3040 +{
3041 + int i;
3042 +
3043 + /* Make sure reglist_string is empty */
3044 + reglist_string[0] = '\0';
3045 +
3046 + for (i = 0; i < NUM_FP_REGS; i += 2)
3047 + {
3048 + if (reglist_mask & (1 << i))
3049 + {
3050 + strlen (reglist_string) ?
3051 + sprintf (reglist_string, "%s, %s-%s", reglist_string,
3052 + reg_names[INTERNAL_FP_REGNUM (i)],
3053 + reg_names[INTERNAL_FP_REGNUM (i + 1)]) :
3054 + sprintf (reglist_string, "%s-%s",
3055 + reg_names[INTERNAL_FP_REGNUM (i)],
3056 + reg_names[INTERNAL_FP_REGNUM (i + 1)]);
3057 + }
3058 + }
3059 +}
3060 +
3061 +/* Function for converting a fp-register mask to a
3062 + reglistCP8 register list string. */
3063 +void
3064 +avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string)
3065 +{
3066 + int i;
3067 +
3068 + /* Make sure reglist_string is empty */
3069 + reglist_string[0] = '\0';
3070 +
3071 + for (i = 0; i < NUM_FP_REGS; ++i)
3072 + {
3073 + if (reglist_mask & (1 << i))
3074 + {
3075 + strlen (reglist_string) ?
3076 + sprintf (reglist_string, "%s, %s", reglist_string,
3077 + reg_names[INTERNAL_FP_REGNUM (i)]) :
3078 + sprintf (reglist_string, "%s", reg_names[INTERNAL_FP_REGNUM (i)]);
3079 + }
3080 + }
3081 +}
3082 +
3083 +void
3084 +avr32_make_reglist16 (int reglist16_vect, char *reglist16_string)
3085 +{
3086 + int i;
3087 +
3088 + /* Make sure reglist16_string is empty */
3089 + reglist16_string[0] = '\0';
3090 +
3091 + for (i = 0; i < 16; ++i)
3092 + {
3093 + if (reglist16_vect & (1 << i))
3094 + {
3095 + strlen (reglist16_string) ?
3096 + sprintf (reglist16_string, "%s, %s", reglist16_string,
3097 + reg_names[INTERNAL_REGNUM (i)]) :
3098 + sprintf (reglist16_string, "%s", reg_names[INTERNAL_REGNUM (i)]);
3099 + }
3100 + }
3101 +}
3102 +
3103 +int
3104 +avr32_convert_to_reglist16 (int reglist8_vect)
3105 +{
3106 + int reglist16_vect = 0;
3107 + if (reglist8_vect & 0x1)
3108 + reglist16_vect |= 0xF;
3109 + if (reglist8_vect & 0x2)
3110 + reglist16_vect |= 0xF0;
3111 + if (reglist8_vect & 0x4)
3112 + reglist16_vect |= 0x300;
3113 + if (reglist8_vect & 0x8)
3114 + reglist16_vect |= 0x400;
3115 + if (reglist8_vect & 0x10)
3116 + reglist16_vect |= 0x800;
3117 + if (reglist8_vect & 0x20)
3118 + reglist16_vect |= 0x1000;
3119 + if (reglist8_vect & 0x40)
3120 + reglist16_vect |= 0x4000;
3121 + if (reglist8_vect & 0x80)
3122 + reglist16_vect |= 0x8000;
3123 +
3124 + return reglist16_vect;
3125 +}
3126 +
3127 +void
3128 +avr32_make_reglist8 (int reglist8_vect, char *reglist8_string)
3129 +{
3130 + /* Make sure reglist8_string is empty */
3131 + reglist8_string[0] = '\0';
3132 +
3133 + if (reglist8_vect & 0x1)
3134 + sprintf (reglist8_string, "r0-r3");
3135 + if (reglist8_vect & 0x2)
3136 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r4-r7",
3137 + reglist8_string) :
3138 + sprintf (reglist8_string, "r4-r7");
3139 + if (reglist8_vect & 0x4)
3140 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r8-r9",
3141 + reglist8_string) :
3142 + sprintf (reglist8_string, "r8-r9");
3143 + if (reglist8_vect & 0x8)
3144 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r10",
3145 + reglist8_string) :
3146 + sprintf (reglist8_string, "r10");
3147 + if (reglist8_vect & 0x10)
3148 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r11",
3149 + reglist8_string) :
3150 + sprintf (reglist8_string, "r11");
3151 + if (reglist8_vect & 0x20)
3152 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r12",
3153 + reglist8_string) :
3154 + sprintf (reglist8_string, "r12");
3155 + if (reglist8_vect & 0x40)
3156 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, lr",
3157 + reglist8_string) :
3158 + sprintf (reglist8_string, "lr");
3159 + if (reglist8_vect & 0x80)
3160 + strlen (reglist8_string) ? sprintf (reglist8_string, "%s, pc",
3161 + reglist8_string) :
3162 + sprintf (reglist8_string, "pc");
3163 +}
3164 +
3165 +int
3166 +avr32_eh_return_data_regno (int n)
3167 +{
3168 + if (n >= 0 && n <= 3)
3169 + return 8 + n;
3170 + else
3171 + return INVALID_REGNUM;
3172 +}
3173 +
3174 +/* Compute the distance from register FROM to register TO.
3175 + These can be the arg pointer, the frame pointer or
3176 + the stack pointer.
3177 + Typical stack layout looks like this:
3178 +
3179 + old stack pointer -> | |
3180 + ----
3181 + | | \
3182 + | | saved arguments for
3183 + | | vararg functions
3184 + arg_pointer -> | | /
3185 + --
3186 + | | \
3187 + | | call saved
3188 + | | registers
3189 + | | /
3190 + frame ptr -> --
3191 + | | \
3192 + | | local
3193 + | | variables
3194 + stack ptr --> | | /
3195 + --
3196 + | | \
3197 + | | outgoing
3198 + | | arguments
3199 + | | /
3200 + --
3201 +
3202 + For a given funciton some or all of these stack compomnents
3203 + may not be needed, giving rise to the possibility of
3204 + eliminating some of the registers.
3205 +
3206 + The values returned by this function must reflect the behaviour
3207 + of avr32_expand_prologue() and avr32_compute_save_reg_mask().
3208 +
3209 + The sign of the number returned reflects the direction of stack
3210 + growth, so the values are positive for all eliminations except
3211 + from the soft frame pointer to the hard frame pointer. */
3212 +
3213 +
3214 +int
3215 +avr32_initial_elimination_offset (int from, int to)
3216 +{
3217 + int i;
3218 + int call_saved_regs = 0;
3219 + unsigned long saved_reg_mask, saved_fp_reg_mask;
3220 + unsigned int local_vars = get_frame_size ();
3221 +
3222 + saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
3223 + saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
3224 +
3225 + for (i = 0; i < 16; ++i)
3226 + {
3227 + if (saved_reg_mask & (1 << i))
3228 + call_saved_regs += 4;
3229 + }
3230 +
3231 + for (i = 0; i < NUM_FP_REGS; ++i)
3232 + {
3233 + if (saved_fp_reg_mask & (1 << i))
3234 + call_saved_regs += 4;
3235 + }
3236 +
3237 + switch (from)
3238 + {
3239 + case ARG_POINTER_REGNUM:
3240 + switch (to)
3241 + {
3242 + case STACK_POINTER_REGNUM:
3243 + return call_saved_regs + local_vars;
3244 + case FRAME_POINTER_REGNUM:
3245 + return call_saved_regs;
3246 + default:
3247 + abort ();
3248 + }
3249 + case FRAME_POINTER_REGNUM:
3250 + switch (to)
3251 + {
3252 + case STACK_POINTER_REGNUM:
3253 + return local_vars;
3254 + default:
3255 + abort ();
3256 + }
3257 + default:
3258 + abort ();
3259 + }
3260 +}
3261 +
3262 +
3263 +/*
3264 + Returns a rtx used when passing the next argument to a function.
3265 + avr32_init_cumulative_args() and avr32_function_arg_advance() sets witch
3266 + register to use.
3267 +*/
3268 +rtx
3269 +avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
3270 + tree type, int named)
3271 +{
3272 + int index = -1;
3273 +
3274 + HOST_WIDE_INT arg_size, arg_rsize;
3275 + if (type)
3276 + {
3277 + arg_size = int_size_in_bytes (type);
3278 + }
3279 + else
3280 + {
3281 + arg_size = GET_MODE_SIZE (mode);
3282 + }
3283 + arg_rsize = PUSH_ROUNDING (arg_size);
3284 +
3285 + /*
3286 + The last time this macro is called, it is called with mode == VOIDmode,
3287 + and its result is passed to the call or call_value pattern as operands 2
3288 + and 3 respectively. */
3289 + if (mode == VOIDmode)
3290 + {
3291 + return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */
3292 + }
3293 +
3294 + if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named)
3295 + {
3296 + return NULL_RTX;
3297 + }
3298 +
3299 + if (arg_rsize == 8)
3300 + {
3301 + /* use r11:r10 or r9:r8. */
3302 + if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2)))
3303 + index = 1;
3304 + else if (!(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4)))
3305 + index = 3;
3306 + else
3307 + index = -1;
3308 + }
3309 + else if (arg_rsize == 4)
3310 + { /* Use first available register */
3311 + index = 0;
3312 + while (index <= LAST_CUM_REG_INDEX && GET_USED_INDEX (cum, index))
3313 + index++;
3314 + if (index > LAST_CUM_REG_INDEX)
3315 + index = -1;
3316 + }
3317 +
3318 + SET_REG_INDEX (cum, index);
3319 +
3320 + if (GET_REG_INDEX (cum) >= 0)
3321 + return gen_rtx_REG (mode,
3322 + avr32_function_arg_reglist[GET_REG_INDEX (cum)]);
3323 +
3324 + return NULL_RTX;
3325 +}
3326 +
3327 +/*
3328 + Set the register used for passing the first argument to a function.
3329 +*/
3330 +void
3331 +avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
3332 + rtx libname ATTRIBUTE_UNUSED,
3333 + tree fndecl ATTRIBUTE_UNUSED)
3334 +{
3335 + /* Set all registers as unused. */
3336 + SET_INDEXES_UNUSED (cum);
3337 +
3338 + /* Reset uses_anonymous_args */
3339 + cum->uses_anonymous_args = 0;
3340 +
3341 + /* Reset size of stack pushed arguments */
3342 + cum->stack_pushed_args_size = 0;
3343 +
3344 + /* If the function is returning a value passed in memory r12 is used as a
3345 + Return Value Pointer. */
3346 +
3347 + if (fntype != 0 && avr32_return_in_memory (TREE_TYPE (fntype), fntype))
3348 + {
3349 + SET_REG_INDEX (cum, 0);
3350 + SET_USED_INDEX (cum, GET_REG_INDEX (cum));
3351 + }
3352 +}
3353 +
3354 +/*
3355 + Set register used for passing the next argument to a function. Only the
3356 + Scratch Registers are used.
3357 +
3358 + number name
3359 + 15 r15 PC
3360 + 14 r14 LR
3361 + 13 r13 _SP_________
3362 + FIRST_CUM_REG 12 r12 _||_
3363 + 10 r11 ||
3364 + 11 r10 _||_ Scratch Registers
3365 + 8 r9 ||
3366 + LAST_SCRATCH_REG 9 r8 _\/_________
3367 + 6 r7 /\
3368 + 7 r6 ||
3369 + 4 r5 ||
3370 + 5 r4 ||
3371 + 2 r3 ||
3372 + 3 r2 ||
3373 + 0 r1 ||
3374 + 1 r0 _||_________
3375 +
3376 +*/
3377 +void
3378 +avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
3379 + tree type, int named ATTRIBUTE_UNUSED)
3380 +{
3381 + HOST_WIDE_INT arg_size, arg_rsize;
3382 +
3383 + if (type)
3384 + {
3385 + arg_size = int_size_in_bytes (type);
3386 + }
3387 + else
3388 + {
3389 + arg_size = GET_MODE_SIZE (mode);
3390 + }
3391 + arg_rsize = PUSH_ROUNDING (arg_size);
3392 +
3393 + /* It the argument had to be passed in stack, no register is used. */
3394 + if ((*targetm.calls.must_pass_in_stack) (mode, type))
3395 + {
3396 + cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type));
3397 + return;
3398 + }
3399 +
3400 + /* Mark the used registers as "used". */
3401 + if (GET_REG_INDEX (cum) >= 0)
3402 + {
3403 + SET_USED_INDEX (cum, GET_REG_INDEX (cum));
3404 + if (arg_rsize == 8)
3405 + {
3406 + SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1));
3407 + }
3408 + }
3409 + else
3410 + {
3411 + /* Had to use stack */
3412 + cum->stack_pushed_args_size += arg_rsize;
3413 + }
3414 +}
3415 +
3416 +/*
3417 + Defines witch direction to go to find the next register to use if the
3418 + argument is larger then one register or for arguments shorter than an
3419 + int which is not promoted, such as the last part of structures with
3420 + size not a multiple of 4. */
3421 +enum direction
3422 +avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED,
3423 + tree type)
3424 +{
3425 + /* Pad upward for all aggregates except byte and halfword sized aggregates
3426 + which can be passed in registers. */
3427 + if (type
3428 + && AGGREGATE_TYPE_P (type)
3429 + && (int_size_in_bytes (type) != 1)
3430 + && !((int_size_in_bytes (type) == 2)
3431 + && TYPE_ALIGN_UNIT (type) >= 2)
3432 + && (int_size_in_bytes (type) & 0x3))
3433 + {
3434 + return upward;
3435 + }
3436 +
3437 + return downward;
3438 +}
3439 +
3440 +/*
3441 + Return a rtx used for the return value from a function call.
3442 +*/
3443 +rtx
3444 +avr32_function_value (tree type, tree func)
3445 +{
3446 + if (avr32_return_in_memory (type, func))
3447 + return NULL_RTX;
3448 +
3449 + if (int_size_in_bytes (type) <= 4)
3450 + if (avr32_return_in_msb (type))
3451 + /* Aggregates of size less than a word which does align the data in the
3452 + MSB must use SImode for r12. */
3453 + return gen_rtx_REG (SImode, RET_REGISTER);
3454 + else
3455 + return gen_rtx_REG (TYPE_MODE (type), RET_REGISTER);
3456 + else if (int_size_in_bytes (type) <= 8)
3457 + return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11));
3458 +
3459 + return NULL_RTX;
3460 +}
3461 +
3462 +/*
3463 + Return a rtx used for the return value from a library function call.
3464 +*/
3465 +rtx
3466 +avr32_libcall_value (enum machine_mode mode)
3467 +{
3468 +
3469 + if (GET_MODE_SIZE (mode) <= 4)
3470 + return gen_rtx_REG (mode, RET_REGISTER);
3471 + else if (GET_MODE_SIZE (mode) <= 8)
3472 + return gen_rtx_REG (mode, INTERNAL_REGNUM (11));
3473 + else
3474 + return NULL_RTX;
3475 +}
3476 +
3477 +/* Return TRUE if X references a SYMBOL_REF. */
3478 +int
3479 +symbol_mentioned_p (rtx x)
3480 +{
3481 + const char *fmt;
3482 + int i;
3483 +
3484 + if (GET_CODE (x) == SYMBOL_REF)
3485 + return 1;
3486 +
3487 + fmt = GET_RTX_FORMAT (GET_CODE (x));
3488 +
3489 + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3490 + {
3491 + if (fmt[i] == 'E')
3492 + {
3493 + int j;
3494 +
3495 + for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3496 + if (symbol_mentioned_p (XVECEXP (x, i, j)))
3497 + return 1;
3498 + }
3499 + else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
3500 + return 1;
3501 + }
3502 +
3503 + return 0;
3504 +}
3505 +
3506 +/* Return TRUE if X references a LABEL_REF. */
3507 +int
3508 +label_mentioned_p (rtx x)
3509 +{
3510 + const char *fmt;
3511 + int i;
3512 +
3513 + if (GET_CODE (x) == LABEL_REF)
3514 + return 1;
3515 +
3516 + fmt = GET_RTX_FORMAT (GET_CODE (x));
3517 + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3518 + {
3519 + if (fmt[i] == 'E')
3520 + {
3521 + int j;
3522 +
3523 + for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3524 + if (label_mentioned_p (XVECEXP (x, i, j)))
3525 + return 1;
3526 + }
3527 + else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
3528 + return 1;
3529 + }
3530 +
3531 + return 0;
3532 +}
3533 +
3534 +
3535 +int
3536 +avr32_legitimate_pic_operand_p (rtx x)
3537 +{
3538 +
3539 + /* We can't have const, this must be broken down to a symbol. */
3540 + if (GET_CODE (x) == CONST)
3541 + return FALSE;
3542 +
3543 + /* Can't access symbols or labels via the constant pool either */
3544 + if ((GET_CODE (x) == SYMBOL_REF
3545 + && CONSTANT_POOL_ADDRESS_P (x)
3546 + && (symbol_mentioned_p (get_pool_constant (x))
3547 + || label_mentioned_p (get_pool_constant (x)))))
3548 + return FALSE;
3549 +
3550 + return TRUE;
3551 +}
3552 +
3553 +
3554 +rtx
3555 +legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
3556 + rtx reg)
3557 +{
3558 +
3559 + if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
3560 + {
3561 + int subregs = 0;
3562 +
3563 + if (reg == 0)
3564 + {
3565 + if (no_new_pseudos)
3566 + abort ();
3567 + else
3568 + reg = gen_reg_rtx (Pmode);
3569 +
3570 + subregs = 1;
3571 + }
3572 +
3573 + emit_move_insn (reg, orig);
3574 +
3575 + /* Only set current function as using pic offset table if flag_pic is
3576 + set. This is because this function is also used if
3577 + TARGET_HAS_ASM_ADDR_PSEUDOS is set. */
3578 + if (flag_pic)
3579 + current_function_uses_pic_offset_table = 1;
3580 +
3581 + /* Put a REG_EQUAL note on this insn, so that it can be optimized by
3582 + loop. */
3583 + return reg;
3584 + }
3585 + else if (GET_CODE (orig) == CONST)
3586 + {
3587 + rtx base, offset;
3588 +
3589 + if (flag_pic
3590 + && GET_CODE (XEXP (orig, 0)) == PLUS
3591 + && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
3592 + return orig;
3593 +
3594 + if (reg == 0)
3595 + {
3596 + if (no_new_pseudos)
3597 + abort ();
3598 + else
3599 + reg = gen_reg_rtx (Pmode);
3600 + }
3601 +
3602 + if (GET_CODE (XEXP (orig, 0)) == PLUS)
3603 + {
3604 + base =
3605 + legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
3606 + offset =
3607 + legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
3608 + base == reg ? 0 : reg);
3609 + }
3610 + else
3611 + abort ();
3612 +
3613 + if (GET_CODE (offset) == CONST_INT)
3614 + {
3615 + /* The base register doesn't really matter, we only want to test
3616 + the index for the appropriate mode. */
3617 + if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21"))
3618 + {
3619 + if (!no_new_pseudos)
3620 + offset = force_reg (Pmode, offset);
3621 + else
3622 + abort ();
3623 + }
3624 +
3625 + if (GET_CODE (offset) == CONST_INT)
3626 + return plus_constant (base, INTVAL (offset));
3627 + }
3628 +
3629 + return gen_rtx_PLUS (Pmode, base, offset);
3630 + }
3631 +
3632 + return orig;
3633 +}
3634 +
3635 +/* Generate code to load the PIC register. */
3636 +void
3637 +avr32_load_pic_register (void)
3638 +{
3639 + rtx l1, pic_tmp;
3640 + rtx global_offset_table;
3641 +
3642 + if ((current_function_uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT)
3643 + return;
3644 +
3645 + if (!flag_pic)
3646 + abort ();
3647 +
3648 + l1 = gen_label_rtx ();
3649 +
3650 + global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3651 + pic_tmp =
3652 + gen_rtx_CONST (Pmode,
3653 + gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1),
3654 + global_offset_table));
3655 + emit_insn (gen_pic_load_addr
3656 + (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp)));
3657 + emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1));
3658 +
3659 + /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp
3660 + can cause life info to screw up. */
3661 + emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
3662 +}
3663 +
3664 +
3665 +
3666 +/* This hook should return true if values of type type are returned at the most
3667 + significant end of a register (in other words, if they are padded at the
3668 + least significant end). You can assume that type is returned in a register;
3669 + the caller is required to check this. Note that the register provided by
3670 + FUNCTION_VALUE must be able to hold the complete return value. For example,
3671 + if a 1-, 2- or 3-byte structure is returned at the most significant end of a
3672 + 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */
3673 +bool
3674 +avr32_return_in_msb (tree type ATTRIBUTE_UNUSED)
3675 +{
3676 + /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) ||
3677 + ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return
3678 + false; else return true; */
3679 +
3680 + return false;
3681 +}
3682 +
3683 +
3684 +/*
3685 + Returns one if a certain function value is going to be returned in memory
3686 + and zero if it is going to be returned in a register.
3687 +
3688 + BLKmode and all other modes that is larger than 64 bits are returned in
3689 + memory.
3690 +*/
3691 +bool
3692 +avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
3693 +{
3694 + if (TYPE_MODE (type) == VOIDmode)
3695 + return false;
3696 +
3697 + if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD)
3698 + || int_size_in_bytes (type) == -1)
3699 + {
3700 + return true;
3701 + }
3702 +
3703 + /* If we have an aggregate then use the same mechanism as when checking if
3704 + it should be passed on the stack. */
3705 + if (type
3706 + && AGGREGATE_TYPE_P (type)
3707 + && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type))
3708 + return true;
3709 +
3710 + return false;
3711 +}
3712 +
3713 +
3714 +/* Output the constant part of the trampoline.
3715 + lddpc r0, pc[0x8:e] ; load static chain register
3716 + lddpc pc, pc[0x8:e] ; jump to subrutine
3717 + .long 0 ; Address to static chain,
3718 + ; filled in by avr32_initialize_trampoline()
3719 + .long 0 ; Address to subrutine,
3720 + ; filled in by avr32_initialize_trampoline()
3721 +*/
3722 +void
3723 +avr32_trampoline_template (FILE * file)
3724 +{
3725 + fprintf (file, "\tlddpc r0, pc[8]\n");
3726 + fprintf (file, "\tlddpc pc, pc[8]\n");
3727 + /* make room for the address of the static chain. */
3728 + fprintf (file, "\t.long\t0\n");
3729 + /* make room for the address to the subrutine. */
3730 + fprintf (file, "\t.long\t0\n");
3731 +}
3732 +
3733 +
3734 +/*
3735 + Initialize the variable parts of a trampoline.
3736 +*/
3737 +void
3738 +avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
3739 +{
3740 + /* Store the address to the static chain. */
3741 + emit_move_insn (gen_rtx_MEM
3742 + (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)),
3743 + static_chain);
3744 +
3745 + /* Store the address to the function. */
3746 + emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)),
3747 + fnaddr);
3748 +
3749 + emit_insn (gen_cache (gen_rtx_REG (SImode, 13),
3750 + gen_rtx_CONST_INT (SImode,
3751 + AVR32_CACHE_INVALIDATE_ICACHE)));
3752 +}
3753 +
3754 +/* Return nonzero if X is valid as an addressing register. */
3755 +int
3756 +avr32_address_register_rtx_p (rtx x, int strict_p)
3757 +{
3758 + int regno;
3759 +
3760 + if (GET_CODE (x) != REG)
3761 + return 0;
3762 +
3763 + regno = REGNO (x);
3764 +
3765 + if (strict_p)
3766 + return REGNO_OK_FOR_BASE_P (regno);
3767 +
3768 + return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER);
3769 +}
3770 +
3771 +/* Return nonzero if INDEX is valid for an address index operand. */
3772 +int
3773 +avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
3774 +{
3775 + enum rtx_code code = GET_CODE (index);
3776 +
3777 + if (mode == TImode)
3778 + return 0;
3779 +
3780 + /* Standard coprocessor addressing modes. */
3781 + if (code == CONST_INT)
3782 + {
3783 + if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
3784 + /* Coprocessor mem insns has a smaller reach than ordinary mem insns */
3785 + return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ku14");
3786 + else
3787 + return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16");
3788 + }
3789 +
3790 + if (avr32_address_register_rtx_p (index, strict_p))
3791 + return 1;
3792 +
3793 + if (code == MULT)
3794 + {
3795 + rtx xiop0 = XEXP (index, 0);
3796 + rtx xiop1 = XEXP (index, 1);
3797 + return ((avr32_address_register_rtx_p (xiop0, strict_p)
3798 + && power_of_two_operand (xiop1, SImode)
3799 + && (INTVAL (xiop1) <= 8))
3800 + || (avr32_address_register_rtx_p (xiop1, strict_p)
3801 + && power_of_two_operand (xiop0, SImode)
3802 + && (INTVAL (xiop0) <= 8)));
3803 + }
3804 + else if (code == ASHIFT)
3805 + {
3806 + rtx op = XEXP (index, 1);
3807 +
3808 + return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p)
3809 + && GET_CODE (op) == CONST_INT
3810 + && INTVAL (op) > 0 && INTVAL (op) <= 3);
3811 + }
3812 +
3813 + return 0;
3814 +}
3815 +
3816 +/*
3817 + Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if
3818 + the RTX x is a legitimate memory address.
3819 +
3820 + Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS
3821 + if it is.
3822 +*/
3823 +
3824 +/* Forward declaration*/
3825 +int is_minipool_label (rtx label);
3826 +
3827 +int
3828 +avr32_legitimate_address (enum machine_mode mode ATTRIBUTE_UNUSED,
3829 + rtx x, int strict)
3830 +{
3831 +
3832 + switch (GET_CODE (x))
3833 + {
3834 + case REG:
3835 + return avr32_address_register_rtx_p (x, strict);
3836 + case CONST:
3837 + {
3838 + rtx label = avr32_find_symbol (x);
3839 + if (label
3840 + &&
3841 + ( (CONSTANT_POOL_ADDRESS_P (label)
3842 + && !(flag_pic
3843 + && (symbol_mentioned_p (get_pool_constant (label))
3844 + || label_mentioned_p (get_pool_constant(label)))))
3845 + /* TODO! Can this ever happen??? */
3846 + || ((GET_CODE (label) == LABEL_REF)
3847 + && GET_CODE (XEXP (label, 0)) == CODE_LABEL
3848 + && is_minipool_label (XEXP (label, 0)))))
3849 + {
3850 + return TRUE;
3851 + }
3852 + }
3853 + break;
3854 + case LABEL_REF:
3855 + if (GET_CODE (XEXP (x, 0)) == CODE_LABEL
3856 + && is_minipool_label (XEXP (x, 0)))
3857 + {
3858 + return TRUE;
3859 + }
3860 + break;
3861 + case SYMBOL_REF:
3862 + {
3863 + if (CONSTANT_POOL_ADDRESS_P (x)
3864 + && !(flag_pic
3865 + && (symbol_mentioned_p (get_pool_constant (x))
3866 + || label_mentioned_p (get_pool_constant (x)))))
3867 + return TRUE;
3868 + /*
3869 + A symbol_ref is only legal if it is a function. If all of them are
3870 + legal, a pseudo reg that is a constant will be replaced by a
3871 + symbol_ref and make illegale code. SYMBOL_REF_FLAG is set by
3872 + ENCODE_SECTION_INFO. */
3873 + else if (SYMBOL_REF_RCALL_FUNCTION_P (x))
3874 + return TRUE;
3875 + break;
3876 + }
3877 + case PRE_DEC: /* (pre_dec (...)) */
3878 + case POST_INC: /* (post_inc (...)) */
3879 + return avr32_address_register_rtx_p (XEXP (x, 0), strict);
3880 + case PLUS: /* (plus (...) (...)) */
3881 + {
3882 + rtx xop0 = XEXP (x, 0);
3883 + rtx xop1 = XEXP (x, 1);
3884 +
3885 + return ((avr32_address_register_rtx_p (xop0, strict)
3886 + && avr32_legitimate_index_p (mode, xop1, strict))
3887 + || (avr32_address_register_rtx_p (xop1, strict)
3888 + && avr32_legitimate_index_p (mode, xop0, strict)));
3889 + }
3890 + default:
3891 + break;
3892 + }
3893 +
3894 + return FALSE;
3895 +}
3896 +
3897 +
3898 +int
3899 +avr32_const_double_immediate (rtx value)
3900 +{
3901 + HOST_WIDE_INT hi, lo;
3902 +
3903 + if (GET_CODE (value) != CONST_DOUBLE)
3904 + return FALSE;
3905 +
3906 + if (GET_MODE (value) == DImode)
3907 + {
3908 + hi = CONST_DOUBLE_HIGH (value);
3909 + lo = CONST_DOUBLE_LOW (value);
3910 + }
3911 + else
3912 + {
3913 + HOST_WIDE_INT target_float[2];
3914 + hi = lo = 0;
3915 + real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value),
3916 + GET_MODE (value));
3917 + lo = target_float[0];
3918 + hi = target_float[1];
3919 + }
3920 + if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21")
3921 + && ((GET_MODE (value) == SFmode)
3922 + || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21")))
3923 + {
3924 + return TRUE;
3925 + }
3926 +
3927 + return FALSE;
3928 +}
3929 +
3930 +
3931 +int
3932 +avr32_legitimate_constant_p (rtx x)
3933 +{
3934 + switch (GET_CODE (x))
3935 + {
3936 + case CONST_INT:
3937 + return avr32_const_ok_for_constraint_p (INTVAL (x), 'K', "Ks21");
3938 + case CONST_DOUBLE:
3939 + if (GET_MODE (x) == SFmode
3940 + || GET_MODE (x) == DFmode || GET_MODE (x) == DImode)
3941 + return avr32_const_double_immediate (x);
3942 + else
3943 + return 0;
3944 + case LABEL_REF:
3945 + return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
3946 + case SYMBOL_REF:
3947 + return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
3948 + case CONST:
3949 + /* We must handle this one in the movsi expansion in order for gcc not
3950 + to put it in the constant pool. */
3951 + return 0 /* flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS */ ;
3952 + case HIGH:
3953 + case CONST_VECTOR:
3954 + return 0;
3955 + default:
3956 + printf ("%s():\n", __FUNCTION__);
3957 + debug_rtx (x);
3958 + return 1;
3959 + }
3960 +}
3961 +
3962 +
3963 +/* Strip any special encoding from labels */
3964 +const char *
3965 +avr32_strip_name_encoding (const char *name)
3966 +{
3967 + const char *stripped = name;
3968 +
3969 + while (1)
3970 + {
3971 + switch (stripped[0])
3972 + {
3973 + case '#':
3974 + stripped = strchr (name + 1, '#') + 1;
3975 + break;
3976 + case '*':
3977 + stripped = &stripped[1];
3978 + break;
3979 + default:
3980 + return stripped;
3981 + }
3982 + }
3983 +}
3984 +
3985 +
3986 +
3987 +/* Do anything needed before RTL is emitted for each function. */
3988 +static struct machine_function *
3989 +avr32_init_machine_status (void)
3990 +{
3991 + struct machine_function *machine;
3992 + machine =
3993 + (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
3994 +
3995 +#if AVR32_FT_UNKNOWN != 0
3996 + machine->func_type = AVR32_FT_UNKNOWN;
3997 +#endif
3998 +
3999 + machine->minipool_label_head = 0;
4000 + machine->minipool_label_tail = 0;
4001 + return machine;
4002 +}
4003 +
4004 +void
4005 +avr32_init_expanders (void)
4006 +{
4007 + /* Arrange to initialize and mark the machine per-function status. */
4008 + init_machine_status = avr32_init_machine_status;
4009 +}
4010 +
4011 +
4012 +/* Return an RTX indicating where the return address to the
4013 + calling function can be found. */
4014 +
4015 +rtx
4016 +avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
4017 +{
4018 + if (count != 0)
4019 + return NULL_RTX;
4020 +
4021 + return get_hard_reg_initial_val (Pmode, LR_REGNUM);
4022 +}
4023 +
4024 +
4025 +void
4026 +avr32_encode_section_info (tree decl, rtx rtl, int first)
4027 +{
4028 +
4029 + if (first && DECL_P (decl))
4030 + {
4031 + /* Set SYMBOL_REG_FLAG for local functions */
4032 + if (!TREE_PUBLIC (decl) && TREE_CODE (decl) == FUNCTION_DECL)
4033 + {
4034 + if ((*targetm.binds_local_p) (decl))
4035 + {
4036 + SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
4037 + }
4038 + }
4039 + }
4040 +}
4041 +
4042 +
4043 +void
4044 +avr32_asm_output_ascii (FILE * stream, char *ptr, int len)
4045 +{
4046 + int i, i_new = 0;
4047 + char *new_ptr = xmalloc (4 * len);
4048 + if (new_ptr == NULL)
4049 + internal_error ("Out of memory.");
4050 +
4051 + for (i = 0; i < len; i++)
4052 + {
4053 + if (ptr[i] == '\n')
4054 + {
4055 + new_ptr[i_new++] = '\\';
4056 + new_ptr[i_new++] = '0';
4057 + new_ptr[i_new++] = '1';
4058 + new_ptr[i_new++] = '2';
4059 + }
4060 + else if (ptr[i] == '\"')
4061 + {
4062 + new_ptr[i_new++] = '\\';
4063 + new_ptr[i_new++] = '\"';
4064 + }
4065 + else if (ptr[i] == '\\')
4066 + {
4067 + new_ptr[i_new++] = '\\';
4068 + new_ptr[i_new++] = '\\';
4069 + }
4070 + else if (ptr[i] == '\0' && i + 1 < len)
4071 + {
4072 + new_ptr[i_new++] = '\\';
4073 + new_ptr[i_new++] = '0';
4074 + }
4075 + else
4076 + {
4077 + new_ptr[i_new++] = ptr[i];
4078 + }
4079 + }
4080 +
4081 + /* Terminate new_ptr. */
4082 + new_ptr[i_new] = '\0';
4083 + fprintf (stream, "\t.ascii\t\"%s\"\n", new_ptr);
4084 + free (new_ptr);
4085 +}
4086 +
4087 +
4088 +void
4089 +avr32_asm_output_label (FILE * stream, const char *name)
4090 +{
4091 + name = avr32_strip_name_encoding (name);
4092 +
4093 + /* Print the label. */
4094 + assemble_name (stream, name);
4095 + fprintf (stream, ":\n");
4096 +}
4097 +
4098 +
4099 +
4100 +void
4101 +avr32_asm_weaken_label (FILE * stream, const char *name)
4102 +{
4103 + fprintf (stream, "\t.weak ");
4104 + assemble_name (stream, name);
4105 + fprintf (stream, "\n");
4106 +}
4107 +
4108 +/*
4109 + Checks if a labelref is equal to a reserved word in the assembler. If it is,
4110 + insert a '_' before the label name.
4111 +*/
4112 +void
4113 +avr32_asm_output_labelref (FILE * stream, const char *name)
4114 +{
4115 + int verbatim = FALSE;
4116 + const char *stripped = name;
4117 + int strip_finished = FALSE;
4118 +
4119 + while (!strip_finished)
4120 + {
4121 + switch (stripped[0])
4122 + {
4123 + case '#':
4124 + stripped = strchr (name + 1, '#') + 1;
4125 + break;
4126 + case '*':
4127 + stripped = &stripped[1];
4128 + verbatim = TRUE;
4129 + break;
4130 + default:
4131 + strip_finished = TRUE;
4132 + break;
4133 + }
4134 + }
4135 +
4136 + if (verbatim)
4137 + fputs (stripped, stream);
4138 + else
4139 + asm_fprintf (stream, "%U%s", stripped);
4140 +}
4141 +
4142 +
4143 +
4144 +/*
4145 + Check if the comparison in compare_exp is redundant
4146 + for the condition given in next_cond given that the
4147 + needed flags are already set by an earlier instruction.
4148 + Uses cc_prev_status to check this.
4149 +
4150 + Returns NULL_RTX if the compare is not redundant
4151 + or the new condition to use in the conditional
4152 + instruction if the compare is redundant.
4153 +*/
4154 +static rtx
4155 +is_compare_redundant (rtx compare_exp, rtx next_cond)
4156 +{
4157 + int z_flag_valid = FALSE;
4158 + int n_flag_valid = FALSE;
4159 + rtx new_cond;
4160 +
4161 + if (GET_CODE (compare_exp) != COMPARE)
4162 + return NULL_RTX;
4163 +
4164 +
4165 + if (GET_MODE (compare_exp) != SImode)
4166 + return NULL_RTX;
4167 +
4168 + if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp))
4169 + {
4170 + /* cc0 already contains the correct comparison -> delete cmp insn */
4171 + return next_cond;
4172 + }
4173 +
4174 + switch (cc_prev_status.mdep.flags)
4175 + {
4176 + case CC_SET_VNCZ:
4177 + case CC_SET_NCZ:
4178 + n_flag_valid = TRUE;
4179 + case CC_SET_CZ:
4180 + case CC_SET_Z:
4181 + z_flag_valid = TRUE;
4182 + }
4183 +
4184 + if (cc_prev_status.mdep.value
4185 + && REG_P (XEXP (compare_exp, 0))
4186 + && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value)
4187 + && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT
4188 + && next_cond != NULL_RTX)
4189 + {
4190 + if (INTVAL (XEXP (compare_exp, 1)) == 0
4191 + && z_flag_valid
4192 + && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE))
4193 + /* We can skip comparison Z flag is already reflecting ops[0] */
4194 + return next_cond;
4195 + else if (n_flag_valid
4196 + && ((INTVAL (XEXP (compare_exp, 1)) == 0
4197 + && (GET_CODE (next_cond) == GE
4198 + || GET_CODE (next_cond) == LT))
4199 + || (INTVAL (XEXP (compare_exp, 1)) == -1
4200 + && (GET_CODE (next_cond) == GT
4201 + || GET_CODE (next_cond) == LE))))
4202 + {
4203 + /* We can skip comparison N flag is already reflecting ops[0],
4204 + which means that we can use the mi/pl conditions to check if
4205 + ops[0] is GE or LT 0. */
4206 + if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT))
4207 + new_cond =
4208 + gen_rtx_UNSPEC (CCmode, gen_rtvec (2, cc0_rtx, const0_rtx),
4209 + UNSPEC_COND_PL);
4210 + else
4211 + new_cond =
4212 + gen_rtx_UNSPEC (CCmode, gen_rtvec (2, cc0_rtx, const0_rtx),
4213 + UNSPEC_COND_MI);
4214 + return new_cond;
4215 + }
4216 + }
4217 + return NULL_RTX;
4218 +}
4219 +
4220 +/* Updates cc_status. */
4221 +void
4222 +avr32_notice_update_cc (rtx exp, rtx insn)
4223 +{
4224 + switch (get_attr_cc (insn))
4225 + {
4226 + case CC_CALL_SET:
4227 + CC_STATUS_INIT;
4228 + FPCC_STATUS_INIT;
4229 + /* Check if the function call returns a value in r12 */
4230 + if (REG_P (recog_data.operand[0])
4231 + && REGNO (recog_data.operand[0]) == RETVAL_REGNUM)
4232 + {
4233 + cc_status.flags = 0;
4234 + cc_status.mdep.value =
4235 + gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx);
4236 + cc_status.mdep.flags = CC_SET_VNCZ;
4237 +
4238 + }
4239 + break;
4240 + case CC_COMPARE:
4241 + /* Check that compare will not be optimized away if so nothing should
4242 + be done */
4243 + if (is_compare_redundant (SET_SRC (exp), get_next_insn_cond (insn))
4244 + == NULL_RTX)
4245 + {
4246 +
4247 + /* Reset the nonstandard flag */
4248 + CC_STATUS_INIT;
4249 + cc_status.flags = 0;
4250 + cc_status.mdep.value = SET_SRC (exp);
4251 + cc_status.mdep.flags = CC_SET_VNCZ;
4252 + }
4253 + break;
4254 + case CC_FPCOMPARE:
4255 + /* Check that floating-point compare will not be optimized away if so
4256 + nothing should be done */
4257 + if (!rtx_equal_p (cc_prev_status.mdep.fpvalue, SET_SRC (exp)))
4258 + {
4259 + /* cc0 already contains the correct comparison -> delete cmp insn */
4260 + /* Reset the nonstandard flag */
4261 + cc_status.mdep.fpvalue = SET_SRC (exp);
4262 + cc_status.mdep.fpflags = CC_SET_CZ;
4263 + }
4264 + break;
4265 + case CC_FROM_FPCC:
4266 + /* Flags are updated with flags from Floating-point coprocessor, set
4267 + CC_NOT_SIGNED flag since the flags are set so that unsigned
4268 + condidion codes can be used directly. */
4269 + CC_STATUS_INIT;
4270 + cc_status.flags = CC_NOT_SIGNED;
4271 + cc_status.mdep.value = cc_status.mdep.fpvalue;
4272 + cc_status.mdep.flags = cc_status.mdep.fpflags;
4273 + break;
4274 + case CC_BLD:
4275 + /* Bit load is kind of like an inverted testsi, because the Z flag is
4276 + inverted */
4277 + CC_STATUS_INIT;
4278 + cc_status.flags = CC_INVERTED;
4279 + cc_status.mdep.value = SET_SRC (exp);
4280 + cc_status.mdep.flags = CC_SET_Z;
4281 + break;
4282 + case CC_NONE:
4283 + /* Insn does not affect CC at all. Check if the instruction updates
4284 + some of the register currently reflected in cc0 */
4285 +
4286 + if ((GET_CODE (exp) == SET)
4287 + && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value)
4288 + && (reg_mentioned_p (SET_DEST (exp), cc_status.value1)
4289 + || reg_mentioned_p (SET_DEST (exp), cc_status.value2)
4290 + || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value)))
4291 + {
4292 + CC_STATUS_INIT;
4293 + }
4294 +
4295 + /* If this is a parallel we must step through each of the parallel
4296 + expressions */
4297 + if (GET_CODE (exp) == PARALLEL)
4298 + {
4299 + int i;
4300 + for (i = 0; i < XVECLEN (exp, 0); ++i)
4301 + {
4302 + rtx vec_exp = XVECEXP (exp, 0, i);
4303 + if ((GET_CODE (vec_exp) == SET)
4304 + && (cc_status.value1 || cc_status.value2
4305 + || cc_status.mdep.value)
4306 + && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1)
4307 + || reg_mentioned_p (SET_DEST (vec_exp),
4308 + cc_status.value2)
4309 + || reg_mentioned_p (SET_DEST (vec_exp),
4310 + cc_status.mdep.value)))
4311 + {
4312 + CC_STATUS_INIT;
4313 + }
4314 + }
4315 + }
4316 +
4317 + /* Check if we have memory opartions with post_inc or pre_dec on the
4318 + register currently reflected in cc0 */
4319 + if (GET_CODE (exp) == SET
4320 + && GET_CODE (SET_SRC (exp)) == MEM
4321 + && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC
4322 + || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC)
4323 + &&
4324 + (reg_mentioned_p
4325 + (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1)
4326 + || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
4327 + cc_status.value2)
4328 + || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
4329 + cc_status.mdep.value)))
4330 + CC_STATUS_INIT;
4331 +
4332 + if (GET_CODE (exp) == SET
4333 + && GET_CODE (SET_DEST (exp)) == MEM
4334 + && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC
4335 + || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC)
4336 + &&
4337 + (reg_mentioned_p
4338 + (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1)
4339 + || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
4340 + cc_status.value2)
4341 + || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
4342 + cc_status.mdep.value)))
4343 + CC_STATUS_INIT;
4344 + break;
4345 +
4346 + case CC_SET_VNCZ:
4347 + CC_STATUS_INIT;
4348 + cc_status.mdep.value = recog_data.operand[0];
4349 + cc_status.mdep.flags = CC_SET_VNCZ;
4350 + break;
4351 +
4352 + case CC_SET_NCZ:
4353 + CC_STATUS_INIT;
4354 + cc_status.mdep.value = recog_data.operand[0];
4355 + cc_status.mdep.flags = CC_SET_NCZ;
4356 + break;
4357 +
4358 + case CC_SET_CZ:
4359 + CC_STATUS_INIT;
4360 + cc_status.mdep.value = recog_data.operand[0];
4361 + cc_status.mdep.flags = CC_SET_CZ;
4362 + break;
4363 +
4364 + case CC_SET_Z:
4365 + CC_STATUS_INIT;
4366 + cc_status.mdep.value = recog_data.operand[0];
4367 + cc_status.mdep.flags = CC_SET_Z;
4368 + break;
4369 +
4370 + case CC_CLOBBER:
4371 + CC_STATUS_INIT;
4372 + break;
4373 +
4374 + default:
4375 + CC_STATUS_INIT;
4376 + }
4377 +}
4378 +
4379 +
4380 +/*
4381 + Outputs to stdio stream stream the assembler syntax for an instruction
4382 + operand x. x is an RTL expression.
4383 +*/
4384 +void
4385 +avr32_print_operand (FILE * stream, rtx x, int code)
4386 +{
4387 + int error = 0;
4388 +
4389 + switch (GET_CODE (x))
4390 + {
4391 + case UNSPEC:
4392 + switch (XINT (x, 1))
4393 + {
4394 + case UNSPEC_COND_PL:
4395 + if (code == 'i')
4396 + fputs ("mi", stream);
4397 + else
4398 + fputs ("pl", stream);
4399 + break;
4400 + case UNSPEC_COND_MI:
4401 + if (code == 'i')
4402 + fputs ("pl", stream);
4403 + else
4404 + fputs ("mi", stream);
4405 + break;
4406 + default:
4407 + error = 1;
4408 + }
4409 + break;
4410 + case EQ:
4411 + if (code == 'i')
4412 + fputs ("ne", stream);
4413 + else
4414 + fputs ("eq", stream);
4415 + break;
4416 + case NE:
4417 + if (code == 'i')
4418 + fputs ("eq", stream);
4419 + else
4420 + fputs ("ne", stream);
4421 + break;
4422 + case GT:
4423 + if (code == 'i')
4424 + fputs ("le", stream);
4425 + else
4426 + fputs ("gt", stream);
4427 + break;
4428 + case GTU:
4429 + if (code == 'i')
4430 + fputs ("ls", stream);
4431 + else
4432 + fputs ("hi", stream);
4433 + break;
4434 + case LT:
4435 + if (code == 'i')
4436 + fputs ("ge", stream);
4437 + else
4438 + fputs ("lt", stream);
4439 + break;
4440 + case LTU:
4441 + if (code == 'i')
4442 + fputs ("hs", stream);
4443 + else
4444 + fputs ("lo", stream);
4445 + break;
4446 + case GE:
4447 + if (code == 'i')
4448 + fputs ("lt", stream);
4449 + else
4450 + fputs ("ge", stream);
4451 + break;
4452 + case GEU:
4453 + if (code == 'i')
4454 + fputs ("lo", stream);
4455 + else
4456 + fputs ("hs", stream);
4457 + break;
4458 + case LE:
4459 + if (code == 'i')
4460 + fputs ("gt", stream);
4461 + else
4462 + fputs ("le", stream);
4463 + break;
4464 + case LEU:
4465 + if (code == 'i')
4466 + fputs ("hi", stream);
4467 + else
4468 + fputs ("ls", stream);
4469 + break;
4470 + case CONST_INT:
4471 + {
4472 + int value = INTVAL (x);
4473 +
4474 + if (code == 'i')
4475 + {
4476 + value++;
4477 + }
4478 +
4479 + if (code == 'p')
4480 + {
4481 + /* Set to bit position of first bit set in immediate */
4482 + int i, bitpos = 32;
4483 + for (i = 0; i < 32; i++)
4484 + if (value & (1 << i))
4485 + {
4486 + bitpos = i;
4487 + break;
4488 + }
4489 + value = bitpos;
4490 + }
4491 +
4492 + if (code == 'r')
4493 + {
4494 + /* Reglist 8 */
4495 + char op[50];
4496 + op[0] = '\0';
4497 +
4498 + if (value & 0x01)
4499 + sprintf (op, "r0-r3");
4500 + if (value & 0x02)
4501 + strlen (op) ? sprintf (op, "%s, r4-r7", op) : sprintf (op,
4502 + "r4-r7");
4503 + if (value & 0x04)
4504 + strlen (op) ? sprintf (op, "%s, r8-r9", op) : sprintf (op,
4505 + "r8-r9");
4506 + if (value & 0x08)
4507 + strlen (op) ? sprintf (op, "%s, r10", op) : sprintf (op, "r10");
4508 + if (value & 0x10)
4509 + strlen (op) ? sprintf (op, "%s, r11", op) : sprintf (op, "r11");
4510 + if (value & 0x20)
4511 + strlen (op) ? sprintf (op, "%s, r12", op) : sprintf (op, "r12");
4512 + if (value & 0x40)
4513 + strlen (op) ? sprintf (op, "%s, lr", op) : sprintf (op, "lr");
4514 + if (value & 0x80)
4515 + strlen (op) ? sprintf (op, "%s, pc", op) : sprintf (op, "pc");
4516 +
4517 + fputs (op, stream);
4518 + }
4519 + else if (code == 's')
4520 + {
4521 + /* Reglist 16 */
4522 + char reglist16_string[100];
4523 + int i;
4524 + reglist16_string[0] = '\0';
4525 +
4526 + for (i = 0; i < 16; ++i)
4527 + {
4528 + if (value & (1 << i))
4529 + {
4530 + strlen (reglist16_string) ? sprintf (reglist16_string,
4531 + "%s, %s",
4532 + reglist16_string,
4533 + reg_names
4534 + [INTERNAL_REGNUM
4535 + (i)]) :
4536 + sprintf (reglist16_string, "%s",
4537 + reg_names[INTERNAL_REGNUM (i)]);
4538 + }
4539 + }
4540 + fputs (reglist16_string, stream);
4541 + }
4542 + else if (code == 'C')
4543 + {
4544 + /* RegListCP8 */
4545 + char reglist_string[100];
4546 + avr32_make_fp_reglist_w (value, (char *) reglist_string);
4547 + fputs (reglist_string, stream);
4548 + }
4549 + else if (code == 'D')
4550 + {
4551 + /* RegListCPD8 */
4552 + char reglist_string[100];
4553 + avr32_make_fp_reglist_d (value, (char *) reglist_string);
4554 + fputs (reglist_string, stream);
4555 + }
4556 + else if (code == 'd')
4557 + {
4558 + /* Print in decimal format */
4559 + fprintf (stream, "%d", value);
4560 + }
4561 + else if (code == 'h')
4562 + {
4563 + /* Print halfword part of word */
4564 + fputs (value ? "b" : "t", stream);
4565 + }
4566 + else
4567 + {
4568 + /* Normal constant */
4569 + fprintf (stream, "%d", value);
4570 + }
4571 + break;
4572 + }
4573 + case CONST_DOUBLE:
4574 + {
4575 + HOST_WIDE_INT hi, lo;
4576 + if (GET_MODE (x) == DImode)
4577 + {
4578 + hi = CONST_DOUBLE_HIGH (x);
4579 + lo = CONST_DOUBLE_LOW (x);
4580 + }
4581 + else
4582 + {
4583 + HOST_WIDE_INT target_float[2];
4584 + hi = lo = 0;
4585 + real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x),
4586 + GET_MODE (x));
4587 + /* For doubles the most significant part starts at index 0. */
4588 + if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
4589 + {
4590 + hi = target_float[0];
4591 + lo = target_float[1];
4592 + }
4593 + else
4594 + {
4595 + lo = target_float[0];
4596 + }
4597 + }
4598 +
4599 + if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21")
4600 + && ((GET_MODE (x) == SFmode)
4601 + || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21")))
4602 + {
4603 + if (code == 'm')
4604 + fprintf (stream, "%ld", hi);
4605 + else
4606 + fprintf (stream, "%ld", lo);
4607 + }
4608 + else
4609 + {
4610 + fprintf (stream, "value too large");
4611 + }
4612 + break;
4613 + }
4614 + case CONST:
4615 + output_addr_const (stream, XEXP (XEXP (x, 0), 0));
4616 + fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1)));
4617 + break;
4618 + case REG:
4619 + /* Swap register name if the register is DImode or DFmode. */
4620 + if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
4621 + {
4622 + /* Double register must have an even numbered address */
4623 + gcc_assert (!(REGNO (x) % 2));
4624 + if (code == 'm')
4625 + fputs (reg_names[true_regnum (x)], stream);
4626 + else
4627 + fputs (reg_names[true_regnum (x) + 1], stream);
4628 + }
4629 + else if (GET_MODE (x) == TImode)
4630 + {
4631 + switch (code)
4632 + {
4633 + case 'T':
4634 + fputs (reg_names[true_regnum (x)], stream);
4635 + break;
4636 + case 'U':
4637 + fputs (reg_names[true_regnum (x) + 1], stream);
4638 + break;
4639 + case 'L':
4640 + fputs (reg_names[true_regnum (x) + 2], stream);
4641 + break;
4642 + case 'B':
4643 + fputs (reg_names[true_regnum (x) + 3], stream);
4644 + break;
4645 + default:
4646 + fprintf (stream, "%s, %s, %s, %s",
4647 + reg_names[true_regnum (x) + 3],
4648 + reg_names[true_regnum (x) + 2],
4649 + reg_names[true_regnum (x) + 1],
4650 + reg_names[true_regnum (x)]);
4651 + break;
4652 + }
4653 + }
4654 + else
4655 + {
4656 + fputs (reg_names[true_regnum (x)], stream);
4657 + }
4658 + break;
4659 + case CODE_LABEL:
4660 + case LABEL_REF:
4661 + case SYMBOL_REF:
4662 + output_addr_const (stream, x);
4663 + break;
4664 + case MEM:
4665 + switch (GET_CODE (XEXP (x, 0)))
4666 + {
4667 + case LABEL_REF:
4668 + case SYMBOL_REF:
4669 + output_addr_const (stream, XEXP (x, 0));
4670 + break;
4671 + case MEM:
4672 + switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
4673 + {
4674 + case SYMBOL_REF:
4675 + output_addr_const (stream, XEXP (XEXP (x, 0), 0));
4676 + break;
4677 + default:
4678 + error = 1;
4679 + break;
4680 + }
4681 + break;
4682 + case REG:
4683 + avr32_print_operand (stream, XEXP (x, 0), 0);
4684 + if (code != 'p')
4685 + fputs ("[0]", stream);
4686 + break;
4687 + case PRE_DEC:
4688 + fputs ("--", stream);
4689 + avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
4690 + break;
4691 + case POST_INC:
4692 + avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
4693 + fputs ("++", stream);
4694 + break;
4695 + case PLUS:
4696 + {
4697 + rtx op0 = XEXP (XEXP (x, 0), 0);
4698 + rtx op1 = XEXP (XEXP (x, 0), 1);
4699 + rtx base = NULL_RTX, offset = NULL_RTX;
4700 +
4701 + if (avr32_address_register_rtx_p (op0, 1))
4702 + {
4703 + base = op0;
4704 + offset = op1;
4705 + }
4706 + else if (avr32_address_register_rtx_p (op1, 1))
4707 + {
4708 + /* Operands are switched. */
4709 + base = op1;
4710 + offset = op0;
4711 + }
4712 +
4713 + gcc_assert (base && offset
4714 + && avr32_address_register_rtx_p (base, 1)
4715 + && avr32_legitimate_index_p (GET_MODE (x), offset,
4716 + 1));
4717 +
4718 + avr32_print_operand (stream, base, 0);
4719 + fputs ("[", stream);
4720 + avr32_print_operand (stream, offset, 0);
4721 + fputs ("]", stream);
4722 + break;
4723 + }
4724 + case CONST:
4725 + output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0));
4726 + fprintf (stream, " + %ld",
4727 + INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)));
4728 + break;
4729 + default:
4730 + error = 1;
4731 + }
4732 + break;
4733 + case MULT:
4734 + {
4735 + int value = INTVAL (XEXP (x, 1));
4736 +
4737 + /* Convert immediate in multiplication into a shift immediate */
4738 + switch (value)
4739 + {
4740 + case 2:
4741 + value = 1;
4742 + break;
4743 + case 4:
4744 + value = 2;
4745 + break;
4746 + case 8:
4747 + value = 3;
4748 + break;
4749 + default:
4750 + value = 0;
4751 + }
4752 + fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
4753 + value);
4754 + break;
4755 + }
4756 + case ASHIFT:
4757 + if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4758 + fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
4759 + (int) INTVAL (XEXP (x, 1)));
4760 + else if (REG_P (XEXP (x, 1)))
4761 + fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))],
4762 + reg_names[true_regnum (XEXP (x, 1))]);
4763 + else
4764 + {
4765 + error = 1;
4766 + }
4767 + break;
4768 + case LSHIFTRT:
4769 + if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4770 + fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))],
4771 + (int) INTVAL (XEXP (x, 1)));
4772 + else if (REG_P (XEXP (x, 1)))
4773 + fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))],
4774 + reg_names[true_regnum (XEXP (x, 1))]);
4775 + else
4776 + {
4777 + error = 1;
4778 + }
4779 + fprintf (stream, ">>");
4780 + break;
4781 + case PARALLEL:
4782 + {
4783 + /* Load store multiple */
4784 + int i;
4785 + int count = XVECLEN (x, 0);
4786 + int reglist16 = 0;
4787 + char reglist16_string[100];
4788 +
4789 + for (i = 0; i < count; ++i)
4790 + {
4791 + rtx vec_elm = XVECEXP (x, 0, i);
4792 + if (GET_MODE (vec_elm) != SET)
4793 + {
4794 + debug_rtx (vec_elm);
4795 + internal_error ("Unknown element in parallel expression!");
4796 + }
4797 + if (GET_MODE (XEXP (vec_elm, 0)) == REG)
4798 + {
4799 + /* Load multiple */
4800 + reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0)));
4801 + }
4802 + else
4803 + {
4804 + /* Store multiple */
4805 + reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1)));
4806 + }
4807 + }
4808 +
4809 + avr32_make_reglist16 (reglist16, reglist16_string);
4810 + fputs (reglist16_string, stream);
4811 +
4812 + break;
4813 + }
4814 +
4815 + default:
4816 + error = 1;
4817 + }
4818 +
4819 + if (error)
4820 + {
4821 + debug_rtx (x);
4822 + internal_error ("Illegal expression for avr32_print_operand");
4823 + }
4824 +}
4825 +
4826 +rtx
4827 +avr32_get_note_reg_equiv (rtx insn)
4828 +{
4829 + rtx note;
4830 +
4831 + note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4832 +
4833 + if (note != NULL_RTX)
4834 + return XEXP (note, 0);
4835 + else
4836 + return NULL_RTX;
4837 +}
4838 +
4839 +/*
4840 + Outputs to stdio stream stream the assembler syntax for an instruction
4841 + operand that is a memory reference whose address is x. x is an RTL
4842 + expression.
4843 +
4844 + ToDo: fixme.
4845 +*/
4846 +void
4847 +avr32_print_operand_address (FILE * stream, rtx x)
4848 +{
4849 + fprintf (stream, "(%d) /* address */", REGNO (x));
4850 +}
4851 +
4852 +/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */
4853 +bool
4854 +avr32_got_mentioned_p (rtx addr)
4855 +{
4856 + if (GET_CODE (addr) == MEM)
4857 + addr = XEXP (addr, 0);
4858 + while (GET_CODE (addr) == CONST)
4859 + addr = XEXP (addr, 0);
4860 + if (GET_CODE (addr) == SYMBOL_REF)
4861 + {
4862 + return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_");
4863 + }
4864 + if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
4865 + {
4866 + bool l1, l2;
4867 +
4868 + l1 = avr32_got_mentioned_p (XEXP (addr, 0));
4869 + l2 = avr32_got_mentioned_p (XEXP (addr, 1));
4870 + return l1 || l2;
4871 + }
4872 + return false;
4873 +}
4874 +
4875 +
4876 +/* Find the symbol in an address expression. */
4877 +
4878 +rtx
4879 +avr32_find_symbol (rtx addr)
4880 +{
4881 + if (GET_CODE (addr) == MEM)
4882 + addr = XEXP (addr, 0);
4883 +
4884 + while (GET_CODE (addr) == CONST)
4885 + addr = XEXP (addr, 0);
4886 +
4887 + if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
4888 + return addr;
4889 + if (GET_CODE (addr) == PLUS)
4890 + {
4891 + rtx l1, l2;
4892 +
4893 + l1 = avr32_find_symbol (XEXP (addr, 0));
4894 + l2 = avr32_find_symbol (XEXP (addr, 1));
4895 + if (l1 != NULL_RTX && l2 == NULL_RTX)
4896 + return l1;
4897 + else if (l1 == NULL_RTX && l2 != NULL_RTX)
4898 + return l2;
4899 + }
4900 +
4901 + return NULL_RTX;
4902 +}
4903 +
4904 +
4905 +/* Routines for manipulation of the constant pool. */
4906 +
4907 +/* AVR32 instructions cannot load a large constant directly into a
4908 + register; they have to come from a pc relative load. The constant
4909 + must therefore be placed in the addressable range of the pc
4910 + relative load. Depending on the precise pc relative load
4911 + instruction the range is somewhere between 256 bytes and 4k. This
4912 + means that we often have to dump a constant inside a function, and
4913 + generate code to branch around it.
4914 +
4915 + It is important to minimize this, since the branches will slow
4916 + things down and make the code larger.
4917 +
4918 + Normally we can hide the table after an existing unconditional
4919 + branch so that there is no interruption of the flow, but in the
4920 + worst case the code looks like this:
4921 +
4922 + lddpc rn, L1
4923 + ...
4924 + rjmp L2
4925 + align
4926 + L1: .long value
4927 + L2:
4928 + ...
4929 +
4930 + lddpc rn, L3
4931 + ...
4932 + rjmp L4
4933 + align
4934 + L3: .long value
4935 + L4:
4936 + ...
4937 +
4938 + We fix this by performing a scan after scheduling, which notices
4939 + which instructions need to have their operands fetched from the
4940 + constant table and builds the table.
4941 +
4942 + The algorithm starts by building a table of all the constants that
4943 + need fixing up and all the natural barriers in the function (places
4944 + where a constant table can be dropped without breaking the flow).
4945 + For each fixup we note how far the pc-relative replacement will be
4946 + able to reach and the offset of the instruction into the function.
4947 +
4948 + Having built the table we then group the fixes together to form
4949 + tables that are as large as possible (subject to addressing
4950 + constraints) and emit each table of constants after the last
4951 + barrier that is within range of all the instructions in the group.
4952 + If a group does not contain a barrier, then we forcibly create one
4953 + by inserting a jump instruction into the flow. Once the table has
4954 + been inserted, the insns are then modified to reference the
4955 + relevant entry in the pool.
4956 +
4957 + Possible enhancements to the algorithm (not implemented) are:
4958 +
4959 + 1) For some processors and object formats, there may be benefit in
4960 + aligning the pools to the start of cache lines; this alignment
4961 + would need to be taken into account when calculating addressability
4962 + of a pool. */
4963 +
4964 +/* These typedefs are located at the start of this file, so that
4965 + they can be used in the prototypes there. This comment is to
4966 + remind readers of that fact so that the following structures
4967 + can be understood more easily.
4968 +
4969 + typedef struct minipool_node Mnode;
4970 + typedef struct minipool_fixup Mfix; */
4971 +
4972 +struct minipool_node
4973 +{
4974 + /* Doubly linked chain of entries. */
4975 + Mnode *next;
4976 + Mnode *prev;
4977 + /* The maximum offset into the code that this entry can be placed. While
4978 + pushing fixes for forward references, all entries are sorted in order of
4979 + increasing max_address. */
4980 + HOST_WIDE_INT max_address;
4981 + /* Similarly for an entry inserted for a backwards ref. */
4982 + HOST_WIDE_INT min_address;
4983 + /* The number of fixes referencing this entry. This can become zero if we
4984 + "unpush" an entry. In this case we ignore the entry when we come to
4985 + emit the code. */
4986 + int refcount;
4987 + /* The offset from the start of the minipool. */
4988 + HOST_WIDE_INT offset;
4989 + /* The value in table. */
4990 + rtx value;
4991 + /* The mode of value. */
4992 + enum machine_mode mode;
4993 + /* The size of the value. */
4994 + int fix_size;
4995 +};
4996 +
4997 +struct minipool_fixup
4998 +{
4999 + Mfix *next;
5000 + rtx insn;
5001 + HOST_WIDE_INT address;
5002 + rtx *loc;
5003 + enum machine_mode mode;
5004 + int fix_size;
5005 + rtx value;
5006 + Mnode *minipool;
5007 + HOST_WIDE_INT forwards;
5008 + HOST_WIDE_INT backwards;
5009 +};
5010 +
5011 +
5012 +/* Fixes less than a word need padding out to a word boundary. */
5013 +#define MINIPOOL_FIX_SIZE(mode, value) \
5014 + (IS_FORCE_MINIPOOL(value) ? 0 : \
5015 + (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4))
5016 +
5017 +#define IS_FORCE_MINIPOOL(x) \
5018 + (GET_CODE(x) == UNSPEC && \
5019 + XINT(x, 1) == UNSPEC_FORCE_MINIPOOL)
5020 +
5021 +static Mnode *minipool_vector_head;
5022 +static Mnode *minipool_vector_tail;
5023 +
5024 +/* The linked list of all minipool fixes required for this function. */
5025 +Mfix *minipool_fix_head;
5026 +Mfix *minipool_fix_tail;
5027 +/* The fix entry for the current minipool, once it has been placed. */
5028 +Mfix *minipool_barrier;
5029 +
5030 +/* Determines if INSN is the start of a jump table. Returns the end
5031 + of the TABLE or NULL_RTX. */
5032 +static rtx
5033 +is_jump_table (rtx insn)
5034 +{
5035 + rtx table;
5036 +
5037 + if (GET_CODE (insn) == JUMP_INSN
5038 + && JUMP_LABEL (insn) != NULL
5039 + && ((table = next_real_insn (JUMP_LABEL (insn)))
5040 + == next_real_insn (insn))
5041 + && table != NULL
5042 + && GET_CODE (table) == JUMP_INSN
5043 + && (GET_CODE (PATTERN (table)) == ADDR_VEC
5044 + || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
5045 + return table;
5046 +
5047 + return NULL_RTX;
5048 +}
5049 +
5050 +static HOST_WIDE_INT
5051 +get_jump_table_size (rtx insn)
5052 +{
5053 + /* ADDR_VECs only take room if read-only data does into the text section. */
5054 + if (JUMP_TABLES_IN_TEXT_SECTION
5055 +#if !defined(READONLY_DATA_SECTION) && !defined(READONLY_DATA_SECTION_ASM_OP)
5056 + || 1
5057 +#endif
5058 + )
5059 + {
5060 + rtx body = PATTERN (insn);
5061 + int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
5062 +
5063 + return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
5064 + }
5065 +
5066 + return 0;
5067 +}
5068 +
5069 +/* Move a minipool fix MP from its current location to before MAX_MP.
5070 + If MAX_MP is NULL, then MP doesn't need moving, but the addressing
5071 + constraints may need updating. */
5072 +static Mnode *
5073 +move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp,
5074 + HOST_WIDE_INT max_address)
5075 +{
5076 + /* This should never be true and the code below assumes these are
5077 + different. */
5078 + if (mp == max_mp)
5079 + abort ();
5080 +
5081 + if (max_mp == NULL)
5082 + {
5083 + if (max_address < mp->max_address)
5084 + mp->max_address = max_address;
5085 + }
5086 + else
5087 + {
5088 + if (max_address > max_mp->max_address - mp->fix_size)
5089 + mp->max_address = max_mp->max_address - mp->fix_size;
5090 + else
5091 + mp->max_address = max_address;
5092 +
5093 + /* Unlink MP from its current position. Since max_mp is non-null,
5094 + mp->prev must be non-null. */
5095 + mp->prev->next = mp->next;
5096 + if (mp->next != NULL)
5097 + mp->next->prev = mp->prev;
5098 + else
5099 + minipool_vector_tail = mp->prev;
5100 +
5101 + /* Re-insert it before MAX_MP. */
5102 + mp->next = max_mp;
5103 + mp->prev = max_mp->prev;
5104 + max_mp->prev = mp;
5105 +
5106 + if (mp->prev != NULL)
5107 + mp->prev->next = mp;
5108 + else
5109 + minipool_vector_head = mp;
5110 + }
5111 +
5112 + /* Save the new entry. */
5113 + max_mp = mp;
5114 +
5115 + /* Scan over the preceding entries and adjust their addresses as required.
5116 + */
5117 + while (mp->prev != NULL
5118 + && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
5119 + {
5120 + mp->prev->max_address = mp->max_address - mp->prev->fix_size;
5121 + mp = mp->prev;
5122 + }
5123 +
5124 + return max_mp;
5125 +}
5126 +
5127 +/* Add a constant to the minipool for a forward reference. Returns the
5128 + node added or NULL if the constant will not fit in this pool. */
5129 +static Mnode *
5130 +add_minipool_forward_ref (Mfix * fix)
5131 +{
5132 + /* If set, max_mp is the first pool_entry that has a lower constraint than
5133 + the one we are trying to add. */
5134 + Mnode *max_mp = NULL;
5135 + HOST_WIDE_INT max_address = fix->address + fix->forwards;
5136 + Mnode *mp;
5137 +
5138 + /* If this fix's address is greater than the address of the first entry,
5139 + then we can't put the fix in this pool. We subtract the size of the
5140 + current fix to ensure that if the table is fully packed we still have
5141 + enough room to insert this value by suffling the other fixes forwards. */
5142 + if (minipool_vector_head &&
5143 + fix->address >= minipool_vector_head->max_address - fix->fix_size)
5144 + return NULL;
5145 +
5146 + /* Scan the pool to see if a constant with the same value has already been
5147 + added. While we are doing this, also note the location where we must
5148 + insert the constant if it doesn't already exist. */
5149 + for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
5150 + {
5151 + if (GET_CODE (fix->value) == GET_CODE (mp->value)
5152 + && fix->mode == mp->mode
5153 + && (GET_CODE (fix->value) != CODE_LABEL
5154 + || (CODE_LABEL_NUMBER (fix->value)
5155 + == CODE_LABEL_NUMBER (mp->value)))
5156 + && rtx_equal_p (fix->value, mp->value))
5157 + {
5158 + /* More than one fix references this entry. */
5159 + mp->refcount++;
5160 + return move_minipool_fix_forward_ref (mp, max_mp, max_address);
5161 + }
5162 +
5163 + /* Note the insertion point if necessary. */
5164 + if (max_mp == NULL && mp->max_address > max_address)
5165 + max_mp = mp;
5166 +
5167 + }
5168 +
5169 + /* The value is not currently in the minipool, so we need to create a new
5170 + entry for it. If MAX_MP is NULL, the entry will be put on the end of
5171 + the list since the placement is less constrained than any existing
5172 + entry. Otherwise, we insert the new fix before MAX_MP and, if
5173 + necessary, adjust the constraints on the other entries. */
5174 + mp = xmalloc (sizeof (*mp));
5175 + mp->fix_size = fix->fix_size;
5176 + mp->mode = fix->mode;
5177 + mp->value = fix->value;
5178 + mp->refcount = 1;
5179 + /* Not yet required for a backwards ref. */
5180 + mp->min_address = -65536;
5181 +
5182 + if (max_mp == NULL)
5183 + {
5184 + mp->max_address = max_address;
5185 + mp->next = NULL;
5186 + mp->prev = minipool_vector_tail;
5187 +
5188 + if (mp->prev == NULL)
5189 + {
5190 + minipool_vector_head = mp;
5191 + minipool_vector_label = gen_label_rtx ();
5192 + }
5193 + else
5194 + mp->prev->next = mp;
5195 +
5196 + minipool_vector_tail = mp;
5197 + }
5198 + else
5199 + {
5200 + if (max_address > max_mp->max_address - mp->fix_size)
5201 + mp->max_address = max_mp->max_address - mp->fix_size;
5202 + else
5203 + mp->max_address = max_address;
5204 +
5205 + mp->next = max_mp;
5206 + mp->prev = max_mp->prev;
5207 + max_mp->prev = mp;
5208 + if (mp->prev != NULL)
5209 + mp->prev->next = mp;
5210 + else
5211 + minipool_vector_head = mp;
5212 + }
5213 +
5214 + /* Save the new entry. */
5215 + max_mp = mp;
5216 +
5217 + /* Scan over the preceding entries and adjust their addresses as required.
5218 + */
5219 + while (mp->prev != NULL
5220 + && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
5221 + {
5222 + mp->prev->max_address = mp->max_address - mp->prev->fix_size;
5223 + mp = mp->prev;
5224 + }
5225 +
5226 + return max_mp;
5227 +}
5228 +
5229 +static Mnode *
5230 +move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp,
5231 + HOST_WIDE_INT min_address)
5232 +{
5233 + HOST_WIDE_INT offset;
5234 +
5235 + /* This should never be true, and the code below assumes these are
5236 + different. */
5237 + if (mp == min_mp)
5238 + abort ();
5239 +
5240 + if (min_mp == NULL)
5241 + {
5242 + if (min_address > mp->min_address)
5243 + mp->min_address = min_address;
5244 + }
5245 + else
5246 + {
5247 + /* We will adjust this below if it is too loose. */
5248 + mp->min_address = min_address;
5249 +
5250 + /* Unlink MP from its current position. Since min_mp is non-null,
5251 + mp->next must be non-null. */
5252 + mp->next->prev = mp->prev;
5253 + if (mp->prev != NULL)
5254 + mp->prev->next = mp->next;
5255 + else
5256 + minipool_vector_head = mp->next;
5257 +
5258 + /* Reinsert it after MIN_MP. */
5259 + mp->prev = min_mp;
5260 + mp->next = min_mp->next;
5261 + min_mp->next = mp;
5262 + if (mp->next != NULL)
5263 + mp->next->prev = mp;
5264 + else
5265 + minipool_vector_tail = mp;
5266 + }
5267 +
5268 + min_mp = mp;
5269 +
5270 + offset = 0;
5271 + for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
5272 + {
5273 + mp->offset = offset;
5274 + if (mp->refcount > 0)
5275 + offset += mp->fix_size;
5276 +
5277 + if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
5278 + mp->next->min_address = mp->min_address + mp->fix_size;
5279 + }
5280 +
5281 + return min_mp;
5282 +}
5283 +
5284 +/* Add a constant to the minipool for a backward reference. Returns the
5285 + node added or NULL if the constant will not fit in this pool.
5286 +
5287 + Note that the code for insertion for a backwards reference can be
5288 + somewhat confusing because the calculated offsets for each fix do
5289 + not take into account the size of the pool (which is still under
5290 + construction. */
5291 +static Mnode *
5292 +add_minipool_backward_ref (Mfix * fix)
5293 +{
5294 + /* If set, min_mp is the last pool_entry that has a lower constraint than
5295 + the one we are trying to add. */
5296 + Mnode *min_mp = NULL;
5297 + /* This can be negative, since it is only a constraint. */
5298 + HOST_WIDE_INT min_address = fix->address - fix->backwards;
5299 + Mnode *mp;
5300 +
5301 + /* If we can't reach the current pool from this insn, or if we can't insert
5302 + this entry at the end of the pool without pushing other fixes out of
5303 + range, then we don't try. This ensures that we can't fail later on. */
5304 + if (min_address >= minipool_barrier->address
5305 + || (minipool_vector_tail->min_address + fix->fix_size
5306 + >= minipool_barrier->address))
5307 + return NULL;
5308 +
5309 + /* Scan the pool to see if a constant with the same value has already been
5310 + added. While we are doing this, also note the location where we must
5311 + insert the constant if it doesn't already exist. */
5312 + for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
5313 + {
5314 + if (GET_CODE (fix->value) == GET_CODE (mp->value)
5315 + && fix->mode == mp->mode
5316 + && (GET_CODE (fix->value) != CODE_LABEL
5317 + || (CODE_LABEL_NUMBER (fix->value)
5318 + == CODE_LABEL_NUMBER (mp->value)))
5319 + && rtx_equal_p (fix->value, mp->value)
5320 + /* Check that there is enough slack to move this entry to the end
5321 + of the table (this is conservative). */
5322 + && (mp->max_address
5323 + > (minipool_barrier->address
5324 + + minipool_vector_tail->offset
5325 + + minipool_vector_tail->fix_size)))
5326 + {
5327 + mp->refcount++;
5328 + return move_minipool_fix_backward_ref (mp, min_mp, min_address);
5329 + }
5330 +
5331 + if (min_mp != NULL)
5332 + mp->min_address += fix->fix_size;
5333 + else
5334 + {
5335 + /* Note the insertion point if necessary. */
5336 + if (mp->min_address < min_address)
5337 + {
5338 + min_mp = mp;
5339 + }
5340 + else if (mp->max_address
5341 + < minipool_barrier->address + mp->offset + fix->fix_size)
5342 + {
5343 + /* Inserting before this entry would push the fix beyond its
5344 + maximum address (which can happen if we have re-located a
5345 + forwards fix); force the new fix to come after it. */
5346 + min_mp = mp;
5347 + min_address = mp->min_address + fix->fix_size;
5348 + }
5349 + }
5350 + }
5351 +
5352 + /* We need to create a new entry. */
5353 + mp = xmalloc (sizeof (*mp));
5354 + mp->fix_size = fix->fix_size;
5355 + mp->mode = fix->mode;
5356 + mp->value = fix->value;
5357 + mp->refcount = 1;
5358 + mp->max_address = minipool_barrier->address + 65536;
5359 +
5360 + mp->min_address = min_address;
5361 +
5362 + if (min_mp == NULL)
5363 + {
5364 + mp->prev = NULL;
5365 + mp->next = minipool_vector_head;
5366 +
5367 + if (mp->next == NULL)
5368 + {
5369 + minipool_vector_tail = mp;
5370 + minipool_vector_label = gen_label_rtx ();
5371 + }
5372 + else
5373 + mp->next->prev = mp;
5374 +
5375 + minipool_vector_head = mp;
5376 + }
5377 + else
5378 + {
5379 + mp->next = min_mp->next;
5380 + mp->prev = min_mp;
5381 + min_mp->next = mp;
5382 +
5383 + if (mp->next != NULL)
5384 + mp->next->prev = mp;
5385 + else
5386 + minipool_vector_tail = mp;
5387 + }
5388 +
5389 + /* Save the new entry. */
5390 + min_mp = mp;
5391 +
5392 + if (mp->prev)
5393 + mp = mp->prev;
5394 + else
5395 + mp->offset = 0;
5396 +
5397 + /* Scan over the following entries and adjust their offsets. */
5398 + while (mp->next != NULL)
5399 + {
5400 + if (mp->next->min_address < mp->min_address + mp->fix_size)
5401 + mp->next->min_address = mp->min_address + mp->fix_size;
5402 +
5403 + if (mp->refcount)
5404 + mp->next->offset = mp->offset + mp->fix_size;
5405 + else
5406 + mp->next->offset = mp->offset;
5407 +
5408 + mp = mp->next;
5409 + }
5410 +
5411 + return min_mp;
5412 +}
5413 +
5414 +static void
5415 +assign_minipool_offsets (Mfix * barrier)
5416 +{
5417 + HOST_WIDE_INT offset = 0;
5418 + Mnode *mp;
5419 +
5420 + minipool_barrier = barrier;
5421 +
5422 + for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
5423 + {
5424 + mp->offset = offset;
5425 +
5426 + if (mp->refcount > 0)
5427 + offset += mp->fix_size;
5428 + }
5429 +}
5430 +
5431 +/* Print a symbolic form of X to the debug file, F. */
5432 +static void
5433 +avr32_print_value (FILE * f, rtx x)
5434 +{
5435 + switch (GET_CODE (x))
5436 + {
5437 + case CONST_INT:
5438 + fprintf (f, "0x%x", (int) INTVAL (x));
5439 + return;
5440 +
5441 + case CONST_DOUBLE:
5442 + fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3));
5443 + return;
5444 +
5445 + case CONST_VECTOR:
5446 + {
5447 + int i;
5448 +
5449 + fprintf (f, "<");
5450 + for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
5451 + {
5452 + fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i)));
5453 + if (i < (CONST_VECTOR_NUNITS (x) - 1))
5454 + fputc (',', f);
5455 + }
5456 + fprintf (f, ">");
5457 + }
5458 + return;
5459 +
5460 + case CONST_STRING:
5461 + fprintf (f, "\"%s\"", XSTR (x, 0));
5462 + return;
5463 +
5464 + case SYMBOL_REF:
5465 + fprintf (f, "`%s'", XSTR (x, 0));
5466 + return;
5467 +
5468 + case LABEL_REF:
5469 + fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
5470 + return;
5471 +
5472 + case CONST:
5473 + avr32_print_value (f, XEXP (x, 0));
5474 + return;
5475 +
5476 + case PLUS:
5477 + avr32_print_value (f, XEXP (x, 0));
5478 + fprintf (f, "+");
5479 + avr32_print_value (f, XEXP (x, 1));
5480 + return;
5481 +
5482 + case PC:
5483 + fprintf (f, "pc");
5484 + return;
5485 +
5486 + default:
5487 + fprintf (f, "????");
5488 + return;
5489 + }
5490 +}
5491 +
5492 +int
5493 +is_minipool_label (rtx label)
5494 +{
5495 + minipool_labels *cur_mp_label = cfun->machine->minipool_label_head;
5496 +
5497 + if (GET_CODE (label) != CODE_LABEL)
5498 + return FALSE;
5499 +
5500 + while (cur_mp_label)
5501 + {
5502 + if (CODE_LABEL_NUMBER (label)
5503 + == CODE_LABEL_NUMBER (cur_mp_label->label))
5504 + return TRUE;
5505 + cur_mp_label = cur_mp_label->next;
5506 + }
5507 + return FALSE;
5508 +}
5509 +
5510 +static void
5511 +new_minipool_label (rtx label)
5512 +{
5513 + if (!cfun->machine->minipool_label_head)
5514 + {
5515 + cfun->machine->minipool_label_head =
5516 + ggc_alloc (sizeof (minipool_labels));
5517 + cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head;
5518 + cfun->machine->minipool_label_head->label = label;
5519 + cfun->machine->minipool_label_head->next = 0;
5520 + cfun->machine->minipool_label_head->prev = 0;
5521 + }
5522 + else
5523 + {
5524 + cfun->machine->minipool_label_tail->next =
5525 + ggc_alloc (sizeof (minipool_labels));
5526 + cfun->machine->minipool_label_tail->next->label = label;
5527 + cfun->machine->minipool_label_tail->next->next = 0;
5528 + cfun->machine->minipool_label_tail->next->prev =
5529 + cfun->machine->minipool_label_tail;
5530 + cfun->machine->minipool_label_tail =
5531 + cfun->machine->minipool_label_tail->next;
5532 + }
5533 +}
5534 +
5535 +/* Output the literal table */
5536 +static void
5537 +dump_minipool (rtx scan)
5538 +{
5539 + Mnode *mp;
5540 + Mnode *nmp;
5541 +
5542 + if (dump_file)
5543 + fprintf (dump_file,
5544 + ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
5545 + INSN_UID (scan), (unsigned long) minipool_barrier->address, 4);
5546 +
5547 + scan = emit_insn_after (gen_consttable_start (), scan);
5548 + scan = emit_insn_after (gen_align_4 (), scan);
5549 + scan = emit_label_after (minipool_vector_label, scan);
5550 + new_minipool_label (minipool_vector_label);
5551 +
5552 + for (mp = minipool_vector_head; mp != NULL; mp = nmp)
5553 + {
5554 + if (mp->refcount > 0)
5555 + {
5556 + if (dump_file)
5557 + {
5558 + fprintf (dump_file,
5559 + ";; Offset %u, min %ld, max %ld ",
5560 + (unsigned) mp->offset, (unsigned long) mp->min_address,
5561 + (unsigned long) mp->max_address);
5562 + avr32_print_value (dump_file, mp->value);
5563 + fputc ('\n', dump_file);
5564 + }
5565 +
5566 + switch (mp->fix_size)
5567 + {
5568 +#ifdef HAVE_consttable_4
5569 + case 4:
5570 + scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
5571 + break;
5572 +
5573 +#endif
5574 +#ifdef HAVE_consttable_8
5575 + case 8:
5576 + scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
5577 + break;
5578 +
5579 +#endif
5580 + case 0:
5581 + /* This can happen for force-minipool entries which just are
5582 + there to force the minipool to be generate. */
5583 + break;
5584 + default:
5585 + abort ();
5586 + break;
5587 + }
5588 + }
5589 +
5590 + nmp = mp->next;
5591 + free (mp);
5592 + }
5593 +
5594 + minipool_vector_head = minipool_vector_tail = NULL;
5595 + scan = emit_insn_after (gen_consttable_end (), scan);
5596 + scan = emit_barrier_after (scan);
5597 +}
5598 +
5599 +/* Return the cost of forcibly inserting a barrier after INSN. */
5600 +static int
5601 +avr32_barrier_cost (rtx insn)
5602 +{
5603 + /* Basing the location of the pool on the loop depth is preferable, but at
5604 + the moment, the basic block information seems to be corrupt by this
5605 + stage of the compilation. */
5606 + int base_cost = 50;
5607 + rtx next = next_nonnote_insn (insn);
5608 +
5609 + if (next != NULL && GET_CODE (next) == CODE_LABEL)
5610 + base_cost -= 20;
5611 +
5612 + switch (GET_CODE (insn))
5613 + {
5614 + case CODE_LABEL:
5615 + /* It will always be better to place the table before the label, rather
5616 + than after it. */
5617 + return 50;
5618 +
5619 + case INSN:
5620 + case CALL_INSN:
5621 + return base_cost;
5622 +
5623 + case JUMP_INSN:
5624 + return base_cost - 10;
5625 +
5626 + default:
5627 + return base_cost + 10;
5628 + }
5629 +}
5630 +
5631 +/* Find the best place in the insn stream in the range
5632 + (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
5633 + Create the barrier by inserting a jump and add a new fix entry for
5634 + it. */
5635 +static Mfix *
5636 +create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address)
5637 +{
5638 + HOST_WIDE_INT count = 0;
5639 + rtx barrier;
5640 + rtx from = fix->insn;
5641 + rtx selected = from;
5642 + int selected_cost;
5643 + HOST_WIDE_INT selected_address;
5644 + Mfix *new_fix;
5645 + HOST_WIDE_INT max_count = max_address - fix->address;
5646 + rtx label = gen_label_rtx ();
5647 +
5648 + selected_cost = avr32_barrier_cost (from);
5649 + selected_address = fix->address;
5650 +
5651 + while (from && count < max_count)
5652 + {
5653 + rtx tmp;
5654 + int new_cost;
5655 +
5656 + /* This code shouldn't have been called if there was a natural barrier
5657 + within range. */
5658 + if (GET_CODE (from) == BARRIER)
5659 + abort ();
5660 +
5661 + /* Count the length of this insn. */
5662 + count += get_attr_length (from);
5663 +
5664 + /* If there is a jump table, add its length. */
5665 + tmp = is_jump_table (from);
5666 + if (tmp != NULL)
5667 + {
5668 + count += get_jump_table_size (tmp);
5669 +
5670 + /* Jump tables aren't in a basic block, so base the cost on the
5671 + dispatch insn. If we select this location, we will still put
5672 + the pool after the table. */
5673 + new_cost = avr32_barrier_cost (from);
5674 +
5675 + if (count < max_count && new_cost <= selected_cost)
5676 + {
5677 + selected = tmp;
5678 + selected_cost = new_cost;
5679 + selected_address = fix->address + count;
5680 + }
5681 +
5682 + /* Continue after the dispatch table. */
5683 + from = NEXT_INSN (tmp);
5684 + continue;
5685 + }
5686 +
5687 + new_cost = avr32_barrier_cost (from);
5688 +
5689 + if (count < max_count && new_cost <= selected_cost)
5690 + {
5691 + selected = from;
5692 + selected_cost = new_cost;
5693 + selected_address = fix->address + count;
5694 + }
5695 +
5696 + from = NEXT_INSN (from);
5697 + }
5698 +
5699 + /* Create a new JUMP_INSN that branches around a barrier. */
5700 + from = emit_jump_insn_after (gen_jump (label), selected);
5701 + JUMP_LABEL (from) = label;
5702 + barrier = emit_barrier_after (from);
5703 + emit_label_after (label, barrier);
5704 +
5705 + /* Create a minipool barrier entry for the new barrier. */
5706 + new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix));
5707 + new_fix->insn = barrier;
5708 + new_fix->address = selected_address;
5709 + new_fix->next = fix->next;
5710 + fix->next = new_fix;
5711 +
5712 + return new_fix;
5713 +}
5714 +
5715 +/* Record that there is a natural barrier in the insn stream at
5716 + ADDRESS. */
5717 +static void
5718 +push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
5719 +{
5720 + Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
5721 +
5722 + fix->insn = insn;
5723 + fix->address = address;
5724 +
5725 + fix->next = NULL;
5726 + if (minipool_fix_head != NULL)
5727 + minipool_fix_tail->next = fix;
5728 + else
5729 + minipool_fix_head = fix;
5730 +
5731 + minipool_fix_tail = fix;
5732 +}
5733 +
5734 +/* Record INSN, which will need fixing up to load a value from the
5735 + minipool. ADDRESS is the offset of the insn since the start of the
5736 + function; LOC is a pointer to the part of the insn which requires
5737 + fixing; VALUE is the constant that must be loaded, which is of type
5738 + MODE. */
5739 +static void
5740 +push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc,
5741 + enum machine_mode mode, rtx value)
5742 +{
5743 + Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
5744 + rtx body = PATTERN (insn);
5745 +
5746 + fix->insn = insn;
5747 + fix->address = address;
5748 + fix->loc = loc;
5749 + fix->mode = mode;
5750 + fix->fix_size = MINIPOOL_FIX_SIZE (mode, value);
5751 + fix->value = value;
5752 +
5753 + if (GET_CODE (body) == PARALLEL)
5754 + {
5755 + /* Mcall : Ks16 << 2 */
5756 + fix->forwards = ((1 << 15) - 1) << 2;
5757 + fix->backwards = (1 << 15) << 2;
5758 + }
5759 + else if (GET_CODE (body) == SET
5760 + && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4)
5761 + {
5762 + /* Word Load */
5763 + if (TARGET_HARD_FLOAT
5764 + && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
5765 + {
5766 + /* Ldc0.w : Ku12 << 2 */
5767 + fix->forwards = ((1 << 12) - 1) << 2;
5768 + fix->backwards = 0;
5769 + }
5770 + else
5771 + {
5772 + if (optimize_size)
5773 + {
5774 + /* Lddpc : Ku7 << 2 */
5775 + fix->forwards = ((1 << 7) - 1) << 2;
5776 + fix->backwards = 0;
5777 + }
5778 + else
5779 + {
5780 + /* Ld.w : Ks16 */
5781 + fix->forwards = ((1 << 15) - 4);
5782 + fix->backwards = (1 << 15);
5783 + }
5784 + }
5785 + }
5786 + else if (GET_CODE (body) == SET
5787 + && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8)
5788 + {
5789 + /* Double word load */
5790 + if (TARGET_HARD_FLOAT
5791 + && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
5792 + {
5793 + /* Ldc0.d : Ku12 << 2 */
5794 + fix->forwards = ((1 << 12) - 1) << 2;
5795 + fix->backwards = 0;
5796 + }
5797 + else
5798 + {
5799 + /* Ld.d : Ks16 */
5800 + fix->forwards = ((1 << 15) - 4);
5801 + fix->backwards = (1 << 15);
5802 + }
5803 + }
5804 + else if (GET_CODE (body) == UNSPEC_VOLATILE
5805 + && XINT (body, 1) == VUNSPEC_MVRC)
5806 + {
5807 + /* Coprocessor load */
5808 + /* Ldc : Ku8 << 2 */
5809 + fix->forwards = ((1 << 8) - 1) << 2;
5810 + fix->backwards = 0;
5811 + }
5812 + else
5813 + {
5814 + /* Assume worst case which is lddpc insn. */
5815 + fix->forwards = ((1 << 7) - 1) << 2;
5816 + fix->backwards = 0;
5817 + }
5818 +
5819 + fix->minipool = NULL;
5820 +
5821 + /* If an insn doesn't have a range defined for it, then it isn't expecting
5822 + to be reworked by this code. Better to abort now than to generate duff
5823 + assembly code. */
5824 + if (fix->forwards == 0 && fix->backwards == 0)
5825 + abort ();
5826 +
5827 + if (dump_file)
5828 + {
5829 + fprintf (dump_file,
5830 + ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
5831 + GET_MODE_NAME (mode),
5832 + INSN_UID (insn), (unsigned long) address,
5833 + -1 * (long) fix->backwards, (long) fix->forwards);
5834 + avr32_print_value (dump_file, fix->value);
5835 + fprintf (dump_file, "\n");
5836 + }
5837 +
5838 + /* Add it to the chain of fixes. */
5839 + fix->next = NULL;
5840 +
5841 + if (minipool_fix_head != NULL)
5842 + minipool_fix_tail->next = fix;
5843 + else
5844 + minipool_fix_head = fix;
5845 +
5846 + minipool_fix_tail = fix;
5847 +}
5848 +
5849 +/* Scan INSN and note any of its operands that need fixing.
5850 + If DO_PUSHES is false we do not actually push any of the fixups
5851 + needed. The function returns TRUE is any fixups were needed/pushed.
5852 + This is used by avr32_memory_load_p() which needs to know about loads
5853 + of constants that will be converted into minipool loads. */
5854 +static bool
5855 +note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
5856 +{
5857 + bool result = false;
5858 + int opno;
5859 +
5860 + extract_insn (insn);
5861 +
5862 + if (!constrain_operands (1))
5863 + fatal_insn_not_found (insn);
5864 +
5865 + if (recog_data.n_alternatives == 0)
5866 + return false;
5867 +
5868 + /* Fill in recog_op_alt with information about the constraints of this
5869 + insn. */
5870 + preprocess_constraints ();
5871 +
5872 + for (opno = 0; opno < recog_data.n_operands; opno++)
5873 + {
5874 + rtx op;
5875 +
5876 + /* Things we need to fix can only occur in inputs. */
5877 + if (recog_data.operand_type[opno] != OP_IN)
5878 + continue;
5879 +
5880 + op = recog_data.operand[opno];
5881 +
5882 + if (avr32_const_pool_ref_operand (op, GET_MODE (op)))
5883 + {
5884 + if (do_pushes)
5885 + {
5886 + rtx cop = avoid_constant_pool_reference (op);
5887 +
5888 + /* Casting the address of something to a mode narrower than a
5889 + word can cause avoid_constant_pool_reference() to return the
5890 + pool reference itself. That's no good to us here. Lets
5891 + just hope that we can use the constant pool value directly.
5892 + */
5893 + if (op == cop)
5894 + cop = get_pool_constant (XEXP (op, 0));
5895 +
5896 + push_minipool_fix (insn, address,
5897 + recog_data.operand_loc[opno],
5898 + recog_data.operand_mode[opno], cop);
5899 + }
5900 +
5901 + result = true;
5902 + }
5903 + else if (TARGET_HAS_ASM_ADDR_PSEUDOS
5904 + && avr32_address_operand (op, GET_MODE (op)))
5905 + {
5906 + /* Handle pseudo instructions using a direct address. These pseudo
5907 + instructions might need entries in the constant pool and we must
5908 + therefor create a constant pool for them, in case the
5909 + assembler/linker needs to insert entries. */
5910 + if (do_pushes)
5911 + {
5912 + /* Push a dummy constant pool entry so that the .cpool
5913 + directive should be inserted on the appropriate place in the
5914 + code even if there are no real constant pool entries. This
5915 + is used by the assembler and linker to know where to put
5916 + generated constant pool entries. */
5917 + push_minipool_fix (insn, address,
5918 + recog_data.operand_loc[opno],
5919 + recog_data.operand_mode[opno],
5920 + gen_rtx_UNSPEC (VOIDmode,
5921 + gen_rtvec (1, const0_rtx),
5922 + UNSPEC_FORCE_MINIPOOL));
5923 + result = true;
5924 + }
5925 + }
5926 + }
5927 + return result;
5928 +}
5929 +
5930 +
5931 +static int
5932 +avr32_insn_is_cast (rtx insn)
5933 +{
5934 +
5935 + if (NONJUMP_INSN_P (insn)
5936 + && GET_CODE (PATTERN (insn)) == SET
5937 + && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND
5938 + || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND)
5939 + && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0))
5940 + && REG_P (SET_DEST (PATTERN (insn))))
5941 + return true;
5942 + return false;
5943 +}
5944 +
5945 +/* FIXME: The level of nesting in this function is way too deep. It needs to be
5946 + torn apart. */
5947 +static void
5948 +avr32_reorg_optimization (void)
5949 +{
5950 + rtx first = get_insns ();
5951 + rtx insn;
5952 +
5953 + if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
5954 + {
5955 +
5956 + /* Scan through all insns looking for cast operations. */
5957 + if (dump_file)
5958 + {
5959 + fprintf (dump_file, ";; Deleting redundant cast operations:\n");
5960 + }
5961 + for (insn = first; insn; insn = NEXT_INSN (insn))
5962 + {
5963 + rtx reg, src_reg, scan;
5964 + enum machine_mode mode;
5965 + int unused_cast;
5966 + rtx label_ref;
5967 +
5968 + if (avr32_insn_is_cast (insn)
5969 + && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode
5970 + || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode))
5971 + {
5972 + mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0));
5973 + reg = SET_DEST (PATTERN (insn));
5974 + src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
5975 + }
5976 + else
5977 + {
5978 + continue;
5979 + }
5980 +
5981 + unused_cast = false;
5982 + label_ref = NULL_RTX;
5983 + for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
5984 + {
5985 + /* Check if we have reached the destination of a simple
5986 + conditional jump which we have already scanned past. If so,
5987 + we can safely continue scanning. */
5988 + if (LABEL_P (scan) && label_ref != NULL_RTX)
5989 + {
5990 + if (CODE_LABEL_NUMBER (scan) ==
5991 + CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
5992 + label_ref = NULL_RTX;
5993 + else
5994 + break;
5995 + }
5996 +
5997 + if (!INSN_P (scan))
5998 + continue;
5999 +
6000 + /* For conditional jumps we can manage to keep on scanning if
6001 + we meet the destination label later on before any new jump
6002 + insns occure. */
6003 + if (GET_CODE (scan) == JUMP_INSN)
6004 + {
6005 + if (any_condjump_p (scan) && label_ref == NULL_RTX)
6006 + label_ref = condjump_label (scan);
6007 + else
6008 + break;
6009 + }
6010 +
6011 + if (!reg_mentioned_p (reg, PATTERN (scan)))
6012 + continue;
6013 +
6014 + /* Check if casted register is used in this insn */
6015 + if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX)
6016 + && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) ==
6017 + GET_MODE (reg)))
6018 + {
6019 + /* If not used in the source to the set or in a memory
6020 + expression in the destiantion then the register is used
6021 + as a destination and is really dead. */
6022 + if (single_set (scan)
6023 + && GET_CODE (PATTERN (scan)) == SET
6024 + && REG_P (SET_DEST (PATTERN (scan)))
6025 + && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan)))
6026 + && label_ref == NULL_RTX)
6027 + {
6028 + unused_cast = true;
6029 + }
6030 + break;
6031 + }
6032 +
6033 + /* Check if register is dead or set in this insn */
6034 + if (dead_or_set_p (scan, reg))
6035 + {
6036 + unused_cast = true;
6037 + break;
6038 + }
6039 + }
6040 +
6041 + /* Check if we have unresolved conditional jumps */
6042 + if (label_ref != NULL_RTX)
6043 + continue;
6044 +
6045 + if (unused_cast)
6046 + {
6047 + if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0)))
6048 + {
6049 + /* One operand cast, safe to delete */
6050 + if (dump_file)
6051 + {
6052 + fprintf (dump_file,
6053 + ";; INSN %i removed, casted register %i value not used.\n",
6054 + INSN_UID (insn), REGNO (reg));
6055 + }
6056 + SET_INSN_DELETED (insn);
6057 + /* Force the instruction to be recognized again */
6058 + INSN_CODE (insn) = -1;
6059 + }
6060 + else
6061 + {
6062 + /* Two operand cast, which really could be substituted with
6063 + a move, if the source register is dead after the cast
6064 + insn and then the insn which sets the source register
6065 + could instead directly set the destination register for
6066 + the cast. As long as there are no insns in between which
6067 + uses the register. */
6068 + rtx link = NULL_RTX;
6069 + rtx set;
6070 + rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
6071 + unused_cast = false;
6072 +
6073 + if (!find_reg_note (insn, REG_DEAD, src_reg))
6074 + continue;
6075 +
6076 + /* Search for the insn which sets the source register */
6077 + for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
6078 + {
6079 + if (REG_NOTE_KIND (link) != 0)
6080 + continue;
6081 + set = single_set (XEXP (link, 0));
6082 + if (set && rtx_equal_p (src_reg, SET_DEST (set)))
6083 + {
6084 + link = XEXP (link, 0);
6085 + break;
6086 + }
6087 + }
6088 +
6089 + /* Found no link or link is a call insn where we can not
6090 + change the destination register */
6091 + if (link == NULL_RTX || CALL_P (link))
6092 + continue;
6093 +
6094 + /* Scan through all insn between link and insn */
6095 + for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
6096 + {
6097 + /* Don't try to trace forward past a CODE_LABEL if we
6098 + haven't seen INSN yet. Ordinarily, we will only
6099 + find the setting insn in LOG_LINKS if it is in the
6100 + same basic block. However, cross-jumping can insert
6101 + code labels in between the load and the call, and
6102 + can result in situations where a single call insn
6103 + may have two targets depending on where we came
6104 + from. */
6105 +
6106 + if (GET_CODE (scan) == CODE_LABEL)
6107 + break;
6108 +
6109 + if (!INSN_P (scan))
6110 + continue;
6111 +
6112 + /* Don't try to trace forward past a JUMP. To optimize
6113 + safely, we would have to check that all the
6114 + instructions at the jump destination did not use REG.
6115 + */
6116 +
6117 + if (GET_CODE (scan) == JUMP_INSN)
6118 + {
6119 + break;
6120 + }
6121 +
6122 + if (!reg_mentioned_p (src_reg, PATTERN (scan)))
6123 + continue;
6124 +
6125 + /* We have reached the cast insn */
6126 + if (scan == insn)
6127 + {
6128 + /* We can remove cast and replace the destination
6129 + register of the link insn with the destination
6130 + of the cast */
6131 + if (dump_file)
6132 + {
6133 + fprintf (dump_file,
6134 + ";; INSN %i removed, casted value unused. "
6135 + "Destination of removed cast operation: register %i, folded into INSN %i.\n",
6136 + INSN_UID (insn), REGNO (reg),
6137 + INSN_UID (link));
6138 + }
6139 + /* Update link insn */
6140 + SET_DEST (PATTERN (link)) =
6141 + gen_rtx_REG (mode, REGNO (reg));
6142 + /* Force the instruction to be recognized again */
6143 + INSN_CODE (link) = -1;
6144 +
6145 + /* Delete insn */
6146 + SET_INSN_DELETED (insn);
6147 + /* Force the instruction to be recognized again */
6148 + INSN_CODE (insn) = -1;
6149 + break;
6150 + }
6151 + }
6152 + }
6153 + }
6154 + }
6155 + }
6156 +
6157 + if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
6158 + {
6159 +
6160 + /* Scan through all insns looking for shifted add operations */
6161 + if (dump_file)
6162 + {
6163 + fprintf (dump_file,
6164 + ";; Deleting redundant shifted add operations:\n");
6165 + }
6166 + for (insn = first; insn; insn = NEXT_INSN (insn))
6167 + {
6168 + rtx reg, mem_expr, scan, op0, op1;
6169 + int add_only_used_as_pointer;
6170 +
6171 + if (INSN_P (insn)
6172 + && GET_CODE (PATTERN (insn)) == SET
6173 + && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
6174 + && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT
6175 + || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT)
6176 + && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) ==
6177 + CONST_INT && REG_P (SET_DEST (PATTERN (insn)))
6178 + && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1))
6179 + && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0)))
6180 + {
6181 + reg = SET_DEST (PATTERN (insn));
6182 + mem_expr = SET_SRC (PATTERN (insn));
6183 + op0 = XEXP (XEXP (mem_expr, 0), 0);
6184 + op1 = XEXP (mem_expr, 1);
6185 + }
6186 + else
6187 + {
6188 + continue;
6189 + }
6190 +
6191 + /* Scan forward the check if the result of the shifted add
6192 + operation is only used as an address in memory operations and
6193 + that the operands to the shifted add are not clobbered. */
6194 + add_only_used_as_pointer = false;
6195 + for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
6196 + {
6197 + if (!INSN_P (scan))
6198 + continue;
6199 +
6200 + /* Don't try to trace forward past a JUMP or CALL. To optimize
6201 + safely, we would have to check that all the instructions at
6202 + the jump destination did not use REG. */
6203 +
6204 + if (GET_CODE (scan) == JUMP_INSN)
6205 + {
6206 + break;
6207 + }
6208 +
6209 + /* If used in a call insn then we cannot optimize it away */
6210 + if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg)))
6211 + break;
6212 +
6213 + /* If any of the operands of the shifted add are clobbered we
6214 + cannot optimize the shifted adda away */
6215 + if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg)))
6216 + || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg))))
6217 + break;
6218 +
6219 + if (!reg_mentioned_p (reg, PATTERN (scan)))
6220 + continue;
6221 +
6222 + /* If used any other place than as a pointer or as the
6223 + destination register we failed */
6224 + if (!(single_set (scan)
6225 + && GET_CODE (PATTERN (scan)) == SET
6226 + && ((MEM_P (SET_DEST (PATTERN (scan)))
6227 + && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
6228 + && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) ==
6229 + REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan)))
6230 + &&
6231 + REG_P (XEXP
6232 + (SET_SRC (PATTERN (scan)),
6233 + 0))
6234 + &&
6235 + REGNO (XEXP
6236 + (SET_SRC (PATTERN (scan)),
6237 + 0)) == REGNO (reg))))
6238 + && !(GET_CODE (PATTERN (scan)) == SET
6239 + && REG_P (SET_DEST (PATTERN (scan)))
6240 + && !regno_use_in (REGNO (reg),
6241 + SET_SRC (PATTERN (scan)))))
6242 + break;
6243 +
6244 + /* Check if register is dead or set in this insn */
6245 + if (dead_or_set_p (scan, reg))
6246 + {
6247 + add_only_used_as_pointer = true;
6248 + break;
6249 + }
6250 + }
6251 +
6252 + if (add_only_used_as_pointer)
6253 + {
6254 + /* Lets delete the add insn and replace all memory references
6255 + which uses the pointer with the full expression. */
6256 + if (dump_file)
6257 + {
6258 + fprintf (dump_file,
6259 + ";; Deleting INSN %i since address expression can be folded into all "
6260 + "memory references using this expression\n",
6261 + INSN_UID (insn));
6262 + }
6263 + SET_INSN_DELETED (insn);
6264 + /* Force the instruction to be recognized again */
6265 + INSN_CODE (insn) = -1;
6266 +
6267 + for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
6268 + {
6269 + if (!INSN_P (scan))
6270 + continue;
6271 +
6272 + if (!reg_mentioned_p (reg, PATTERN (scan)))
6273 + continue;
6274 +
6275 + /* If used any other place than as a pointer or as the
6276 + destination register we failed */
6277 + if ((single_set (scan)
6278 + && GET_CODE (PATTERN (scan)) == SET
6279 + && ((MEM_P (SET_DEST (PATTERN (scan)))
6280 + && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
6281 + && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) ==
6282 + REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan)))
6283 + &&
6284 + REG_P (XEXP
6285 + (SET_SRC (PATTERN (scan)),
6286 + 0))
6287 + &&
6288 + REGNO (XEXP
6289 + (SET_SRC (PATTERN (scan)),
6290 + 0)) == REGNO (reg)))))
6291 + {
6292 + if (dump_file)
6293 + {
6294 + fprintf (dump_file,
6295 + ";; Register %i replaced by indexed address in INSN %i\n",
6296 + REGNO (reg), INSN_UID (scan));
6297 + }
6298 + if (MEM_P (SET_DEST (PATTERN (scan))))
6299 + XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr;
6300 + else
6301 + XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr;
6302 + }
6303 +
6304 + /* Check if register is dead or set in this insn */
6305 + if (dead_or_set_p (scan, reg))
6306 + {
6307 + break;
6308 + }
6309 +
6310 + }
6311 + }
6312 + }
6313 + }
6314 +}
6315 +
6316 +/* Exported to toplev.c.
6317 +
6318 + Do a final pass over the function, just before delayed branch
6319 + scheduling. */
6320 +
6321 +static void
6322 +avr32_reorg (void)
6323 +{
6324 + rtx insn;
6325 + HOST_WIDE_INT address = 0;
6326 + Mfix *fix;
6327 +
6328 + minipool_fix_head = minipool_fix_tail = NULL;
6329 +
6330 + /* The first insn must always be a note, or the code below won't scan it
6331 + properly. */
6332 + insn = get_insns ();
6333 + if (GET_CODE (insn) != NOTE)
6334 + abort ();
6335 +
6336 + /* Scan all the insns and record the operands that will need fixing. */
6337 + for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
6338 + {
6339 + if (GET_CODE (insn) == BARRIER)
6340 + push_minipool_barrier (insn, address);
6341 + else if (INSN_P (insn))
6342 + {
6343 + rtx table;
6344 +
6345 + note_invalid_constants (insn, address, true);
6346 + address += get_attr_length (insn);
6347 +
6348 + /* If the insn is a vector jump, add the size of the table and skip
6349 + the table. */
6350 + if ((table = is_jump_table (insn)) != NULL)
6351 + {
6352 + address += get_jump_table_size (table);
6353 + insn = table;
6354 + }
6355 + }
6356 + }
6357 +
6358 + fix = minipool_fix_head;
6359 +
6360 + /* Now scan the fixups and perform the required changes. */
6361 + while (fix)
6362 + {
6363 + Mfix *ftmp;
6364 + Mfix *fdel;
6365 + Mfix *last_added_fix;
6366 + Mfix *last_barrier = NULL;
6367 + Mfix *this_fix;
6368 +
6369 + /* Skip any further barriers before the next fix. */
6370 + while (fix && GET_CODE (fix->insn) == BARRIER)
6371 + fix = fix->next;
6372 +
6373 + /* No more fixes. */
6374 + if (fix == NULL)
6375 + break;
6376 +
6377 + last_added_fix = NULL;
6378 +
6379 + for (ftmp = fix; ftmp; ftmp = ftmp->next)
6380 + {
6381 + if (GET_CODE (ftmp->insn) == BARRIER)
6382 + {
6383 + if (ftmp->address >= minipool_vector_head->max_address)
6384 + break;
6385 +
6386 + last_barrier = ftmp;
6387 + }
6388 + else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
6389 + break;
6390 +
6391 + last_added_fix = ftmp; /* Keep track of the last fix added.
6392 + */
6393 + }
6394 +
6395 + /* If we found a barrier, drop back to that; any fixes that we could
6396 + have reached but come after the barrier will now go in the next
6397 + mini-pool. */
6398 + if (last_barrier != NULL)
6399 + {
6400 + /* Reduce the refcount for those fixes that won't go into this pool
6401 + after all. */
6402 + for (fdel = last_barrier->next;
6403 + fdel && fdel != ftmp; fdel = fdel->next)
6404 + {
6405 + fdel->minipool->refcount--;
6406 + fdel->minipool = NULL;
6407 + }
6408 +
6409 + ftmp = last_barrier;
6410 + }
6411 + else
6412 + {
6413 + /* ftmp is first fix that we can't fit into this pool and there no
6414 + natural barriers that we could use. Insert a new barrier in the
6415 + code somewhere between the previous fix and this one, and
6416 + arrange to jump around it. */
6417 + HOST_WIDE_INT max_address;
6418 +
6419 + /* The last item on the list of fixes must be a barrier, so we can
6420 + never run off the end of the list of fixes without last_barrier
6421 + being set. */
6422 + if (ftmp == NULL)
6423 + abort ();
6424 +
6425 + max_address = minipool_vector_head->max_address;
6426 + /* Check that there isn't another fix that is in range that we
6427 + couldn't fit into this pool because the pool was already too
6428 + large: we need to put the pool before such an instruction. */
6429 + if (ftmp->address < max_address)
6430 + max_address = ftmp->address;
6431 +
6432 + last_barrier = create_fix_barrier (last_added_fix, max_address);
6433 + }
6434 +
6435 + assign_minipool_offsets (last_barrier);
6436 +
6437 + while (ftmp)
6438 + {
6439 + if (GET_CODE (ftmp->insn) != BARRIER
6440 + && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
6441 + == NULL))
6442 + break;
6443 +
6444 + ftmp = ftmp->next;
6445 + }
6446 +
6447 + /* Scan over the fixes we have identified for this pool, fixing them up
6448 + and adding the constants to the pool itself. */
6449 + for (this_fix = fix; this_fix && ftmp != this_fix;
6450 + this_fix = this_fix->next)
6451 + if (GET_CODE (this_fix->insn) != BARRIER
6452 + /* Do nothing for entries present just to force the insertion of
6453 + a minipool. */
6454 + && !IS_FORCE_MINIPOOL (this_fix->value))
6455 + {
6456 + rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
6457 + minipool_vector_label),
6458 + this_fix->minipool->offset);
6459 + *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
6460 + }
6461 +
6462 + dump_minipool (last_barrier->insn);
6463 + fix = ftmp;
6464 + }
6465 +
6466 + /* Free the minipool memory. */
6467 + obstack_free (&minipool_obstack, minipool_startobj);
6468 +
6469 + avr32_reorg_optimization ();
6470 +}
6471 +
6472 +
6473 +/*
6474 + Hook for doing some final scanning of instructions. Does nothing yet...*/
6475 +void
6476 +avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
6477 + rtx * opvec ATTRIBUTE_UNUSED,
6478 + int noperands ATTRIBUTE_UNUSED)
6479 +{
6480 + return;
6481 +}
6482 +
6483 +
6484 +
6485 +int
6486 +avr32_expand_movcc (enum machine_mode mode, rtx operands[])
6487 +{
6488 + rtx operator;
6489 + rtx compare_op0 = avr32_compare_op0;
6490 + rtx compare_op1 = avr32_compare_op1;
6491 +
6492 + /* Only allow certain compare operations */
6493 + if (GET_MODE (compare_op0) != DImode
6494 + && GET_MODE (compare_op0) != SImode
6495 + && GET_MODE (compare_op0) != HImode && GET_MODE (compare_op0) != QImode)
6496 + return FALSE;
6497 +
6498 + if (GET_CODE (compare_op0) == MEM)
6499 + {
6500 + if (no_new_pseudos)
6501 + return FALSE;
6502 + else
6503 + compare_op0 = force_reg (GET_MODE (compare_op0), compare_op0);
6504 + }
6505 +
6506 + if (GET_CODE (compare_op1) == MEM)
6507 + {
6508 + if (no_new_pseudos)
6509 + return FALSE;
6510 + else
6511 + compare_op1 = force_reg (GET_MODE (compare_op1), compare_op1);
6512 + }
6513 +
6514 + /* For DI, HI and QI mode force comparison operands to registers */
6515 + if (GET_MODE (compare_op0) == DImode
6516 + || GET_MODE (compare_op0) == HImode || GET_MODE (compare_op0) == QImode)
6517 + {
6518 + if (GET_CODE (compare_op0) != REG)
6519 + {
6520 + if (no_new_pseudos)
6521 + return FALSE;
6522 + else
6523 + compare_op0 = force_reg (GET_MODE (compare_op0), compare_op0);
6524 + }
6525 +
6526 + if (GET_CODE (compare_op1) != REG)
6527 + {
6528 + if (no_new_pseudos)
6529 + return FALSE;
6530 + else
6531 + compare_op1 = force_reg (GET_MODE (compare_op0), compare_op1);
6532 + }
6533 + }
6534 +
6535 + /* Force any immediate compare operands for SI, larger than the L
6536 + constraint, to a register */
6537 + if (GET_MODE (compare_op0) == SImode)
6538 + {
6539 + if ((GET_CODE (compare_op0) == CONST_INT
6540 + && !avr32_const_ok_for_constraint_p (INTVAL (compare_op0), 'K',
6541 + "Ks21")))
6542 + {
6543 + if (no_new_pseudos)
6544 + return FALSE;
6545 + else
6546 + compare_op0 = force_reg (SImode, compare_op0);
6547 + }
6548 +
6549 + if ((GET_CODE (compare_op1) == CONST_INT
6550 + && !avr32_const_ok_for_constraint_p (INTVAL (compare_op1), 'K',
6551 + "Ks21")))
6552 + {
6553 + if (no_new_pseudos)
6554 + return FALSE;
6555 + else
6556 + compare_op1 = force_reg (SImode, compare_op1);
6557 + }
6558 + }
6559 +
6560 + /* If we have immediates larger than can be allowed in conditional mov
6561 + instructions, force them to registers */
6562 + if (GET_CODE (operands[2]) == CONST_INT
6563 + && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08"))
6564 + {
6565 + if (no_new_pseudos)
6566 + return FALSE;
6567 + else
6568 + operands[2] = force_reg (mode, operands[2]);
6569 + }
6570 +
6571 + if (GET_CODE (operands[3]) == CONST_INT
6572 + && !avr32_const_ok_for_constraint_p (INTVAL (operands[3]), 'K', "Ks08"))
6573 + {
6574 + if (no_new_pseudos)
6575 + return FALSE;
6576 + else
6577 + operands[3] = force_reg (mode, operands[3]);
6578 + }
6579 +
6580 + /* Emit the actual instruction */
6581 + operator = gen_rtx_EQ (VOIDmode, const0_rtx, const0_rtx);
6582 + PUT_CODE (operator, GET_CODE (operands[1]));
6583 + switch (mode)
6584 + {
6585 + case SImode:
6586 + switch (GET_MODE (compare_op0))
6587 + {
6588 + case SImode:
6589 + emit_insn (gen_movsicc_cmpsi
6590 + (operands[0], operator, operands[2], operands[3],
6591 + compare_op0, compare_op1));
6592 + break;
6593 + case DImode:
6594 + emit_insn (gen_movsicc_cmpdi
6595 + (operands[0], operator, operands[2], operands[3],
6596 + compare_op0, compare_op1));
6597 + break;
6598 + case HImode:
6599 + emit_insn (gen_movsicc_cmphi
6600 + (operands[0], operator, operands[2], operands[3],
6601 + compare_op0, compare_op1));
6602 + break;
6603 + case QImode:
6604 + emit_insn (gen_movsicc_cmpqi
6605 + (operands[0], operator, operands[2], operands[3],
6606 + compare_op0, compare_op1));
6607 + break;
6608 + default:
6609 + return FALSE;
6610 + }
6611 + break;
6612 + case HImode:
6613 + switch (GET_MODE (compare_op0))
6614 + {
6615 + case SImode:
6616 + emit_insn (gen_movhicc_cmpsi
6617 + (operands[0], operator, operands[2], operands[3],
6618 + compare_op0, compare_op1));
6619 + break;
6620 + case DImode:
6621 + emit_insn (gen_movhicc_cmpdi
6622 + (operands[0], operator, operands[2], operands[3],
6623 + compare_op0, compare_op1));
6624 + break;
6625 + case HImode:
6626 + emit_insn (gen_movhicc_cmphi
6627 + (operands[0], operator, operands[2], operands[3],
6628 + compare_op0, compare_op1));
6629 + break;
6630 + case QImode:
6631 + emit_insn (gen_movhicc_cmpqi
6632 + (operands[0], operator, operands[2], operands[3],
6633 + compare_op0, compare_op1));
6634 + break;
6635 + default:
6636 + return FALSE;
6637 + }
6638 + break;
6639 + case QImode:
6640 + switch (GET_MODE (compare_op0))
6641 + {
6642 + case SImode:
6643 + emit_insn (gen_movqicc_cmpsi
6644 + (operands[0], operator, operands[2], operands[3],
6645 + compare_op0, compare_op1));
6646 + break;
6647 + case DImode:
6648 + emit_insn (gen_movqicc_cmpdi
6649 + (operands[0], operator, operands[2], operands[3],
6650 + compare_op0, compare_op1));
6651 + break;
6652 + case HImode:
6653 + emit_insn (gen_movqicc_cmphi
6654 + (operands[0], operator, operands[2], operands[3],
6655 + compare_op0, compare_op1));
6656 + break;
6657 + case QImode:
6658 + emit_insn (gen_movqicc_cmpqi
6659 + (operands[0], operator, operands[2], operands[3],
6660 + compare_op0, compare_op1));
6661 + break;
6662 + default:
6663 + return FALSE;
6664 + }
6665 + break;
6666 + default:
6667 + return FALSE;
6668 + }
6669 +
6670 + return TRUE;
6671 +}
6672 +
6673 +
6674 +int
6675 +avr32_expand_addcc (enum machine_mode mode, rtx operands[])
6676 +{
6677 + rtx operator;
6678 + rtx compare_op0 = avr32_compare_op0;
6679 + rtx compare_op1 = avr32_compare_op1;
6680 +
6681 + /* Check if we have an add/sub with an k8 immediate */
6682 + if (!(GET_CODE (operands[3]) == CONST_INT
6683 + && avr32_const_ok_for_constraint_p (-INTVAL (operands[3]), 'K',
6684 + "Ks08")))
6685 + return FALSE;
6686 + else
6687 + /* Flip sign */
6688 + operands[3] = GEN_INT (-INTVAL (operands[3]));
6689 +
6690 + /* Only allow certain compare operations */
6691 + if (GET_MODE (compare_op0) != DImode
6692 + && GET_MODE (compare_op0) != SImode
6693 + && GET_MODE (compare_op0) != HImode && GET_MODE (compare_op0) != QImode)
6694 + return FALSE;
6695 +
6696 + if (GET_CODE (compare_op0) == MEM)
6697 + {
6698 + if (no_new_pseudos)
6699 + return FALSE;
6700 + else
6701 + compare_op0 = force_reg (GET_MODE (compare_op0), compare_op0);
6702 + }
6703 +
6704 + if (GET_CODE (compare_op1) == MEM)
6705 + {
6706 + if (no_new_pseudos)
6707 + return FALSE;
6708 + else
6709 + compare_op1 = force_reg (GET_MODE (compare_op1), compare_op1);
6710 + }
6711 +
6712 + /* For DI, HI and QI mode force comparison operands to registers */
6713 + if (GET_MODE (compare_op0) == DImode
6714 + || GET_MODE (compare_op0) == HImode || GET_MODE (compare_op0) == QImode)
6715 + {
6716 + if (GET_CODE (compare_op0) != REG)
6717 + {
6718 + if (no_new_pseudos)
6719 + return FALSE;
6720 + else
6721 + compare_op0 = force_reg (GET_MODE (compare_op0), compare_op0);
6722 + }
6723 +
6724 + if (GET_CODE (compare_op1) != REG)
6725 + {
6726 + if (no_new_pseudos)
6727 + return FALSE;
6728 + else
6729 + compare_op1 = force_reg (GET_MODE (compare_op0), compare_op1);
6730 + }
6731 + }
6732 +
6733 + /* Force any immediate compare operands for SI, larger than the L
6734 + constraint, to a register */
6735 + if (GET_MODE (compare_op0) == SImode)
6736 + {
6737 + if ((GET_CODE (compare_op0) == CONST_INT
6738 + && !avr32_const_ok_for_constraint_p (INTVAL (compare_op0), 'K',
6739 + "Ks21")))
6740 + {
6741 + if (no_new_pseudos)
6742 + return FALSE;
6743 + else
6744 + compare_op0 = force_reg (SImode, compare_op0);
6745 + }
6746 +
6747 + if ((GET_CODE (compare_op1) == CONST_INT
6748 + && !avr32_const_ok_for_constraint_p (INTVAL (compare_op1), 'K',
6749 + "Ks21")))
6750 + {
6751 + if (no_new_pseudos)
6752 + return FALSE;
6753 + else
6754 + compare_op1 = force_reg (SImode, compare_op1);
6755 + }
6756 + }
6757 +
6758 + /* If we have immediates larger than can be allowed in conditional mov
6759 + instructions, force them to registers */
6760 + if (GET_CODE (operands[2]) == CONST_INT
6761 + && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08"))
6762 + {
6763 + if (no_new_pseudos)
6764 + return FALSE;
6765 + else
6766 + operands[2] = force_reg (mode, operands[2]);
6767 + }
6768 +
6769 + if (GET_CODE (operands[3]) == CONST_INT
6770 + && !avr32_const_ok_for_constraint_p (INTVAL (operands[3]), 'K', "Ks08"))
6771 + {
6772 + if (no_new_pseudos)
6773 + return FALSE;
6774 + else
6775 + operands[3] = force_reg (mode, operands[3]);
6776 + }
6777 +
6778 + if (GET_CODE (operands[0]) != REG)
6779 + {
6780 + if (no_new_pseudos)
6781 + return FALSE;
6782 + else
6783 + operands[0] = force_reg (GET_MODE (operands[0]), operands[0]);
6784 + }
6785 +
6786 + if (GET_CODE (operands[2]) != REG)
6787 + {
6788 + if (no_new_pseudos)
6789 + return FALSE;
6790 + else
6791 + operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
6792 + }
6793 +
6794 + /* Check if operands[0] and operands[2] are different */
6795 + if (REGNO (operands[0]) != REGNO (operands[2]))
6796 + {
6797 + emit_move_insn (operands[0], operands[2]);
6798 + operands[2] = operands[0];
6799 + }
6800 +
6801 + /* Emit the actual instruction */
6802 + operator = gen_rtx_EQ (VOIDmode, const0_rtx, const0_rtx);
6803 + PUT_CODE (operator, GET_CODE (operands[1]));
6804 + switch (mode)
6805 + {
6806 + case SImode:
6807 + switch (GET_MODE (compare_op0))
6808 + {
6809 + case SImode:
6810 + emit_insn (gen_addsicc_cmpsi
6811 + (operands[0], operator, operands[2], operands[3],
6812 + compare_op0, compare_op1));
6813 + break;
6814 + case DImode:
6815 + emit_insn (gen_addsicc_cmpdi
6816 + (operands[0], operator, operands[2], operands[3],
6817 + compare_op0, compare_op1));
6818 + break;
6819 + case HImode:
6820 + emit_insn (gen_addsicc_cmphi
6821 + (operands[0], operator, operands[2], operands[3],
6822 + compare_op0, compare_op1));
6823 + break;
6824 + case QImode:
6825 + emit_insn (gen_addsicc_cmpqi
6826 + (operands[0], operator, operands[2], operands[3],
6827 + compare_op0, compare_op1));
6828 + break;
6829 + default:
6830 + return FALSE;
6831 + }
6832 + break;
6833 + case HImode:
6834 + switch (GET_MODE (compare_op0))
6835 + {
6836 + case SImode:
6837 + emit_insn (gen_addhicc_cmpsi
6838 + (operands[0], operator, operands[2], operands[3],
6839 + compare_op0, compare_op1));
6840 + break;
6841 + case DImode:
6842 + emit_insn (gen_addhicc_cmpdi
6843 + (operands[0], operator, operands[2], operands[3],
6844 + compare_op0, compare_op1));
6845 + break;
6846 + case HImode:
6847 + emit_insn (gen_addhicc_cmphi
6848 + (operands[0], operator, operands[2], operands[3],
6849 + compare_op0, compare_op1));
6850 + break;
6851 + case QImode:
6852 + emit_insn (gen_addhicc_cmpqi
6853 + (operands[0], operator, operands[2], operands[3],
6854 + compare_op0, compare_op1));
6855 + break;
6856 + default:
6857 + return FALSE;
6858 + }
6859 + break;
6860 + case QImode:
6861 + switch (GET_MODE (compare_op0))
6862 + {
6863 + case SImode:
6864 + emit_insn (gen_addqicc_cmpsi
6865 + (operands[0], operator, operands[2], operands[3],
6866 + compare_op0, compare_op1));
6867 + break;
6868 + case DImode:
6869 + emit_insn (gen_addqicc_cmpdi
6870 + (operands[0], operator, operands[2], operands[3],
6871 + compare_op0, compare_op1));
6872 + break;
6873 + case HImode:
6874 + emit_insn (gen_addqicc_cmphi
6875 + (operands[0], operator, operands[2], operands[3],
6876 + compare_op0, compare_op1));
6877 + break;
6878 + case QImode:
6879 + emit_insn (gen_addqicc_cmpqi
6880 + (operands[0], operator, operands[2], operands[3],
6881 + compare_op0, compare_op1));
6882 + break;
6883 + default:
6884 + return FALSE;
6885 + }
6886 + break;
6887 + default:
6888 + return FALSE;
6889 + }
6890 +
6891 + return TRUE;
6892 +}
6893 +
6894 +/* Function for changing the condition on the next instruction,
6895 + should be used when emmiting compare instructions and
6896 + the condition of the next instruction needs to change.
6897 +*/
6898 +int
6899 +set_next_insn_cond (rtx cur_insn, rtx new_cond)
6900 +{
6901 + rtx next_insn = next_nonnote_insn (cur_insn);
6902 + if ((next_insn != NULL_RTX)
6903 + && (INSN_P (next_insn))
6904 + && (GET_CODE (PATTERN (next_insn)) == SET)
6905 + && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
6906 + {
6907 + /* Branch instructions */
6908 + XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond;
6909 + /* Force the instruction to be recognized again */
6910 + INSN_CODE (next_insn) = -1;
6911 + return TRUE;
6912 + }
6913 + else if ((next_insn != NULL_RTX)
6914 + && (INSN_P (next_insn))
6915 + && (GET_CODE (PATTERN (next_insn)) == SET)
6916 + && comparison_operator (SET_SRC (PATTERN (next_insn)),
6917 + GET_MODE (SET_SRC (PATTERN (next_insn)))))
6918 + {
6919 + /* scc with no compare */
6920 + SET_SRC (PATTERN (next_insn)) = new_cond;
6921 + /* Force the instruction to be recognized again */
6922 + INSN_CODE (next_insn) = -1;
6923 + return TRUE;
6924 + }
6925 +
6926 + return FALSE;
6927 +}
6928 +
6929 +/* Function for obtaining the condition for the next instruction
6930 + after cur_insn.
6931 +*/
6932 +rtx
6933 +get_next_insn_cond (rtx cur_insn)
6934 +{
6935 + rtx next_insn = next_nonnote_insn (cur_insn);
6936 + rtx cond = NULL_RTX;
6937 + if ((next_insn != NULL_RTX)
6938 + && (INSN_P (next_insn))
6939 + && (GET_CODE (PATTERN (next_insn)) == SET)
6940 + && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
6941 + {
6942 + /* Branch instructions */
6943 + cond = XEXP (SET_SRC (PATTERN (next_insn)), 0);
6944 + }
6945 + else if ((next_insn != NULL_RTX)
6946 + && (INSN_P (next_insn))
6947 + && (GET_CODE (PATTERN (next_insn)) == SET)
6948 + && comparison_operator (SET_SRC (PATTERN (next_insn)),
6949 + GET_MODE (SET_SRC (PATTERN (next_insn)))))
6950 + {
6951 + /* scc with no compare */
6952 + cond = SET_SRC (PATTERN (next_insn));
6953 + }
6954 +
6955 + return cond;
6956 +}
6957 +
6958 +int
6959 +avr32_expand_scc (enum rtx_code cond, rtx * operands)
6960 +{
6961 +
6962 + rtx comparation;
6963 + /* Only allow certain compare operations */
6964 + if (GET_MODE (avr32_compare_op0) != DImode
6965 + && GET_MODE (avr32_compare_op0) != SImode
6966 + && GET_MODE (avr32_compare_op0) != HImode
6967 + && GET_MODE (avr32_compare_op0) != QImode)
6968 + return FALSE;
6969 +
6970 + /* Delete compare instruction as it is merged into this instruction */
6971 + remove_insn (get_last_insn_anywhere ());
6972 +
6973 + if (!REG_P (avr32_compare_op0))
6974 + avr32_compare_op0 =
6975 + force_reg (GET_MODE (avr32_compare_op0), avr32_compare_op0);
6976 +
6977 + if (GET_MODE (avr32_compare_op0) != SImode && !REG_P (avr32_compare_op1))
6978 + {
6979 + avr32_compare_op1 =
6980 + force_reg (GET_MODE (avr32_compare_op0), avr32_compare_op1);
6981 + }
6982 + else if (GET_MODE (avr32_compare_op0) == SImode
6983 + && !REG_P (avr32_compare_op1)
6984 + && (GET_CODE (avr32_compare_op1) != CONST_INT
6985 + || (GET_CODE (avr32_compare_op1) == CONST_INT
6986 + &&
6987 + !avr32_const_ok_for_constraint_p (INTVAL
6988 + (avr32_compare_op1), 'K',
6989 + "Ks21"))))
6990 + avr32_compare_op1 =
6991 + force_reg (GET_MODE (avr32_compare_op0), avr32_compare_op1);
6992 +
6993 +
6994 + comparation =
6995 + gen_rtx_EQ (SImode,
6996 + gen_rtx_COMPARE (GET_MODE (avr32_compare_op0),
6997 + avr32_compare_op0, avr32_compare_op1),
6998 + const0_rtx);
6999 + /* Set correct condition */
7000 + PUT_CODE (comparation, cond);
7001 + emit_insn (gen_rtx_SET (VOIDmode, operands[0], comparation));
7002 + return TRUE;
7003 +}
7004 +
7005 +rtx
7006 +avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1)
7007 +{
7008 +
7009 + rtx new_cond = NULL_RTX;
7010 + rtx ops[2];
7011 + rtx compare_pattern;
7012 + ops[0] = op0;
7013 + ops[1] = op1;
7014 +
7015 + compare_pattern = gen_rtx_COMPARE (mode, op0, op1);
7016 +
7017 + new_cond = is_compare_redundant (compare_pattern, cond);
7018 +
7019 + if (new_cond != NULL_RTX)
7020 + return new_cond;
7021 +
7022 + /* Insert compare */
7023 + switch (mode)
7024 + {
7025 + case QImode:
7026 + output_asm_insn ("cp.b\t%0, %1", ops);
7027 + break;
7028 + case HImode:
7029 + output_asm_insn ("cp.h\t%0, %1", ops);
7030 + break;
7031 + case SImode:
7032 + output_asm_insn ("cp.w\t%0, %1", ops);
7033 + break;
7034 + case DImode:
7035 + if (rtx_equal_p (op1, const0_rtx))
7036 + output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops);
7037 + else
7038 + output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops);
7039 + break;
7040 + default:
7041 + internal_error ("Unknown comparison mode");
7042 + break;
7043 + }
7044 +
7045 + return cond;
7046 +}
7047 +
7048 +int
7049 +avr32_load_multiple_operation (rtx op,
7050 + enum machine_mode mode ATTRIBUTE_UNUSED)
7051 +{
7052 + int count = XVECLEN (op, 0);
7053 + unsigned int dest_regno;
7054 + rtx src_addr;
7055 + rtx elt;
7056 + int i = 1, base = 0;
7057 +
7058 + if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
7059 + return 0;
7060 +
7061 + /* Check to see if this might be a write-back. */
7062 + if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS)
7063 + {
7064 + i++;
7065 + base = 1;
7066 +
7067 + /* Now check it more carefully. */
7068 + if (GET_CODE (SET_DEST (elt)) != REG
7069 + || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG
7070 + || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT
7071 + || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4)
7072 + return 0;
7073 + }
7074 +
7075 + /* Perform a quick check so we don't blow up below. */
7076 + if (count <= 1
7077 + || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
7078 + || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG
7079 + || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
7080 + return 0;
7081 +
7082 + dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1)));
7083 + src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0);
7084 +
7085 + for (; i < count; i++)
7086 + {
7087 + elt = XVECEXP (op, 0, i);
7088 +
7089 + if (GET_CODE (elt) != SET
7090 + || GET_CODE (SET_DEST (elt)) != REG
7091 + || GET_MODE (SET_DEST (elt)) != SImode
7092 + || GET_CODE (SET_SRC (elt)) != UNSPEC)
7093 + return 0;
7094 + }
7095 +
7096 + return 1;
7097 +}
7098 +
7099 +int
7100 +avr32_store_multiple_operation (rtx op,
7101 + enum machine_mode mode ATTRIBUTE_UNUSED)
7102 +{
7103 + int count = XVECLEN (op, 0);
7104 + int src_regno;
7105 + rtx dest_addr;
7106 + rtx elt;
7107 + int i = 1;
7108 +
7109 + if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
7110 + return 0;
7111 +
7112 + /* Perform a quick check so we don't blow up below. */
7113 + if (count <= i
7114 + || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
7115 + || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM
7116 + || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
7117 + return 0;
7118 +
7119 + src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1)));
7120 + dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0);
7121 +
7122 + for (; i < count; i++)
7123 + {
7124 + elt = XVECEXP (op, 0, i);
7125 +
7126 + if (GET_CODE (elt) != SET
7127 + || GET_CODE (SET_DEST (elt)) != MEM
7128 + || GET_MODE (SET_DEST (elt)) != SImode
7129 + || GET_CODE (SET_SRC (elt)) != UNSPEC)
7130 + return 0;
7131 + }
7132 +
7133 + return 1;
7134 +}
7135 +
7136 +int
7137 +avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in)
7138 +{
7139 + /* Check if they use the same accumulator */
7140 + if (rtx_equal_p
7141 + (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
7142 + {
7143 + return TRUE;
7144 + }
7145 +
7146 + return FALSE;
7147 +}
7148 +
7149 +int
7150 +avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in)
7151 +{
7152 + /*
7153 + Check if the mul instruction produces the accumulator for the mac
7154 + instruction. */
7155 + if (rtx_equal_p
7156 + (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
7157 + {
7158 + return TRUE;
7159 + }
7160 + return FALSE;
7161 +}
7162 +
7163 +int
7164 +avr32_store_bypass (rtx insn_out, rtx insn_in)
7165 +{
7166 + /* Only valid bypass if the output result is used as an src in the store
7167 + instruction, NOT if used as a pointer or base. */
7168 + if (rtx_equal_p
7169 + (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in))))
7170 + {
7171 + return TRUE;
7172 + }
7173 +
7174 + return FALSE;
7175 +}
7176 +
7177 +int
7178 +avr32_mul_waw_bypass (rtx insn_out, rtx insn_in)
7179 +{
7180 + /* Check if the register holding the result from the mul instruction is
7181 + used as a result register in the input instruction. */
7182 + if (rtx_equal_p
7183 + (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
7184 + {
7185 + return TRUE;
7186 + }
7187 +
7188 + return FALSE;
7189 +}
7190 +
7191 +int
7192 +avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in)
7193 +{
7194 + /* Check if the first loaded word in insn_out is used in insn_in. */
7195 + rtx dst_reg;
7196 + rtx second_loaded_reg;
7197 +
7198 + /* If this is a double alu operation then the bypass is not valid */
7199 + if ((get_attr_type (insn_in) == TYPE_ALU
7200 + || get_attr_type (insn_in) == TYPE_ALU2)
7201 + && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4))
7202 + return FALSE;
7203 +
7204 + /* Get the destination register in the load */
7205 + if (!REG_P (SET_DEST (PATTERN (insn_out))))
7206 + return FALSE;
7207 +
7208 + dst_reg = SET_DEST (PATTERN (insn_out));
7209 + second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1);
7210 +
7211 + if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in)))
7212 + return TRUE;
7213 +
7214 + return FALSE;
7215 +}
7216 +
7217 +
7218 +int
7219 +avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in)
7220 +{
7221 + /*
7222 + Check if the two first loaded word in insn_out are used in insn_in. */
7223 + rtx dst_reg;
7224 + rtx third_loaded_reg, fourth_loaded_reg;
7225 +
7226 + /* Get the destination register in the load */
7227 + if (!REG_P (SET_DEST (PATTERN (insn_out))))
7228 + return FALSE;
7229 +
7230 + dst_reg = SET_DEST (PATTERN (insn_out));
7231 + third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2);
7232 + fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3);
7233 +
7234 + if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in))
7235 + && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in)))
7236 + {
7237 + return TRUE;
7238 + }
7239 +
7240 + return FALSE;
7241 +}
7242 +
7243 +int
7244 +avr32_sched_use_dfa_pipeline_interface (void)
7245 +{
7246 + /* No need to scedule on avr32_uc architecture. */
7247 + return (avr32_arch->arch_type != ARCH_TYPE_AVR32_UC);
7248 +}
7249 +
7250 +void
7251 +avr32_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
7252 + rtx x ATTRIBUTE_UNUSED,
7253 + unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
7254 +{
7255 + /* Let ASM_OUTPUT_POOL_PROLOGUE take care of this */
7256 +}
7257 +
7258 +/* Set up library functions to comply to AVR32 ABI */
7259 +
7260 +static void
7261 +avr32_init_libfuncs (void)
7262 +{
7263 + /* Convert gcc run-time function names to AVR32 ABI names */
7264 +
7265 + /* Double-precision floating-point arithmetic. */
7266 + set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add");
7267 + set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div");
7268 + set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul");
7269 + set_optab_libfunc (neg_optab, DFmode, NULL);
7270 + set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub");
7271 +
7272 + /* Double-precision comparisons. */
7273 + set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq");
7274 + set_optab_libfunc (ne_optab, DFmode, NULL);
7275 + set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt");
7276 + set_optab_libfunc (le_optab, DFmode, NULL);
7277 + set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge");
7278 + set_optab_libfunc (gt_optab, DFmode, NULL);
7279 +
7280 + /* Single-precision floating-point arithmetic. */
7281 + set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add");
7282 + set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div");
7283 + set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul");
7284 + set_optab_libfunc (neg_optab, SFmode, NULL);
7285 + set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub");
7286 +
7287 + /* Single-precision comparisons. */
7288 + set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq");
7289 + set_optab_libfunc (ne_optab, SFmode, NULL);
7290 + set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt");
7291 + set_optab_libfunc (le_optab, SFmode, NULL);
7292 + set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge");
7293 + set_optab_libfunc (gt_optab, SFmode, NULL);
7294 +
7295 + /* Floating-point to integer conversions. */
7296 + set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32");
7297 + set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32");
7298 + set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64");
7299 + set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64");
7300 + set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32");
7301 + set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32");
7302 + set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64");
7303 + set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64");
7304 +
7305 + /* Conversions between floating types. */
7306 + set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32");
7307 + set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64");
7308 +
7309 + /* Integer to floating-point conversions. Table 8. */
7310 + set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64");
7311 + set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64");
7312 + set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32");
7313 + set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32");
7314 + set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64");
7315 + set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32");
7316 + /* TODO: Add these to gcc library functions */
7317 +
7318 + set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL);
7319 + set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL);
7320 +
7321 + /* Long long. Table 9. */
7322 + set_optab_libfunc (smul_optab, DImode, "__avr32_mul64");
7323 + set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64");
7324 + set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64");
7325 + set_optab_libfunc (smod_optab, DImode, "__avr32_smod64");
7326 + set_optab_libfunc (umod_optab, DImode, "__avr32_umod64");
7327 + set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64");
7328 + set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64");
7329 + set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64");
7330 +}
7331 --- /dev/null
7332 +++ b/gcc/config/avr32/avr32-elf.h
7333 @@ -0,0 +1,82 @@
7334 +/*
7335 + Elf specific definitions.
7336 + Copyright 2003-2006 Atmel Corporation.
7337 +
7338 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
7339 +
7340 + This file is part of GCC.
7341 +
7342 + This program is free software; you can redistribute it and/or modify
7343 + it under the terms of the GNU General Public License as published by
7344 + the Free Software Foundation; either version 2 of the License, or
7345 + (at your option) any later version.
7346 +
7347 + This program is distributed in the hope that it will be useful,
7348 + but WITHOUT ANY WARRANTY; without even the implied warranty of
7349 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
7350 + GNU General Public License for more details.
7351 +
7352 + You should have received a copy of the GNU General Public License
7353 + along with this program; if not, write to the Free Software
7354 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
7355 +
7356 +
7357 +/*****************************************************************************
7358 + * Controlling the Compilator Driver, 'gcc'
7359 + *****************************************************************************/
7360 +
7361 +/* Run-time Target Specification. */
7362 +#undef TARGET_VERSION
7363 +#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr);
7364 +
7365 +/*
7366 +Another C string constant used much like LINK_SPEC. The
7367 +difference between the two is that STARTFILE_SPEC is used at
7368 +the very beginning of the command given to the linker.
7369 +
7370 +If this macro is not defined, a default is provided that loads the
7371 +standard C startup file from the usual place. See gcc.c.
7372 +*/
7373 +#undef STARTFILE_SPEC
7374 +#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s"
7375 +
7376 +#undef LINK_SPEC
7377 +#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=*:-mavr32elf_%*} %{mcpu=*:-mavr32elf_%*}"
7378 +
7379 +
7380 +/*
7381 +Another C string constant used much like LINK_SPEC. The
7382 +difference between the two is that ENDFILE_SPEC is used at
7383 +the very end of the command given to the linker.
7384 +
7385 +Do not define this macro if it does not need to do anything.
7386 +*/
7387 +#undef ENDFILE_SPEC
7388 +#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
7389 +
7390 +
7391 +/* Target CPU builtins. */
7392 +#define TARGET_CPU_CPP_BUILTINS() \
7393 + do \
7394 + { \
7395 + builtin_define ("__avr32__"); \
7396 + builtin_define ("__AVR32__"); \
7397 + builtin_define ("__AVR32_ELF__"); \
7398 + builtin_define (avr32_part->macro); \
7399 + builtin_define (avr32_arch->macro); \
7400 + if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
7401 + builtin_define ("__AVR32_AVR32A__"); \
7402 + else \
7403 + builtin_define ("__AVR32_AVR32B__"); \
7404 + if (TARGET_UNALIGNED_WORD) \
7405 + builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
7406 + if (TARGET_SIMD) \
7407 + builtin_define ("__AVR32_HAS_SIMD__"); \
7408 + if (TARGET_DSP) \
7409 + builtin_define ("__AVR32_HAS_DSP__"); \
7410 + if (TARGET_RMW) \
7411 + builtin_define ("__AVR32_HAS_RMW__"); \
7412 + if (TARGET_BRANCH_PRED) \
7413 + builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
7414 + } \
7415 + while (0)
7416 --- /dev/null
7417 +++ b/gcc/config/avr32/avr32.h
7418 @@ -0,0 +1,3322 @@
7419 +/*
7420 + Definitions of target machine for AVR32.
7421 + Copyright 2003-2006 Atmel Corporation.
7422 +
7423 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
7424 + Initial porting by Anders �dland.
7425 +
7426 + This file is part of GCC.
7427 +
7428 + This program is free software; you can redistribute it and/or modify
7429 + it under the terms of the GNU General Public License as published by
7430 + the Free Software Foundation; either version 2 of the License, or
7431 + (at your option) any later version.
7432 +
7433 + This program is distributed in the hope that it will be useful,
7434 + but WITHOUT ANY WARRANTY; without even the implied warranty of
7435 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
7436 + GNU General Public License for more details.
7437 +
7438 + You should have received a copy of the GNU General Public License
7439 + along with this program; if not, write to the Free Software
7440 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
7441 +
7442 +#ifndef GCC_AVR32_H
7443 +#define GCC_AVR32_H
7444 +
7445 +
7446 +#ifndef OBJECT_FORMAT_ELF
7447 +#error avr32.h included before elfos.h
7448 +#endif
7449 +
7450 +#ifndef LOCAL_LABEL_PREFIX
7451 +#define LOCAL_LABEL_PREFIX "."
7452 +#endif
7453 +
7454 +#ifndef SUBTARGET_CPP_SPEC
7455 +#define SUBTARGET_CPP_SPEC "-D__ELF__"
7456 +#endif
7457 +
7458 +
7459 +extern struct rtx_def *avr32_compare_op0;
7460 +extern struct rtx_def *avr32_compare_op1;
7461 +
7462 +
7463 +extern struct rtx_def *avr32_acc_cache;
7464 +
7465 +/* cache instruction op5 codes */
7466 +#define AVR32_CACHE_INVALIDATE_ICACHE 1
7467 +
7468 +/* These bits describe the different types of function supported
7469 + by the AVR32 backend. They are exclusive. ie a function cannot be both a
7470 + normal function and an interworked function, for example. Knowing the
7471 + type of a function is important for determining its prologue and
7472 + epilogue sequences.
7473 + Note value 7 is currently unassigned. Also note that the interrupt
7474 + function types all have bit 2 set, so that they can be tested for easily.
7475 + Note that 0 is deliberately chosen for AVR32_FT_UNKNOWN so that when the
7476 + machine_function structure is initialized (to zero) func_type will
7477 + default to unknown. This will force the first use of avr32_current_func_type
7478 + to call avr32_compute_func_type. */
7479 +#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined.
7480 + */
7481 +#define AVR32_FT_NORMAL 1 /* Your normal, straightforward
7482 + function. */
7483 +#define AVR32_FT_ACALL 2 /* An acall function. */
7484 +#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
7485 +#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */
7486 +#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */
7487 +#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */
7488 +
7489 +#define AVR32_FT_TYPE_MASK ((1 << 3) - 1)
7490 +
7491 +/* In addition functions can have several type modifiers,
7492 + outlined by these bit masks: */
7493 +#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR
7494 + and above. */
7495 +#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */
7496 +#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */
7497 +#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another
7498 + func. */
7499 +
7500 +/* Some macros to test these flags. */
7501 +#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK)
7502 +#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT)
7503 +#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE)
7504 +#define IS_NAKED(t) (t & AVR32_FT_NAKED)
7505 +#define IS_NESTED(t) (t & AVR32_FT_NESTED)
7506 +
7507 +
7508 +typedef struct minipool_labels
7509 +GTY ((chain_next ("%h.next"), chain_prev ("%h.prev")))
7510 +{
7511 + rtx label;
7512 + struct minipool_labels *prev;
7513 + struct minipool_labels *next;
7514 +} minipool_labels;
7515 +
7516 +/* A C structure for machine-specific, per-function data.
7517 + This is added to the cfun structure. */
7518 +
7519 +typedef struct machine_function
7520 +GTY (())
7521 +{
7522 + /* Records the type of the current function. */
7523 + unsigned long func_type;
7524 + /* List of minipool labels, use for checking if code label is valid in a
7525 + memory expression */
7526 + minipool_labels *minipool_label_head;
7527 + minipool_labels *minipool_label_tail;
7528 +} machine_function;
7529 +
7530 +/* Initialize data used by insn expanders. This is called from insn_emit,
7531 + once for every function before code is generated. */
7532 +#define INIT_EXPANDERS avr32_init_expanders ()
7533 +
7534 +/******************************************************************************
7535 + * SPECS
7536 + *****************************************************************************/
7537 +
7538 +#ifndef ASM_SPEC
7539 +#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=*:-march=%*} %{mpart=*:-mpart=%*}"
7540 +#endif
7541 +
7542 +#ifndef MULTILIB_DEFAULTS
7543 +#define MULTILIB_DEFAULTS { "march=ap" }
7544 +#endif
7545 +
7546 +/******************************************************************************
7547 + * Run-time Target Specification
7548 + *****************************************************************************/
7549 +#ifndef TARGET_VERSION
7550 +#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)");
7551 +#endif
7552 +
7553 +/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/
7554 +enum part_type
7555 +{
7556 + PART_TYPE_AVR32_NONE,
7557 + PART_TYPE_AVR32_AP7000,
7558 + PART_TYPE_AVR32_AP7010,
7559 + PART_TYPE_AVR32_AP7020,
7560 + PART_TYPE_AVR32_UC3A0256,
7561 + PART_TYPE_AVR32_UC3A0512,
7562 + PART_TYPE_AVR32_UC3A1128,
7563 + PART_TYPE_AVR32_UC3A1256,
7564 + PART_TYPE_AVR32_UC3A1512
7565 +};
7566 +
7567 +/* Microarchitectures. */
7568 +enum microarchitecture_type
7569 +{
7570 + UARCH_TYPE_AVR32A,
7571 + UARCH_TYPE_AVR32B
7572 +};
7573 +
7574 +/* Architectures types which specifies the pipeline.
7575 + Keep this in sync with avr32_arch_types in avr32.c*/
7576 +enum architecture_type
7577 +{
7578 + ARCH_TYPE_AVR32_AP,
7579 + ARCH_TYPE_AVR32_UC
7580 +};
7581 +
7582 +/* Flag specifying if the cpu has support for DSP instructions.*/
7583 +#define FLAG_AVR32_HAS_DSP (1 << 0)
7584 +/* Flag specifying if the cpu has support for Read-Modify-Write
7585 + instructions.*/
7586 +#define FLAG_AVR32_HAS_RMW (1 << 1)
7587 +/* Flag specifying if the cpu has support for SIMD instructions. */
7588 +#define FLAG_AVR32_HAS_SIMD (1 << 2)
7589 +/* Flag specifying if the cpu has support for unaligned memory word access. */
7590 +#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3)
7591 +/* Flag specifying if the cpu has support for branch prediction. */
7592 +#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4)
7593 +
7594 +/* Structure for holding information about different avr32 CPUs/parts */
7595 +struct part_type_s
7596 +{
7597 + const char *const name;
7598 + enum part_type part_type;
7599 + enum architecture_type arch_type;
7600 + /* Must lie outside user's namespace. NULL == no macro. */
7601 + const char *const macro;
7602 +};
7603 +
7604 +/* Structure for holding information about different avr32 pipeline
7605 + architectures. */
7606 +struct arch_type_s
7607 +{
7608 + const char *const name;
7609 + enum architecture_type arch_type;
7610 + enum microarchitecture_type uarch_type;
7611 + const unsigned long feature_flags;
7612 + /* Must lie outside user's namespace. NULL == no macro. */
7613 + const char *const macro;
7614 +};
7615 +
7616 +extern const struct part_type_s *avr32_part;
7617 +extern const struct arch_type_s *avr32_arch;
7618 +
7619 +#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD)
7620 +#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP)
7621 +#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW)
7622 +#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD)
7623 +#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED)
7624 +
7625 +#define CAN_DEBUG_WITHOUT_FP
7626 +
7627 +/******************************************************************************
7628 + * Storage Layout
7629 + *****************************************************************************/
7630 +
7631 +/*
7632 +Define this macro to have the value 1 if the most significant bit in a
7633 +byte has the lowest number; otherwise define it to have the value zero.
7634 +This means that bit-field instructions count from the most significant
7635 +bit. If the machine has no bit-field instructions, then this must still
7636 +be defined, but it doesn't matter which value it is defined to. This
7637 +macro need not be a constant.
7638 +
7639 +This macro does not affect the way structure fields are packed into
7640 +bytes or words; that is controlled by BYTES_BIG_ENDIAN.
7641 +*/
7642 +#define BITS_BIG_ENDIAN 0
7643 +
7644 +/*
7645 +Define this macro to have the value 1 if the most significant byte in a
7646 +word has the lowest number. This macro need not be a constant.
7647 +*/
7648 +/*
7649 + Data is stored in an big-endian way.
7650 +*/
7651 +#define BYTES_BIG_ENDIAN 1
7652 +
7653 +/*
7654 +Define this macro to have the value 1 if, in a multiword object, the
7655 +most significant word has the lowest number. This applies to both
7656 +memory locations and registers; GCC fundamentally assumes that the
7657 +order of words in memory is the same as the order in registers. This
7658 +macro need not be a constant.
7659 +*/
7660 +/*
7661 + Data is stored in an bin-endian way.
7662 +*/
7663 +#define WORDS_BIG_ENDIAN 1
7664 +
7665 +/*
7666 +Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
7667 +constant value with the same meaning as WORDS_BIG_ENDIAN, which will be
7668 +used only when compiling libgcc2.c. Typically the value will be set
7669 +based on preprocessor defines.
7670 +*/
7671 +#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
7672 +
7673 +/*
7674 +Define this macro to have the value 1 if DFmode, XFmode or
7675 +TFmode floating point numbers are stored in memory with the word
7676 +containing the sign bit at the lowest address; otherwise define it to
7677 +have the value 0. This macro need not be a constant.
7678 +
7679 +You need not define this macro if the ordering is the same as for
7680 +multi-word integers.
7681 +*/
7682 +/* #define FLOAT_WORDS_BIG_ENDIAN 1 */
7683 +
7684 +/*
7685 +Define this macro to be the number of bits in an addressable storage
7686 +unit (byte); normally 8.
7687 +*/
7688 +#define BITS_PER_UNIT 8
7689 +
7690 +/*
7691 +Number of bits in a word; normally 32.
7692 +*/
7693 +#define BITS_PER_WORD 32
7694 +
7695 +/*
7696 +Maximum number of bits in a word. If this is undefined, the default is
7697 +BITS_PER_WORD. Otherwise, it is the constant value that is the
7698 +largest value that BITS_PER_WORD can have at run-time.
7699 +*/
7700 +/* MAX_BITS_PER_WORD not defined*/
7701 +
7702 +/*
7703 +Number of storage units in a word; normally 4.
7704 +*/
7705 +#define UNITS_PER_WORD 4
7706 +
7707 +/*
7708 +Minimum number of units in a word. If this is undefined, the default is
7709 +UNITS_PER_WORD. Otherwise, it is the constant value that is the
7710 +smallest value that UNITS_PER_WORD can have at run-time.
7711 +*/
7712 +/* MIN_UNITS_PER_WORD not defined */
7713 +
7714 +/*
7715 +Width of a pointer, in bits. You must specify a value no wider than the
7716 +width of Pmode. If it is not equal to the width of Pmode,
7717 +you must define POINTERS_EXTEND_UNSIGNED.
7718 +*/
7719 +#define POINTER_SIZE 32
7720 +
7721 +/*
7722 +A C expression whose value is greater than zero if pointers that need to be
7723 +extended from being POINTER_SIZE bits wide to Pmode are to
7724 +be zero-extended and zero if they are to be sign-extended. If the value
7725 +is less then zero then there must be an "ptr_extend" instruction that
7726 +extends a pointer from POINTER_SIZE to Pmode.
7727 +
7728 +You need not define this macro if the POINTER_SIZE is equal
7729 +to the width of Pmode.
7730 +*/
7731 +/* #define POINTERS_EXTEND_UNSIGNED */
7732 +
7733 +/*
7734 +A Macro to update M and UNSIGNEDP when an object whose type
7735 +is TYPE and which has the specified mode and signedness is to be
7736 +stored in a register. This macro is only called when TYPE is a
7737 +scalar type.
7738 +
7739 +On most RISC machines, which only have operations that operate on a full
7740 +register, define this macro to set M to word_mode if
7741 +M is an integer mode narrower than BITS_PER_WORD. In most
7742 +cases, only integer modes should be widened because wider-precision
7743 +floating-point operations are usually more expensive than their narrower
7744 +counterparts.
7745 +
7746 +For most machines, the macro definition does not change UNSIGNEDP.
7747 +However, some machines, have instructions that preferentially handle
7748 +either signed or unsigned quantities of certain modes. For example, on
7749 +the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
7750 +sign-extend the result to 64 bits. On such machines, set
7751 +UNSIGNEDP according to which kind of extension is more efficient.
7752 +
7753 +Do not define this macro if it would never modify M.
7754 +*/
7755 +#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \
7756 + do \
7757 + { \
7758 + if (GET_MODE_CLASS (M) == MODE_INT \
7759 + && GET_MODE_SIZE (M) < 4) \
7760 + { \
7761 + (M) = SImode; \
7762 + } \
7763 + } \
7764 + while (0)
7765 +
7766 +/* Define if operations between registers always perform the operation
7767 + on the full register even if a narrower mode is specified. */
7768 +#define WORD_REGISTER_OPERATIONS
7769 +
7770 +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
7771 + will either zero-extend or sign-extend. The value of this macro should
7772 + be the code that says which one of the two operations is implicitly
7773 + done, UNKNOWN if not known. */
7774 +#define LOAD_EXTEND_OP(MODE) \
7775 + (((MODE) == QImode) ? ZERO_EXTEND \
7776 + : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)
7777 +
7778 +
7779 +/*
7780 +Define this macro if the promotion described by PROMOTE_MODE
7781 +should only be performed for outgoing function arguments or
7782 +function return values, as specified by PROMOTE_FUNCTION_ARGS
7783 +and PROMOTE_FUNCTION_RETURN, respectively.
7784 +*/
7785 +/* #define PROMOTE_FOR_CALL_ONLY */
7786 +
7787 +/*
7788 +Normal alignment required for function parameters on the stack, in
7789 +bits. All stack parameters receive at least this much alignment
7790 +regardless of data type. On most machines, this is the same as the
7791 +size of an integer.
7792 +*/
7793 +#define PARM_BOUNDARY 32
7794 +
7795 +/*
7796 +Define this macro to the minimum alignment enforced by hardware for the
7797 +stack pointer on this machine. The definition is a C expression for the
7798 +desired alignment (measured in bits). This value is used as a default
7799 +if PREFERRED_STACK_BOUNDARY is not defined. On most machines,
7800 +this should be the same as PARM_BOUNDARY.
7801 +*/
7802 +#define STACK_BOUNDARY 32
7803 +
7804 +/*
7805 +Define this macro if you wish to preserve a certain alignment for the
7806 +stack pointer, greater than what the hardware enforces. The definition
7807 +is a C expression for the desired alignment (measured in bits). This
7808 +macro must evaluate to a value equal to or larger than
7809 +STACK_BOUNDARY.
7810 +*/
7811 +#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
7812 +
7813 +/*
7814 +Alignment required for a function entry point, in bits.
7815 +*/
7816 +#define FUNCTION_BOUNDARY 16
7817 +
7818 +/*
7819 +Biggest alignment that any data type can require on this machine, in bits.
7820 +*/
7821 +#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
7822 +
7823 +/*
7824 +If defined, the smallest alignment, in bits, that can be given to an
7825 +object that can be referenced in one operation, without disturbing any
7826 +nearby object. Normally, this is BITS_PER_UNIT, but may be larger
7827 +on machines that don't have byte or half-word store operations.
7828 +*/
7829 +#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT
7830 +
7831 +
7832 +/*
7833 +An integer expression for the size in bits of the largest integer machine mode that
7834 +should actually be used. All integer machine modes of this size or smaller can be
7835 +used for structures and unions with the appropriate sizes. If this macro is undefined,
7836 +GET_MODE_BITSIZE (DImode) is assumed.*/
7837 +#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
7838 +
7839 +
7840 +/*
7841 +If defined, a C expression to compute the alignment given to a constant
7842 +that is being placed in memory. CONSTANT is the constant and
7843 +BASIC_ALIGN is the alignment that the object would ordinarily
7844 +have. The value of this macro is used instead of that alignment to
7845 +align the object.
7846 +
7847 +If this macro is not defined, then BASIC_ALIGN is used.
7848 +
7849 +The typical use of this macro is to increase alignment for string
7850 +constants to be word aligned so that strcpy calls that copy
7851 +constants can be done inline.
7852 +*/
7853 +#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \
7854 + ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN)
7855 +
7856 +/* Try to align string to a word. */
7857 +#define DATA_ALIGNMENT(TYPE, ALIGN) \
7858 + ({(TREE_CODE (TYPE) == ARRAY_TYPE \
7859 + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
7860 + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
7861 +
7862 +/* Try to align local store strings to a word. */
7863 +#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
7864 + ({(TREE_CODE (TYPE) == ARRAY_TYPE \
7865 + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
7866 + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
7867 +
7868 +/*
7869 +Define this macro to be the value 1 if instructions will fail to work
7870 +if given data not on the nominal alignment. If instructions will merely
7871 +go slower in that case, define this macro as 0.
7872 +*/
7873 +#define STRICT_ALIGNMENT 1
7874 +
7875 +/*
7876 +Define this if you wish to imitate the way many other C compilers handle
7877 +alignment of bit-fields and the structures that contain them.
7878 +
7879 +The behavior is that the type written for a bit-field (int,
7880 +short, or other integer type) imposes an alignment for the
7881 +entire structure, as if the structure really did contain an ordinary
7882 +field of that type. In addition, the bit-field is placed within the
7883 +structure so that it would fit within such a field, not crossing a
7884 +boundary for it.
7885 +
7886 +Thus, on most machines, a bit-field whose type is written as int
7887 +would not cross a four-byte boundary, and would force four-byte
7888 +alignment for the whole structure. (The alignment used may not be four
7889 +bytes; it is controlled by the other alignment parameters.)
7890 +
7891 +If the macro is defined, its definition should be a C expression;
7892 +a nonzero value for the expression enables this behavior.
7893 +
7894 +Note that if this macro is not defined, or its value is zero, some
7895 +bit-fields may cross more than one alignment boundary. The compiler can
7896 +support such references if there are insv, extv, and
7897 +extzv insns that can directly reference memory.
7898 +
7899 +The other known way of making bit-fields work is to define
7900 +STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT.
7901 +Then every structure can be accessed with fullwords.
7902 +
7903 +Unless the machine has bit-field instructions or you define
7904 +STRUCTURE_SIZE_BOUNDARY that way, you must define
7905 +PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.
7906 +
7907 +If your aim is to make GCC use the same conventions for laying out
7908 +bit-fields as are used by another compiler, here is how to investigate
7909 +what the other compiler does. Compile and run this program:
7910 +
7911 +struct foo1
7912 +{
7913 + char x;
7914 + char :0;
7915 + char y;
7916 +};
7917 +
7918 +struct foo2
7919 +{
7920 + char x;
7921 + int :0;
7922 + char y;
7923 +};
7924 +
7925 +main ()
7926 +{
7927 + printf ("Size of foo1 is %d\n",
7928 + sizeof (struct foo1));
7929 + printf ("Size of foo2 is %d\n",
7930 + sizeof (struct foo2));
7931 + exit (0);
7932 +}
7933 +
7934 +If this prints 2 and 5, then the compiler's behavior is what you would
7935 +get from PCC_BITFIELD_TYPE_MATTERS.
7936 +*/
7937 +#define PCC_BITFIELD_TYPE_MATTERS 1
7938 +
7939 +
7940 +/******************************************************************************
7941 + * Layout of Source Language Data Types
7942 + *****************************************************************************/
7943 +
7944 +/*
7945 +A C expression for the size in bits of the type int on the
7946 +target machine. If you don't define this, the default is one word.
7947 +*/
7948 +#define INT_TYPE_SIZE 32
7949 +
7950 +/*
7951 +A C expression for the size in bits of the type short on the
7952 +target machine. If you don't define this, the default is half a word. (If
7953 +this would be less than one storage unit, it is rounded up to one unit.)
7954 +*/
7955 +#define SHORT_TYPE_SIZE 16
7956 +
7957 +/*
7958 +A C expression for the size in bits of the type long on the
7959 +target machine. If you don't define this, the default is one word.
7960 +*/
7961 +#define LONG_TYPE_SIZE 32
7962 +
7963 +
7964 +/*
7965 +A C expression for the size in bits of the type long long on the
7966 +target machine. If you don't define this, the default is two
7967 +words. If you want to support GNU Ada on your machine, the value of this
7968 +macro must be at least 64.
7969 +*/
7970 +#define LONG_LONG_TYPE_SIZE 64
7971 +
7972 +/*
7973 +A C expression for the size in bits of the type char on the
7974 +target machine. If you don't define this, the default is
7975 +BITS_PER_UNIT.
7976 +*/
7977 +#define CHAR_TYPE_SIZE 8
7978 +
7979 +
7980 +/*
7981 +A C expression for the size in bits of the C++ type bool and
7982 +C99 type _Bool on the target machine. If you don't define
7983 +this, and you probably shouldn't, the default is CHAR_TYPE_SIZE.
7984 +*/
7985 +#define BOOL_TYPE_SIZE 8
7986 +
7987 +
7988 +/*
7989 +An expression whose value is 1 or 0, according to whether the type
7990 +char should be signed or unsigned by default. The user can
7991 +always override this default with the options -fsigned-char
7992 +and -funsigned-char.
7993 +*/
7994 +/* We are using unsigned char */
7995 +#define DEFAULT_SIGNED_CHAR 0
7996 +
7997 +
7998 +/*
7999 +A C expression for a string describing the name of the data type to use
8000 +for size values. The typedef name size_t is defined using the
8001 +contents of the string.
8002 +
8003 +The string can contain more than one keyword. If so, separate them with
8004 +spaces, and write first any length keyword, then unsigned if
8005 +appropriate, and finally int. The string must exactly match one
8006 +of the data type names defined in the function
8007 +init_decl_processing in the file c-decl.c. You may not
8008 +omit int or change the order - that would cause the compiler to
8009 +crash on startup.
8010 +
8011 +If you don't define this macro, the default is "long unsigned int".
8012 +*/
8013 +#define SIZE_TYPE "long unsigned int"
8014 +
8015 +/*
8016 +A C expression for a string describing the name of the data type to use
8017 +for the result of subtracting two pointers. The typedef name
8018 +ptrdiff_t is defined using the contents of the string. See
8019 +SIZE_TYPE above for more information.
8020 +
8021 +If you don't define this macro, the default is "long int".
8022 +*/
8023 +#define PTRDIFF_TYPE "long int"
8024 +
8025 +
8026 +/*
8027 +A C expression for the size in bits of the data type for wide
8028 +characters. This is used in cpp, which cannot make use of
8029 +WCHAR_TYPE.
8030 +*/
8031 +#define WCHAR_TYPE_SIZE 32
8032 +
8033 +
8034 +/*
8035 +A C expression for a string describing the name of the data type to
8036 +use for wide characters passed to printf and returned from
8037 +getwc. The typedef name wint_t is defined using the
8038 +contents of the string. See SIZE_TYPE above for more
8039 +information.
8040 +
8041 +If you don't define this macro, the default is "unsigned int".
8042 +*/
8043 +#define WINT_TYPE "unsigned int"
8044 +
8045 +/*
8046 +A C expression for a string describing the name of the data type that
8047 +can represent any value of any standard or extended signed integer type.
8048 +The typedef name intmax_t is defined using the contents of the
8049 +string. See SIZE_TYPE above for more information.
8050 +
8051 +If you don't define this macro, the default is the first of
8052 +"int", "long int", or "long long int" that has as
8053 +much precision as long long int.
8054 +*/
8055 +#define INTMAX_TYPE "long long int"
8056 +
8057 +/*
8058 +A C expression for a string describing the name of the data type that
8059 +can represent any value of any standard or extended unsigned integer
8060 +type. The typedef name uintmax_t is defined using the contents
8061 +of the string. See SIZE_TYPE above for more information.
8062 +
8063 +If you don't define this macro, the default is the first of
8064 +"unsigned int", "long unsigned int", or "long long unsigned int"
8065 +that has as much precision as long long unsigned int.
8066 +*/
8067 +#define UINTMAX_TYPE "long long unsigned int"
8068 +
8069 +
8070 +/******************************************************************************
8071 + * Register Usage
8072 + *****************************************************************************/
8073 +
8074 +/* Convert from gcc internal register number to register number
8075 + used in assembly code */
8076 +#define ASM_REGNUM(reg) (LAST_REGNUM - (reg))
8077 +#define ASM_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
8078 +
8079 +/* Convert between register number used in assembly to gcc
8080 + internal register number */
8081 +#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg))
8082 +#define INTERNAL_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
8083 +
8084 +/** Basic Characteristics of Registers **/
8085 +
8086 +/*
8087 +Number of hardware registers known to the compiler. They receive
8088 +numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first
8089 +pseudo register's number really is assigned the number
8090 +FIRST_PSEUDO_REGISTER.
8091 +*/
8092 +#define FIRST_PSEUDO_REGISTER (LAST_FP_REGNUM + 1)
8093 +
8094 +#define FIRST_REGNUM 0
8095 +#define LAST_REGNUM 15
8096 +#define NUM_FP_REGS 16
8097 +#define FIRST_FP_REGNUM 16
8098 +#define LAST_FP_REGNUM (16+NUM_FP_REGS-1)
8099 +
8100 +/*
8101 +An initializer that says which registers are used for fixed purposes
8102 +all throughout the compiled code and are therefore not available for
8103 +general allocation. These would include the stack pointer, the frame
8104 +pointer (except on machines where that can be used as a general
8105 +register when no frame pointer is needed), the program counter on
8106 +machines where that is considered one of the addressable registers,
8107 +and any other numbered register with a standard use.
8108 +
8109 +This information is expressed as a sequence of numbers, separated by
8110 +commas and surrounded by braces. The nth number is 1 if
8111 +register n is fixed, 0 otherwise.
8112 +
8113 +The table initialized from this macro, and the table initialized by
8114 +the following one, may be overridden at run time either automatically,
8115 +by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by
8116 +the user with the command options -ffixed-[reg],
8117 +-fcall-used-[reg] and -fcall-saved-[reg].
8118 +*/
8119 +
8120 +/* The internal gcc register numbers are reversed
8121 + compared to the real register numbers since
8122 + gcc expects data types stored over multiple
8123 + registers in the register file to be big endian
8124 + if the memory layout is big endian. But this
8125 + is not the case for avr32 so we fake a big
8126 + endian register file. */
8127 +
8128 +#define FIXED_REGISTERS { \
8129 + 1, /* Program Counter */ \
8130 + 0, /* Link Register */ \
8131 + 1, /* Stack Pointer */ \
8132 + 0, /* r12 */ \
8133 + 0, /* r11 */ \
8134 + 0, /* r10 */ \
8135 + 0, /* r9 */ \
8136 + 0, /* r8 */ \
8137 + 0, /* r7 */ \
8138 + 0, /* r6 */ \
8139 + 0, /* r5 */ \
8140 + 0, /* r4 */ \
8141 + 0, /* r3 */ \
8142 + 0, /* r2 */ \
8143 + 0, /* r1 */ \
8144 + 0, /* r0 */ \
8145 + 0, /* f15 */ \
8146 + 0, /* f14 */ \
8147 + 0, /* f13 */ \
8148 + 0, /* f12 */ \
8149 + 0, /* f11 */ \
8150 + 0, /* f10 */ \
8151 + 0, /* f9 */ \
8152 + 0, /* f8 */ \
8153 + 0, /* f7 */ \
8154 + 0, /* f6 */ \
8155 + 0, /* f5 */ \
8156 + 0, /* f4 */ \
8157 + 0, /* f3 */ \
8158 + 0, /* f2*/ \
8159 + 0, /* f1 */ \
8160 + 0 /* f0 */ \
8161 +}
8162 +
8163 +/*
8164 +Like FIXED_REGISTERS but has 1 for each register that is
8165 +clobbered (in general) by function calls as well as for fixed
8166 +registers. This macro therefore identifies the registers that are not
8167 +available for general allocation of values that must live across
8168 +function calls.
8169 +
8170 +If a register has 0 in CALL_USED_REGISTERS, the compiler
8171 +automatically saves it on function entry and restores it on function
8172 +exit, if the register is used within the function.
8173 +*/
8174 +#define CALL_USED_REGISTERS { \
8175 + 1, /* Program Counter */ \
8176 + 0, /* Link Register */ \
8177 + 1, /* Stack Pointer */ \
8178 + 1, /* r12 */ \
8179 + 1, /* r11 */ \
8180 + 1, /* r10 */ \
8181 + 1, /* r9 */ \
8182 + 1, /* r8 */ \
8183 + 0, /* r7 */ \
8184 + 0, /* r6 */ \
8185 + 0, /* r5 */ \
8186 + 0, /* r4 */ \
8187 + 0, /* r3 */ \
8188 + 0, /* r2 */ \
8189 + 0, /* r1 */ \
8190 + 0, /* r0 */ \
8191 + 1, /* f15 */ \
8192 + 1, /* f14 */ \
8193 + 1, /* f13 */ \
8194 + 1, /* f12 */ \
8195 + 1, /* f11 */ \
8196 + 1, /* f10 */ \
8197 + 1, /* f9 */ \
8198 + 1, /* f8 */ \
8199 + 0, /* f7 */ \
8200 + 0, /* f6 */ \
8201 + 0, /* f5 */ \
8202 + 0, /* f4 */ \
8203 + 0, /* f3 */ \
8204 + 0, /* f2*/ \
8205 + 0, /* f1*/ \
8206 + 0, /* f0 */ \
8207 +}
8208 +
8209 +/* Interrupt functions can only use registers that have already been
8210 + saved by the prologue, even if they would normally be
8211 + call-clobbered. */
8212 +#define HARD_REGNO_RENAME_OK(SRC, DST) \
8213 + (! IS_INTERRUPT (cfun->machine->func_type) || \
8214 + regs_ever_live[DST])
8215 +
8216 +
8217 +/*
8218 +Zero or more C statements that may conditionally modify five variables
8219 +fixed_regs, call_used_regs, global_regs,
8220 +reg_names, and reg_class_contents, to take into account
8221 +any dependence of these register sets on target flags. The first three
8222 +of these are of type char [] (interpreted as Boolean vectors).
8223 +global_regs is a const char *[], and
8224 +reg_class_contents is a HARD_REG_SET. Before the macro is
8225 +called, fixed_regs, call_used_regs,
8226 +reg_class_contents, and reg_names have been initialized
8227 +from FIXED_REGISTERS, CALL_USED_REGISTERS,
8228 +REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively.
8229 +global_regs has been cleared, and any -ffixed-[reg],
8230 +-fcall-used-[reg] and -fcall-saved-[reg]
8231 +command options have been applied.
8232 +
8233 +You need not define this macro if it has no work to do.
8234 +
8235 +If the usage of an entire class of registers depends on the target
8236 +flags, you may indicate this to GCC by using this macro to modify
8237 +fixed_regs and call_used_regs to 1 for each of the
8238 +registers in the classes which should not be used by GCC. Also define
8239 +the macro REG_CLASS_FROM_LETTER to return NO_REGS if it
8240 +is called with a letter for a class that shouldn't be used.
8241 +
8242 + (However, if this class is not included in GENERAL_REGS and all
8243 +of the insn patterns whose constraints permit this class are
8244 +controlled by target switches, then GCC will automatically avoid using
8245 +these registers when the target switches are opposed to them.)
8246 +*/
8247 +#define CONDITIONAL_REGISTER_USAGE \
8248 + do \
8249 + { \
8250 + int regno; \
8251 + \
8252 + if (TARGET_SOFT_FLOAT) \
8253 + { \
8254 + for (regno = FIRST_FP_REGNUM; \
8255 + regno <= LAST_FP_REGNUM; ++regno) \
8256 + fixed_regs[regno] = call_used_regs[regno] = 1; \
8257 + } \
8258 + if (flag_pic) \
8259 + { \
8260 + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
8261 + call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
8262 + } \
8263 + } \
8264 + while (0)
8265 +
8266 +
8267 +/*
8268 +If the program counter has a register number, define this as that
8269 +register number. Otherwise, do not define it.
8270 +*/
8271 +
8272 +#define LAST_AVR32_REGNUM 16
8273 +
8274 +
8275 +/** Order of Allocation of Registers **/
8276 +
8277 +/*
8278 +If defined, an initializer for a vector of integers, containing the
8279 +numbers of hard registers in the order in which GCC should prefer
8280 +to use them (from most preferred to least).
8281 +
8282 +If this macro is not defined, registers are used lowest numbered first
8283 +(all else being equal).
8284 +
8285 +One use of this macro is on machines where the highest numbered
8286 +registers must always be saved and the save-multiple-registers
8287 +instruction supports only sequences of consecutive registers. On such
8288 +machines, define REG_ALLOC_ORDER to be an initializer that lists
8289 +the highest numbered allocable register first.
8290 +*/
8291 +#define REG_ALLOC_ORDER \
8292 +{ \
8293 + INTERNAL_REGNUM(8), \
8294 + INTERNAL_REGNUM(9), \
8295 + INTERNAL_REGNUM(10), \
8296 + INTERNAL_REGNUM(11), \
8297 + INTERNAL_REGNUM(12), \
8298 + LR_REGNUM, \
8299 + INTERNAL_REGNUM(7), \
8300 + INTERNAL_REGNUM(6), \
8301 + INTERNAL_REGNUM(5), \
8302 + INTERNAL_REGNUM(4), \
8303 + INTERNAL_REGNUM(3), \
8304 + INTERNAL_REGNUM(2), \
8305 + INTERNAL_REGNUM(1), \
8306 + INTERNAL_REGNUM(0), \
8307 + INTERNAL_FP_REGNUM(15), \
8308 + INTERNAL_FP_REGNUM(14), \
8309 + INTERNAL_FP_REGNUM(13), \
8310 + INTERNAL_FP_REGNUM(12), \
8311 + INTERNAL_FP_REGNUM(11), \
8312 + INTERNAL_FP_REGNUM(10), \
8313 + INTERNAL_FP_REGNUM(9), \
8314 + INTERNAL_FP_REGNUM(8), \
8315 + INTERNAL_FP_REGNUM(7), \
8316 + INTERNAL_FP_REGNUM(6), \
8317 + INTERNAL_FP_REGNUM(5), \
8318 + INTERNAL_FP_REGNUM(4), \
8319 + INTERNAL_FP_REGNUM(3), \
8320 + INTERNAL_FP_REGNUM(2), \
8321 + INTERNAL_FP_REGNUM(1), \
8322 + INTERNAL_FP_REGNUM(0), \
8323 + SP_REGNUM, \
8324 + PC_REGNUM \
8325 +}
8326 +
8327 +
8328 +/** How Values Fit in Registers **/
8329 +
8330 +/*
8331 +A C expression for the number of consecutive hard registers, starting
8332 +at register number REGNO, required to hold a value of mode
8333 +MODE.
8334 +
8335 +On a machine where all registers are exactly one word, a suitable
8336 +definition of this macro is
8337 +
8338 +#define HARD_REGNO_NREGS(REGNO, MODE) \
8339 + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
8340 + / UNITS_PER_WORD)
8341 +*/
8342 +#define HARD_REGNO_NREGS(REGNO, MODE) \
8343 + ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD))
8344 +
8345 +/*
8346 +A C expression that is nonzero if it is permissible to store a value
8347 +of mode MODE in hard register number REGNO (or in several
8348 +registers starting with that one). For a machine where all registers
8349 +are equivalent, a suitable definition is
8350 +
8351 + #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
8352 +
8353 +You need not include code to check for the numbers of fixed registers,
8354 +because the allocation mechanism considers them to be always occupied.
8355 +
8356 +On some machines, double-precision values must be kept in even/odd
8357 +register pairs. You can implement that by defining this macro to reject
8358 +odd register numbers for such modes.
8359 +
8360 +The minimum requirement for a mode to be OK in a register is that the
8361 +mov[mode] instruction pattern support moves between the
8362 +register and other hard register in the same class and that moving a
8363 +value into the register and back out not alter it.
8364 +
8365 +Since the same instruction used to move word_mode will work for
8366 +all narrower integer modes, it is not necessary on any machine for
8367 +HARD_REGNO_MODE_OK to distinguish between these modes, provided
8368 +you define patterns movhi, etc., to take advantage of this. This
8369 +is useful because of the interaction between HARD_REGNO_MODE_OK
8370 +and MODES_TIEABLE_P; it is very desirable for all integer modes
8371 +to be tieable.
8372 +
8373 +Many machines have special registers for floating point arithmetic.
8374 +Often people assume that floating point machine modes are allowed only
8375 +in floating point registers. This is not true. Any registers that
8376 +can hold integers can safely hold a floating point machine
8377 +mode, whether or not floating arithmetic can be done on it in those
8378 +registers. Integer move instructions can be used to move the values.
8379 +
8380 +On some machines, though, the converse is true: fixed-point machine
8381 +modes may not go in floating registers. This is true if the floating
8382 +registers normalize any value stored in them, because storing a
8383 +non-floating value there would garble it. In this case,
8384 +HARD_REGNO_MODE_OK should reject fixed-point machine modes in
8385 +floating registers. But if the floating registers do not automatically
8386 +normalize, if you can store any bit pattern in one and retrieve it
8387 +unchanged without a trap, then any machine mode may go in a floating
8388 +register, so you can define this macro to say so.
8389 +
8390 +The primary significance of special floating registers is rather that
8391 +they are the registers acceptable in floating point arithmetic
8392 +instructions. However, this is of no concern to
8393 +HARD_REGNO_MODE_OK. You handle it by writing the proper
8394 +constraints for those instructions.
8395 +
8396 +On some machines, the floating registers are especially slow to access,
8397 +so that it is better to store a value in a stack frame than in such a
8398 +register if floating point arithmetic is not being done. As long as the
8399 +floating registers are not in class GENERAL_REGS, they will not
8400 +be used unless some pattern's constraint asks for one.
8401 +*/
8402 +#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE)
8403 +
8404 +/*
8405 +A C expression that is nonzero if a value of mode
8406 +MODE1 is accessible in mode MODE2 without copying.
8407 +
8408 +If HARD_REGNO_MODE_OK(R, MODE1) and
8409 +HARD_REGNO_MODE_OK(R, MODE2) are always the same for
8410 +any R, then MODES_TIEABLE_P(MODE1, MODE2)
8411 +should be nonzero. If they differ for any R, you should define
8412 +this macro to return zero unless some other mechanism ensures the
8413 +accessibility of the value in a narrower mode.
8414 +
8415 +You should define this macro to return nonzero in as many cases as
8416 +possible since doing so will allow GCC to perform better register
8417 +allocation.
8418 +*/
8419 +#define MODES_TIEABLE_P(MODE1, MODE2) \
8420 + (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
8421 +
8422 +
8423 +
8424 +/******************************************************************************
8425 + * Register Classes
8426 + *****************************************************************************/
8427 +
8428 +/*
8429 +An enumeral type that must be defined with all the register class names
8430 +as enumeral values. NO_REGS must be first. ALL_REGS
8431 +must be the last register class, followed by one more enumeral value,
8432 +LIM_REG_CLASSES, which is not a register class but rather
8433 +tells how many classes there are.
8434 +
8435 +Each register class has a number, which is the value of casting
8436 +the class name to type int. The number serves as an index
8437 +in many of the tables described below.
8438 +*/
8439 +enum reg_class
8440 +{
8441 + NO_REGS,
8442 + GENERAL_REGS,
8443 + FP_REGS,
8444 + ALL_REGS,
8445 + LIM_REG_CLASSES
8446 +};
8447 +
8448 +/*
8449 +The number of distinct register classes, defined as follows:
8450 + #define N_REG_CLASSES (int) LIM_REG_CLASSES
8451 +*/
8452 +#define N_REG_CLASSES (int)LIM_REG_CLASSES
8453 +
8454 +/*
8455 +An initializer containing the names of the register classes as C string
8456 +constants. These names are used in writing some of the debugging dumps.
8457 +*/
8458 +#define REG_CLASS_NAMES \
8459 +{ \
8460 + "NO_REGS", \
8461 + "GENERAL_REGS", \
8462 + "FLOATING_POINT_REGS", \
8463 + "ALL_REGS" \
8464 +}
8465 +
8466 +/*
8467 +An initializer containing the contents of the register classes, as integers
8468 +which are bit masks. The nth integer specifies the contents of class
8469 +n. The way the integer mask is interpreted is that
8470 +register r is in the class if mask & (1 << r) is 1.
8471 +
8472 +When the machine has more than 32 registers, an integer does not suffice.
8473 +Then the integers are replaced by sub-initializers, braced groupings containing
8474 +several integers. Each sub-initializer must be suitable as an initializer
8475 +for the type HARD_REG_SET which is defined in hard-reg-set.h.
8476 +In this situation, the first integer in each sub-initializer corresponds to
8477 +registers 0 through 31, the second integer to registers 32 through 63, and
8478 +so on.
8479 +*/
8480 +#define REG_CLASS_CONTENTS { \
8481 + {0x00000000}, /* NO_REGS */ \
8482 + {0x0000FFFF}, /* GENERAL_REGS */ \
8483 + {0xFFFF0000}, /* FP_REGS */ \
8484 + {0x7FFFFFFF}, /* ALL_REGS */ \
8485 +}
8486 +
8487 +
8488 +/*
8489 +A C expression whose value is a register class containing hard register
8490 +REGNO. In general there is more than one such class; choose a class
8491 +which is minimal, meaning that no smaller class also contains the
8492 +register.
8493 +*/
8494 +#define REGNO_REG_CLASS(REGNO) ((REGNO < 16) ? GENERAL_REGS : FP_REGS)
8495 +
8496 +/*
8497 +A macro whose definition is the name of the class to which a valid
8498 +base register must belong. A base register is one used in an address
8499 +which is the register value plus a displacement.
8500 +*/
8501 +#define BASE_REG_CLASS GENERAL_REGS
8502 +
8503 +/*
8504 +This is a variation of the BASE_REG_CLASS macro which allows
8505 +the selection of a base register in a mode depenedent manner. If
8506 +mode is VOIDmode then it should return the same value as
8507 +BASE_REG_CLASS.
8508 +*/
8509 +#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS
8510 +
8511 +/*
8512 +A macro whose definition is the name of the class to which a valid
8513 +index register must belong. An index register is one used in an
8514 +address where its value is either multiplied by a scale factor or
8515 +added to another register (as well as added to a displacement).
8516 +*/
8517 +#define INDEX_REG_CLASS BASE_REG_CLASS
8518 +
8519 +/*
8520 +A C expression which defines the machine-dependent operand constraint
8521 +letters for register classes. If CHAR is such a letter, the
8522 +value should be the register class corresponding to it. Otherwise,
8523 +the value should be NO_REGS. The register letter r,
8524 +corresponding to class GENERAL_REGS, will not be passed
8525 +to this macro; you do not need to handle it.
8526 +*/
8527 +#define REG_CLASS_FROM_LETTER(CHAR) ((CHAR) == 'f' ? FP_REGS : NO_REGS)
8528 +
8529 +
8530 +/* These assume that REGNO is a hard or pseudo reg number.
8531 + They give nonzero only if REGNO is a hard reg of the suitable class
8532 + or a pseudo reg currently allocated to a suitable hard reg.
8533 + Since they use reg_renumber, they are safe only once reg_renumber
8534 + has been allocated, which happens in local-alloc.c. */
8535 +#define TEST_REGNO(R, TEST, VALUE) \
8536 + ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
8537 +
8538 +/*
8539 +A C expression which is nonzero if register number num is suitable for use as a base
8540 +register in operand addresses. It may be either a suitable hard register or a pseudo
8541 +register that has been allocated such a hard register.
8542 +*/
8543 +#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
8544 +
8545 +/*
8546 +A C expression which is nonzero if register number NUM is
8547 +suitable for use as an index register in operand addresses. It may be
8548 +either a suitable hard register or a pseudo register that has been
8549 +allocated such a hard register.
8550 +
8551 +The difference between an index register and a base register is that
8552 +the index register may be scaled. If an address involves the sum of
8553 +two registers, neither one of them scaled, then either one may be
8554 +labeled the ``base'' and the other the ``index''; but whichever
8555 +labeling is used must fit the machine's constraints of which registers
8556 +may serve in each capacity. The compiler will try both labelings,
8557 +looking for one that is valid, and will reload one or both registers
8558 +only if neither labeling works.
8559 +*/
8560 +#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
8561 +
8562 +/*
8563 +A C expression that places additional restrictions on the register class
8564 +to use when it is necessary to copy value X into a register in class
8565 +CLASS. The value is a register class; perhaps CLASS, or perhaps
8566 +another, smaller class. On many machines, the following definition is
8567 +safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
8568 +
8569 +Sometimes returning a more restrictive class makes better code. For
8570 +example, on the 68000, when X is an integer constant that is in range
8571 +for a 'moveq' instruction, the value of this macro is always
8572 +DATA_REGS as long as CLASS includes the data registers.
8573 +Requiring a data register guarantees that a 'moveq' will be used.
8574 +
8575 +If X is a const_double, by returning NO_REGS
8576 +you can force X into a memory constant. This is useful on
8577 +certain machines where immediate floating values cannot be loaded into
8578 +certain kinds of registers.
8579 +*/
8580 +#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
8581 +
8582 +
8583 +
8584 +/*
8585 +A C expression for the maximum number of consecutive registers
8586 +of class CLASS needed to hold a value of mode MODE.
8587 +
8588 +This is closely related to the macro HARD_REGNO_NREGS. In fact,
8589 +the value of the macro CLASS_MAX_NREGS(CLASS, MODE)
8590 +should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE)
8591 +for all REGNO values in the class CLASS.
8592 +
8593 +This macro helps control the handling of multiple-word values
8594 +in the reload pass.
8595 +*/
8596 +#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \
8597 + (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
8598 +
8599 +
8600 +/*
8601 + Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P
8602 + in order to support constraints with more than one letter.
8603 + Only two letters are then used for constant constraints,
8604 + the letter 'K' and the letter 'I'. The constraint starting with
8605 + these letters must consist of four characters. The character following
8606 + 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify
8607 + if the constant is zero or sign extended. The last two characters specify
8608 + the length in bits of the constant. The base constraint letter 'I' means
8609 + that this is an negated constant, meaning that actually -VAL should be
8610 + checked to lie withing the valid range instead of VAL which is used when
8611 + 'K' is the base constraint letter.
8612 +
8613 +*/
8614 +
8615 +#define CONSTRAINT_LEN(C, STR) \
8616 + ( ((C) == 'K' || (C) == 'I') ? 4 : \
8617 + ((C) == 'R') ? 5 : \
8618 + ((C) == 'N' || (C) == 'O' || \
8619 + (C) == 'P' || (C) == 'L' || (C) == 'J') ? -1 : \
8620 + DEFAULT_CONSTRAINT_LEN((C), (STR)) )
8621 +
8622 +#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
8623 + avr32_const_ok_for_constraint_p(VALUE, C, STR)
8624 +
8625 +/*
8626 +A C expression that defines the machine-dependent operand constraint
8627 +letters that specify particular ranges of const_double values ('G' or 'H').
8628 +
8629 +If C is one of those letters, the expression should check that
8630 +VALUE, an RTX of code const_double, is in the appropriate
8631 +range and return 1 if so, 0 otherwise. If C is not one of those
8632 +letters, the value should be 0 regardless of VALUE.
8633 +
8634 +const_double is used for all floating-point constants and for
8635 +DImode fixed-point constants. A given letter can accept either
8636 +or both kinds of values. It can use GET_MODE to distinguish
8637 +between these kinds.
8638 +*/
8639 +#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
8640 + ((C) == 'G' ? avr32_const_double_immediate(OP) : 0)
8641 +
8642 +/*
8643 +A C expression that defines the optional machine-dependent constraint
8644 +letters that can be used to segregate specific types of operands, usually
8645 +memory references, for the target machine. Any letter that is not
8646 +elsewhere defined and not matched by REG_CLASS_FROM_LETTER
8647 +may be used. Normally this macro will not be defined.
8648 +
8649 +If it is required for a particular target machine, it should return 1
8650 +if VALUE corresponds to the operand type represented by the
8651 +constraint letter C. If C is not defined as an extra
8652 +constraint, the value returned should be 0 regardless of VALUE.
8653 +
8654 +For example, on the ROMP, load instructions cannot have their output
8655 +in r0 if the memory reference contains a symbolic address. Constraint
8656 +letter 'Q' is defined as representing a memory address that does
8657 +not contain a symbolic address. An alternative is specified with
8658 +a 'Q' constraint on the input and 'r' on the output. The next
8659 +alternative specifies 'm' on the input and a register class that
8660 +does not include r0 on the output.
8661 +*/
8662 +#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
8663 + ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \
8664 + (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \
8665 + (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \
8666 + && avr32_const_ok_for_constraint_p( \
8667 + INTVAL(XEXP(XEXP(OP, 0), 1)), \
8668 + (STR)[1], &(STR)[1]))) : \
8669 + (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \
8670 + (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \
8671 + (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \
8672 + (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \
8673 + 0)
8674 +
8675 +
8676 +#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \
8677 + ((C) == 'S') || \
8678 + ((C) == 'Z') )
8679 +
8680 +
8681 +/* Returns nonzero if op is a function SYMBOL_REF which
8682 + can be called using an rcall instruction */
8683 +#define SYMBOL_REF_RCALL_FUNCTION_P(op) \
8684 + ( GET_CODE(op) == SYMBOL_REF \
8685 + && SYMBOL_REF_FUNCTION_P(op) \
8686 + && SYMBOL_REF_LOCAL_P(op) \
8687 + && !SYMBOL_REF_EXTERNAL_P(op) \
8688 + && !TARGET_HAS_ASM_ADDR_PSEUDOS )
8689 +
8690 +/******************************************************************************
8691 + * Stack Layout and Calling Conventions
8692 + *****************************************************************************/
8693 +
8694 +/** Basic Stack Layout **/
8695 +
8696 +/*
8697 +Define this macro if pushing a word onto the stack moves the stack
8698 +pointer to a smaller address.
8699 +
8700 +When we say, ``define this macro if ...,'' it means that the
8701 +compiler checks this macro only with #ifdef so the precise
8702 +definition used does not matter.
8703 +*/
8704 +/* pushm decrece SP: *(--SP) <-- Rx */
8705 +#define STACK_GROWS_DOWNWARD
8706 +
8707 +/*
8708 +This macro defines the operation used when something is pushed
8709 +on the stack. In RTL, a push operation will be
8710 +(set (mem (STACK_PUSH_CODE (reg sp))) ...)
8711 +
8712 +The choices are PRE_DEC, POST_DEC, PRE_INC,
8713 +and POST_INC. Which of these is correct depends on
8714 +the stack direction and on whether the stack pointer points
8715 +to the last item on the stack or whether it points to the
8716 +space for the next item on the stack.
8717 +
8718 +The default is PRE_DEC when STACK_GROWS_DOWNWARD is
8719 +defined, which is almost always right, and PRE_INC otherwise,
8720 +which is often wrong.
8721 +*/
8722 +/* pushm: *(--SP) <-- Rx */
8723 +#define STACK_PUSH_CODE PRE_DEC
8724 +
8725 +/* Define this to nonzero if the nominal address of the stack frame
8726 + is at the high-address end of the local variables;
8727 + that is, each additional local variable allocated
8728 + goes at a more negative offset in the frame. */
8729 +#define FRAME_GROWS_DOWNWARD 1
8730 +
8731 +
8732 +/*
8733 +Offset from the frame pointer to the first local variable slot to be allocated.
8734 +
8735 +If FRAME_GROWS_DOWNWARD, find the next slot's offset by
8736 +subtracting the first slot's length from STARTING_FRAME_OFFSET.
8737 +Otherwise, it is found by adding the length of the first slot to the
8738 +value STARTING_FRAME_OFFSET.
8739 + (i'm not sure if the above is still correct.. had to change it to get
8740 + rid of an overfull. --mew 2feb93 )
8741 +*/
8742 +#define STARTING_FRAME_OFFSET 0
8743 +
8744 +/*
8745 +Offset from the stack pointer register to the first location at which
8746 +outgoing arguments are placed. If not specified, the default value of
8747 +zero is used. This is the proper value for most machines.
8748 +
8749 +If ARGS_GROW_DOWNWARD, this is the offset to the location above
8750 +the first location at which outgoing arguments are placed.
8751 +*/
8752 +#define STACK_POINTER_OFFSET 0
8753 +
8754 +/*
8755 +Offset from the argument pointer register to the first argument's
8756 +address. On some machines it may depend on the data type of the
8757 +function.
8758 +
8759 +If ARGS_GROW_DOWNWARD, this is the offset to the location above
8760 +the first argument's address.
8761 +*/
8762 +#define FIRST_PARM_OFFSET(FUNDECL) 0
8763 +
8764 +
8765 +/*
8766 +A C expression whose value is RTL representing the address in a stack
8767 +frame where the pointer to the caller's frame is stored. Assume that
8768 +FRAMEADDR is an RTL expression for the address of the stack frame
8769 +itself.
8770 +
8771 +If you don't define this macro, the default is to return the value
8772 +of FRAMEADDR - that is, the stack frame address is also the
8773 +address of the stack word that points to the previous frame.
8774 +*/
8775 +#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4)
8776 +
8777 +
8778 +/*
8779 +A C expression whose value is RTL representing the value of the return
8780 +address for the frame COUNT steps up from the current frame, after
8781 +the prologue. FRAMEADDR is the frame pointer of the COUNT
8782 +frame, or the frame pointer of the COUNT - 1 frame if
8783 +RETURN_ADDR_IN_PREVIOUS_FRAME is defined.
8784 +
8785 +The value of the expression must always be the correct address when
8786 +COUNT is zero, but may be NULL_RTX if there is not way to
8787 +determine the return address of other frames.
8788 +*/
8789 +#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR)
8790 +
8791 +
8792 +/*
8793 +A C expression whose value is RTL representing the location of the
8794 +incoming return address at the beginning of any function, before the
8795 +prologue. This RTL is either a REG, indicating that the return
8796 +value is saved in 'REG', or a MEM representing a location in
8797 +the stack.
8798 +
8799 +You only need to define this macro if you want to support call frame
8800 +debugging information like that provided by DWARF 2.
8801 +
8802 +If this RTL is a REG, you should also define
8803 +DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO).
8804 +*/
8805 +#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
8806 +
8807 +
8808 +
8809 +/*
8810 +A C expression whose value is an integer giving the offset, in bytes,
8811 +from the value of the stack pointer register to the top of the stack
8812 +frame at the beginning of any function, before the prologue. The top of
8813 +the frame is defined to be the value of the stack pointer in the
8814 +previous frame, just before the call instruction.
8815 +
8816 +You only need to define this macro if you want to support call frame
8817 +debugging information like that provided by DWARF 2.
8818 +*/
8819 +#define INCOMING_FRAME_SP_OFFSET 0
8820 +
8821 +
8822 +/** Exception Handling Support **/
8823 +
8824 +#define DWARF2_UNWIND_INFO 1
8825 +
8826 +/*
8827 +A C expression whose value is the Nth register number used for
8828 +data by exception handlers, or INVALID_REGNUM if fewer than
8829 +N registers are usable.
8830 +
8831 +The exception handling library routines communicate with the exception
8832 +handlers via a set of agreed upon registers. Ideally these registers
8833 +should be call-clobbered; it is possible to use call-saved registers,
8834 +but may negatively impact code size. The target must support at least
8835 +2 data registers, but should define 4 if there are enough free registers.
8836 +
8837 +You must define this macro if you want to support call frame exception
8838 +handling like that provided by DWARF 2.
8839 +*/
8840 +/*
8841 + Use r8-r11
8842 +*/
8843 +#define EH_RETURN_DATA_REGNO(N) \
8844 + ((N) < 4 ? INTERNAL_REGNUM((N) + 8U) : INVALID_REGNUM)
8845 +
8846 +/*
8847 +A C expression whose value is RTL representing a location in which
8848 +to store a stack adjustment to be applied before function return.
8849 +This is used to unwind the stack to an exception handler's call frame.
8850 +It will be assigned zero on code paths that return normally.
8851 +
8852 +Typically this is a call-clobbered hard register that is otherwise
8853 +untouched by the epilogue, but could also be a stack slot.
8854 +
8855 +You must define this macro if you want to support call frame exception
8856 +handling like that provided by DWARF 2.
8857 +*/
8858 +/*
8859 + I don't think functions that may throw exceptions can ever be leaf
8860 + functions, so we may safely use LR for this.
8861 +*/
8862 +#define EH_RETURN_STACKADJ_REGNO LR_REGNUM
8863 +#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO)
8864 +
8865 +/*
8866 +A C expression whose value is RTL representing a location in which
8867 +to store the address of an exception handler to which we should
8868 +return. It will not be assigned on code paths that return normally.
8869 +
8870 +Typically this is the location in the call frame at which the normal
8871 +return address is stored. For targets that return by popping an
8872 +address off the stack, this might be a memory address just below
8873 +the target call frame rather than inside the current call
8874 +frame. EH_RETURN_STACKADJ_RTX will have already been assigned,
8875 +so it may be used to calculate the location of the target call frame.
8876 +
8877 +Some targets have more complex requirements than storing to an
8878 +address calculable during initial code generation. In that case
8879 +the eh_return instruction pattern should be used instead.
8880 +
8881 +If you want to support call frame exception handling, you must
8882 +define either this macro or the eh_return instruction pattern.
8883 +*/
8884 +/*
8885 + We define the eh_return instruction pattern, so this isn't needed.
8886 +*/
8887 +/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */
8888 +
8889 +/*
8890 + This macro chooses the encoding of pointers embedded in the
8891 + exception handling sections. If at all possible, this should be
8892 + defined such that the exception handling section will not require
8893 + dynamic relocations, and so may be read-only.
8894 +
8895 + code is 0 for data, 1 for code labels, 2 for function
8896 + pointers. global is true if the symbol may be affected by dynamic
8897 + relocations. The macro should return a combination of the DW_EH_PE_*
8898 + defines as found in dwarf2.h.
8899 +
8900 + If this macro is not defined, pointers will not be encoded but
8901 + represented directly.
8902 +*/
8903 +#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
8904 + ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
8905 + | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
8906 + | DW_EH_PE_sdata4)
8907 +
8908 +/* ToDo: The rest of this subsection */
8909 +
8910 +/** Specifying How Stack Checking is Done **/
8911 +/* ToDo: All in this subsection */
8912 +
8913 +/** Registers That Address the Stack Frame **/
8914 +
8915 +/*
8916 +The register number of the stack pointer register, which must also be a
8917 +fixed register according to FIXED_REGISTERS. On most machines,
8918 +the hardware determines which register this is.
8919 +*/
8920 +/* Using r13 as stack pointer. */
8921 +#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13)
8922 +
8923 +/*
8924 +The register number of the frame pointer register, which is used to
8925 +access automatic variables in the stack frame. On some machines, the
8926 +hardware determines which register this is. On other machines, you can
8927 +choose any register you wish for this purpose.
8928 +*/
8929 +/* Use r7 */
8930 +#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7)
8931 +
8932 +
8933 +
8934 +/*
8935 +The register number of the arg pointer register, which is used to access
8936 +the function's argument list. On some machines, this is the same as the
8937 +frame pointer register. On some machines, the hardware determines which
8938 +register this is. On other machines, you can choose any register you
8939 +wish for this purpose. If this is not the same register as the frame
8940 +pointer register, then you must mark it as a fixed register according to
8941 +FIXED_REGISTERS, or arrange to be able to eliminate it (see Section
8942 +10.10.5 [Elimination], page 224).
8943 +*/
8944 +/* Using r5 */
8945 +#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4)
8946 +
8947 +
8948 +/*
8949 +Register numbers used for passing a function's static chain pointer. If
8950 +register windows are used, the register number as seen by the called
8951 +function is STATIC_CHAIN_INCOMING_REGNUM, while the register
8952 +number as seen by the calling function is STATIC_CHAIN_REGNUM. If
8953 +these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need
8954 +not be defined.
8955 +
8956 +The static chain register need not be a fixed register.
8957 +
8958 +If the static chain is passed in memory, these macros should not be
8959 +defined; instead, the next two macros should be defined.
8960 +*/
8961 +/* Using r0 */
8962 +#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0)
8963 +
8964 +
8965 +/** Eliminating Frame Pointer and Arg Pointer **/
8966 +
8967 +/*
8968 +A C expression which is nonzero if a function must have and use a frame
8969 +pointer. This expression is evaluated in the reload pass. If its value is
8970 +nonzero the function will have a frame pointer.
8971 +
8972 +The expression can in principle examine the current function and decide
8973 +according to the facts, but on most machines the constant 0 or the
8974 +constant 1 suffices. Use 0 when the machine allows code to be generated
8975 +with no frame pointer, and doing so saves some time or space. Use 1
8976 +when there is no possible advantage to avoiding a frame pointer.
8977 +
8978 +In certain cases, the compiler does not know how to produce valid code
8979 +without a frame pointer. The compiler recognizes those cases and
8980 +automatically gives the function a frame pointer regardless of what
8981 +FRAME_POINTER_REQUIRED says. You don't need to worry about
8982 +them.
8983 +
8984 +In a function that does not require a frame pointer, the frame pointer
8985 +register can be allocated for ordinary usage, unless you mark it as a
8986 +fixed register. See FIXED_REGISTERS for more information.
8987 +*/
8988 +/* We need the frame pointer when compiling for profiling */
8989 +#define FRAME_POINTER_REQUIRED (current_function_profile)
8990 +
8991 +/*
8992 +A C statement to store in the variable DEPTH_VAR the difference
8993 +between the frame pointer and the stack pointer values immediately after
8994 +the function prologue. The value would be computed from information
8995 +such as the result of get_frame_size () and the tables of
8996 +registers regs_ever_live and call_used_regs.
8997 +
8998 +If ELIMINABLE_REGS is defined, this macro will be not be used and
8999 +need not be defined. Otherwise, it must be defined even if
9000 +FRAME_POINTER_REQUIRED is defined to always be true; in that
9001 +case, you may set DEPTH_VAR to anything.
9002 +*/
9003 +#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size())
9004 +
9005 +/*
9006 +If defined, this macro specifies a table of register pairs used to
9007 +eliminate unneeded registers that point into the stack frame. If it is not
9008 +defined, the only elimination attempted by the compiler is to replace
9009 +references to the frame pointer with references to the stack pointer.
9010 +
9011 +The definition of this macro is a list of structure initializations, each
9012 +of which specifies an original and replacement register.
9013 +
9014 +On some machines, the position of the argument pointer is not known until
9015 +the compilation is completed. In such a case, a separate hard register
9016 +must be used for the argument pointer. This register can be eliminated by
9017 +replacing it with either the frame pointer or the argument pointer,
9018 +depending on whether or not the frame pointer has been eliminated.
9019 +
9020 +In this case, you might specify:
9021 + #define ELIMINABLE_REGS \
9022 + {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
9023 + {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
9024 + {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
9025 +
9026 +Note that the elimination of the argument pointer with the stack pointer is
9027 +specified first since that is the preferred elimination.
9028 +*/
9029 +#define ELIMINABLE_REGS \
9030 +{ \
9031 + { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
9032 + { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
9033 + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \
9034 +}
9035 +
9036 +/*
9037 +A C expression that returns nonzero if the compiler is allowed to try
9038 +to replace register number FROM with register number
9039 +TO. This macro need only be defined if ELIMINABLE_REGS
9040 +is defined, and will usually be the constant 1, since most of the cases
9041 +preventing register elimination are things that the compiler already
9042 +knows about.
9043 +*/
9044 +#define CAN_ELIMINATE(FROM, TO) 1
9045 +
9046 +/*
9047 +This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It
9048 +specifies the initial difference between the specified pair of
9049 +registers. This macro must be defined if ELIMINABLE_REGS is
9050 +defined.
9051 +*/
9052 +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
9053 + ((OFFSET) = avr32_initial_elimination_offset(FROM, TO))
9054 +
9055 +/** Passing Function Arguments on the Stack **/
9056 +
9057 +
9058 +/*
9059 +A C expression. If nonzero, push insns will be used to pass
9060 +outgoing arguments.
9061 +If the target machine does not have a push instruction, set it to zero.
9062 +That directs GCC to use an alternate strategy: to
9063 +allocate the entire argument block and then store the arguments into
9064 +it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too.
9065 +*/
9066 +#define PUSH_ARGS 1
9067 +
9068 +
9069 +/*
9070 +A C expression that is the number of bytes actually pushed onto the
9071 +stack when an instruction attempts to push NPUSHED bytes.
9072 +
9073 +On some machines, the definition
9074 +
9075 + #define PUSH_ROUNDING(BYTES) (BYTES)
9076 +
9077 +will suffice. But on other machines, instructions that appear
9078 +to push one byte actually push two bytes in an attempt to maintain
9079 +alignment. Then the definition should be
9080 +
9081 + #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
9082 +*/
9083 +/* Push 4 bytes at the time. */
9084 +#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
9085 +
9086 +/*
9087 +A C expression. If nonzero, the maximum amount of space required for
9088 +outgoing arguments will be computed and placed into the variable
9089 +current_function_outgoing_args_size. No space will be pushed
9090 +onto the stack for each call; instead, the function prologue should
9091 +increase the stack frame size by this amount.
9092 +
9093 +Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.
9094 +*/
9095 +#define ACCUMULATE_OUTGOING_ARGS 0
9096 +
9097 +
9098 +
9099 +
9100 +/*
9101 +A C expression that should indicate the number of bytes of its own
9102 +arguments that a function pops on returning, or 0 if the
9103 +function pops no arguments and the caller must therefore pop them all
9104 +after the function returns.
9105 +
9106 +FUNDECL is a C variable whose value is a tree node that describes
9107 +the function in question. Normally it is a node of type
9108 +FUNCTION_DECL that describes the declaration of the function.
9109 +From this you can obtain the DECL_ATTRIBUTES of the function.
9110 +
9111 +FUNTYPE is a C variable whose value is a tree node that
9112 +describes the function in question. Normally it is a node of type
9113 +FUNCTION_TYPE that describes the data type of the function.
9114 +From this it is possible to obtain the data types of the value and
9115 +arguments (if known).
9116 +
9117 +When a call to a library function is being considered, FUNDECL
9118 +will contain an identifier node for the library function. Thus, if
9119 +you need to distinguish among various library functions, you can do so
9120 +by their names. Note that ``library function'' in this context means
9121 +a function used to perform arithmetic, whose name is known specially
9122 +in the compiler and was not mentioned in the C code being compiled.
9123 +
9124 +STACK_SIZE is the number of bytes of arguments passed on the
9125 +stack. If a variable number of bytes is passed, it is zero, and
9126 +argument popping will always be the responsibility of the calling function.
9127 +
9128 +On the VAX, all functions always pop their arguments, so the definition
9129 +of this macro is STACK_SIZE. On the 68000, using the standard
9130 +calling convention, no functions pop their arguments, so the value of
9131 +the macro is always 0 in this case. But an alternative calling
9132 +convention is available in which functions that take a fixed number of
9133 +arguments pop them but other functions (such as printf) pop
9134 +nothing (the caller pops all). When this convention is in use,
9135 +FUNTYPE is examined to determine whether a function takes a fixed
9136 +number of arguments.
9137 +*/
9138 +#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
9139 +
9140 +
9141 +/*Return true if this function can we use a single return instruction*/
9142 +#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND)
9143 +
9144 +/*
9145 +A C expression that should indicate the number of bytes a call sequence
9146 +pops off the stack. It is added to the value of RETURN_POPS_ARGS
9147 +when compiling a function call.
9148 +
9149 +CUM is the variable in which all arguments to the called function
9150 +have been accumulated.
9151 +
9152 +On certain architectures, such as the SH5, a call trampoline is used
9153 +that pops certain registers off the stack, depending on the arguments
9154 +that have been passed to the function. Since this is a property of the
9155 +call site, not of the called function, RETURN_POPS_ARGS is not
9156 +appropriate.
9157 +*/
9158 +#define CALL_POPS_ARGS(CUM) 0
9159 +
9160 +/* Passing Arguments in Registers */
9161 +
9162 +/*
9163 +A C expression that controls whether a function argument is passed
9164 +in a register, and which register.
9165 +
9166 +The arguments are CUM, which summarizes all the previous
9167 +arguments; MODE, the machine mode of the argument; TYPE,
9168 +the data type of the argument as a tree node or 0 if that is not known
9169 +(which happens for C support library functions); and NAMED,
9170 +which is 1 for an ordinary argument and 0 for nameless arguments that
9171 +correspond to '...' in the called function's prototype.
9172 +TYPE can be an incomplete type if a syntax error has previously
9173 +occurred.
9174 +
9175 +The value of the expression is usually either a reg RTX for the
9176 +hard register in which to pass the argument, or zero to pass the
9177 +argument on the stack.
9178 +
9179 +For machines like the VAX and 68000, where normally all arguments are
9180 +pushed, zero suffices as a definition.
9181 +
9182 +The value of the expression can also be a parallel RTX. This is
9183 +used when an argument is passed in multiple locations. The mode of the
9184 +of the parallel should be the mode of the entire argument. The
9185 +parallel holds any number of expr_list pairs; each one
9186 +describes where part of the argument is passed. In each
9187 +expr_list the first operand must be a reg RTX for the hard
9188 +register in which to pass this part of the argument, and the mode of the
9189 +register RTX indicates how large this part of the argument is. The
9190 +second operand of the expr_list is a const_int which gives
9191 +the offset in bytes into the entire argument of where this part starts.
9192 +As a special exception the first expr_list in the parallel
9193 +RTX may have a first operand of zero. This indicates that the entire
9194 +argument is also stored on the stack.
9195 +
9196 +The last time this macro is called, it is called with MODE == VOIDmode,
9197 +and its result is passed to the call or call_value
9198 +pattern as operands 2 and 3 respectively.
9199 +
9200 +The usual way to make the ISO library 'stdarg.h' work on a machine
9201 +where some arguments are usually passed in registers, is to cause
9202 +nameless arguments to be passed on the stack instead. This is done
9203 +by making FUNCTION_ARG return 0 whenever NAMED is 0.
9204 +
9205 +You may use the macro MUST_PASS_IN_STACK (MODE, TYPE)
9206 +in the definition of this macro to determine if this argument is of a
9207 +type that must be passed in the stack. If REG_PARM_STACK_SPACE
9208 +is not defined and FUNCTION_ARG returns nonzero for such an
9209 +argument, the compiler will abort. If REG_PARM_STACK_SPACE is
9210 +defined, the argument will be computed in the stack and then loaded into
9211 +a register. */
9212 +
9213 +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
9214 + avr32_function_arg(&(CUM), MODE, TYPE, NAMED)
9215 +
9216 +
9217 +
9218 +
9219 +/*
9220 +A C type for declaring a variable that is used as the first argument of
9221 +FUNCTION_ARG and other related values. For some target machines,
9222 +the type int suffices and can hold the number of bytes of
9223 +argument so far.
9224 +
9225 +There is no need to record in CUMULATIVE_ARGS anything about the
9226 +arguments that have been passed on the stack. The compiler has other
9227 +variables to keep track of that. For target machines on which all
9228 +arguments are passed on the stack, there is no need to store anything in
9229 +CUMULATIVE_ARGS; however, the data structure must exist and
9230 +should not be empty, so use int.
9231 +*/
9232 +typedef struct avr32_args
9233 +{
9234 + /* Index representing the argument register the current function argument
9235 + will occupy */
9236 + int index;
9237 + /* A mask with bits representing the argument registers: if a bit is set
9238 + then this register is used for an arguemnt */
9239 + int used_index;
9240 + /* TRUE if this function has anonymous arguments */
9241 + int uses_anonymous_args;
9242 + /* The size in bytes of the named arguments pushed on the stack */
9243 + int stack_pushed_args_size;
9244 + /* Set to true if this function needs a Return Value Pointer */
9245 + int use_rvp;
9246 +
9247 +} CUMULATIVE_ARGS;
9248 +
9249 +
9250 +#define FIRST_CUM_REG_INDEX 0
9251 +#define LAST_CUM_REG_INDEX 4
9252 +#define GET_REG_INDEX(CUM) ((CUM)->index)
9253 +#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX));
9254 +#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX)))
9255 +#define SET_USED_INDEX(CUM, INDEX) \
9256 + do \
9257 + { \
9258 + if (INDEX >= 0) \
9259 + (CUM)->used_index |= (1 << (INDEX)); \
9260 + } \
9261 + while (0)
9262 +#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0)
9263 +
9264 +
9265 +/*
9266 + A C statement (sans semicolon) for initializing the variable cum for the
9267 + state at the beginning of the argument list. The variable has type
9268 + CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of
9269 + the function which will receive the args, or 0 if the args are to a compiler
9270 + support library function. For direct calls that are not libcalls, FNDECL
9271 + contain the declaration node of the function. FNDECL is also set when
9272 + INIT_CUMULATIVE_ARGS is used to find arguments for the function being
9273 + compiled. N_NAMED_ARGS is set to the number of named arguments, including a
9274 + structure return address if it is passed as a parameter, when making a call.
9275 + When processing incoming arguments, N_NAMED_ARGS is set to -1.
9276 +
9277 + When processing a call to a compiler support library function, LIBNAME
9278 + identifies which one. It is a symbol_ref rtx which contains the name of the
9279 + function, as a string. LIBNAME is 0 when an ordinary C function call is
9280 + being processed. Thus, each time this macro is called, either LIBNAME or
9281 + FNTYPE is nonzero, but never both of them at once.
9282 +*/
9283 +#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
9284 + avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL)
9285 +
9286 +
9287 +/*
9288 +A C statement (sans semicolon) to update the summarizer variable
9289 +CUM to advance past an argument in the argument list. The
9290 +values MODE, TYPE and NAMED describe that argument.
9291 +Once this is done, the variable CUM is suitable for analyzing
9292 +the following argument with FUNCTION_ARG, etc.
9293 +
9294 +This macro need not do anything if the argument in question was passed
9295 +on the stack. The compiler knows how to track the amount of stack space
9296 +used for arguments without any special help.
9297 +*/
9298 +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
9299 + avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED)
9300 +
9301 +/*
9302 +If defined, a C expression which determines whether, and in which direction,
9303 +to pad out an argument with extra space. The value should be of type
9304 +enum direction: either 'upward' to pad above the argument,
9305 +'downward' to pad below, or 'none' to inhibit padding.
9306 +
9307 +The amount of padding is always just enough to reach the next
9308 +multiple of FUNCTION_ARG_BOUNDARY; this macro does not control
9309 +it.
9310 +
9311 +This macro has a default definition which is right for most systems.
9312 +For little-endian machines, the default is to pad upward. For
9313 +big-endian machines, the default is to pad downward for an argument of
9314 +constant size shorter than an int, and upward otherwise.
9315 +*/
9316 +#define FUNCTION_ARG_PADDING(MODE, TYPE) \
9317 + avr32_function_arg_padding(MODE, TYPE)
9318 +
9319 +/*
9320 + Specify padding for the last element of a block move between registers
9321 + and memory. First is nonzero if this is the only element. Defining
9322 + this macro allows better control of register function parameters on
9323 + big-endian machines, without using PARALLEL rtl. In particular,
9324 + MUST_PASS_IN_STACK need not test padding and mode of types in registers,
9325 + as there is no longer a "wrong" part of a register; For example, a three
9326 + byte aggregate may be passed in the high part of a register if so required.
9327 +*/
9328 +#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
9329 + avr32_function_arg_padding(MODE, TYPE)
9330 +
9331 +/*
9332 +If defined, a C expression which determines whether the default
9333 +implementation of va_arg will attempt to pad down before reading the
9334 +next argument, if that argument is smaller than its aligned space as
9335 +controlled by PARM_BOUNDARY. If this macro is not defined, all such
9336 +arguments are padded down if BYTES_BIG_ENDIAN is true.
9337 +*/
9338 +#define PAD_VARARGS_DOWN \
9339 + (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
9340 +
9341 +
9342 +/*
9343 +A C expression that is nonzero if REGNO is the number of a hard
9344 +register in which function arguments are sometimes passed. This does
9345 +not include implicit arguments such as the static chain and
9346 +the structure-value address. On many machines, no registers can be
9347 +used for this purpose since all function arguments are pushed on the
9348 +stack.
9349 +*/
9350 +/*
9351 + Use r8 - r12 for function arguments.
9352 +*/
9353 +#define FUNCTION_ARG_REGNO_P(REGNO) \
9354 + (REGNO >= 3 && REGNO <= 7)
9355 +
9356 +/* Number of registers used for passing function arguments */
9357 +#define NUM_ARG_REGS 5
9358 +
9359 +/*
9360 +If defined, the order in which arguments are loaded into their
9361 +respective argument registers is reversed so that the last
9362 +argument is loaded first. This macro only affects arguments
9363 +passed in registers.
9364 +*/
9365 +/* #define LOAD_ARGS_REVERSED */
9366 +
9367 +/** How Scalar Function Values Are Returned **/
9368 +
9369 +/* AVR32 is using r12 as return register. */
9370 +#define RET_REGISTER (15 - 12)
9371 +
9372 +/*
9373 +Define this macro if -traditional should not cause functions
9374 +declared to return float to convert the value to double.
9375 +*/
9376 +/* #define TRADITIONAL_RETURN_FLOAT */
9377 +
9378 +/*
9379 +A C expression to create an RTX representing the place where a
9380 +function returns a value of data type VALTYPE. VALTYPE is
9381 +a tree node representing a data type. Write TYPE_MODE(VALTYPE)
9382 +to get the machine mode used to represent that type.
9383 +On many machines, only the mode is relevant. (Actually, on most
9384 +machines, scalar values are returned in the same place regardless of
9385 +mode).
9386 +
9387 +The value of the expression is usually a reg RTX for the hard
9388 +register where the return value is stored. The value can also be a
9389 +parallel RTX, if the return value is in multiple places. See
9390 +FUNCTION_ARG for an explanation of the parallel form.
9391 +
9392 +If PROMOTE_FUNCTION_RETURN is defined, you must apply the same
9393 +promotion rules specified in PROMOTE_MODE if VALTYPE is a
9394 +scalar type.
9395 +
9396 +If the precise function being called is known, FUNC is a tree
9397 +node (FUNCTION_DECL) for it; otherwise, FUNC is a null
9398 +pointer. This makes it possible to use a different value-returning
9399 +convention for specific functions when all their calls are
9400 +known.
9401 +
9402 +FUNCTION_VALUE is not used for return vales with aggregate data
9403 +types, because these are returned in another way. See
9404 +STRUCT_VALUE_REGNUM and related macros, below.
9405 +*/
9406 +#define FUNCTION_VALUE(VALTYPE, FUNC) avr32_function_value(VALTYPE, FUNC)
9407 +
9408 +
9409 +/*
9410 +A C expression to create an RTX representing the place where a library
9411 +function returns a value of mode MODE. If the precise function
9412 +being called is known, FUNC is a tree node
9413 +(FUNCTION_DECL) for it; otherwise, func is a null
9414 +pointer. This makes it possible to use a different value-returning
9415 +convention for specific functions when all their calls are
9416 +known.
9417 +
9418 +Note that "library function" in this context means a compiler
9419 +support routine, used to perform arithmetic, whose name is known
9420 +specially by the compiler and was not mentioned in the C code being
9421 +compiled.
9422 +
9423 +The definition of LIBRARY_VALUE need not be concerned aggregate
9424 +data types, because none of the library functions returns such types.
9425 +*/
9426 +#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE)
9427 +
9428 +/*
9429 +A C expression that is nonzero if REGNO is the number of a hard
9430 +register in which the values of called function may come back.
9431 +
9432 +A register whose use for returning values is limited to serving as the
9433 +second of a pair (for a value of type double, say) need not be
9434 +recognized by this macro. So for most machines, this definition
9435 +suffices:
9436 + #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
9437 +
9438 +If the machine has register windows, so that the caller and the called
9439 +function use different registers for the return value, this macro
9440 +should recognize only the caller's register numbers.
9441 +*/
9442 +/*
9443 + When returning a value of mode DImode, r11:r10 is used, else r12 is used.
9444 +*/
9445 +#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \
9446 + || (REGNO) == INTERNAL_REGNUM(11))
9447 +
9448 +
9449 +/** How Large Values Are Returned **/
9450 +
9451 +
9452 +/*
9453 +Define this macro to be 1 if all structure and union return values must be
9454 +in memory. Since this results in slower code, this should be defined
9455 +only if needed for compatibility with other compilers or with an ABI.
9456 +If you define this macro to be 0, then the conventions used for structure
9457 +and union return values are decided by the RETURN_IN_MEMORY macro.
9458 +
9459 +If not defined, this defaults to the value 1.
9460 +*/
9461 +#define DEFAULT_PCC_STRUCT_RETURN 0
9462 +
9463 +
9464 +
9465 +
9466 +/** Generating Code for Profiling **/
9467 +
9468 +/*
9469 +A C statement or compound statement to output to FILE some
9470 +assembler code to call the profiling subroutine mcount.
9471 +
9472 +The details of how mcount expects to be called are determined by
9473 +your operating system environment, not by GCC. To figure them out,
9474 +compile a small program for profiling using the system's installed C
9475 +compiler and look at the assembler code that results.
9476 +
9477 +Older implementations of mcount expect the address of a counter
9478 +variable to be loaded into some register. The name of this variable is
9479 +'LP' followed by the number LABELNO, so you would generate
9480 +the name using 'LP%d' in a fprintf.
9481 +*/
9482 +/* ToDo: fixme */
9483 +#ifndef FUNCTION_PROFILER
9484 +#define FUNCTION_PROFILER(FILE, LABELNO) \
9485 + fprintf((FILE), "/* profiler %d */", (LABELNO))
9486 +#endif
9487 +
9488 +
9489 +/*****************************************************************************
9490 + * Trampolines for Nested Functions *
9491 + *****************************************************************************/
9492 +
9493 +/*
9494 +A C statement to output, on the stream FILE, assembler code for a
9495 +block of data that contains the constant parts of a trampoline. This
9496 +code should not include a label - the label is taken care of
9497 +automatically.
9498 +
9499 +If you do not define this macro, it means no template is needed
9500 +for the target. Do not define this macro on systems where the block move
9501 +code to copy the trampoline into place would be larger than the code
9502 +to generate it on the spot.
9503 +*/
9504 +/* ToDo: correct? */
9505 +#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE);
9506 +
9507 +
9508 +/*
9509 +A C expression for the size in bytes of the trampoline, as an integer.
9510 +*/
9511 +/* ToDo: fixme */
9512 +#define TRAMPOLINE_SIZE 0x0C
9513 +
9514 +/*
9515 +Alignment required for trampolines, in bits.
9516 +
9517 +If you don't define this macro, the value of BIGGEST_ALIGNMENT
9518 +is used for aligning trampolines.
9519 +*/
9520 +#define TRAMPOLINE_ALIGNMENT 16
9521 +
9522 +/*
9523 +A C statement to initialize the variable parts of a trampoline.
9524 +ADDR is an RTX for the address of the trampoline; FNADDR is
9525 +an RTX for the address of the nested function; STATIC_CHAIN is an
9526 +RTX for the static chain value that should be passed to the function
9527 +when it is called.
9528 +*/
9529 +#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
9530 + avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN)
9531 +
9532 +
9533 +/******************************************************************************
9534 + * Implicit Calls to Library Routines
9535 + *****************************************************************************/
9536 +
9537 +/* Tail calling. */
9538 +
9539 +/* A C expression that evaluates to true if it is ok to perform a sibling
9540 + call to DECL. */
9541 +#define FUNCTION_OK_FOR_SIBCALL(DECL) 0
9542 +
9543 +#define OVERRIDE_OPTIONS avr32_override_options ()
9544 +
9545 +
9546 +
9547 +/******************************************************************************
9548 + * Addressing Modes
9549 + *****************************************************************************/
9550 +
9551 +/*
9552 +A C expression that is nonzero if the machine supports pre-increment,
9553 +pre-decrement, post-increment, or post-decrement addressing respectively.
9554 +*/
9555 +/*
9556 + AVR32 supports Rp++ and --Rp
9557 +*/
9558 +#define HAVE_PRE_INCREMENT 0
9559 +#define HAVE_PRE_DECREMENT 1
9560 +#define HAVE_POST_INCREMENT 1
9561 +#define HAVE_POST_DECREMENT 0
9562 +
9563 +/*
9564 +A C expression that is nonzero if the machine supports pre- or
9565 +post-address side-effect generation involving constants other than
9566 +the size of the memory operand.
9567 +*/
9568 +#define HAVE_PRE_MODIFY_DISP 0
9569 +#define HAVE_POST_MODIFY_DISP 0
9570 +
9571 +/*
9572 +A C expression that is nonzero if the machine supports pre- or
9573 +post-address side-effect generation involving a register displacement.
9574 +*/
9575 +#define HAVE_PRE_MODIFY_REG 0
9576 +#define HAVE_POST_MODIFY_REG 0
9577 +
9578 +/*
9579 +A C expression that is 1 if the RTX X is a constant which
9580 +is a valid address. On most machines, this can be defined as
9581 +CONSTANT_P (X), but a few machines are more restrictive
9582 +in which constant addresses are supported.
9583 +
9584 +CONSTANT_P accepts integer-values expressions whose values are
9585 +not explicitly known, such as symbol_ref, label_ref, and
9586 +high expressions and const arithmetic expressions, in
9587 +addition to const_int and const_double expressions.
9588 +*/
9589 +#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
9590 +
9591 +/*
9592 +A number, the maximum number of registers that can appear in a valid
9593 +memory address. Note that it is up to you to specify a value equal to
9594 +the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever
9595 +accept.
9596 +*/
9597 +#define MAX_REGS_PER_ADDRESS 2
9598 +
9599 +/*
9600 +A C compound statement with a conditional goto LABEL;
9601 +executed if X (an RTX) is a legitimate memory address on the
9602 +target machine for a memory operand of mode MODE.
9603 +
9604 +It usually pays to define several simpler macros to serve as
9605 +subroutines for this one. Otherwise it may be too complicated to
9606 +understand.
9607 +
9608 +This macro must exist in two variants: a strict variant and a
9609 +non-strict one. The strict variant is used in the reload pass. It
9610 +must be defined so that any pseudo-register that has not been
9611 +allocated a hard register is considered a memory reference. In
9612 +contexts where some kind of register is required, a pseudo-register
9613 +with no hard register must be rejected.
9614 +
9615 +The non-strict variant is used in other passes. It must be defined to
9616 +accept all pseudo-registers in every context where some kind of
9617 +register is required.
9618 +
9619 +Compiler source files that want to use the strict variant of this
9620 +macro define the macro REG_OK_STRICT. You should use an
9621 +#ifdef REG_OK_STRICT conditional to define the strict variant
9622 +in that case and the non-strict variant otherwise.
9623 +
9624 +Subroutines to check for acceptable registers for various purposes (one
9625 +for base registers, one for index registers, and so on) are typically
9626 +among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS.
9627 +Then only these subroutine macros need have two variants; the higher
9628 +levels of macros may be the same whether strict or not.
9629 +
9630 +Normally, constant addresses which are the sum of a symbol_ref
9631 +and an integer are stored inside a const RTX to mark them as
9632 +constant. Therefore, there is no need to recognize such sums
9633 +specifically as legitimate addresses. Normally you would simply
9634 +recognize any const as legitimate.
9635 +
9636 +Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant
9637 +sums that are not marked with const. It assumes that a naked
9638 +plus indicates indexing. If so, then you must reject such
9639 +naked constant sums as illegitimate addresses, so that none of them will
9640 +be given to PRINT_OPERAND_ADDRESS.
9641 +
9642 +On some machines, whether a symbolic address is legitimate depends on
9643 +the section that the address refers to. On these machines, define the
9644 +macro ENCODE_SECTION_INFO to store the information into the
9645 +symbol_ref, and then check for it here. When you see a
9646 +const, you will have to look inside it to find the
9647 +symbol_ref in order to determine the section.
9648 +
9649 +The best way to modify the name string is by adding text to the
9650 +beginning, with suitable punctuation to prevent any ambiguity. Allocate
9651 +the new name in saveable_obstack. You will have to modify
9652 +ASM_OUTPUT_LABELREF to remove and decode the added text and
9653 +output the name accordingly, and define STRIP_NAME_ENCODING to
9654 +access the original name string.
9655 +
9656 +You can check the information stored here into the symbol_ref in
9657 +the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and
9658 +PRINT_OPERAND_ADDRESS.
9659 +*/
9660 +#ifdef REG_OK_STRICT
9661 +# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
9662 + do \
9663 + { \
9664 + if (avr32_legitimate_address(MODE, X, 1)) \
9665 + goto LABEL; \
9666 + } \
9667 + while (0)
9668 +#else
9669 +# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
9670 + do \
9671 + { \
9672 + if (avr32_legitimate_address(MODE, X, 0)) \
9673 + goto LABEL; \
9674 + } \
9675 + while (0)
9676 +#endif
9677 +
9678 +/*
9679 +A C expression that is nonzero if X (assumed to be a reg
9680 +RTX) is valid for use as a base register. For hard registers, it
9681 +should always accept those which the hardware permits and reject the
9682 +others. Whether the macro accepts or rejects pseudo registers must be
9683 +controlled by REG_OK_STRICT as described above. This usually
9684 +requires two variant definitions, of which REG_OK_STRICT
9685 +controls the one actually used.
9686 +*/
9687 +#ifdef REG_OK_STRICT
9688 +# define REG_OK_FOR_BASE_P(X) \
9689 + REGNO_OK_FOR_BASE_P(REGNO(X))
9690 +#else
9691 +# define REG_OK_FOR_BASE_P(X) \
9692 + ((REGNO(X) <= LAST_REGNUM) || (REGNO(X) >= FIRST_PSEUDO_REGISTER))
9693 +#endif
9694 +
9695 +
9696 +/*
9697 +A C expression that is nonzero if X (assumed to be a reg
9698 +RTX) is valid for use as an index register.
9699 +
9700 +The difference between an index register and a base register is that
9701 +the index register may be scaled. If an address involves the sum of
9702 +two registers, neither one of them scaled, then either one may be
9703 +labeled the "base" and the other the "index"; but whichever
9704 +labeling is used must fit the machine's constraints of which registers
9705 +may serve in each capacity. The compiler will try both labelings,
9706 +looking for one that is valid, and will reload one or both registers
9707 +only if neither labeling works.
9708 +*/
9709 +#define REG_OK_FOR_INDEX_P(X) \
9710 + REG_OK_FOR_BASE_P(X)
9711 +
9712 +
9713 +/*
9714 +A C compound statement that attempts to replace X with a valid
9715 +memory address for an operand of mode MODE. win will be a
9716 +C statement label elsewhere in the code; the macro definition may use
9717 +
9718 + GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
9719 +
9720 +to avoid further processing if the address has become legitimate.
9721 +
9722 +X will always be the result of a call to break_out_memory_refs,
9723 +and OLDX will be the operand that was given to that function to produce
9724 +X.
9725 +
9726 +The code generated by this macro should not alter the substructure of
9727 +X. If it transforms X into a more legitimate form, it
9728 +should assign X (which will always be a C variable) a new value.
9729 +
9730 +It is not necessary for this macro to come up with a legitimate
9731 +address. The compiler has standard ways of doing so in all cases. In
9732 +fact, it is safe for this macro to do nothing. But often a
9733 +machine-dependent strategy can generate better code.
9734 +*/
9735 +#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
9736 + do \
9737 + { \
9738 + if (GET_CODE(X) == PLUS \
9739 + && GET_CODE(XEXP(X, 0)) == REG \
9740 + && GET_CODE(XEXP(X, 1)) == CONST_INT \
9741 + && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \
9742 + 'K', "Ks16")) \
9743 + { \
9744 + rtx index = force_reg(SImode, XEXP(X, 1)); \
9745 + X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \
9746 + } \
9747 + GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \
9748 + } \
9749 + while(0)
9750 +
9751 +
9752 +/*
9753 +A C statement or compound statement with a conditional
9754 +goto LABEL; executed if memory address X (an RTX) can have
9755 +different meanings depending on the machine mode of the memory
9756 +reference it is used for or if the address is valid for some modes
9757 +but not others.
9758 +
9759 +Autoincrement and autodecrement addresses typically have mode-dependent
9760 +effects because the amount of the increment or decrement is the size
9761 +of the operand being addressed. Some machines have other mode-dependent
9762 +addresses. Many RISC machines have no mode-dependent addresses.
9763 +
9764 +You may assume that ADDR is a valid address for the machine.
9765 +*/
9766 +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
9767 + do \
9768 + { \
9769 + if (GET_CODE (ADDR) == POST_INC \
9770 + || GET_CODE (ADDR) == PRE_DEC) \
9771 + goto LABEL; \
9772 + } \
9773 + while (0)
9774 +
9775 +/*
9776 +A C expression that is nonzero if X is a legitimate constant for
9777 +an immediate operand on the target machine. You can assume that
9778 +X satisfies CONSTANT_P, so you need not check this. In fact,
9779 +'1' is a suitable definition for this macro on machines where
9780 +anything CONSTANT_P is valid.
9781 +*/
9782 +#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X)
9783 +
9784 +
9785 +/******************************************************************************
9786 + * Condition Code Status
9787 + *****************************************************************************/
9788 +
9789 +#define HAVE_conditional_move 1
9790 +
9791 +/*
9792 +C code for a data type which is used for declaring the mdep
9793 +component of cc_status. It defaults to int.
9794 +
9795 +This macro is not used on machines that do not use cc0.
9796 +*/
9797 +
9798 +typedef struct
9799 +{
9800 + int flags;
9801 + rtx value;
9802 + int fpflags;
9803 + rtx fpvalue;
9804 +} avr32_status_reg;
9805 +
9806 +
9807 +#define CC_STATUS_MDEP avr32_status_reg
9808 +
9809 +/*
9810 +A C expression to initialize the mdep field to "empty".
9811 +The default definition does nothing, since most machines don't use
9812 +the field anyway. If you want to use the field, you should probably
9813 +define this macro to initialize it.
9814 +
9815 +This macro is not used on machines that do not use cc0.
9816 +*/
9817 +
9818 +#define CC_STATUS_MDEP_INIT \
9819 + (cc_status.mdep.flags = CC_NONE , cc_status.mdep.value = 0)
9820 +
9821 +#define FPCC_STATUS_INIT \
9822 + (cc_status.mdep.fpflags = CC_NONE , cc_status.mdep.fpvalue = 0)
9823 +
9824 +/*
9825 +A C compound statement to set the components of cc_status
9826 +appropriately for an insn INSN whose body is EXP. It is
9827 +this macro's responsibility to recognize insns that set the condition
9828 +code as a byproduct of other activity as well as those that explicitly
9829 +set (cc0).
9830 +
9831 +This macro is not used on machines that do not use cc0.
9832 +
9833 +If there are insns that do not set the condition code but do alter
9834 +other machine registers, this macro must check to see whether they
9835 +invalidate the expressions that the condition code is recorded as
9836 +reflecting. For example, on the 68000, insns that store in address
9837 +registers do not set the condition code, which means that usually
9838 +NOTICE_UPDATE_CC can leave cc_status unaltered for such
9839 +insns. But suppose that the previous insn set the condition code
9840 +based on location 'a4@@(102)' and the current insn stores a new
9841 +value in 'a4'. Although the condition code is not changed by
9842 +this, it will no longer be true that it reflects the contents of
9843 +'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter
9844 +cc_status in this case to say that nothing is known about the
9845 +condition code value.
9846 +
9847 +The definition of NOTICE_UPDATE_CC must be prepared to deal
9848 +with the results of peephole optimization: insns whose patterns are
9849 +parallel RTXs containing various reg, mem or
9850 +constants which are just the operands. The RTL structure of these
9851 +insns is not sufficient to indicate what the insns actually do. What
9852 +NOTICE_UPDATE_CC should do when it sees one is just to run
9853 +CC_STATUS_INIT.
9854 +
9855 +A possible definition of NOTICE_UPDATE_CC is to call a function
9856 +that looks at an attribute (see Insn Attributes) named, for example,
9857 +'cc'. This avoids having detailed information about patterns in
9858 +two places, the 'md' file and in NOTICE_UPDATE_CC.
9859 +*/
9860 +
9861 +#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN)
9862 +
9863 +
9864 +
9865 +
9866 +/******************************************************************************
9867 + * Describing Relative Costs of Operations
9868 + *****************************************************************************/
9869 +
9870 +
9871 +
9872 +/*
9873 +A C expression for the cost of moving data of mode MODE from a
9874 +register in class FROM to one in class TO. The classes are
9875 +expressed using the enumeration values such as GENERAL_REGS. A
9876 +value of 2 is the default; other values are interpreted relative to
9877 +that.
9878 +
9879 +It is not required that the cost always equal 2 when FROM is the
9880 +same as TO; on some machines it is expensive to move between
9881 +registers if they are not general registers.
9882 +
9883 +If reload sees an insn consisting of a single set between two
9884 +hard registers, and if REGISTER_MOVE_COST applied to their
9885 +classes returns a value of 2, reload does not check to ensure that the
9886 +constraints of the insn are met. Setting a cost of other than 2 will
9887 +allow reload to verify that the constraints are met. You should do this
9888 +if the movm pattern's constraints do not allow such copying.
9889 +*/
9890 +#define REGISTER_MOVE_COST(MODE, FROM, TO) \
9891 + ((GET_MODE_SIZE(MODE) <= 4) ? 2: \
9892 + (GET_MODE_SIZE(MODE) <= 8) ? 3: \
9893 + 4)
9894 +
9895 +/*
9896 +A C expression for the cost of moving data of mode MODE between a
9897 +register of class CLASS and memory; IN is zero if the value
9898 +is to be written to memory, nonzero if it is to be read in. This cost
9899 +is relative to those in REGISTER_MOVE_COST. If moving between
9900 +registers and memory is more expensive than between two registers, you
9901 +should define this macro to express the relative cost.
9902 +
9903 +If you do not define this macro, GCC uses a default cost of 4 plus
9904 +the cost of copying via a secondary reload register, if one is
9905 +needed. If your machine requires a secondary reload register to copy
9906 +between memory and a register of CLASS but the reload mechanism is
9907 +more complex than copying via an intermediate, define this macro to
9908 +reflect the actual cost of the move.
9909 +
9910 +GCC defines the function memory_move_secondary_cost if
9911 +secondary reloads are needed. It computes the costs due to copying via
9912 +a secondary register. If your machine copies from memory using a
9913 +secondary register in the conventional way but the default base value of
9914 +4 is not correct for your machine, define this macro to add some other
9915 +value to the result of that function. The arguments to that function
9916 +are the same as to this macro.
9917 +*/
9918 +/*
9919 + Memory moves are costly
9920 +*/
9921 +#define MEMORY_MOVE_COST(MODE, CLASS, IN) 10
9922 +/*
9923 + (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \
9924 + (GET_MODE_SIZE(MODE) > 8) ? 6 : \
9925 + 3) \
9926 + : ((GET_MODE_SIZE(MODE) > 8) ? 4 : 2)))
9927 +*/
9928 +
9929 +/*
9930 +A C expression for the cost of a branch instruction. A value of 1 is
9931 +the default; other values are interpreted relative to that.
9932 +*/
9933 + /* Try to use conditionals as much as possible */
9934 +#define BRANCH_COST (TARGET_BRANCH_PRED ? 3 : 5)
9935 +
9936 +/*A C expression for the maximum number of instructions to execute via conditional
9937 + execution instructions instead of a branch. A value of BRANCH_COST+1 is the default
9938 + if the machine does not use cc0, and 1 if it does use cc0.*/
9939 +#define MAX_CONDITIONAL_EXECUTE 3
9940 +
9941 +/*
9942 +Define this macro as a C expression which is nonzero if accessing less
9943 +than a word of memory (i.e.: a char or a short) is no
9944 +faster than accessing a word of memory, i.e., if such access
9945 +require more than one instruction or if there is no difference in cost
9946 +between byte and (aligned) word loads.
9947 +
9948 +When this macro is not defined, the compiler will access a field by
9949 +finding the smallest containing object; when it is defined, a fullword
9950 +load will be used if alignment permits. Unless bytes accesses are
9951 +faster than word accesses, using word accesses is preferable since it
9952 +may eliminate subsequent memory access if subsequent accesses occur to
9953 +other fields in the same word of the structure, but to different bytes.
9954 +*/
9955 +#define SLOW_BYTE_ACCESS 1
9956 +
9957 +
9958 +/*
9959 +Define this macro if it is as good or better to call a constant
9960 +function address than to call an address kept in a register.
9961 +*/
9962 +#define NO_FUNCTION_CSE
9963 +
9964 +
9965 +/******************************************************************************
9966 + * Adjusting the Instruction Scheduler
9967 + *****************************************************************************/
9968 +
9969 +/*****************************************************************************
9970 + * Dividing the Output into Sections (Texts, Data, ...) *
9971 + *****************************************************************************/
9972 +
9973 +/*
9974 +A C expression whose value is a string, including spacing, containing the
9975 +assembler operation that should precede instructions and read-only data.
9976 +Normally "\t.text" is right.
9977 +*/
9978 +#define TEXT_SECTION_ASM_OP "\t.text"
9979 +/*
9980 +A C statement that switches to the default section containing instructions.
9981 +Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP
9982 +is enough. The MIPS port uses this to sort all functions after all data
9983 +declarations.
9984 +*/
9985 +/* #define TEXT_SECTION */
9986 +
9987 +/*
9988 +A C expression whose value is a string, including spacing, containing the
9989 +assembler operation to identify the following data as writable initialized
9990 +data. Normally "\t.data" is right.
9991 +*/
9992 +#define DATA_SECTION_ASM_OP "\t.data"
9993 +
9994 +/*
9995 +If defined, a C expression whose value is a string, including spacing,
9996 +containing the assembler operation to identify the following data as
9997 +shared data. If not defined, DATA_SECTION_ASM_OP will be used.
9998 +*/
9999 +
10000 +/*
10001 +A C expression whose value is a string, including spacing, containing
10002 +the assembler operation to identify the following data as read-only
10003 +initialized data.
10004 +*/
10005 +#undef READONLY_DATA_SECTION_ASM_OP
10006 +#define READONLY_DATA_SECTION_ASM_OP \
10007 + ((TARGET_USE_RODATA_SECTION) ? \
10008 + "\t.section\t.rodata" : \
10009 + TEXT_SECTION_ASM_OP )
10010 +
10011 +
10012 +/*
10013 +If defined, a C expression whose value is a string, including spacing,
10014 +containing the assembler operation to identify the following data as
10015 +uninitialized global data. If not defined, and neither
10016 +ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined,
10017 +uninitialized global data will be output in the data section if
10018 +-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be
10019 +used.
10020 +*/
10021 +#define BSS_SECTION_ASM_OP "\t.section\t.bss"
10022 +
10023 +/*
10024 +If defined, a C expression whose value is a string, including spacing,
10025 +containing the assembler operation to identify the following data as
10026 +uninitialized global shared data. If not defined, and
10027 +BSS_SECTION_ASM_OP is, the latter will be used.
10028 +*/
10029 +/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/
10030 +/*
10031 +If defined, a C expression whose value is a string, including spacing,
10032 +containing the assembler operation to identify the following data as
10033 +initialization code. If not defined, GCC will assume such a section does
10034 +not exist.
10035 +*/
10036 +#undef INIT_SECTION_ASM_OP
10037 +#define INIT_SECTION_ASM_OP "\t.section\t.init"
10038 +
10039 +/*
10040 +If defined, a C expression whose value is a string, including spacing,
10041 +containing the assembler operation to identify the following data as
10042 +finalization code. If not defined, GCC will assume such a section does
10043 +not exist.
10044 +*/
10045 +#undef FINI_SECTION_ASM_OP
10046 +#define FINI_SECTION_ASM_OP "\t.section\t.fini"
10047 +
10048 +/*
10049 +If defined, an ASM statement that switches to a different section
10050 +via SECTION_OP, calls FUNCTION, and switches back to
10051 +the text section. This is used in crtstuff.c if
10052 +INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls
10053 +to initialization and finalization functions from the init and fini
10054 +sections. By default, this macro uses a simple function call. Some
10055 +ports need hand-crafted assembly code to avoid dependencies on
10056 +registers initialized in the function prologue or to ensure that
10057 +constant pools don't end up too far way in the text section.
10058 +*/
10059 +#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
10060 + asm ( SECTION_OP "\n" \
10061 + "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \
10062 + TEXT_SECTION_ASM_OP);
10063 +
10064 +
10065 +/*
10066 +Define this macro to be an expression with a nonzero value if jump
10067 +tables (for tablejump insns) should be output in the text
10068 +section, along with the assembler instructions. Otherwise, the
10069 +readonly data section is used.
10070 +
10071 +This macro is irrelevant if there is no separate readonly data section.
10072 +*/
10073 +#define JUMP_TABLES_IN_TEXT_SECTION 1
10074 +
10075 +
10076 +/******************************************************************************
10077 + * Position Independent Code (PIC)
10078 + *****************************************************************************/
10079 +
10080 +#ifndef AVR32_ALWAYS_PIC
10081 +#define AVR32_ALWAYS_PIC 0
10082 +#endif
10083 +
10084 +/* GOT is set to r6 */
10085 +#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6)
10086 +
10087 +/*
10088 +A C expression that is nonzero if X is a legitimate immediate
10089 +operand on the target machine when generating position independent code.
10090 +You can assume that X satisfies CONSTANT_P, so you need not
10091 +check this. You can also assume flag_pic is true, so you need not
10092 +check it either. You need not define this macro if all constants
10093 +(including SYMBOL_REF) can be immediate operands when generating
10094 +position independent code.
10095 +*/
10096 +/* We can't directly access anything that contains a symbol,
10097 + nor can we indirect via the constant pool. */
10098 +#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X)
10099 +
10100 +
10101 +/* We need to know when we are making a constant pool; this determines
10102 + whether data needs to be in the GOT or can be referenced via a GOT
10103 + offset. */
10104 +extern int making_const_table;
10105 +
10106 +/******************************************************************************
10107 + * Defining the Output Assembler Language
10108 + *****************************************************************************/
10109 +
10110 +
10111 +/*
10112 +A C string constant describing how to begin a comment in the target
10113 +assembler language. The compiler assumes that the comment will end at
10114 +the end of the line.
10115 +*/
10116 +#define ASM_COMMENT_START "# "
10117 +
10118 +/*
10119 +A C string constant for text to be output before each asm
10120 +statement or group of consecutive ones. Normally this is
10121 +"#APP", which is a comment that has no effect on most
10122 +assemblers but tells the GNU assembler that it must check the lines
10123 +that follow for all valid assembler constructs.
10124 +*/
10125 +#undef ASM_APP_ON
10126 +#define ASM_APP_ON "#APP\n"
10127 +
10128 +/*
10129 +A C string constant for text to be output after each asm
10130 +statement or group of consecutive ones. Normally this is
10131 +"#NO_APP", which tells the GNU assembler to resume making the
10132 +time-saving assumptions that are valid for ordinary compiler output.
10133 +*/
10134 +#undef ASM_APP_OFF
10135 +#define ASM_APP_OFF "#NO_APP\n"
10136 +
10137 +
10138 +
10139 +#define FILE_ASM_OP "\t.file\n"
10140 +#define IDENT_ASM_OP "\t.ident\t"
10141 +#define SET_ASM_OP "\t.set\t"
10142 +
10143 +
10144 +/*
10145 + * Output assembly directives to switch to section name. The section
10146 + * should have attributes as specified by flags, which is a bit mask
10147 + * of the SECTION_* flags defined in 'output.h'. If align is nonzero,
10148 + * it contains an alignment in bytes to be used for the section,
10149 + * otherwise some target default should be used. Only targets that
10150 + * must specify an alignment within the section directive need pay
10151 + * attention to align -- we will still use ASM_OUTPUT_ALIGN.
10152 + *
10153 + * NOTE: This one must not be moved to avr32.c
10154 + */
10155 +#undef TARGET_ASM_NAMED_SECTION
10156 +#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
10157 +
10158 +
10159 +/*
10160 +You may define this macro as a C expression. You should define the
10161 +expression to have a nonzero value if GCC should output the constant
10162 +pool for a function before the code for the function, or a zero value if
10163 +GCC should output the constant pool after the function. If you do
10164 +not define this macro, the usual case, GCC will output the constant
10165 +pool before the function.
10166 +*/
10167 +#define CONSTANT_POOL_BEFORE_FUNCTION 0
10168 +
10169 +
10170 +/*
10171 +Define this macro as a C expression which is nonzero if the constant
10172 +EXP, of type tree, should be output after the code for a
10173 +function. The compiler will normally output all constants before the
10174 +function; you need not define this macro if this is OK.
10175 +*/
10176 +#define CONSTANT_AFTER_FUNCTION_P(EXP) 1
10177 +
10178 +
10179 +/*
10180 +Define this macro as a C expression which is nonzero if C is
10181 +used as a logical line separator by the assembler.
10182 +
10183 +If you do not define this macro, the default is that only
10184 +the character ';' is treated as a logical line separator.
10185 +*/
10186 +#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '\n')
10187 +
10188 +
10189 +/** Output of Uninitialized Variables **/
10190 +
10191 +/*
10192 +A C statement (sans semicolon) to output to the stdio stream
10193 +STREAM the assembler definition of a common-label named
10194 +NAME whose size is SIZE bytes. The variable ROUNDED
10195 +is the size rounded up to whatever alignment the caller wants.
10196 +
10197 +Use the expression assemble_name(STREAM, NAME) to
10198 +output the name itself; before and after that, output the additional
10199 +assembler syntax for defining the name, and a newline.
10200 +
10201 +This macro controls how the assembler definitions of uninitialized
10202 +common global variables are output.
10203 +*/
10204 +/*
10205 +#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
10206 + avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED)
10207 +*/
10208 +
10209 +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
10210 + do \
10211 + { \
10212 + fputs ("\t.comm ", (FILE)); \
10213 + assemble_name ((FILE), (NAME)); \
10214 + fprintf ((FILE), ",%d\n", (SIZE)); \
10215 + } \
10216 + while (0)
10217 +
10218 +/*
10219 + * Like ASM_OUTPUT_BSS except takes the required alignment as a
10220 + * separate, explicit argument. If you define this macro, it is used
10221 + * in place of ASM_OUTPUT_BSS, and gives you more flexibility in
10222 + * handling the required alignment of the variable. The alignment is
10223 + * specified as the number of bits.
10224 + *
10225 + * Try to use function asm_output_aligned_bss defined in file varasm.c
10226 + * when defining this macro.
10227 + */
10228 +#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
10229 + asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT)
10230 +
10231 +/*
10232 +A C statement (sans semicolon) to output to the stdio stream
10233 +STREAM the assembler definition of a local-common-label named
10234 +NAME whose size is SIZE bytes. The variable ROUNDED
10235 +is the size rounded up to whatever alignment the caller wants.
10236 +
10237 +Use the expression assemble_name(STREAM, NAME) to
10238 +output the name itself; before and after that, output the additional
10239 +assembler syntax for defining the name, and a newline.
10240 +
10241 +This macro controls how the assembler definitions of uninitialized
10242 +static variables are output.
10243 +*/
10244 +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
10245 + do \
10246 + { \
10247 + fputs ("\t.lcomm ", (FILE)); \
10248 + assemble_name ((FILE), (NAME)); \
10249 + fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \
10250 + } \
10251 + while (0)
10252 +
10253 +
10254 +/*
10255 +A C statement (sans semicolon) to output to the stdio stream
10256 +STREAM the assembler definition of a label named NAME.
10257 +Use the expression assemble_name(STREAM, NAME) to
10258 +output the name itself; before and after that, output the additional
10259 +assembler syntax for defining the name, and a newline.
10260 +*/
10261 +#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME)
10262 +
10263 +/* A C string containing the appropriate assembler directive to
10264 + * specify the size of a symbol, without any arguments. On systems
10265 + * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"';
10266 + * on other systems, the default is not to define this macro.
10267 + *
10268 + * Define this macro only if it is correct to use the default
10269 + * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and
10270 + * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own
10271 + * custom definitions of those macros, or if you do not need explicit
10272 + * symbol sizes at all, do not define this macro.
10273 + */
10274 +#define SIZE_ASM_OP "\t.size\t"
10275 +
10276 +
10277 +/*
10278 +A C statement (sans semicolon) to output to the stdio stream
10279 +STREAM some commands that will make the label NAME global;
10280 +that is, available for reference from other files. Use the expression
10281 +assemble_name(STREAM, NAME) to output the name
10282 +itself; before and after that, output the additional assembler syntax
10283 +for making that name global, and a newline.
10284 +*/
10285 +#define GLOBAL_ASM_OP "\t.globl\t"
10286 +
10287 +
10288 +
10289 +/*
10290 +A C expression which evaluates to true if the target supports weak symbols.
10291 +
10292 +If you don't define this macro, defaults.h provides a default
10293 +definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL
10294 +is defined, the default definition is '1'; otherwise, it is
10295 +'0'. Define this macro if you want to control weak symbol support
10296 +with a compiler flag such as -melf.
10297 +*/
10298 +#define SUPPORTS_WEAK 1
10299 +
10300 +/*
10301 +A C statement (sans semicolon) to output to the stdio stream
10302 +STREAM a reference in assembler syntax to a label named
10303 +NAME. This should add '_' to the front of the name, if that
10304 +is customary on your operating system, as it is in most Berkeley Unix
10305 +systems. This macro is used in assemble_name.
10306 +*/
10307 +#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
10308 + avr32_asm_output_labelref(STREAM, NAME)
10309 +
10310 +
10311 +
10312 +/*
10313 +A C expression to assign to OUTVAR (which is a variable of type
10314 +char *) a newly allocated string made from the string
10315 +NAME and the number NUMBER, with some suitable punctuation
10316 +added. Use alloca to get space for the string.
10317 +
10318 +The string will be used as an argument to ASM_OUTPUT_LABELREF to
10319 +produce an assembler label for an internal static variable whose name is
10320 +NAME. Therefore, the string must be such as to result in valid
10321 +assembler code. The argument NUMBER is different each time this
10322 +macro is executed; it prevents conflicts between similarly-named
10323 +internal static variables in different scopes.
10324 +
10325 +Ideally this string should not be a valid C identifier, to prevent any
10326 +conflict with the user's own symbols. Most assemblers allow periods
10327 +or percent signs in assembler symbols; putting at least one of these
10328 +between the name and the number will suffice.
10329 +*/
10330 +#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
10331 + do \
10332 + { \
10333 + (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \
10334 + sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \
10335 + } \
10336 + while (0)
10337 +
10338 +
10339 +/** Macros Controlling Initialization Routines **/
10340 +
10341 +
10342 +/*
10343 +If defined, main will not call __main as described above.
10344 +This macro should be defined for systems that control start-up code
10345 +on a symbol-by-symbol basis, such as OSF/1, and should not
10346 +be defined explicitly for systems that support INIT_SECTION_ASM_OP.
10347 +*/
10348 +/*
10349 + __main is not defined when debugging.
10350 +*/
10351 +#define HAS_INIT_SECTION
10352 +
10353 +
10354 +/** Output of Assembler Instructions **/
10355 +
10356 +/*
10357 +A C initializer containing the assembler's names for the machine
10358 +registers, each one as a C string constant. This is what translates
10359 +register numbers in the compiler into assembler language.
10360 +*/
10361 +
10362 +#define REGISTER_NAMES \
10363 +{ \
10364 + "pc", "lr", \
10365 + "sp", "r12", \
10366 + "r11", "r10", \
10367 + "r9", "r8", \
10368 + "r7", "r6", \
10369 + "r5", "r4", \
10370 + "r3", "r2", \
10371 + "r1", "r0", \
10372 + "f15","f14", \
10373 + "f13","f12", \
10374 + "f11","f10", \
10375 + "f9", "f8", \
10376 + "f7", "f6", \
10377 + "f5", "f4", \
10378 + "f3", "f2", \
10379 + "f1", "f0" \
10380 +}
10381 +
10382 +/*
10383 +A C compound statement to output to stdio stream STREAM the
10384 +assembler syntax for an instruction operand X. X is an
10385 +RTL expression.
10386 +
10387 +CODE is a value that can be used to specify one of several ways
10388 +of printing the operand. It is used when identical operands must be
10389 +printed differently depending on the context. CODE comes from
10390 +the '%' specification that was used to request printing of the
10391 +operand. If the specification was just '%digit' then
10392 +CODE is 0; if the specification was '%ltr digit'
10393 +then CODE is the ASCII code for ltr.
10394 +
10395 +If X is a register, this macro should print the register's name.
10396 +The names can be found in an array reg_names whose type is
10397 +char *[]. reg_names is initialized from REGISTER_NAMES.
10398 +
10399 +When the machine description has a specification '%punct'
10400 +(a '%' followed by a punctuation character), this macro is called
10401 +with a null pointer for X and the punctuation character for
10402 +CODE.
10403 +*/
10404 +#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE)
10405 +
10406 +/* A C statement to be executed just prior to the output of
10407 + assembler code for INSN, to modify the extracted operands so
10408 + they will be output differently.
10409 +
10410 + Here the argument OPVEC is the vector containing the operands
10411 + extracted from INSN, and NOPERANDS is the number of elements of
10412 + the vector which contain meaningful data for this insn.
10413 + The contents of this vector are what will be used to convert the insn
10414 + template into assembler code, so you can change the assembler output
10415 + by changing the contents of the vector. */
10416 +#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
10417 + avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
10418 +
10419 +/*
10420 +A C expression which evaluates to true if CODE is a valid
10421 +punctuation character for use in the PRINT_OPERAND macro. If
10422 +PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no
10423 +punctuation characters (except for the standard one, '%') are used
10424 +in this way.
10425 +*/
10426 +/*
10427 + 'm' refers to the most significant word in a two-register mode.
10428 +*/
10429 +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == 'm' || (CODE) == 'e')
10430 +
10431 +/*
10432 +A C compound statement to output to stdio stream STREAM the
10433 +assembler syntax for an instruction operand that is a memory reference
10434 +whose address is X. X is an RTL expression.
10435 +
10436 +On some machines, the syntax for a symbolic address depends on the
10437 +section that the address refers to. On these machines, define the macro
10438 +ENCODE_SECTION_INFO to store the information into the
10439 +symbol_ref, and then check for it here. (see Assembler Format.)
10440 +*/
10441 +#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X)
10442 +
10443 +
10444 +/** Output of Dispatch Tables **/
10445 +
10446 +/*
10447 + * A C statement to output to the stdio stream stream an assembler
10448 + * pseudo-instruction to generate a difference between two
10449 + * labels. value and rel are the numbers of two internal labels. The
10450 + * definitions of these labels are output using
10451 + * (*targetm.asm_out.internal_label), and they must be printed in the
10452 + * same way here. For example,
10453 + *
10454 + * fprintf (stream, "\t.word L%d-L%d\n",
10455 + * value, rel)
10456 + *
10457 + * You must provide this macro on machines where the addresses in a
10458 + * dispatch table are relative to the table's own address. If defined,
10459 + * GCC will also use this macro on all machines when producing
10460 + * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that
10461 + * the mode and flags can be read.
10462 + */
10463 +#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
10464 + fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
10465 +
10466 +/*
10467 +This macro should be provided on machines where the addresses
10468 +in a dispatch table are absolute.
10469 +
10470 +The definition should be a C statement to output to the stdio stream
10471 +STREAM an assembler pseudo-instruction to generate a reference to
10472 +a label. VALUE is the number of an internal label whose
10473 +definition is output using ASM_OUTPUT_INTERNAL_LABEL.
10474 +For example,
10475 +
10476 +fprintf(STREAM, "\t.word L%d\n", VALUE)
10477 +*/
10478 +
10479 +#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
10480 + fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
10481 +
10482 +/** Assembler Commands for Exception Regions */
10483 +
10484 +/* ToDo: All of this subsection */
10485 +
10486 +/** Assembler Commands for Alignment */
10487 +
10488 +
10489 +/*
10490 +A C statement to output to the stdio stream STREAM an assembler
10491 +command to advance the location counter to a multiple of 2 to the
10492 +POWER bytes. POWER will be a C expression of type int.
10493 +*/
10494 +#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
10495 + do \
10496 + { \
10497 + if ((POWER) != 0) \
10498 + fprintf(STREAM, "\t.align\t%d\n", POWER); \
10499 + } \
10500 + while (0)
10501 +
10502 +/*
10503 +Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if
10504 +necessary.
10505 +*/
10506 +#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
10507 + fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER))
10508 +
10509 +
10510 +
10511 +/******************************************************************************
10512 + * Controlling Debugging Information Format
10513 + *****************************************************************************/
10514 +
10515 +/* How to renumber registers for dbx and gdb. */
10516 +#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO)
10517 +
10518 +/* The DWARF 2 CFA column which tracks the return address. */
10519 +#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM)
10520 +
10521 +/*
10522 +Define this macro if GCC should produce dwarf version 2 format
10523 +debugging output in response to the -g option.
10524 +
10525 +To support optional call frame debugging information, you must also
10526 +define INCOMING_RETURN_ADDR_RTX and either set
10527 +RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the
10528 +prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save
10529 +as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't.
10530 +*/
10531 +#define DWARF2_DEBUGGING_INFO 1
10532 +
10533 +
10534 +#define DWARF2_ASM_LINE_DEBUG_INFO 1
10535 +#define DWARF2_FRAME_INFO 1
10536 +
10537 +
10538 +/******************************************************************************
10539 + * Miscellaneous Parameters
10540 + *****************************************************************************/
10541 +
10542 +/* ToDo: a lot */
10543 +
10544 +/*
10545 +An alias for a machine mode name. This is the machine mode that
10546 +elements of a jump-table should have.
10547 +*/
10548 +#define CASE_VECTOR_MODE SImode
10549 +
10550 +/*
10551 +Define this macro to be a C expression to indicate when jump-tables
10552 +should contain relative addresses. If jump-tables never contain
10553 +relative addresses, then you need not define this macro.
10554 +*/
10555 +#define CASE_VECTOR_PC_RELATIVE 0
10556 +
10557 +/*
10558 +The maximum number of bytes that a single instruction can move quickly
10559 +between memory and registers or between two memory locations.
10560 +*/
10561 +#define MOVE_MAX (2*UNITS_PER_WORD)
10562 +
10563 +
10564 +/* A C expression that is nonzero if on this machine the number of bits actually used
10565 + for the count of a shift operation is equal to the number of bits needed to represent
10566 + the size of the object being shifted. When this macro is nonzero, the compiler will
10567 + assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and'
10568 + instructions that truncates the count of a shift operation. On machines that have
10569 + instructions that act on bit-fields at variable positions, which may include 'bit test'
10570 + 378 GNU Compiler Collection (GCC) Internals
10571 + instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
10572 + of the values that serve as arguments to bit-field instructions.
10573 + If both types of instructions truncate the count (for shifts) and position (for bit-field
10574 + operations), or if no variable-position bit-field instructions exist, you should define
10575 + this macro.
10576 + However, on some machines, such as the 80386 and the 680x0, truncation only applies
10577 + to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_
10578 + COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file
10579 + that include the implied truncation of the shift instructions.
10580 + You need not de\fne this macro if it would always have the value of zero. */
10581 +#define SHIFT_COUNT_TRUNCATED 1
10582 +
10583 +/*
10584 +A C expression which is nonzero if on this machine it is safe to
10585 +convert an integer of INPREC bits to one of OUTPREC
10586 +bits (where OUTPREC is smaller than INPREC) by merely
10587 +operating on it as if it had only OUTPREC bits.
10588 +
10589 +On many machines, this expression can be 1.
10590 +
10591 +When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for
10592 +modes for which MODES_TIEABLE_P is 0, suboptimal code can result.
10593 +If this is the case, making TRULY_NOOP_TRUNCATION return 0 in
10594 +such cases may improve things.
10595 +*/
10596 +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
10597 +
10598 +/*
10599 +An alias for the machine mode for pointers. On most machines, define
10600 +this to be the integer mode corresponding to the width of a hardware
10601 +pointer; SImode on 32-bit machine or DImode on 64-bit machines.
10602 +On some machines you must define this to be one of the partial integer
10603 +modes, such as PSImode.
10604 +
10605 +The width of Pmode must be at least as large as the value of
10606 +POINTER_SIZE. If it is not equal, you must define the macro
10607 +POINTERS_EXTEND_UNSIGNED to specify how pointers are extended
10608 +to Pmode.
10609 +*/
10610 +#define Pmode SImode
10611 +
10612 +/*
10613 +An alias for the machine mode used for memory references to functions
10614 +being called, in call RTL expressions. On most machines this
10615 +should be QImode.
10616 +*/
10617 +#define FUNCTION_MODE SImode
10618 +
10619 +
10620 +#define REG_S_P(x) \
10621 + (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0))))
10622 +
10623 +
10624 +/* If defined, modifies the length assigned to instruction INSN as a
10625 + function of the context in which it is used. LENGTH is an lvalue
10626 + that contains the initially computed length of the insn and should
10627 + be updated with the correct length of the insn. */
10628 +#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
10629 + ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH)))
10630 +
10631 +
10632 +#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \
10633 + (value = 32, (mode == SImode))
10634 +
10635 +#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \
10636 + (value = 32, (mode == SImode))
10637 +
10638 +#define UNITS_PER_SIMD_WORD UNITS_PER_WORD
10639 +
10640 +#define STORE_FLAG_VALUE 1
10641 +
10642 +enum avr32_builtins
10643 +{
10644 + AVR32_BUILTIN_MTSR,
10645 + AVR32_BUILTIN_MFSR,
10646 + AVR32_BUILTIN_MTDR,
10647 + AVR32_BUILTIN_MFDR,
10648 + AVR32_BUILTIN_CACHE,
10649 + AVR32_BUILTIN_SYNC,
10650 + AVR32_BUILTIN_TLBR,
10651 + AVR32_BUILTIN_TLBS,
10652 + AVR32_BUILTIN_TLBW,
10653 + AVR32_BUILTIN_BREAKPOINT,
10654 + AVR32_BUILTIN_XCHG,
10655 + AVR32_BUILTIN_LDXI,
10656 + AVR32_BUILTIN_BSWAP16,
10657 + AVR32_BUILTIN_BSWAP32,
10658 + AVR32_BUILTIN_COP,
10659 + AVR32_BUILTIN_MVCR_W,
10660 + AVR32_BUILTIN_MVRC_W,
10661 + AVR32_BUILTIN_MVCR_D,
10662 + AVR32_BUILTIN_MVRC_D,
10663 + AVR32_BUILTIN_MULSATHH_H,
10664 + AVR32_BUILTIN_MULSATHH_W,
10665 + AVR32_BUILTIN_MULSATRNDHH_H,
10666 + AVR32_BUILTIN_MULSATRNDWH_W,
10667 + AVR32_BUILTIN_MULSATWH_W,
10668 + AVR32_BUILTIN_MACSATHH_W,
10669 + AVR32_BUILTIN_SATADD_H,
10670 + AVR32_BUILTIN_SATSUB_H,
10671 + AVR32_BUILTIN_SATADD_W,
10672 + AVR32_BUILTIN_SATSUB_W,
10673 + AVR32_BUILTIN_MULWH_D,
10674 + AVR32_BUILTIN_MULNWH_D,
10675 + AVR32_BUILTIN_MACWH_D,
10676 + AVR32_BUILTIN_MACHH_D,
10677 + AVR32_BUILTIN_MUSFR,
10678 + AVR32_BUILTIN_MUSTR,
10679 + AVR32_BUILTIN_SATS,
10680 + AVR32_BUILTIN_SATU,
10681 + AVR32_BUILTIN_SATRNDS,
10682 + AVR32_BUILTIN_SATRNDU
10683 +};
10684 +
10685 +
10686 +#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \
10687 + ((MODE == SFmode) || (MODE == DFmode))
10688 +
10689 +#define RENAME_LIBRARY_SET ".set"
10690 +
10691 +/* Make ABI_NAME an alias for __GCC_NAME. */
10692 +#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \
10693 + __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \
10694 + ".set\t__avr32_" #ABI_NAME \
10695 + ", __" #GCC_NAME "\n");
10696 +
10697 +/* Give libgcc functions avr32 ABI name. */
10698 +#ifdef L_muldi3
10699 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64)
10700 +#endif
10701 +#ifdef L_divdi3
10702 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64)
10703 +#endif
10704 +#ifdef L_udivdi3
10705 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64)
10706 +#endif
10707 +#ifdef L_moddi3
10708 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64)
10709 +#endif
10710 +#ifdef L_umoddi3
10711 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64)
10712 +#endif
10713 +#ifdef L_ashldi3
10714 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64)
10715 +#endif
10716 +#ifdef L_lshrdi3
10717 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64)
10718 +#endif
10719 +#ifdef L_ashrdi3
10720 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64)
10721 +#endif
10722 +
10723 +#ifdef L_fixsfdi
10724 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64)
10725 +#endif
10726 +#ifdef L_fixunssfdi
10727 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64)
10728 +#endif
10729 +#ifdef L_floatdidf
10730 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64)
10731 +#endif
10732 +#ifdef L_floatdisf
10733 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32)
10734 +#endif
10735 +
10736 +#ifdef L_addsub_sf
10737 +#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (addsf3, f32_add); RENAME_LIBRARY (subsf3, f32_sub)
10738 +#endif
10739 +
10740 +#endif
10741 --- /dev/null
10742 +++ b/gcc/config/avr32/avr32.md
10743 @@ -0,0 +1,4694 @@
10744 +;; AVR32 machine description file.
10745 +;; Copyright 2003-2006 Atmel Corporation.
10746 +;;
10747 +;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
10748 +;;
10749 +;; This file is part of GCC.
10750 +;;
10751 +;; This program is free software; you can redistribute it and/or modify
10752 +;; it under the terms of the GNU General Public License as published by
10753 +;; the Free Software Foundation; either version 2 of the License, or
10754 +;; (at your option) any later version.
10755 +;;
10756 +;; This program is distributed in the hope that it will be useful,
10757 +;; but WITHOUT ANY WARRANTY; without even the implied warranty of
10758 +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10759 +;; GNU General Public License for more details.
10760 +;;
10761 +;; You should have received a copy of the GNU General Public License
10762 +;; along with this program; if not, write to the Free Software
10763 +;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
10764 +
10765 +;; -*- Mode: Scheme -*-
10766 +
10767 +(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm"
10768 + (const_string "alu"))
10769 +
10770 +
10771 +(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,bld,compare,clobber,call_set,fpcompare,from_fpcc"
10772 + (const_string "none"))
10773 +
10774 +
10775 +(define_attr "pipeline" "ap,uc"
10776 + (const_string "ap"))
10777 +
10778 +(define_attr "length" ""
10779 + (const_int 4))
10780 +
10781 +
10782 +;; Uses of UNSPEC in this file:
10783 +(define_constants
10784 + [(UNSPEC_PUSHM 0)
10785 + (UNSPEC_POPM 1)
10786 + (UNSPEC_UDIVMODSI4_INTERNAL 2)
10787 + (UNSPEC_DIVMODSI4_INTERNAL 3)
10788 + (UNSPEC_STM 4)
10789 + (UNSPEC_LDM 5)
10790 + (UNSPEC_MOVSICC 6)
10791 + (UNSPEC_ADDSICC 7)
10792 + (UNSPEC_COND_MI 8)
10793 + (UNSPEC_COND_PL 9)
10794 + (UNSPEC_PIC_SYM 10)
10795 + (UNSPEC_PIC_BASE 11)
10796 + (UNSPEC_STORE_MULTIPLE 12)
10797 + (UNSPEC_STMFP 13)
10798 + (UNSPEC_FPCC_TO_REG 14)
10799 + (UNSPEC_REG_TO_CC 15)
10800 + (UNSPEC_FORCE_MINIPOOL 16)
10801 + (UNSPEC_SATS 17)
10802 + (UNSPEC_SATU 18)
10803 + (UNSPEC_SATRNDS 19)
10804 + (UNSPEC_SATRNDU 20)
10805 + ])
10806 +
10807 +(define_constants
10808 + [(VUNSPEC_EPILOGUE 0)
10809 + (VUNSPEC_CACHE 1)
10810 + (VUNSPEC_MTSR 2)
10811 + (VUNSPEC_MFSR 3)
10812 + (VUNSPEC_BLOCKAGE 4)
10813 + (VUNSPEC_SYNC 5)
10814 + (VUNSPEC_TLBR 6)
10815 + (VUNSPEC_TLBW 7)
10816 + (VUNSPEC_TLBS 8)
10817 + (VUNSPEC_BREAKPOINT 9)
10818 + (VUNSPEC_MTDR 10)
10819 + (VUNSPEC_MFDR 11)
10820 + (VUNSPEC_MVCR 12)
10821 + (VUNSPEC_MVRC 13)
10822 + (VUNSPEC_COP 14)
10823 + (VUNSPEC_ALIGN 15)
10824 + (VUNSPEC_POOL_START 16)
10825 + (VUNSPEC_POOL_END 17)
10826 + (VUNSPEC_POOL_4 18)
10827 + (VUNSPEC_POOL_8 19)
10828 + (VUNSPEC_MUSFR 20)
10829 + (VUNSPEC_MUSTR 21)
10830 + ])
10831 +
10832 +(define_constants
10833 + [
10834 + ;; R7 = 15-7 = 8
10835 + (FP_REGNUM 8)
10836 + ;; Return Register = R12 = 15 - 12 = 3
10837 + (RETVAL_REGNUM 3)
10838 + ;; SP = R13 = 15 - 13 = 2
10839 + (SP_REGNUM 2)
10840 + ;; LR = R14 = 15 - 14 = 1
10841 + (LR_REGNUM 1)
10842 + ;; PC = R15 = 15 - 15 = 0
10843 + (PC_REGNUM 0)
10844 + ;; FPSR = GENERAL_REGS + 1 = 17
10845 + (FPCC_REGNUM 17)
10846 + ])
10847 +
10848 +
10849 +
10850 +
10851 +;;******************************************************************************
10852 +;; Macros
10853 +;;******************************************************************************
10854 +
10855 +;; Integer Modes for basic alu insns
10856 +(define_mode_macro INTM [SI HI QI])
10857 +(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")])
10858 +
10859 +;; Move word modes
10860 +(define_mode_macro MOVM [SI V2HI V4QI])
10861 +
10862 +;; For mov/addcc insns
10863 +(define_mode_macro ADDCC [SI HI QI])
10864 +(define_mode_macro MOVCC [SI HI QI])
10865 +(define_mode_macro CMP [DI SI HI QI])
10866 +(define_mode_attr cmp_constraint [(DI "r") (SI "rKs21") (HI "r") (QI "r")])
10867 +(define_mode_attr cmp_predicate [(DI "register_operand")
10868 + (SI "register_immediate_operand")
10869 + (HI "register_operand")
10870 + (QI "register_operand")])
10871 +
10872 +;; For all conditional insns
10873 +(define_code_macro any_cond [eq ne gt ge lt le gtu geu ltu leu])
10874 +(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le")
10875 + (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")])
10876 +(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt")
10877 + (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")])
10878 +
10879 +;; For logical operations
10880 +(define_code_macro logical [and ior xor])
10881 +(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")])
10882 +
10883 +;; Load the predicates
10884 +(include "predicates.md")
10885 +
10886 +
10887 +;;******************************************************************************
10888 +;; Automaton pipeline description for avr32
10889 +;;******************************************************************************
10890 +
10891 +(define_automaton "avr32_ap")
10892 +
10893 +
10894 +(define_cpu_unit "is" "avr32_ap")
10895 +(define_cpu_unit "a1,m1,da" "avr32_ap")
10896 +(define_cpu_unit "a2,m2,d" "avr32_ap")
10897 +
10898 +;;Alu instructions
10899 +(define_insn_reservation "alu_op" 1
10900 + (and (eq_attr "pipeline" "ap")
10901 + (eq_attr "type" "alu"))
10902 + "is,a1,a2")
10903 +
10904 +(define_insn_reservation "alu2_op" 2
10905 + (and (eq_attr "pipeline" "ap")
10906 + (eq_attr "type" "alu2"))
10907 + "is,is+a1,a1+a2,a2")
10908 +
10909 +(define_insn_reservation "alu_sat_op" 2
10910 + (and (eq_attr "pipeline" "ap")
10911 + (eq_attr "type" "alu_sat"))
10912 + "is,a1,a2")
10913 +
10914 +
10915 +;;Mul instructions
10916 +(define_insn_reservation "mulhh_op" 2
10917 + (and (eq_attr "pipeline" "ap")
10918 + (eq_attr "type" "mulhh,mulwh"))
10919 + "is,m1,m2")
10920 +
10921 +(define_insn_reservation "mulww_w_op" 3
10922 + (and (eq_attr "pipeline" "ap")
10923 + (eq_attr "type" "mulww_w"))
10924 + "is,m1,m1+m2,m2")
10925 +
10926 +(define_insn_reservation "mulww_d_op" 5
10927 + (and (eq_attr "pipeline" "ap")
10928 + (eq_attr "type" "mulww_d"))
10929 + "is,m1,m1+m2,m1+m2,m2,m2")
10930 +
10931 +(define_insn_reservation "div_op" 33
10932 + (and (eq_attr "pipeline" "ap")
10933 + (eq_attr "type" "div"))
10934 + "is,m1,m1*31 + m2*31,m2")
10935 +
10936 +(define_insn_reservation "machh_w_op" 3
10937 + (and (eq_attr "pipeline" "ap")
10938 + (eq_attr "type" "machh_w"))
10939 + "is*2,m1,m2")
10940 +
10941 +
10942 +(define_insn_reservation "macww_w_op" 4
10943 + (and (eq_attr "pipeline" "ap")
10944 + (eq_attr "type" "macww_w"))
10945 + "is*2,m1,m1,m2")
10946 +
10947 +
10948 +(define_insn_reservation "macww_d_op" 6
10949 + (and (eq_attr "pipeline" "ap")
10950 + (eq_attr "type" "macww_d"))
10951 + "is*2,m1,m1+m2,m1+m2,m2")
10952 +
10953 +;;Bypasses for Mac instructions, because of accumulator cache.
10954 +;;Set latency as low as possible in order to let the compiler let
10955 +;;mul -> mac and mac -> mac combinations which use the same
10956 +;;accumulator cache be placed close together to avoid any
10957 +;;instructions which can ruin the accumulator cache come inbetween.
10958 +(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10959 +(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10960 +(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10961 +
10962 +(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10963 +(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10964 +(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
10965 +
10966 +
10967 +;;Bypasses for all mul/mac instructions followed by an instruction
10968 +;;which reads the output AND writes the result to the same register.
10969 +;;This will generate an Write After Write hazard which gives an
10970 +;;extra cycle before the result is ready.
10971 +(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass")
10972 +(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass")
10973 +(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass")
10974 +
10975 +(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass")
10976 +(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass")
10977 +(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass")
10978 +
10979 +;;Branch and call instructions
10980 +;;We assume that all branches and rcalls are predicted correctly :-)
10981 +;;while calls use a lot of cycles.
10982 +(define_insn_reservation "branch_op" 0
10983 + (and (eq_attr "pipeline" "ap")
10984 + (eq_attr "type" "branch"))
10985 + "nothing")
10986 +
10987 +(define_insn_reservation "call_op" 10
10988 + (and (eq_attr "pipeline" "ap")
10989 + (eq_attr "type" "call"))
10990 + "nothing")
10991 +
10992 +
10993 +;;Load store instructions
10994 +(define_insn_reservation "load_op" 2
10995 + (and (eq_attr "pipeline" "ap")
10996 + (eq_attr "type" "load"))
10997 + "is,da,d")
10998 +
10999 +(define_insn_reservation "load_rm_op" 3
11000 + (and (eq_attr "pipeline" "ap")
11001 + (eq_attr "type" "load_rm"))
11002 + "is,da,d")
11003 +
11004 +
11005 +(define_insn_reservation "store_op" 0
11006 + (and (eq_attr "pipeline" "ap")
11007 + (eq_attr "type" "store"))
11008 + "is,da,d")
11009 +
11010 +
11011 +(define_insn_reservation "load_double_op" 3
11012 + (and (eq_attr "pipeline" "ap")
11013 + (eq_attr "type" "load2"))
11014 + "is,da,da+d,d")
11015 +
11016 +(define_insn_reservation "load_quad_op" 4
11017 + (and (eq_attr "pipeline" "ap")
11018 + (eq_attr "type" "load4"))
11019 + "is,da,da+d,da+d,d")
11020 +
11021 +(define_insn_reservation "store_double_op" 0
11022 + (and (eq_attr "pipeline" "ap")
11023 + (eq_attr "type" "store2"))
11024 + "is,da,da+d,d")
11025 +
11026 +
11027 +(define_insn_reservation "store_quad_op" 0
11028 + (and (eq_attr "pipeline" "ap")
11029 + (eq_attr "type" "store4"))
11030 + "is,da,da+d,da+d,d")
11031 +
11032 +;;For store the operand to write to memory is read in d and
11033 +;;the real latency between any instruction and a store is therefore
11034 +;;one less than for the instructions which reads the operands in the first
11035 +;;excecution stage
11036 +(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass")
11037 +(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass")
11038 +(define_bypass 1 "load_op" "store_op" "avr32_store_bypass")
11039 +(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass")
11040 +(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass")
11041 +(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass")
11042 +(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass")
11043 +(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass")
11044 +(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" )
11045 +(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass")
11046 +(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass")
11047 +(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass")
11048 +
11049 +
11050 +; Bypass for load double operation. If only the first loaded word is needed
11051 +; then the latency is 2
11052 +(define_bypass 2 "load_double_op"
11053 + "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
11054 + mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
11055 + "avr32_valid_load_double_bypass")
11056 +
11057 +; Bypass for load quad operation. If only the first or second loaded word is needed
11058 +; we set the latency to 2
11059 +(define_bypass 2 "load_quad_op"
11060 + "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
11061 + mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
11062 + "avr32_valid_load_quad_bypass")
11063 +
11064 +
11065 +;;******************************************************************************
11066 +;; End of Automaton pipeline description for avr32
11067 +;;******************************************************************************
11068 +
11069 +
11070 +
11071 +;;=============================================================================
11072 +;; move
11073 +;;-----------------------------------------------------------------------------
11074 +
11075 +;;== char - 8 bits ============================================================
11076 +(define_expand "movqi"
11077 + [(set (match_operand:QI 0 "nonimmediate_operand" "")
11078 + (match_operand:QI 1 "general_operand" ""))]
11079 + ""
11080 + {
11081 + if ( !no_new_pseudos ){
11082 + if (GET_CODE (operands[1]) == MEM && optimize){
11083 + rtx reg = gen_reg_rtx (SImode);
11084 +
11085 + emit_insn (gen_zero_extendqisi2 (reg, operands[1]));
11086 + operands[1] = gen_lowpart (QImode, reg);
11087 + }
11088 +
11089 + /* One of the ops has to be in a register. */
11090 + if (GET_CODE (operands[0]) == MEM)
11091 + operands[1] = force_reg (QImode, operands[1]);
11092 + }
11093 +
11094 + })
11095 +
11096 +(define_insn "*movqi_internal"
11097 + [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r")
11098 + (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))]
11099 + ""
11100 + "@
11101 + mov\t%0, %1
11102 + ld.ub\t%0, %1
11103 + st.b\t%0, %1
11104 + mov\t%0, %1"
11105 + [(set_attr "length" "2,4,4,4")
11106 + (set_attr "type" "alu,load_rm,store,alu")])
11107 +
11108 +
11109 +
11110 +;;== short - 16 bits ==========================================================
11111 +(define_expand "movhi"
11112 + [(set (match_operand:HI 0 "nonimmediate_operand" "")
11113 + (match_operand:HI 1 "general_operand" ""))]
11114 + ""
11115 + {
11116 + if ( !no_new_pseudos ){
11117 + if (GET_CODE (operands[1]) == MEM && optimize){
11118 + rtx reg = gen_reg_rtx (SImode);
11119 +
11120 + emit_insn (gen_extendhisi2 (reg, operands[1]));
11121 + operands[1] = gen_lowpart (HImode, reg);
11122 + }
11123 +
11124 + /* One of the ops has to be in a register. */
11125 + if (GET_CODE (operands[0]) == MEM)
11126 + operands[1] = force_reg (HImode, operands[1]);
11127 + }
11128 +
11129 + })
11130 +
11131 +(define_insn "*movhi_internal"
11132 + [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r")
11133 + (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))]
11134 + ""
11135 + "@
11136 + mov\t%0, %1
11137 + ld.sh\t%0, %1
11138 + st.h\t%0, %1
11139 + mov\t%0, %1"
11140 + [(set_attr "length" "2,4,4,4")
11141 + (set_attr "type" "alu,load_rm,store,alu")])
11142 +
11143 +
11144 +;;== int - 32 bits ============================================================
11145 +
11146 +(define_expand "movmisalignsi"
11147 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
11148 + (match_operand:SI 1 "nonimmediate_operand" ""))]
11149 + "TARGET_UNALIGNED_WORD"
11150 + {
11151 + }
11152 +)
11153 +
11154 +(define_expand "mov<mode>"
11155 + [(set (match_operand:MOVM 0 "nonimmediate_operand" "")
11156 + (match_operand:MOVM 1 "general_operand" ""))]
11157 + ""
11158 + {
11159 +
11160 + /* One of the ops has to be in a register. */
11161 + if (GET_CODE (operands[0]) == MEM)
11162 + operands[1] = force_reg (<MODE>mode, operands[1]);
11163 +
11164 +
11165 + /* Check for out of range immediate constants as these may
11166 + occur during reloading, since it seems like reload does
11167 + not check if the immediate is legitimate. Don't know if
11168 + this is a bug? */
11169 + if ( reload_in_progress
11170 + && GET_CODE(operands[1]) == CONST_INT
11171 + && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){
11172 + operands[1] = force_const_mem(SImode, operands[1]);
11173 + }
11174 +
11175 + if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
11176 + && !avr32_legitimate_pic_operand_p(operands[1]) )
11177 + operands[1] = legitimize_pic_address (operands[1], <MODE>mode,
11178 + (no_new_pseudos ? operands[0] : 0));
11179 + else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) )
11180 + /* If we have an address operand then this function uses the pic register. */
11181 + current_function_uses_pic_offset_table = 1;
11182 + })
11183 +
11184 +
11185 +(define_insn "mov<mode>_internal"
11186 + [(set (match_operand:MOVM 0 "nonimmediate_operand" "=r,r,r,m,r")
11187 + (match_operand:MOVM 1 "general_operand" "rKs08,Ks21,m,r,W"))]
11188 + ""
11189 + {
11190 + switch (which_alternative) {
11191 + case 0:
11192 + case 1: return "mov\t%0, %1";
11193 + case 2:
11194 + if ( (REG_P(XEXP(operands[1], 0))
11195 + && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
11196 + || (GET_CODE(XEXP(operands[1], 0)) == PLUS
11197 + && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
11198 + && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
11199 + && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
11200 + && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
11201 + return "lddsp\t%0, %1";
11202 + else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
11203 + return "lddpc\t%0, %1";
11204 + else
11205 + return "ld.w\t%0, %1";
11206 + case 3:
11207 + if ( (REG_P(XEXP(operands[0], 0))
11208 + && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
11209 + || (GET_CODE(XEXP(operands[0], 0)) == PLUS
11210 + && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
11211 + && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
11212 + && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
11213 + && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
11214 + return "stdsp\t%0, %1";
11215 + else
11216 + return "st.w\t%0, %1";
11217 + case 4:
11218 + if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
11219 + return "lda.w\t%0, %1";
11220 + else
11221 + return "ld.w\t%0, r6[%1@got]";
11222 + default:
11223 + abort();
11224 + }
11225 + }
11226 +
11227 + [(set_attr "length" "2,4,4,4,8")
11228 + (set_attr "type" "alu,alu,load,store,load")
11229 + (set_attr "cc" "none,none,none,none,clobber")])
11230 +
11231 +
11232 +;; These instructions are for loading constants which cannot be loaded
11233 +;; directly from the constant pool because the offset is too large
11234 +;; high and lo_sum are used even tough for our case it should be
11235 +;; low and high sum :-)
11236 +(define_insn "mov_symbol_lo"
11237 + [(set (match_operand:SI 0 "register_operand" "=r")
11238 + (high:SI (match_operand:SI 1 "immediate_operand" "i" )))]
11239 + ""
11240 + "mov\t%0, lo(%1)"
11241 + [(set_attr "type" "alu")
11242 + (set_attr "length" "4")]
11243 +)
11244 +
11245 +(define_insn "add_symbol_hi"
11246 + [(set (match_operand:SI 0 "register_operand" "=r")
11247 + (lo_sum:SI (match_dup 0)
11248 + (match_operand:SI 1 "immediate_operand" "i" )))]
11249 + ""
11250 + "orh\t%0, hi(%1)"
11251 + [(set_attr "type" "alu")
11252 + (set_attr "length" "4")]
11253 +)
11254 +
11255 +
11256 +
11257 +;; When generating pic, we need to load the symbol offset into a register.
11258 +;; So that the optimizer does not confuse this with a normal symbol load
11259 +;; we use an unspec. The offset will be loaded from a constant pool entry,
11260 +;; since that is the only type of relocation we can use.
11261 +(define_insn "pic_load_addr"
11262 + [(set (match_operand:SI 0 "register_operand" "=r")
11263 + (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))]
11264 + "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))"
11265 + "lddpc\t%0, %1"
11266 + [(set_attr "type" "load")
11267 + (set_attr "length" "4")]
11268 +)
11269 +
11270 +(define_insn "pic_compute_got_from_pc"
11271 + [(set (match_operand:SI 0 "register_operand" "+r")
11272 + (unspec:SI [(minus:SI (pc)
11273 + (match_dup 0))] UNSPEC_PIC_BASE))
11274 + (use (label_ref (match_operand 1 "" "")))]
11275 + "flag_pic"
11276 + {
11277 + (*targetm.asm_out.internal_label) (asm_out_file, "L",
11278 + CODE_LABEL_NUMBER (operands[1]));
11279 + return \"rsub\t%0, pc\";
11280 + }
11281 + [(set_attr "cc" "clobber")
11282 + (set_attr "length" "2")]
11283 +)
11284 +
11285 +;;== long long int - 64 bits ==================================================
11286 +(define_expand "movdi"
11287 + [(set (match_operand:DI 0 "nonimmediate_operand" "")
11288 + (match_operand:DI 1 "general_operand" ""))]
11289 + ""
11290 + {
11291 +
11292 + /* One of the ops has to be in a register. */
11293 + if (GET_CODE (operands[0]) != REG)
11294 + operands[1] = force_reg (DImode, operands[1]);
11295 +
11296 + })
11297 +
11298 +
11299 +(define_insn_and_split "*movdi_internal"
11300 + [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r,r,r,m")
11301 + (match_operand:DI 1 "general_operand" "r,Ks08,Ks21,G,m,r"))]
11302 + ""
11303 + {
11304 + switch (which_alternative ){
11305 + case 1:
11306 + case 2:
11307 + if ( INTVAL(operands[1]) < 0 )
11308 + return "mov\t%0, %1\;mov\t%m0, -1";
11309 + else
11310 + return "mov\t%0, %1\;mov\t%m0, 0";
11311 + case 0:
11312 + case 3:
11313 + return "mov\t%0, %1\;mov\t%m0, %m1";
11314 + case 4:
11315 + if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
11316 + return "ld.d\t%0, pc[%1 - .]";
11317 + else
11318 + return "ld.d\t%0, %1";
11319 + case 5:
11320 + return "st.d\t%0, %1";
11321 + default:
11322 + abort();
11323 + }
11324 + }
11325 + "reload_completed &&
11326 + (REG_P(operands[0]) &&
11327 + (REG_P(operands[1]) || avr32_const_double_immediate(operands[1]) ||
11328 + ((GET_CODE(operands[1]) == CONST_INT) && avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', \"Ks21\")) ))"
11329 + [(set (match_dup 0) (match_dup 1))
11330 + (set (match_dup 2) (match_dup 3))]
11331 + {
11332 + operands[2] = gen_highpart (SImode, operands[0]);
11333 + operands[0] = gen_lowpart (SImode, operands[0]);
11334 + if ( REG_P(operands[1]) ){
11335 + operands[3] = gen_highpart(SImode, operands[1]);
11336 + operands[1] = gen_lowpart(SImode, operands[1]);
11337 + } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ){
11338 + operands[3] = GEN_INT(CONST_DOUBLE_LOW(operands[1]));
11339 + operands[1] = GEN_INT(CONST_DOUBLE_HIGH(operands[1]));
11340 + } else if ( GET_CODE(operands[1]) == CONST_INT ){
11341 + operands[3] = GEN_INT((INTVAL(operands[1]) < 0) ? -1 : 0);
11342 + operands[1] = operands[1];
11343 + } else {
11344 + internal_error("Illegal operand[1] for movdi split!");
11345 + }
11346 + }
11347 +
11348 + [(set_attr "length" "4,6,8,8,4,4")
11349 + (set_attr "type" "alu2,alu2,alu2,alu2,load2,store2")])
11350 +
11351 +
11352 +;;== 128 bits ==================================================
11353 +(define_expand "movti"
11354 + [(set (match_operand:TI 0 "nonimmediate_operand" "")
11355 + (match_operand:TI 1 "general_operand" ""))]
11356 + ""
11357 + {
11358 +
11359 + /* One of the ops has to be in a register. */
11360 + if (GET_CODE (operands[0]) != REG)
11361 + operands[1] = force_reg (TImode, operands[1]);
11362 +
11363 + /* We must fix any pre_dec for loads and post_inc stores */
11364 + if ( GET_CODE (operands[0]) == MEM
11365 + && GET_CODE (XEXP(operands[0],0)) == POST_INC ){
11366 + emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]);
11367 + emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode))));
11368 + DONE;
11369 + }
11370 +
11371 + if ( GET_CODE (operands[1]) == MEM
11372 + && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){
11373 + emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode))));
11374 + emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0)));
11375 + DONE;
11376 + }
11377 +
11378 + if (GET_CODE (operands[1]) == CONST_INT){
11379 + unsigned int sign_extend = (INTVAL(operands[1]) < 0) ? 0xFFFFFFFF : 0;
11380 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 12), operands[1]);
11381 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 8), GEN_INT(sign_extend));
11382 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 4), GEN_INT(sign_extend));
11383 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 0), GEN_INT(sign_extend));
11384 + DONE;
11385 + }
11386 +
11387 + if (GET_CODE (operands[0]) == REG
11388 + && GET_CODE (operands[1]) == REG){
11389 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 12), gen_rtx_SUBREG(SImode, operands[1], 12));
11390 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 8), gen_rtx_SUBREG(SImode, operands[1], 8));
11391 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 4), gen_rtx_SUBREG(SImode, operands[1], 4));
11392 + emit_move_insn(gen_rtx_SUBREG(SImode, operands[0], 0), gen_rtx_SUBREG(SImode, operands[1], 0));
11393 + DONE;
11394 + }
11395 + })
11396 +
11397 +
11398 +(define_insn "*movti_internal"
11399 + [(set (match_operand:TI 0 "nonimmediate_operand" "=r,r, <RKu00,r")
11400 + (match_operand:TI 1 "loadti_operand" " r,RKu00>,r,m"))]
11401 + ""
11402 + "@
11403 + mov\t%T0, %T1\;mov\t%U0, %U1\;mov\t%L0, %L1\;mov\t%B0, %B1
11404 + ldm\t%p1, %0
11405 + stm\t%p0, %1
11406 + ldm\t%p1, %0"
11407 + [(set_attr "length" "8,4,4,4")
11408 + (set_attr "type" "alu,load4,store4,load4")])
11409 +
11410 +
11411 +;;== float - 32 bits ==========================================================
11412 +(define_expand "movsf"
11413 + [(set (match_operand:SF 0 "nonimmediate_operand" "")
11414 + (match_operand:SF 1 "general_operand" ""))]
11415 + ""
11416 + {
11417 +
11418 +
11419 + /* One of the ops has to be in a register. */
11420 + if (GET_CODE (operands[0]) != REG)
11421 + operands[1] = force_reg (SFmode, operands[1]);
11422 +
11423 + })
11424 +
11425 +(define_insn "*movsf_internal"
11426 + [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
11427 + (match_operand:SF 1 "general_operand" "r,G,m,r"))]
11428 + "TARGET_SOFT_FLOAT"
11429 + {
11430 + switch (which_alternative) {
11431 + case 0:
11432 + case 1: return "mov\t%0, %1";
11433 + case 2:
11434 + if ( (REG_P(XEXP(operands[1], 0))
11435 + && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
11436 + || (GET_CODE(XEXP(operands[1], 0)) == PLUS
11437 + && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
11438 + && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
11439 + && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
11440 + && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
11441 + return "lddsp\t%0, %1";
11442 + else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
11443 + return "lddpc\t%0, %1";
11444 + else
11445 + return "ld.w\t%0, %1";
11446 + case 3:
11447 + if ( (REG_P(XEXP(operands[0], 0))
11448 + && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
11449 + || (GET_CODE(XEXP(operands[0], 0)) == PLUS
11450 + && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
11451 + && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
11452 + && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
11453 + && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
11454 + return "stdsp\t%0, %1";
11455 + else
11456 + return "st.w\t%0, %1";
11457 + default:
11458 + abort();
11459 + }
11460 + }
11461 +
11462 + [(set_attr "length" "2,4,4,4")
11463 + (set_attr "type" "alu,alu,load,store")])
11464 +
11465 +
11466 +
11467 +;;== double - 64 bits =========================================================
11468 +(define_expand "movdf"
11469 + [(set (match_operand:DF 0 "nonimmediate_operand" "")
11470 + (match_operand:DF 1 "general_operand" ""))]
11471 + ""
11472 + {
11473 + /* One of the ops has to be in a register. */
11474 + if (GET_CODE (operands[0]) != REG){
11475 + operands[1] = force_reg (DFmode, operands[1]);
11476 + }
11477 + })
11478 +
11479 +
11480 +(define_insn_and_split "*movdf_internal"
11481 + [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,m")
11482 + (match_operand:DF 1 "general_operand" "r,G,m,r"))]
11483 + "TARGET_SOFT_FLOAT"
11484 + {
11485 + switch (which_alternative ){
11486 + case 0:
11487 + case 1:
11488 + return "mov\t%0, %1\;mov\t%m0, %m1";
11489 + case 2:
11490 + if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
11491 + return "ld.d\t%0, pc[%1 - .]";
11492 + else
11493 + return "ld.d\t%0, %1";
11494 + case 3:
11495 + return "st.d\t%0, %1";
11496 + default:
11497 + abort();
11498 + }
11499 + }
11500 + "TARGET_SOFT_FLOAT
11501 + && reload_completed
11502 + && (REG_P(operands[0]) && REG_P(operands[1]))"
11503 + [(set (match_dup 0) (match_dup 1))
11504 + (set (match_dup 2) (match_dup 3))]
11505 + "
11506 + {
11507 + operands[2] = gen_highpart (SImode, operands[0]);
11508 + operands[0] = gen_lowpart (SImode, operands[0]);
11509 + operands[3] = gen_highpart(SImode, operands[1]);
11510 + operands[1] = gen_lowpart(SImode, operands[1]);
11511 + }
11512 + "
11513 +
11514 + [(set_attr "length" "4,8,4,4")
11515 + (set_attr "type" "alu2,alu2,load2,store2")])
11516 +
11517 +
11518 +
11519 +
11520 +;;=============================================================================
11521 +;; Move chunks of memory
11522 +;;=============================================================================
11523 +
11524 +(define_expand "movmemsi"
11525 + [(match_operand:BLK 0 "general_operand" "")
11526 + (match_operand:BLK 1 "general_operand" "")
11527 + (match_operand:SI 2 "const_int_operand" "")
11528 + (match_operand:SI 3 "const_int_operand" "")]
11529 + ""
11530 + "
11531 + if (avr32_gen_movmemsi (operands))
11532 + DONE;
11533 + FAIL;
11534 + "
11535 + )
11536 +
11537 +
11538 +
11539 +
11540 +;;=============================================================================
11541 +;; Bit field instructions
11542 +;;-----------------------------------------------------------------------------
11543 +;; Instructions to insert or extract bit-fields
11544 +;;=============================================================================
11545 +
11546 +(define_insn "insv"
11547 + [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
11548 + (match_operand:SI 1 "immediate_operand" "Ku05")
11549 + (match_operand:SI 2 "immediate_operand" "Ku05"))
11550 + (match_operand 3 "register_operand" "r"))]
11551 + ""
11552 + "bfins\t%0, %3, %2, %1"
11553 + [(set_attr "type" "alu")
11554 + (set_attr "length" "4")
11555 + (set_attr "cc" "set_ncz")])
11556 +
11557 +
11558 +
11559 +
11560 +(define_insn "extv"
11561 + [ (set (match_operand:SI 0 "register_operand" "=r")
11562 + (sign_extract:SI (match_operand:SI 1 "register_operand" "r")
11563 + (match_operand:SI 2 "immediate_operand" "Ku05")
11564 + (match_operand:SI 3 "immediate_operand" "Ku05")))]
11565 + ""
11566 + "bfexts\t%0, %1, %3, %2"
11567 + [(set_attr "type" "alu")
11568 + (set_attr "length" "4")
11569 + (set_attr "cc" "set_ncz")])
11570 +
11571 +
11572 +(define_insn "extzv"
11573 + [ (set (match_operand:SI 0 "register_operand" "=r")
11574 + (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
11575 + (match_operand:SI 2 "immediate_operand" "Ku05")
11576 + (match_operand:SI 3 "immediate_operand" "Ku05")))]
11577 + ""
11578 + "bfextu\t%0, %1, %3, %2"
11579 + [(set_attr "type" "alu")
11580 + (set_attr "length" "4")
11581 + (set_attr "cc" "set_ncz")])
11582 +
11583 +
11584 +
11585 +;;=============================================================================
11586 +;; Some peepholes for avoiding unnecessary cast instructions
11587 +;; followed by bfins.
11588 +;;-----------------------------------------------------------------------------
11589 +
11590 +(define_peephole2
11591 + [(set (match_operand:SI 0 "register_operand" "")
11592 + (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
11593 + (set (zero_extract:SI (match_operand 2 "register_operand" "")
11594 + (match_operand:SI 3 "immediate_operand" "")
11595 + (match_operand:SI 4 "immediate_operand" ""))
11596 + (match_dup 0))]
11597 + "((peep2_reg_dead_p(2, operands[0]) &&
11598 + (INTVAL(operands[3]) <= 8)))"
11599 + [(set (zero_extract:SI (match_dup 2)
11600 + (match_dup 3)
11601 + (match_dup 4))
11602 + (match_dup 1))]
11603 + )
11604 +
11605 +(define_peephole2
11606 + [(set (match_operand:SI 0 "register_operand" "")
11607 + (zero_extend:SI (match_operand:HI 1 "register_operand" "")))
11608 + (set (zero_extract:SI (match_operand 2 "register_operand" "")
11609 + (match_operand:SI 3 "immediate_operand" "")
11610 + (match_operand:SI 4 "immediate_operand" ""))
11611 + (match_dup 0))]
11612 + "((peep2_reg_dead_p(2, operands[0]) &&
11613 + (INTVAL(operands[3]) <= 16)))"
11614 + [(set (zero_extract:SI (match_dup 2)
11615 + (match_dup 3)
11616 + (match_dup 4))
11617 + (match_dup 1))]
11618 + )
11619 +
11620 +;;=============================================================================
11621 +;; push bytes
11622 +;;-----------------------------------------------------------------------------
11623 +;; Implements the push instruction
11624 +;;=============================================================================
11625 +(define_insn "pushm"
11626 + [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM)))
11627 + (unspec:BLK [(match_operand 0 "const_int_operand" "")]
11628 + UNSPEC_PUSHM))]
11629 + ""
11630 + {
11631 + if (INTVAL(operands[0])) {
11632 + return "pushm\t%r0";
11633 + } else {
11634 + return "";
11635 + }
11636 + }
11637 + [(set_attr "type" "store")
11638 + (set_attr "length" "2")
11639 + (set_attr "cc" "none")])
11640 +
11641 +(define_insn "stm"
11642 + [(unspec [(match_operand 0 "register_operand" "r")
11643 + (match_operand 1 "const_int_operand" "")
11644 + (match_operand 2 "const_int_operand" "")]
11645 + UNSPEC_STM)]
11646 + ""
11647 + {
11648 + if (INTVAL(operands[1])) {
11649 + if (INTVAL(operands[2]) != 0)
11650 + return "stm\t--%0, %s1";
11651 + else
11652 + return "stm\t%0, %s1";
11653 + } else {
11654 + return "";
11655 + }
11656 + }
11657 + [(set_attr "type" "store")
11658 + (set_attr "length" "4")
11659 + (set_attr "cc" "none")])
11660 +
11661 +
11662 +
11663 +(define_insn "popm"
11664 + [(unspec [(match_operand 0 "const_int_operand" "")]
11665 + UNSPEC_POPM)]
11666 + ""
11667 + {
11668 + if (INTVAL(operands[0])) {
11669 + return "popm %r0";
11670 + } else {
11671 + return "";
11672 + }
11673 + }
11674 + [(set_attr "type" "load")
11675 + (set_attr "length" "2")])
11676 +
11677 +
11678 +
11679 +;;=============================================================================
11680 +;; add
11681 +;;-----------------------------------------------------------------------------
11682 +;; Adds reg1 with reg2 and puts the result in reg0.
11683 +;;=============================================================================
11684 +(define_insn "add<mode>3"
11685 + [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r")
11686 + (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0")
11687 + (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))]
11688 + ""
11689 + "@
11690 + add %0, %2
11691 + add %0, %1, %2
11692 + sub %0, %n2
11693 + sub %0, %1, %n2
11694 + sub %0, %n2"
11695 +
11696 + [(set_attr "length" "2,4,2,4,4")
11697 + (set_attr "cc" "<INTM:alu_cc_attr>")])
11698 +
11699 +(define_insn "*addsi3_lsl"
11700 + [(set (match_operand:SI 0 "register_operand" "=r")
11701 + (plus:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
11702 + (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))
11703 + (match_operand:SI 2 "register_operand" "r")))]
11704 + ""
11705 + "add %0, %2, %1 << %3"
11706 + [(set_attr "length" "4")
11707 + (set_attr "cc" "set_vncz")])
11708 +
11709 +
11710 +(define_insn "*addsi3_mul"
11711 + [(set (match_operand:SI 0 "register_operand" "=r")
11712 + (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
11713 + (match_operand:SI 3 "immediate_operand" "Ku04" ))
11714 + (match_operand:SI 2 "register_operand" "r")))]
11715 + "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
11716 + (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
11717 + "add %0, %2, %1 << %p3"
11718 + [(set_attr "length" "4")
11719 + (set_attr "cc" "set_vncz")])
11720 +
11721 +
11722 +(define_peephole2
11723 + [(set (match_operand:SI 0 "register_operand" "")
11724 + (ashift:SI (match_operand:SI 1 "register_operand" "")
11725 + (match_operand:SI 2 "immediate_operand" "")))
11726 + (set (match_operand:SI 3 "register_operand" "")
11727 + (plus:SI (match_dup 0)
11728 + (match_operand:SI 4 "register_operand" "")))]
11729 + "(peep2_reg_dead_p(2, operands[0]) &&
11730 + (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
11731 + [(set (match_dup 3)
11732 + (plus:SI (ashift:SI (match_dup 1)
11733 + (match_dup 2))
11734 + (match_dup 4)))]
11735 + )
11736 +
11737 +(define_peephole2
11738 + [(set (match_operand:SI 0 "register_operand" "")
11739 + (ashift:SI (match_operand:SI 1 "register_operand" "")
11740 + (match_operand:SI 2 "immediate_operand" "")))
11741 + (set (match_operand:SI 3 "register_operand" "")
11742 + (plus:SI (match_operand:SI 4 "register_operand" "")
11743 + (match_dup 0)))]
11744 + "(peep2_reg_dead_p(2, operands[0]) &&
11745 + (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
11746 + [(set (match_dup 3)
11747 + (plus:SI (ashift:SI (match_dup 1)
11748 + (match_dup 2))
11749 + (match_dup 4)))]
11750 + )
11751 +
11752 +(define_insn "adddi3"
11753 + [(set (match_operand:DI 0 "register_operand" "=r,r")
11754 + (plus:DI (match_operand:DI 1 "register_operand" "%r,0")
11755 + (match_operand:DI 2 "register_operand" "r,r")))]
11756 + ""
11757 + "@
11758 + add %0, %1, %2\;adc %m0, %m1, %m2
11759 + add %0, %2\;adc %m0, %m0, %m2"
11760 + [(set_attr "length" "8,6")
11761 + (set_attr "type" "alu2")
11762 + (set_attr "cc" "set_vncz")])
11763 +
11764 +
11765 +
11766 +;;=============================================================================
11767 +;; subtract
11768 +;;-----------------------------------------------------------------------------
11769 +;; Subtract reg2 or immediate value from reg0 and puts the result in reg0.
11770 +;;=============================================================================
11771 +
11772 +(define_peephole2
11773 + [(set (match_operand:QI 0 "register_operand" "")
11774 + (minus:QI (match_operand:QI 1 "general_operand" "")
11775 + (match_operand:QI 2 "general_operand" "")))
11776 + (set (match_operand:QI 3 "register_operand" "")
11777 + (match_dup 0))]
11778 + "peep2_reg_dead_p(2, operands[0])"
11779 + [(set (match_dup 3)
11780 + (minus:QI (match_dup 1) (match_dup 2)))]
11781 + )
11782 +
11783 +(define_peephole
11784 + [(set (match_operand:QI 0 "register_operand" "")
11785 + (minus:QI (match_operand:QI 1 "immediate_operand" "Ks08")
11786 + (match_operand:QI 2 "register_operand" "r")))
11787 + (set (match_operand:QI 3 "register_operand" "r")
11788 + (match_dup 0))]
11789 + "dead_or_set_p(insn, operands[0])"
11790 + "rsub %3, %2, %1"
11791 + [(set_attr "length" "4")
11792 + (set_attr "cc" "clobber")]
11793 + )
11794 +
11795 +
11796 +
11797 +(define_insn "sub<mode>3"
11798 + [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r")
11799 + (minus:INTM (match_operand:INTM 1 "nonmemory_operand" "0,r,0,r,0,r,Ks08")
11800 + (match_operand:INTM 2 "nonmemory_operand" "r,r,Ks08,Ks16,Ks21,0,r")))]
11801 + ""
11802 + "@
11803 + sub %0, %2
11804 + sub %0, %1, %2
11805 + sub %0, %2
11806 + sub %0, %1, %2
11807 + sub %0, %2
11808 + rsub %0, %1
11809 + rsub %0, %2, %1"
11810 + [(set_attr "length" "2,4,2,4,4,2,4")
11811 + (set_attr "cc" "<INTM:alu_cc_attr>")])
11812 +
11813 +(define_insn "*sub<mode>3_mul"
11814 + [(set (match_operand:INTM 0 "register_operand" "=r,r,r")
11815 + (minus:INTM (match_operand:INTM 1 "register_operand" "r,0,r")
11816 + (mult:INTM (match_operand:INTM 2 "register_operand" "r,r,0")
11817 + (match_operand:SI 3 "immediate_operand" "Ku04,Ku04,Ku04" ))))]
11818 + "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
11819 + (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
11820 + "@
11821 + sub %0, %1, %2 << %p3
11822 + sub %0, %0, %2 << %p3
11823 + sub %0, %1, %0 << %p3"
11824 + [(set_attr "length" "4,4,4")
11825 + (set_attr "cc" "<INTM:alu_cc_attr>")])
11826 +
11827 +(define_insn "*sub<mode>3_lsl"
11828 + [(set (match_operand:INTM 0 "register_operand" "=r")
11829 + (minus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r")
11830 + (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))
11831 + (match_operand:INTM 2 "register_operand" "r")))]
11832 + ""
11833 + "sub %0, %2, %1 << %3"
11834 + [(set_attr "length" "4")
11835 + (set_attr "cc" "<INTM:alu_cc_attr>")])
11836 +
11837 +
11838 +(define_insn "subdi3"
11839 + [(set (match_operand:DI 0 "register_operand" "=r,r")
11840 + (minus:DI (match_operand:DI 1 "register_operand" "%r,0")
11841 + (match_operand:DI 2 "register_operand" "r,r")))]
11842 + ""
11843 + "@
11844 + sub %0, %1, %2\;sbc %m0, %m1, %m2
11845 + sub %0, %2\;sbc %m0, %m0, %m2"
11846 + [(set_attr "length" "8,6")
11847 + (set_attr "type" "alu2")
11848 + (set_attr "cc" "set_vncz")])
11849 +
11850 +
11851 +
11852 +;;=============================================================================
11853 +;; multiply
11854 +;;-----------------------------------------------------------------------------
11855 +;; Multiply op1 and op2 and put the value in op0.
11856 +;;=============================================================================
11857 +
11858 +
11859 +(define_insn "mulqi3"
11860 + [(set (match_operand:QI 0 "register_operand" "=r,r,r")
11861 + (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r")
11862 + (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))]
11863 + ""
11864 + {
11865 + switch (which_alternative){
11866 + case 0:
11867 + return "mul %0, %2";
11868 + case 1:
11869 + return "mul %0, %1, %2";
11870 + case 2:
11871 + return "mul %0, %1, %2";
11872 + default:
11873 + abort();
11874 + }
11875 + }
11876 + [(set_attr "type" "mulww_w,mulww_w,mulwh")
11877 + (set_attr "length" "2,4,4")
11878 + (set_attr "cc" "none")])
11879 +
11880 +(define_insn "mulsi3"
11881 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
11882 + (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r")
11883 + (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))]
11884 + ""
11885 + {
11886 + switch (which_alternative){
11887 + case 0:
11888 + return "mul %0, %2";
11889 + case 1:
11890 + return "mul %0, %1, %2";
11891 + case 2:
11892 + return "mul %0, %1, %2";
11893 + default:
11894 + abort();
11895 + }
11896 + }
11897 + [(set_attr "type" "mulww_w,mulww_w,mulwh")
11898 + (set_attr "length" "2,4,4")
11899 + (set_attr "cc" "none")])
11900 +
11901 +
11902 +(define_insn "mulhisi3"
11903 + [(set (match_operand:SI 0 "register_operand" "=r")
11904 + (mult:SI
11905 + (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
11906 + (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
11907 + "TARGET_DSP"
11908 + "mulhh.w %0, %1:b, %2:b"
11909 + [(set_attr "type" "mulhh")
11910 + (set_attr "length" "4")
11911 + (set_attr "cc" "none")])
11912 +
11913 +(define_peephole2
11914 + [(match_scratch:DI 6 "r")
11915 + (set (match_operand:SI 0 "register_operand" "")
11916 + (mult:SI
11917 + (sign_extend:SI (match_operand:HI 1 "register_operand" ""))
11918 + (sign_extend:SI (match_operand:HI 2 "register_operand" ""))))
11919 + (set (match_operand:SI 3 "register_operand" "")
11920 + (ashiftrt:SI (match_dup 0)
11921 + (const_int 16)))]
11922 + "TARGET_DSP
11923 + && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))"
11924 + [(set (match_dup 4) (sign_extend:SI (match_dup 1)))
11925 + (set (match_dup 6)
11926 + (ashift:DI (mult:DI (sign_extend:DI (match_dup 4))
11927 + (sign_extend:DI (match_dup 2)))
11928 + (const_int 16)))
11929 + (set (match_dup 3) (match_dup 5))]
11930 +
11931 + "{
11932 + operands[4] = gen_rtx_REG(SImode, REGNO(operands[1]));
11933 + operands[5] = gen_highpart (SImode, operands[4]);
11934 + }"
11935 + )
11936 +
11937 +(define_insn "mulnhisi3"
11938 + [(set (match_operand:SI 0 "register_operand" "=r")
11939 + (mult:SI
11940 + (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r")))
11941 + (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
11942 + "TARGET_DSP"
11943 + "mulnhh.w %0, %1:b, %2:b"
11944 + [(set_attr "type" "mulhh")
11945 + (set_attr "length" "4")
11946 + (set_attr "cc" "none")])
11947 +
11948 +(define_insn "machisi3"
11949 + [(set (match_operand:SI 0 "register_operand" "+r")
11950 + (plus:SI (mult:SI
11951 + (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
11952 + (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
11953 + (match_dup 0)))]
11954 + "TARGET_DSP"
11955 + "machh.w %0, %1:b, %2:b"
11956 + [(set_attr "type" "machh_w")
11957 + (set_attr "length" "4")
11958 + (set_attr "cc" "none")])
11959 +
11960 +
11961 +
11962 +(define_insn "mulsidi3"
11963 + [(set (match_operand:DI 0 "register_operand" "=r")
11964 + (mult:DI
11965 + (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
11966 + (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
11967 + ""
11968 + "muls.d %0, %1, %2"
11969 + [(set_attr "type" "mulww_d")
11970 + (set_attr "length" "4")
11971 + (set_attr "cc" "none")])
11972 +
11973 +(define_insn "umulsidi3"
11974 + [(set (match_operand:DI 0 "register_operand" "=r")
11975 + (mult:DI
11976 + (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
11977 + (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
11978 + ""
11979 + "mulu.d %0, %1, %2"
11980 + [(set_attr "type" "mulww_d")
11981 + (set_attr "length" "4")
11982 + (set_attr "cc" "none")])
11983 +
11984 +(define_insn "*mulaccsi3"
11985 + [(set (match_operand:SI 0 "register_operand" "+r")
11986 + (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r")
11987 + (match_operand:SI 2 "register_operand" "r"))
11988 + (match_dup 0)))]
11989 + ""
11990 + "mac %0, %1, %2"
11991 + [(set_attr "type" "macww_w")
11992 + (set_attr "length" "4")
11993 + (set_attr "cc" "none")])
11994 +
11995 +(define_insn "mulaccsidi3"
11996 + [(set (match_operand:DI 0 "register_operand" "+r")
11997 + (plus:DI (mult:DI
11998 + (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
11999 + (sign_extend:DI (match_operand:SI 2 "register_operand" "r")))
12000 + (match_dup 0)))]
12001 + ""
12002 + "macs.d %0, %1, %2"
12003 + [(set_attr "type" "macww_d")
12004 + (set_attr "length" "4")
12005 + (set_attr "cc" "none")])
12006 +
12007 +(define_insn "umulaccsidi3"
12008 + [(set (match_operand:DI 0 "register_operand" "+r")
12009 + (plus:DI (mult:DI
12010 + (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
12011 + (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))
12012 + (match_dup 0)))]
12013 + ""
12014 + "macu.d %0, %1, %2"
12015 + [(set_attr "type" "macww_d")
12016 + (set_attr "length" "4")
12017 + (set_attr "cc" "none")])
12018 +
12019 +
12020 +
12021 +;; Try to avoid Write-After-Write hazards for mul operations
12022 +;; if it can be done
12023 +(define_peephole2
12024 + [(set (match_operand:SI 0 "register_operand" "")
12025 + (mult:SI
12026 + (sign_extend:SI (match_operand 1 "general_operand" ""))
12027 + (sign_extend:SI (match_operand 2 "general_operand" ""))))
12028 + (set (match_dup 0)
12029 + (match_operator:SI 3 "alu_operator" [(match_dup 0)
12030 + (match_operand 4 "general_operand" "")]))]
12031 + "peep2_reg_dead_p(1, operands[2])"
12032 + [(set (match_dup 5)
12033 + (mult:SI
12034 + (sign_extend:SI (match_dup 1))
12035 + (sign_extend:SI (match_dup 2))))
12036 + (set (match_dup 0)
12037 + (match_op_dup 3 [(match_dup 5)
12038 + (match_dup 4)]))]
12039 + "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}"
12040 + )
12041 +
12042 +
12043 +
12044 +;;=============================================================================
12045 +;; DSP instructions
12046 +;;=============================================================================
12047 +(define_insn "mulsathh_h"
12048 + [(set (match_operand:HI 0 "register_operand" "=r")
12049 + (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
12050 + (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
12051 + (const_int 15))))]
12052 + "TARGET_DSP"
12053 + "mulsathh.h\t%0, %1:b, %2:b"
12054 + [(set_attr "length" "4")
12055 + (set_attr "cc" "none")
12056 + (set_attr "type" "mulhh")])
12057 +
12058 +(define_insn "mulsatrndhh_h"
12059 + [(set (match_operand:HI 0 "register_operand" "=r")
12060 + (ss_truncate:HI (ashiftrt:SI
12061 + (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
12062 + (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
12063 + (const_int 1073741824))
12064 + (const_int 15))))]
12065 + "TARGET_DSP"
12066 + "mulsatrndhh.h\t%0, %1:b, %2:b"
12067 + [(set_attr "length" "4")
12068 + (set_attr "cc" "none")
12069 + (set_attr "type" "mulhh")])
12070 +
12071 +(define_insn "mulsathh_w"
12072 + [(set (match_operand:SI 0 "register_operand" "=r")
12073 + (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
12074 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12075 + (const_int 1))))]
12076 + "TARGET_DSP"
12077 + "mulsathh.w\t%0, %1:b, %2:b"
12078 + [(set_attr "length" "4")
12079 + (set_attr "cc" "none")
12080 + (set_attr "type" "mulhh")])
12081 +
12082 +(define_insn "mulsatwh_w"
12083 + [(set (match_operand:SI 0 "register_operand" "=r")
12084 + (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
12085 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12086 + (const_int 15))))]
12087 + "TARGET_DSP"
12088 + "mulsatwh.w\t%0, %1, %2:b"
12089 + [(set_attr "length" "4")
12090 + (set_attr "cc" "none")
12091 + (set_attr "type" "mulwh")])
12092 +
12093 +(define_insn "mulsatrndwh_w"
12094 + [(set (match_operand:SI 0 "register_operand" "=r")
12095 + (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
12096 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12097 + (const_int 1073741824))
12098 + (const_int 15))))]
12099 + "TARGET_DSP"
12100 + "mulsatrndwh.w\t%0, %1, %2:b"
12101 + [(set_attr "length" "4")
12102 + (set_attr "cc" "none")
12103 + (set_attr "type" "mulwh")])
12104 +
12105 +(define_insn "macsathh_w"
12106 + [(set (match_operand:SI 0 "register_operand" "+r")
12107 + (plus:SI (match_dup 0)
12108 + (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
12109 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12110 + (const_int 1)))))]
12111 + "TARGET_DSP"
12112 + "macsathh.w\t%0, %1:b, %2:b"
12113 + [(set_attr "length" "4")
12114 + (set_attr "cc" "none")
12115 + (set_attr "type" "mulhh")])
12116 +
12117 +
12118 +(define_insn "mulwh_d"
12119 + [(set (match_operand:DI 0 "register_operand" "=r")
12120 + (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
12121 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12122 + (const_int 16)))]
12123 + "TARGET_DSP"
12124 + "mulwh.d\t%0, %1, %2:b"
12125 + [(set_attr "length" "4")
12126 + (set_attr "cc" "none")
12127 + (set_attr "type" "mulwh")])
12128 +
12129 +
12130 +(define_insn "mulnwh_d"
12131 + [(set (match_operand:DI 0 "register_operand" "=r")
12132 + (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")))
12133 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12134 + (const_int 16)))]
12135 + "TARGET_DSP"
12136 + "mulnwh.d\t%0, %1, %2:b"
12137 + [(set_attr "length" "4")
12138 + (set_attr "cc" "none")
12139 + (set_attr "type" "mulwh")])
12140 +
12141 +(define_insn "macwh_d"
12142 + [(set (match_operand:DI 0 "register_operand" "+r")
12143 + (plus:DI (match_dup 0)
12144 + (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
12145 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
12146 + (const_int 16))))]
12147 + "TARGET_DSP"
12148 + "macwh.d\t%0, %1, %2:b"
12149 + [(set_attr "length" "4")
12150 + (set_attr "cc" "none")
12151 + (set_attr "type" "mulwh")])
12152 +
12153 +(define_insn "machh_d"
12154 + [(set (match_operand:DI 0 "register_operand" "+r")
12155 + (plus:DI (match_dup 0)
12156 + (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
12157 + (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))]
12158 + "TARGET_DSP"
12159 + "machh.d\t%0, %1:b, %2:b"
12160 + [(set_attr "length" "4")
12161 + (set_attr "cc" "none")
12162 + (set_attr "type" "mulwh")])
12163 +
12164 +(define_insn "satadd_w"
12165 + [(set (match_operand:SI 0 "register_operand" "=r")
12166 + (ss_plus:SI (match_operand:SI 1 "register_operand" "r")
12167 + (match_operand:SI 2 "register_operand" "r")))]
12168 + "TARGET_DSP"
12169 + "satadd.w\t%0, %1, %2"
12170 + [(set_attr "length" "4")
12171 + (set_attr "cc" "none")
12172 + (set_attr "type" "alu_sat")])
12173 +
12174 +(define_insn "satsub_w"
12175 + [(set (match_operand:SI 0 "register_operand" "=r")
12176 + (ss_minus:SI (match_operand:SI 1 "register_operand" "r")
12177 + (match_operand:SI 2 "register_operand" "r")))]
12178 + "TARGET_DSP"
12179 + "satsub.w\t%0, %1, %2"
12180 + [(set_attr "length" "4")
12181 + (set_attr "cc" "none")
12182 + (set_attr "type" "alu_sat")])
12183 +
12184 +(define_insn "satadd_h"
12185 + [(set (match_operand:HI 0 "register_operand" "=r")
12186 + (ss_plus:HI (match_operand:HI 1 "register_operand" "r")
12187 + (match_operand:HI 2 "register_operand" "r")))]
12188 + "TARGET_DSP"
12189 + "satadd.h\t%0, %1, %2"
12190 + [(set_attr "length" "4")
12191 + (set_attr "cc" "none")
12192 + (set_attr "type" "alu_sat")])
12193 +
12194 +(define_insn "satsub_h"
12195 + [(set (match_operand:HI 0 "register_operand" "=r")
12196 + (ss_minus:HI (match_operand:HI 1 "register_operand" "r")
12197 + (match_operand:HI 2 "register_operand" "r")))]
12198 + "TARGET_DSP"
12199 + "satsub.h\t%0, %1, %2"
12200 + [(set_attr "length" "4")
12201 + (set_attr "cc" "none")
12202 + (set_attr "type" "alu_sat")])
12203 +
12204 +
12205 +;;=============================================================================
12206 +;; smin
12207 +;;-----------------------------------------------------------------------------
12208 +;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed
12209 +;; values in the registers.
12210 +;;=============================================================================
12211 +(define_insn "sminsi3"
12212 + [(set (match_operand:SI 0 "register_operand" "=r")
12213 + (smin:SI (match_operand:SI 1 "register_operand" "r")
12214 + (match_operand:SI 2 "register_operand" "r")))]
12215 + ""
12216 + "min %0, %1, %2"
12217 + [(set_attr "length" "4")
12218 + (set_attr "cc" "none")])
12219 +
12220 +;;=============================================================================
12221 +;; smax
12222 +;;-----------------------------------------------------------------------------
12223 +;; Set reg0 to the largest value of reg1 and reg2. It is used for signed
12224 +;; values in the registers.
12225 +;;=============================================================================
12226 +(define_insn "smaxsi3"
12227 + [(set (match_operand:SI 0 "register_operand" "=r")
12228 + (smax:SI (match_operand:SI 1 "register_operand" "r")
12229 + (match_operand:SI 2 "register_operand" "r")))]
12230 + ""
12231 + "max %0, %1, %2"
12232 + [(set_attr "length" "4")
12233 + (set_attr "cc" "none")])
12234 +
12235 +
12236 +;;=============================================================================
12237 +;; Logical operations
12238 +;;-----------------------------------------------------------------------------
12239 +
12240 +;; Split up simple DImode logical operations. Simply perform the logical
12241 +;; operation on the upper and lower halves of the registers.
12242 +(define_split
12243 + [(set (match_operand:DI 0 "register_operand" "")
12244 + (match_operator:DI 6 "logical_binary_operator"
12245 + [(match_operand:DI 1 "register_operand" "")
12246 + (match_operand:DI 2 "register_operand" "")]))]
12247 + "reload_completed"
12248 + [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)]))
12249 + (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))]
12250 + "
12251 + {
12252 + operands[3] = gen_highpart (SImode, operands[0]);
12253 + operands[0] = gen_lowpart (SImode, operands[0]);
12254 + operands[4] = gen_highpart (SImode, operands[1]);
12255 + operands[1] = gen_lowpart (SImode, operands[1]);
12256 + operands[5] = gen_highpart (SImode, operands[2]);
12257 + operands[2] = gen_lowpart (SImode, operands[2]);
12258 + }"
12259 +)
12260 +
12261 +;;=============================================================================
12262 +;; Logical operations with shifted operand
12263 +;;=============================================================================
12264 +(define_insn "<code>si_lshift"
12265 + [(set (match_operand:SI 0 "register_operand" "=r")
12266 + (logical:SI (match_operator:SI 4 "logical_shift_operator"
12267 + [(match_operand:SI 2 "register_operand" "r")
12268 + (match_operand:SI 3 "immediate_operand" "Ku05")])
12269 + (match_operand:SI 1 "register_operand" "r")))]
12270 + ""
12271 + {
12272 + if ( GET_CODE(operands[4]) == ASHIFT )
12273 + return "<logical_insn>\t%0, %1, %2 << %3";
12274 + else
12275 + return "<logical_insn>\t%0, %1, %2 >> %3";
12276 + }
12277 +
12278 + [(set_attr "cc" "set_z")]
12279 +)
12280 +
12281 +
12282 +;;************************************************
12283 +;; Peepholes for detecting logical operantions
12284 +;; with shifted operands
12285 +;;************************************************
12286 +
12287 +(define_peephole
12288 + [(set (match_operand:SI 3 "register_operand" "")
12289 + (match_operator:SI 5 "logical_shift_operator"
12290 + [(match_operand:SI 1 "register_operand" "")
12291 + (match_operand:SI 2 "immediate_operand" "")]))
12292 + (set (match_operand:SI 0 "register_operand" "")
12293 + (logical:SI (match_operand:SI 4 "register_operand" "")
12294 + (match_dup 3)))]
12295 + "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
12296 + {
12297 + if ( GET_CODE(operands[5]) == ASHIFT )
12298 + return "<logical_insn>\t%0, %4, %1 << %2";
12299 + else
12300 + return "<logical_insn>\t%0, %4, %1 >> %2";
12301 + }
12302 + [(set_attr "cc" "set_z")]
12303 + )
12304 +
12305 +(define_peephole
12306 + [(set (match_operand:SI 3 "register_operand" "")
12307 + (match_operator:SI 5 "logical_shift_operator"
12308 + [(match_operand:SI 1 "register_operand" "")
12309 + (match_operand:SI 2 "immediate_operand" "")]))
12310 + (set (match_operand:SI 0 "register_operand" "")
12311 + (logical:SI (match_dup 3)
12312 + (match_operand:SI 4 "register_operand" "")))]
12313 + "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
12314 + {
12315 + if ( GET_CODE(operands[5]) == ASHIFT )
12316 + return "<logical_insn>\t%0, %4, %1 << %2";
12317 + else
12318 + return "<logical_insn>\t%0, %4, %1 >> %2";
12319 + }
12320 + [(set_attr "cc" "set_z")]
12321 + )
12322 +
12323 +
12324 +(define_peephole2
12325 + [(set (match_operand:SI 0 "register_operand" "")
12326 + (match_operator:SI 5 "logical_shift_operator"
12327 + [(match_operand:SI 1 "register_operand" "")
12328 + (match_operand:SI 2 "immediate_operand" "")]))
12329 + (set (match_operand:SI 3 "register_operand" "")
12330 + (logical:SI (match_operand:SI 4 "register_operand" "")
12331 + (match_dup 0)))]
12332 + "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
12333 +
12334 + [(set (match_dup 3)
12335 + (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
12336 + (match_dup 4)))]
12337 +
12338 + ""
12339 +)
12340 +
12341 +(define_peephole2
12342 + [(set (match_operand:SI 0 "register_operand" "")
12343 + (match_operator:SI 5 "logical_shift_operator"
12344 + [(match_operand:SI 1 "register_operand" "")
12345 + (match_operand:SI 2 "immediate_operand" "")]))
12346 + (set (match_operand:SI 3 "register_operand" "")
12347 + (logical:SI (match_dup 0)
12348 + (match_operand:SI 4 "register_operand" "")))]
12349 + "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
12350 +
12351 + [(set (match_dup 3)
12352 + (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
12353 + (match_dup 4)))]
12354 +
12355 + ""
12356 +)
12357 +
12358 +
12359 +;;=============================================================================
12360 +;; and
12361 +;;-----------------------------------------------------------------------------
12362 +;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0.
12363 +;;=============================================================================
12364 +
12365 +(define_insn "andnsi"
12366 + [(set (match_operand:SI 0 "register_operand" "=r")
12367 + (and:SI (match_operand:SI 1 "register_operand" "0")
12368 + (not:SI (match_operand:SI 2 "register_operand" "r"))))]
12369 + ""
12370 + "andn %0, %2"
12371 + [(set_attr "cc" "set_z")
12372 + (set_attr "length" "2")]
12373 +)
12374 +
12375 +
12376 +
12377 +
12378 +(define_insn "andsi3"
12379 + [(set (match_operand:SI 0 "register_operand" "=r, r, r, r")
12380 + (and:SI (match_operand:SI 1 "register_operand" "%0, r, 0, r")
12381 + (match_operand:SI 2 "nonmemory_operand" "r, M, i, r")))]
12382 + ""
12383 + {
12384 + switch (which_alternative){
12385 + case 0:
12386 + return "and\t%0, %2";
12387 + case 1:
12388 + {
12389 + int i, first_set = -1;
12390 + /* Search for first bit set in mask */
12391 + for ( i = 31; i >= 0; --i )
12392 + if ( INTVAL(operands[2]) & (1 << i) ){
12393 + first_set = i;
12394 + break;
12395 + }
12396 + operands[2] = gen_rtx_CONST_INT(SImode, first_set + 1);
12397 + return "bfextu\t%0, %1, 0, %2";
12398 + }
12399 + case 2:
12400 + if ( one_bit_cleared_operand(operands[2], VOIDmode) ){
12401 + int bitpos;
12402 + for ( bitpos = 0; bitpos < 32; bitpos++ )
12403 + if ( !(INTVAL(operands[2]) & (1 << bitpos)) )
12404 + break;
12405 + operands[2] = gen_rtx_CONST_INT(SImode, bitpos);
12406 + return "cbr\t%0, %2";
12407 + } else if ( (INTVAL(operands[2]) >= 0) &&
12408 + (INTVAL(operands[2]) <= 65535) )
12409 + return "andl\t%0, %2, COH";
12410 + else if ( (INTVAL(operands[2]) < 0) &&
12411 + (INTVAL(operands[2]) >= -65536 ) )
12412 + return "andl\t%0, lo(%2)";
12413 + else if ( ((INTVAL(operands[2]) & 0xffff) == 0xffff) )
12414 + return "andh\t%0, hi(%2)";
12415 + else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
12416 + return "andh\t%0, hi(%2), COH";
12417 + else
12418 + return "andh\t%0, hi(%2)\;andl\t%0, lo(%2)";
12419 + case 3:
12420 + return "and\t%0, %1, %2";
12421 + default:
12422 + abort();
12423 + }
12424 + }
12425 +
12426 + [(set_attr "length" "2,4,8,4")
12427 + (set_attr "cc" "set_z")])
12428 +
12429 +
12430 +(define_insn "anddi3"
12431 + [(set (match_operand:DI 0 "register_operand" "=&r,&r")
12432 + (and:DI (match_operand:DI 1 "register_operand" "%0,r")
12433 + (match_operand:DI 2 "register_operand" "r,r")))]
12434 + ""
12435 + "#"
12436 + [(set_attr "length" "8")
12437 + (set_attr "cc" "clobber")]
12438 +)
12439 +
12440 +;;=============================================================================
12441 +;; or
12442 +;;-----------------------------------------------------------------------------
12443 +;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0.
12444 +;;=============================================================================
12445 +
12446 +(define_insn "iorsi3"
12447 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
12448 + (ior:SI (match_operand:SI 1 "register_operand" "%0,0,r" )
12449 + (match_operand:SI 2 "nonmemory_operand" "r ,i,r")))]
12450 + ""
12451 + {
12452 + switch (which_alternative){
12453 + case 0:
12454 + return "or\t%0, %2";
12455 + case 1:
12456 + if ( one_bit_set_operand(operands[2], VOIDmode) ){
12457 + int bitpos;
12458 + for (bitpos = 0; bitpos < 32; bitpos++)
12459 + if (INTVAL(operands[2]) & (1 << bitpos))
12460 + break;
12461 + operands[2] = gen_rtx_CONST_INT( SImode, bitpos);
12462 + return "sbr\t%0, %2";
12463 + } else if ( (INTVAL(operands[2]) >= 0) &&
12464 + (INTVAL(operands[2]) <= 65535) )
12465 + return "orl\t%0, %2";
12466 + else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
12467 + return "orh\t%0, hi(%2)";
12468 + else
12469 + return "orh\t%0, hi(%2)\;orl\t%0, lo(%2)";
12470 + case 2:
12471 + return "or\t%0, %1, %2";
12472 + default:
12473 + abort();
12474 + }
12475 + }
12476 + [(set_attr "length" "2,8,4")
12477 + (set_attr "cc" "set_z")])
12478 +
12479 +
12480 +;(define_insn "iorsi3"
12481 +; [(set (match_operand:SI 0 "register_operand" "=r, r, r")
12482 +; (ior:SI (match_operand:SI 1 "avr32_logical_insn_operand" "r, r, rA" )
12483 +; (match_operand:SI 2 "register_operand" "0, i, r")))]
12484 +; ""
12485 +; {
12486 +; switch (which_alternative){
12487 +; case 0:
12488 +; return "or %0, %2";
12489 +; case 1:
12490 +; if ( one_bit_set_operand(operands[2], VOIDmode) ){
12491 +; int i, bitpos;
12492 +; for ( i = 0; i < 32; i++ )
12493 +; if ( INTVAL(operands[2]) & (1 << i) ){
12494 +; bitpos = i;
12495 +; break;
12496 +; }
12497 +; operands[2] = gen_rtx_CONST_INT( SImode, bitpos);
12498 +; return "sbr %0, %2";
12499 +; } else if ( (INTVAL(operands[2]) >= 0) &&
12500 +; (INTVAL(operands[2]) <= 65535) )
12501 +; return "orl %0, %2";
12502 +; else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
12503 +; return "orh %0, hi(%2)";
12504 +; else
12505 +; return "orh %0, hi(%2)\;orl %0, lo(%2)";
12506 +; case 2:
12507 +; return "or %0, %2, %1";
12508 +; }
12509 +; }
12510 +; [(set_attr "length" "2,8,4")
12511 +; (set_attr "cc" "set_z")])
12512 +
12513 +(define_insn "iordi3"
12514 + [(set (match_operand:DI 0 "register_operand" "=&r,&r")
12515 + (ior:DI (match_operand:DI 1 "register_operand" "%0,r")
12516 + (match_operand:DI 2 "register_operand" "r,r")))]
12517 + ""
12518 + "#"
12519 + [(set_attr "length" "8")
12520 + (set_attr "cc" "clobber")]
12521 +)
12522 +
12523 +;;=============================================================================
12524 +;; xor bytes
12525 +;;-----------------------------------------------------------------------------
12526 +;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0.
12527 +;;=============================================================================
12528 +
12529 +(define_insn "xorsi3"
12530 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
12531 + (xor:SI (match_operand:SI 1 "register_operand" "0,0,r")
12532 + (match_operand:SI 2 "nonmemory_operand" "r,i,r")))]
12533 + ""
12534 + {
12535 + switch (which_alternative){
12536 + case 0:
12537 + return "eor %0, %2";
12538 + case 1:
12539 + if ( (INTVAL(operands[2]) >= 0) &&
12540 + (INTVAL(operands[2]) <= 65535) )
12541 + return "eorl %0, %2";
12542 + else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
12543 + return "eorh %0, hi(%2)";
12544 + else
12545 + return "eorh %0, hi(%2)\;eorl %0, lo(%2)";
12546 + case 2:
12547 + return "eor %0, %1, %2";
12548 + default:
12549 + abort();
12550 + }
12551 + }
12552 +
12553 + [(set_attr "length" "2,8,4")
12554 + (set_attr "cc" "set_z")])
12555 +
12556 +(define_insn "xordi3"
12557 + [(set (match_operand:DI 0 "register_operand" "=&r,&r")
12558 + (xor:DI (match_operand:DI 1 "register_operand" "%0,r")
12559 + (match_operand:DI 2 "register_operand" "r,r")))]
12560 + ""
12561 + "#"
12562 + [(set_attr "length" "8")
12563 + (set_attr "cc" "clobber")]
12564 +)
12565 +
12566 +;;=============================================================================
12567 +;; divmod
12568 +;;-----------------------------------------------------------------------------
12569 +;; Signed division that produces both a quotient and a remainder.
12570 +;;=============================================================================
12571 +(define_expand "divmodsi4"
12572 + [(parallel [
12573 + (parallel [
12574 + (set (match_operand:SI 0 "register_operand" "=r")
12575 + (div:SI (match_operand:SI 1 "register_operand" "r")
12576 + (match_operand:SI 2 "register_operand" "r")))
12577 + (set (match_operand:SI 3 "register_operand" "=r")
12578 + (mod:SI (match_dup 1)
12579 + (match_dup 2)))])
12580 + (use (match_dup 4))])]
12581 + ""
12582 + {
12583 + if (! no_new_pseudos) {
12584 + operands[4] = gen_reg_rtx (DImode);
12585 +
12586 + emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2]));
12587 + emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
12588 + emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
12589 +
12590 + DONE;
12591 + } else {
12592 + FAIL;
12593 + }
12594 +
12595 + })
12596 +
12597 +
12598 +(define_insn "divmodsi4_internal"
12599 + [(set (match_operand:DI 0 "register_operand" "=r")
12600 + (unspec:DI [(match_operand:SI 1 "register_operand" "r")
12601 + (match_operand:SI 2 "register_operand" "r")]
12602 + UNSPEC_DIVMODSI4_INTERNAL))]
12603 + ""
12604 + "divs %0, %1, %2"
12605 + [(set_attr "type" "div")
12606 + (set_attr "cc" "none")])
12607 +
12608 +
12609 +;;=============================================================================
12610 +;; udivmod
12611 +;;-----------------------------------------------------------------------------
12612 +;; Unsigned division that produces both a quotient and a remainder.
12613 +;;=============================================================================
12614 +(define_expand "udivmodsi4"
12615 + [(parallel [
12616 + (parallel [
12617 + (set (match_operand:SI 0 "register_operand" "=r")
12618 + (udiv:SI (match_operand:SI 1 "register_operand" "r")
12619 + (match_operand:SI 2 "register_operand" "r")))
12620 + (set (match_operand:SI 3 "register_operand" "=r")
12621 + (umod:SI (match_dup 1)
12622 + (match_dup 2)))])
12623 + (use (match_dup 4))])]
12624 + ""
12625 + {
12626 + if (! no_new_pseudos) {
12627 + operands[4] = gen_reg_rtx (DImode);
12628 +
12629 + emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2]));
12630 + emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
12631 + emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
12632 +
12633 + DONE;
12634 + } else {
12635 + FAIL;
12636 + }
12637 + })
12638 +
12639 +(define_insn "udivmodsi4_internal"
12640 + [(set (match_operand:DI 0 "register_operand" "=r")
12641 + (unspec:DI [(match_operand:SI 1 "register_operand" "r")
12642 + (match_operand:SI 2 "register_operand" "r")]
12643 + UNSPEC_UDIVMODSI4_INTERNAL))]
12644 + ""
12645 + "divu %0, %1, %2"
12646 + [(set_attr "type" "div")
12647 + (set_attr "cc" "none")])
12648 +
12649 +
12650 +;;=============================================================================
12651 +;; Arithmetic-shift left
12652 +;;-----------------------------------------------------------------------------
12653 +;; Arithmetic-shift reg0 left by reg2 or immediate value.
12654 +;;=============================================================================
12655 +
12656 +(define_insn "ashlsi3"
12657 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
12658 + (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r")
12659 + (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
12660 + ""
12661 + "@
12662 + lsl %0, %1, %2
12663 + lsl %0, %2
12664 + lsl %0, %1, %2"
12665 + [(set_attr "length" "4,2,4")
12666 + (set_attr "cc" "set_ncz")])
12667 +
12668 +;;=============================================================================
12669 +;; Arithmetic-shift right
12670 +;;-----------------------------------------------------------------------------
12671 +;; Arithmetic-shift reg0 right by an immediate value.
12672 +;;=============================================================================
12673 +
12674 +(define_insn "ashrsi3"
12675 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
12676 + (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
12677 + (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
12678 + ""
12679 + "@
12680 + asr %0, %1, %2
12681 + asr %0, %2
12682 + asr %0, %1, %2"
12683 + [(set_attr "length" "4,2,4")
12684 + (set_attr "cc" "set_ncz")])
12685 +
12686 +;;=============================================================================
12687 +;; Logical shift right
12688 +;;-----------------------------------------------------------------------------
12689 +;; Logical shift reg0 right by an immediate value.
12690 +;;=============================================================================
12691 +
12692 +(define_insn "lshrsi3"
12693 + [(set (match_operand:SI 0 "register_operand" "=r,r,r")
12694 + (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
12695 + (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
12696 + ""
12697 + "@
12698 + lsr %0, %1, %2
12699 + lsr %0, %2
12700 + lsr %0, %1, %2"
12701 + [(set_attr "length" "4,2,4")
12702 + (set_attr "cc" "set_ncz")])
12703 +
12704 +
12705 +;;=============================================================================
12706 +;; neg
12707 +;;-----------------------------------------------------------------------------
12708 +;; Negate operand 1 and store the result in operand 0.
12709 +;;=============================================================================
12710 +(define_insn "negsi2"
12711 + [(set (match_operand:SI 0 "register_operand" "=r")
12712 + (neg:SI (match_operand:SI 1 "register_operand" "0")))]
12713 + ""
12714 + "neg %0"
12715 + [(set_attr "length" "2")
12716 + (set_attr "cc" "set_vncz")])
12717 +
12718 +;;=============================================================================
12719 +;; abs
12720 +;;-----------------------------------------------------------------------------
12721 +;; Store the absolute value of operand 1 into operand 0.
12722 +;;=============================================================================
12723 +(define_insn "abssi2"
12724 + [(set (match_operand:SI 0 "register_operand" "=r")
12725 + (abs:SI (match_operand:SI 1 "register_operand" "0")))]
12726 + ""
12727 + "abs %0"
12728 + [(set_attr "length" "2")
12729 + (set_attr "cc" "set_z")])
12730 +
12731 +
12732 +;;=============================================================================
12733 +;; one_cmpl
12734 +;;-----------------------------------------------------------------------------
12735 +;; Store the bitwise-complement of operand 1 into operand 0.
12736 +;;=============================================================================
12737 +
12738 +(define_insn "one_cmplsi2"
12739 + [(set (match_operand:SI 0 "register_operand" "=r,r")
12740 + (not:SI (match_operand:SI 1 "register_operand" "r,0")))]
12741 + ""
12742 + "@
12743 + rsub %0, %1, -1
12744 + com %0"
12745 + [(set_attr "length" "4,2")
12746 + (set_attr "cc" "set_z")])
12747 +
12748 +
12749 +;;=============================================================================
12750 +;; Bit load
12751 +;;-----------------------------------------------------------------------------
12752 +;; Load a bit into Z and C flags
12753 +;;=============================================================================
12754 +(define_insn "bldsi"
12755 + [(set (cc0)
12756 + (and:SI (match_operand:SI 0 "register_operand" "r")
12757 + (match_operand:SI 1 "one_bit_set_operand" "i")))]
12758 + ""
12759 + "bld\t%0, %p1"
12760 + [(set_attr "length" "4")
12761 + (set_attr "cc" "bld")]
12762 + )
12763 +
12764 +
12765 +;;=============================================================================
12766 +;; Compare
12767 +;;-----------------------------------------------------------------------------
12768 +;; Compare reg0 with reg1 or an immediate value.
12769 +;;=============================================================================
12770 +
12771 +(define_expand "cmpqi"
12772 + [(set (cc0)
12773 + (compare:QI
12774 + (match_operand:QI 0 "general_operand" "")
12775 + (match_operand:QI 1 "general_operand" "")))]
12776 + ""
12777 + "{
12778 +
12779 + if ( GET_CODE(operands[0]) != REG
12780 + && GET_CODE(operands[0]) != SUBREG)
12781 + operands[0] = force_reg(QImode, operands[0]);
12782 +
12783 +
12784 + if ( GET_CODE(operands[1]) != REG
12785 + && GET_CODE(operands[1]) != SUBREG )
12786 + operands[1] = force_reg(QImode, operands[1]);
12787 +
12788 + avr32_compare_op0 = operands[0];
12789 + avr32_compare_op1 = operands[1];
12790 + emit_insn(gen_cmpqi_internal(operands[0], operands[1]));
12791 + DONE;
12792 + }"
12793 +)
12794 +
12795 +(define_insn "cmpqi_internal"
12796 + [(set (cc0)
12797 + (compare:QI
12798 + (match_operand:QI 0 "register_operand" "r")
12799 + (match_operand:QI 1 "register_operand" "r")))]
12800 + ""
12801 + {
12802 + set_next_insn_cond(insn,
12803 + avr32_output_cmp(get_next_insn_cond(insn), QImode, operands[0], operands[1]));
12804 + return "";
12805 + }
12806 + [(set_attr "length" "4")
12807 + (set_attr "cc" "compare")])
12808 +
12809 +(define_expand "cmphi"
12810 + [(set (cc0)
12811 + (compare:HI
12812 + (match_operand:HI 0 "general_operand" "")
12813 + (match_operand:HI 1 "general_operand" "")))]
12814 + ""
12815 + "{
12816 + if ( GET_CODE(operands[0]) != REG
12817 + && GET_CODE(operands[0]) != SUBREG )
12818 + operands[0] = force_reg(HImode, operands[0]);
12819 +
12820 +
12821 + if ( GET_CODE(operands[1]) != REG
12822 + && GET_CODE(operands[1]) != SUBREG)
12823 + operands[1] = force_reg(HImode, operands[1]);
12824 +
12825 + avr32_compare_op0 = operands[0];
12826 + avr32_compare_op1 = operands[1];
12827 + emit_insn(gen_cmphi_internal(operands[0], operands[1]));
12828 + DONE;
12829 + }"
12830 +)
12831 +
12832 +
12833 +(define_insn "cmphi_internal"
12834 + [(set (cc0)
12835 + (compare:HI
12836 + (match_operand:HI 0 "register_operand" "r")
12837 + (match_operand:HI 1 "register_operand" "r")))]
12838 + ""
12839 + {
12840 + set_next_insn_cond(insn,
12841 + avr32_output_cmp(get_next_insn_cond(insn), HImode, operands[0], operands[1]));
12842 + return "";
12843 + }
12844 + [(set_attr "length" "4")
12845 + (set_attr "cc" "compare")])
12846 +
12847 +
12848 +(define_expand "cmpsi"
12849 + [(set (cc0)
12850 + (compare:SI
12851 + (match_operand:SI 0 "general_operand" "")
12852 + (match_operand:SI 1 "general_operand" "")))]
12853 + ""
12854 + "{
12855 + if ( GET_CODE(operands[0]) != REG
12856 + && GET_CODE(operands[0]) != SUBREG )
12857 + operands[0] = force_reg(SImode, operands[0]);
12858 +
12859 + if ( GET_CODE(operands[1]) != REG
12860 + && GET_CODE(operands[1]) != SUBREG
12861 + && GET_CODE(operands[1]) != CONST_INT )
12862 + operands[1] = force_reg(SImode, operands[1]);
12863 +
12864 + avr32_compare_op0 = operands[0];
12865 + avr32_compare_op1 = operands[1];
12866 +
12867 +
12868 + emit_insn(gen_cmpsi_internal(operands[0], operands[1]));
12869 + DONE;
12870 + }"
12871 +)
12872 +
12873 +
12874 +
12875 +
12876 +(define_insn "cmpsi_internal"
12877 + [(set (cc0)
12878 + (compare:SI
12879 + (match_operand:SI 0 "register_operand" "r, r, r")
12880 + (match_operand:SI 1 "nonmemory_operand" "r, Ks06, Ks21")))]
12881 + ""
12882 + {
12883 + set_next_insn_cond(insn,
12884 + avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], operands[1]));
12885 + return "";
12886 + }
12887 +
12888 + [(set_attr "length" "2,2,4")
12889 + (set_attr "cc" "compare")])
12890 +
12891 +
12892 +(define_expand "cmpdi"
12893 + [(set (cc0)
12894 + (compare:DI
12895 + (match_operand:DI 0 "register_operand" "")
12896 + (match_operand:DI 1 "register_operand" "")))]
12897 + ""
12898 + {
12899 + avr32_compare_op0 = operands[0];
12900 + avr32_compare_op1 = operands[1];
12901 + emit_insn(gen_cmpdi_internal(operands[0], operands[1]));
12902 + DONE;
12903 + }
12904 +)
12905 +
12906 +(define_insn "cmpdi_internal"
12907 + [(set (cc0)
12908 + (compare:DI
12909 + (match_operand:DI 0 "register_operand" "r")
12910 + (match_operand:DI 1 "register_operand" "r")))]
12911 + ""
12912 + {
12913 + set_next_insn_cond(insn,
12914 + avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], operands[1]));
12915 + return "";
12916 + }
12917 +
12918 + [(set_attr "length" "6")
12919 + (set_attr "type" "alu2")
12920 + (set_attr "cc" "compare")])
12921 +
12922 +
12923 +
12924 +;;=============================================================================
12925 +;; Test if zero
12926 +;;-----------------------------------------------------------------------------
12927 +;; Compare reg against zero and set the condition codes.
12928 +;;=============================================================================
12929 +
12930 +
12931 +(define_expand "tstsi"
12932 + [(set (cc0)
12933 + (match_operand:SI 0 "register_operand" ""))]
12934 + ""
12935 + {
12936 + avr32_compare_op0 = operands[0];
12937 + avr32_compare_op1 = gen_rtx_CONST_INT(SImode, 0);
12938 + emit_insn(gen_tstsi_internal(operands[0]));
12939 + DONE;
12940 + }
12941 +)
12942 +
12943 +(define_insn "tstsi_internal"
12944 + [(set (cc0)
12945 + (match_operand:SI 0 "register_operand" "r"))]
12946 + ""
12947 + {
12948 + set_next_insn_cond(insn,
12949 + avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx));
12950 +
12951 + return "";
12952 + }
12953 + [(set_attr "length" "2")
12954 + (set_attr "cc" "compare")])
12955 +
12956 +
12957 +(define_expand "tstdi"
12958 + [(set (cc0)
12959 + (match_operand:DI 0 "register_operand" ""))]
12960 + ""
12961 + {
12962 + avr32_compare_op0 = operands[0];
12963 + avr32_compare_op1 = gen_rtx_CONST_INT(DImode, 0);
12964 + emit_insn(gen_tstdi_internal(operands[0]));
12965 + DONE;
12966 + }
12967 +)
12968 +
12969 +(define_insn "tstdi_internal"
12970 + [(set (cc0)
12971 + (match_operand:DI 0 "register_operand" "r"))]
12972 + ""
12973 + {
12974 + set_next_insn_cond(insn,
12975 + avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx));
12976 + return "";
12977 + }
12978 + [(set_attr "length" "4")
12979 + (set_attr "type" "alu2")
12980 + (set_attr "cc" "compare")])
12981 +
12982 +
12983 +
12984 +;;=============================================================================
12985 +;; Convert operands
12986 +;;-----------------------------------------------------------------------------
12987 +;;
12988 +;;=============================================================================
12989 +(define_insn "truncdisi2"
12990 + [(set (match_operand:SI 0 "general_operand" "")
12991 + (truncate:SI (match_operand:DI 1 "general_operand" "")))]
12992 + ""
12993 + "truncdisi2")
12994 +
12995 +;;=============================================================================
12996 +;; Extend
12997 +;;-----------------------------------------------------------------------------
12998 +;;
12999 +;;=============================================================================
13000 +
13001 +
13002 +(define_insn "extendhisi2"
13003 + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
13004 + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
13005 + ""
13006 + {
13007 + switch ( which_alternative ){
13008 + case 0:
13009 + return "casts.h\t%0";
13010 + case 1:
13011 + return "bfexts\t%0, %1, 0, 16";
13012 + case 2:
13013 + case 3:
13014 + return "ld.sh\t%0, %1";
13015 + default:
13016 + abort();
13017 + }
13018 + }
13019 + [(set_attr "length" "2,4,2,4")
13020 + (set_attr "cc" "set_ncz,set_ncz,none,none")
13021 + (set_attr "type" "alu,alu,load_rm,load_rm")])
13022 +
13023 +(define_insn "extendqisi2"
13024 + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
13025 + (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
13026 + ""
13027 + {
13028 + switch ( which_alternative ){
13029 + case 0:
13030 + return "casts.b\t%0";
13031 + case 1:
13032 + return "bfexts\t%0, %1, 0, 8";
13033 + case 2:
13034 + case 3:
13035 + return "ld.sb\t%0, %1";
13036 + default:
13037 + abort();
13038 + }
13039 + }
13040 + [(set_attr "length" "2,4,2,4")
13041 + (set_attr "cc" "set_ncz,set_ncz,none,none")
13042 + (set_attr "type" "alu,alu,load_rm,load_rm")])
13043 +
13044 +(define_insn "extendqihi2"
13045 + [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
13046 + (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
13047 + ""
13048 + {
13049 + switch ( which_alternative ){
13050 + case 0:
13051 + return "casts.b\t%0";
13052 + case 1:
13053 + return "bfexts\t%0, %1, 0, 8";
13054 + case 2:
13055 + case 3:
13056 + return "ld.sb\t%0, %1";
13057 + default:
13058 + abort();
13059 + }
13060 + }
13061 + [(set_attr "length" "2,4,2,4")
13062 + (set_attr "cc" "set_ncz,set_ncz,none,none")
13063 + (set_attr "type" "alu,alu,load_rm,load_rm")])
13064 +
13065 +
13066 +;;=============================================================================
13067 +;; Zero-extend
13068 +;;-----------------------------------------------------------------------------
13069 +;;
13070 +;;=============================================================================
13071 +
13072 +(define_insn "zero_extendhisi2"
13073 + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
13074 + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
13075 + ""
13076 + {
13077 + switch ( which_alternative ){
13078 + case 0:
13079 + return "castu.h\t%0";
13080 + case 1:
13081 + return "bfextu\t%0, %1, 0, 16";
13082 + case 2:
13083 + case 3:
13084 + return "ld.uh\t%0, %1";
13085 + default:
13086 + abort();
13087 + }
13088 + }
13089 +
13090 + [(set_attr "length" "2,4,2,4")
13091 + (set_attr "cc" "set_ncz,set_ncz,none,none")
13092 + (set_attr "type" "alu,alu,load_rm,load_rm")])
13093 +
13094 +(define_insn "zero_extendqisi2"
13095 + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
13096 + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
13097 + ""
13098 + {
13099 + switch ( which_alternative ){
13100 + case 0:
13101 + return "castu.b\t%0";
13102 + case 1:
13103 + return "bfextu\t%0, %1, 0, 8";
13104 + case 2:
13105 + case 3:
13106 + return "ld.ub\t%0, %1";
13107 + default:
13108 + abort();
13109 + }
13110 + }
13111 + [(set_attr "length" "2,4,2,4")
13112 + (set_attr "cc" "set_ncz, set_ncz, none, none")
13113 + (set_attr "type" "alu, alu, load_rm, load_rm")])
13114 +
13115 +(define_insn "zero_extendqihi2"
13116 + [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
13117 + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
13118 + ""
13119 + {
13120 + switch ( which_alternative ){
13121 + case 0:
13122 + return "castu.b\t%0";
13123 + case 1:
13124 + return "bfextu\t%0, %1, 0, 8";
13125 + case 2:
13126 + case 3:
13127 + return "ld.ub\t%0, %1";
13128 + default:
13129 + abort();
13130 + }
13131 + }
13132 + [(set_attr "length" "2,4,2,4")
13133 + (set_attr "cc" "set_ncz, set_ncz, none, none")
13134 + (set_attr "type" "alu, alu, load_rm, load_rm")])
13135 +
13136 +
13137 +
13138 +;;=============================================================================
13139 +;; Conditional set register
13140 +;; sr{cond4} rd
13141 +;;-----------------------------------------------------------------------------
13142 +
13143 +;;Because of the same issue as with conditional moves and adds we must
13144 +;;not separate the compare instrcution from the scc instruction as
13145 +;;they might be sheduled "badly".
13146 +
13147 +(define_expand "s<code>"
13148 + [(set (match_operand:SI 0 "register_operand" "")
13149 + (any_cond (cc0)
13150 + (const_int 0)))]
13151 + ""
13152 + {
13153 + if ( !avr32_expand_scc(<CODE>, operands) ){
13154 + FAIL;
13155 + }
13156 + DONE;
13157 + }
13158 + )
13159 +
13160 +
13161 +(define_insn "comparesi_and_set"
13162 + [(set (match_operand:SI 0 "register_operand" "=r")
13163 + (match_operator 1 "avr32_comparison_operator"
13164 + [ (compare (match_operand:SI 2 "register_operand" "r")
13165 + (match_operand:SI 3 "general_operand" "rKs06Ks21"))
13166 + (const_int 0)]))]
13167 + ""
13168 + {
13169 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[2]), operands[2], operands[3]);
13170 + return "sr%1\t%0";
13171 + }
13172 + [(set_attr "length" "6")
13173 + (set_attr "cc" "clobber")])
13174 +
13175 +(define_insn "comparehi_and_set"
13176 + [(set (match_operand:SI 0 "register_operand" "=r")
13177 + (match_operator 1 "avr32_comparison_operator"
13178 + [ (compare (match_operand:HI 2 "register_operand" "r")
13179 + (match_operand:HI 3 "register_operand" "r"))
13180 + (const_int 0)]))]
13181 + ""
13182 + {
13183 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[2]), operands[2], operands[3]);
13184 + return "sr%1\t%0";
13185 + }
13186 + [(set_attr "length" "6")
13187 + (set_attr "cc" "clobber")])
13188 +
13189 +(define_insn "compareqi_and_set"
13190 + [(set (match_operand:SI 0 "register_operand" "=r")
13191 + (match_operator 1 "avr32_comparison_operator"
13192 + [ (compare (match_operand:QI 2 "register_operand" "r")
13193 + (match_operand:QI 3 "register_operand" "r"))
13194 + (const_int 0)]))]
13195 + ""
13196 + {
13197 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[2]), operands[2], operands[3]);
13198 + return "sr%1\t%0";
13199 + }
13200 + [(set_attr "length" "6")
13201 + (set_attr "cc" "clobber")])
13202 +
13203 +(define_insn "*comparedi_and_set"
13204 + [(set (match_operand:SI 0 "register_operand" "=r")
13205 + (match_operator 1 "avr32_comparison_operator"
13206 + [ (compare (match_operand:DI 2 "register_operand" "r")
13207 + (match_operand:DI 3 "register_operand" "r"))
13208 + (const_int 0)]))]
13209 + ""
13210 + {
13211 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[2]), operands[2], operands[3]);
13212 + return "sr%1\t%0";
13213 + }
13214 + [(set_attr "length" "6")
13215 + (set_attr "cc" "clobber")])
13216 +
13217 +(define_insn "*tstdi_and_set"
13218 + [(set (match_operand:SI 0 "register_operand" "=r")
13219 + (match_operator 1 "avr32_comparison_operator"
13220 + [ (compare (match_operand:DI 2 "register_operand" "r")
13221 + (const_int 0))
13222 + (const_int 0)]))]
13223 + ""
13224 + {
13225 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[2]), operands[2], const0_rtx);
13226 + return "sr%1\t%0";
13227 + }
13228 + [(set_attr "length" "6")
13229 + (set_attr "cc" "clobber")])
13230 +
13231 +
13232 +
13233 +;;=============================================================================
13234 +;; Conditional branch
13235 +;;-----------------------------------------------------------------------------
13236 +;; Branch to label if the specified condition codes are set.
13237 +;;=============================================================================
13238 +; branch if negative
13239 +(define_insn "bmi"
13240 + [(set (pc)
13241 + (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
13242 + (label_ref (match_operand 0 "" ""))
13243 + (pc)))]
13244 + ""
13245 + "brmi %0"
13246 + [(set_attr "type" "branch")
13247 + (set (attr "length")
13248 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13249 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13250 + (const_int 2)] ; use compact branch
13251 + (const_int 4))) ; use extended branch
13252 + (set_attr "cc" "none")])
13253 +
13254 +(define_insn "*bmi-reverse"
13255 + [(set (pc)
13256 + (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
13257 + (pc)
13258 + (label_ref (match_operand 0 "" ""))))]
13259 + ""
13260 + "brpl %0"
13261 + [(set_attr "type" "branch")
13262 + (set (attr "length")
13263 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13264 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13265 + (const_int 2)] ; use compact branch
13266 + (const_int 4))) ; use extended branch
13267 + (set_attr "cc" "none")])
13268 +
13269 +; branch if positive
13270 +(define_insn "bpl"
13271 + [(set (pc)
13272 + (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
13273 + (label_ref (match_operand 0 "" ""))
13274 + (pc)))]
13275 + ""
13276 + "brpl %0"
13277 + [(set_attr "type" "branch")
13278 + (set (attr "length")
13279 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13280 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13281 + (const_int 2)] ; use compact branch
13282 + (const_int 4))) ; use extended branch
13283 + (set_attr "cc" "none")])
13284 +
13285 +(define_insn "*bpl-reverse"
13286 + [(set (pc)
13287 + (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
13288 + (pc)
13289 + (label_ref (match_operand 0 "" ""))))]
13290 + ""
13291 + "brmi %0"
13292 + [(set_attr "type" "branch")
13293 + (set (attr "length")
13294 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13295 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13296 + (const_int 2)] ; use compact branch
13297 + (const_int 4))) ; use extended branch
13298 + (set_attr "cc" "none")])
13299 +
13300 +; branch if equal
13301 +(define_insn "b<code>"
13302 + [(set (pc)
13303 + (if_then_else (any_cond:CC (cc0)
13304 + (const_int 0))
13305 + (label_ref (match_operand 0 "" ""))
13306 + (pc)))]
13307 + ""
13308 + "br<cond> %0 "
13309 + [(set_attr "type" "branch")
13310 + (set (attr "length")
13311 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13312 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13313 + (const_int 2)] ; use compact branch
13314 + (const_int 4))) ; use extended branch
13315 + (set_attr "cc" "none")])
13316 +
13317 +
13318 +(define_insn "*b<code>-reverse"
13319 + [(set (pc)
13320 + (if_then_else (any_cond:CC (cc0)
13321 + (const_int 0))
13322 + (pc)
13323 + (label_ref (match_operand 0 "" ""))))]
13324 + ""
13325 + "br<invcond> %0 "
13326 + [(set_attr "type" "branch")
13327 + (set (attr "length")
13328 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
13329 + (le (minus (pc) (match_dup 0)) (const_int 256)))
13330 + (const_int 2)] ; use compact branch
13331 + (const_int 4))) ; use extended branch
13332 + (set_attr "cc" "none")])
13333 +
13334 +
13335 +
13336 +;=============================================================================
13337 +; Conditional Add/Subtract
13338 +;-----------------------------------------------------------------------------
13339 +; sub{cond4} Rd, imm
13340 +;=============================================================================
13341 +
13342 +
13343 +(define_expand "add<mode>cc"
13344 + [(set (match_operand:ADDCC 0 "register_operand" "")
13345 + (if_then_else:ADDCC (match_operand 1 "avr32_comparison_operator" "")
13346 + (match_operand:ADDCC 2 "register_immediate_operand" "")
13347 + (match_operand:ADDCC 3 "register_immediate_operand" "")))]
13348 + ""
13349 + {
13350 + if ( avr32_expand_addcc(<MODE>mode, operands ) )
13351 + DONE;
13352 + else
13353 + FAIL;
13354 + }
13355 + )
13356 +
13357 +
13358 +(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>"
13359 + [(set (match_operand:ADDCC 0 "register_operand" "=&r")
13360 + (unspec:ADDCC [(match_operand 1 "avr32_comparison_operator" "")
13361 + (match_operand:ADDCC 2 "register_operand" "0")
13362 + (match_operand:ADDCC 3 "immediate_operand" "Ks08")
13363 + (match_operand:CMP 4 "register_operand" "r")
13364 + (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")
13365 + ]
13366 + UNSPEC_ADDSICC ))]
13367 + ""
13368 + {
13369 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
13370 +
13371 + return "sub%1\t%0, %3";
13372 + }
13373 + [(set_attr "length" "8")
13374 + (set_attr "cc" "clobber")])
13375 +
13376 +
13377 +;=============================================================================
13378 +; Conditional Move
13379 +;-----------------------------------------------------------------------------
13380 +; mov{cond4} Rd, (Rs/imm)
13381 +;=============================================================================
13382 +(define_expand "mov<mode>cc"
13383 + [(set (match_operand:ADDCC 0 "register_operand" "")
13384 + (if_then_else:ADDCC (match_operand 1 "avr32_comparison_operator" "")
13385 + (match_operand:ADDCC 2 "register_immediate_operand" "")
13386 + (match_operand:ADDCC 3 "register_immediate_operand" "")))]
13387 + ""
13388 + {
13389 + if ( avr32_expand_movcc(<MODE>mode, operands ) )
13390 + DONE;
13391 + else
13392 + FAIL;
13393 + }
13394 + )
13395 +
13396 +(define_insn "mov<MOVCC:mode>cc_cmp<CMP:mode>"
13397 + [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r")
13398 + (unspec:MOVCC [(match_operand 1 "avr32_comparison_operator" "")
13399 + (match_operand:MOVCC 2 "register_immediate_operand" "0,rKs08,rKs08")
13400 + (match_operand:MOVCC 3 "register_immediate_operand" "rKs08,0,rKs08")
13401 + (match_operand:CMP 4 "register_operand" "r, r, r")
13402 + (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>, <CMP:cmp_constraint>, <CMP:cmp_constraint>")
13403 + ]
13404 + UNSPEC_MOVSICC ))]
13405 + ""
13406 + {
13407 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
13408 +
13409 + switch( which_alternative ){
13410 + case 0:
13411 + return "mov%i1 %0, %3";
13412 + case 1:
13413 + return "mov%1 %0, %2";
13414 + case 2:
13415 + return "mov%1 %0, %2\;mov%i1 %0, %3";
13416 + default:
13417 + abort();
13418 + }
13419 +
13420 +
13421 + }
13422 + [(set_attr "length" "8,8,12")
13423 + (set_attr "cc" "clobber")])
13424 +
13425 +
13426 +;;=============================================================================
13427 +;; jump
13428 +;;-----------------------------------------------------------------------------
13429 +;; Jump inside a function; an unconditional branch to a label.
13430 +;;=============================================================================
13431 +(define_insn "jump"
13432 + [(set (pc)
13433 + (label_ref (match_operand 0 "" "")))]
13434 + ""
13435 + {
13436 + if (get_attr_length(insn) > 4)
13437 + return "Can't jump this far";
13438 + return (get_attr_length(insn) == 2 ?
13439 + "rjmp %0" : "bral %0");
13440 + }
13441 + [(set_attr "type" "branch")
13442 + (set (attr "length")
13443 + (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022))
13444 + (le (minus (pc) (match_dup 0)) (const_int 1024)))
13445 + (const_int 2) ; use rjmp
13446 + (le (match_dup 0) (const_int 1048575))
13447 + (const_int 4)] ; use bral
13448 + (const_int 8))) ; do something else
13449 + (set_attr "cc" "none")])
13450 +
13451 +;;=============================================================================
13452 +;; call
13453 +;;-----------------------------------------------------------------------------
13454 +;; Subroutine call instruction returning no value.
13455 +;;=============================================================================
13456 +(define_insn "call_internal"
13457 + [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W"))
13458 + (match_operand 1 "" ""))
13459 + (clobber (reg:SI LR_REGNUM))])]
13460 + ""
13461 + {
13462 + switch (which_alternative){
13463 + case 0:
13464 + return "icall\t%0";
13465 + case 1:
13466 + return "rcall\t%0";
13467 + case 2:
13468 + return "mcall\t%0";
13469 + case 3:
13470 + if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
13471 + return "call\t%0";
13472 + else
13473 + return "mcall\tr6[%0@got]";
13474 + default:
13475 + abort();
13476 + }
13477 + }
13478 + [(set_attr "type" "call")
13479 + (set_attr "length" "2,4,4,10")
13480 + (set_attr "cc" "clobber")])
13481 +
13482 +
13483 +(define_expand "call"
13484 + [(parallel [(call (match_operand:SI 0 "" "")
13485 + (match_operand 1 "" ""))
13486 + (clobber (reg:SI LR_REGNUM))])]
13487 + ""
13488 + {
13489 + rtx call_address;
13490 + if ( GET_CODE(operands[0]) != MEM )
13491 + FAIL;
13492 +
13493 + call_address = XEXP(operands[0], 0);
13494 +
13495 + /* If assembler supports call pseudo insn and the call
13496 + address is a symbol then nothing special needs to be done. */
13497 + if ( TARGET_HAS_ASM_ADDR_PSEUDOS
13498 + && (GET_CODE(call_address) == SYMBOL_REF) ){
13499 + /* We must however mark the function as using the GOT if
13500 + flag_pic is set, since the call insn might turn into
13501 + a mcall using the GOT ptr register. */
13502 + if ( flag_pic ){
13503 + current_function_uses_pic_offset_table = 1;
13504 + emit_call_insn(gen_call_internal(call_address, operands[1]));
13505 + DONE;
13506 + }
13507 + } else {
13508 + if ( flag_pic &&
13509 + GET_CODE(call_address) == SYMBOL_REF ){
13510 + current_function_uses_pic_offset_table = 1;
13511 + emit_call_insn(gen_call_internal(call_address, operands[1]));
13512 + DONE;
13513 + }
13514 +
13515 + if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ){
13516 + if ( optimize_size &&
13517 + GET_CODE(call_address) == SYMBOL_REF ){
13518 + call_address = force_const_mem(SImode, call_address);
13519 + } else {
13520 + call_address = force_reg(SImode, call_address);
13521 + }
13522 + }
13523 + }
13524 + emit_call_insn(gen_call_internal(call_address, operands[1]));
13525 + DONE;
13526 + }
13527 +)
13528 +
13529 +;;=============================================================================
13530 +;; call_value
13531 +;;-----------------------------------------------------------------------------
13532 +;; Subrutine call instruction returning a value.
13533 +;;=============================================================================
13534 +(define_expand "call_value"
13535 + [(parallel [(set (match_operand:SI 0 "" "")
13536 + (call (match_operand:SI 1 "" "")
13537 + (match_operand 2 "" "")))
13538 + (clobber (reg:SI LR_REGNUM))])]
13539 + ""
13540 + {
13541 + rtx call_address;
13542 + if ( GET_CODE(operands[1]) != MEM )
13543 + FAIL;
13544 +
13545 + call_address = XEXP(operands[1], 0);
13546 +
13547 + /* If assembler supports call pseudo insn and the call
13548 + address is a symbol then nothing special needs to be done. */
13549 + if ( TARGET_HAS_ASM_ADDR_PSEUDOS
13550 + && (GET_CODE(call_address) == SYMBOL_REF) ){
13551 + /* We must however mark the function as using the GOT if
13552 + flag_pic is set, since the call insn might turn into
13553 + a mcall using the GOT ptr register. */
13554 + if ( flag_pic ) {
13555 + current_function_uses_pic_offset_table = 1;
13556 + emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
13557 + DONE;
13558 + }
13559 + } else {
13560 + if ( flag_pic &&
13561 + GET_CODE(call_address) == SYMBOL_REF ){
13562 + current_function_uses_pic_offset_table = 1;
13563 + emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
13564 + DONE;
13565 + }
13566 +
13567 + if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){
13568 + if ( optimize_size &&
13569 + GET_CODE(call_address) == SYMBOL_REF){
13570 + call_address = force_const_mem(SImode, call_address);
13571 + } else {
13572 + call_address = force_reg(SImode, call_address);
13573 + }
13574 + }
13575 + }
13576 + emit_call_insn(gen_call_value_internal(operands[0], call_address,
13577 + operands[2]));
13578 + DONE;
13579 +
13580 + })
13581 +
13582 +(define_insn "call_value_internal"
13583 + [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r")
13584 + (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W"))
13585 + (match_operand 2 "" "")))
13586 + (clobber (reg:SI LR_REGNUM))])]
13587 + ;; Operand 2 not used on the AVR32.
13588 + ""
13589 + {
13590 + switch (which_alternative){
13591 + case 0:
13592 + return "icall\t%1";
13593 + case 1:
13594 + return "rcall\t%1";
13595 + case 2:
13596 + return "mcall\t%1";
13597 + case 3:
13598 + if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
13599 + return "call\t%1";
13600 + else
13601 + return "mcall\tr6[%1@got]";
13602 + default:
13603 + abort();
13604 + }
13605 + }
13606 + [(set_attr "type" "call")
13607 + (set_attr "length" "2,4,4,10")
13608 + (set_attr "cc" "call_set")])
13609 +
13610 +
13611 +;;=============================================================================
13612 +;; untyped_call
13613 +;;-----------------------------------------------------------------------------
13614 +;; Subrutine call instruction returning a value of any type.
13615 +;; The code is copied from m68k.md (except gen_blockage is removed)
13616 +;; Fixme!
13617 +;;=============================================================================
13618 +(define_expand "untyped_call"
13619 + [(parallel [(call (match_operand 0 "avr32_call_operand" "")
13620 + (const_int 0))
13621 + (match_operand 1 "" "")
13622 + (match_operand 2 "" "")])]
13623 + ""
13624 + {
13625 + int i;
13626 +
13627 + emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
13628 +
13629 + for (i = 0; i < XVECLEN (operands[2], 0); i++) {
13630 + rtx set = XVECEXP (operands[2], 0, i);
13631 + emit_move_insn (SET_DEST (set), SET_SRC (set));
13632 + }
13633 +
13634 + /* The optimizer does not know that the call sets the function value
13635 + registers we stored in the result block. We avoid problems by
13636 + claiming that all hard registers are used and clobbered at this
13637 + point. */
13638 + emit_insn (gen_blockage ());
13639 +
13640 + DONE;
13641 + })
13642 +
13643 +
13644 +;;=============================================================================
13645 +;; return
13646 +;;=============================================================================
13647 +
13648 +(define_insn "return"
13649 + [(return)]
13650 + "USE_RETURN_INSN (FALSE)"
13651 + {
13652 + avr32_output_return_instruction(TRUE, FALSE, NULL, NULL);
13653 + return "";
13654 + }
13655 + [(set_attr "length" "4")
13656 + (set_attr "type" "call")]
13657 + )
13658 +
13659 +(define_insn "*return_value_imm"
13660 + [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
13661 + (use (reg RETVAL_REGNUM))
13662 + (return)])]
13663 + "USE_RETURN_INSN (FALSE) &&
13664 + ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
13665 + {
13666 + avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]);
13667 + return "";
13668 + }
13669 + [(set_attr "length" "4")
13670 + (set_attr "type" "call")]
13671 + )
13672 +
13673 +(define_insn "*return_value_si"
13674 + [(set (reg RETVAL_REGNUM) (match_operand:SI 0 "register_operand" "r"))
13675 + (use (reg RETVAL_REGNUM))
13676 + (return)]
13677 + "USE_RETURN_INSN (TRUE)"
13678 + "retal %0";
13679 + [(set_attr "type" "call")]
13680 + )
13681 +
13682 +(define_insn "*return_value_hi"
13683 + [(parallel [(set (reg RETVAL_REGNUM) (match_operand:HI 0 "register_operand" "r"))
13684 + (use (reg RETVAL_REGNUM))
13685 + (return)])]
13686 + "USE_RETURN_INSN (TRUE)"
13687 + "retal %0"
13688 + [(set_attr "type" "call")]
13689 + )
13690 +
13691 +(define_insn "*return_value_qi"
13692 + [(parallel [(set (reg RETVAL_REGNUM) (match_operand:QI 0 "register_operand" "r"))
13693 + (use (reg RETVAL_REGNUM))
13694 + (return)])]
13695 + "USE_RETURN_INSN (TRUE)"
13696 + "retal %0"
13697 + [(set_attr "type" "call")]
13698 + )
13699 +
13700 +;;=============================================================================
13701 +;; nop
13702 +;;-----------------------------------------------------------------------------
13703 +;; No-op instruction.
13704 +;;=============================================================================
13705 +(define_insn "nop"
13706 + [(const_int 0)]
13707 + ""
13708 + "nop"
13709 + [(set_attr "length" "2")
13710 + (set_attr "type" "alu")
13711 + (set_attr "cc" "none")])
13712 +
13713 +;;=============================================================================
13714 +;; nonlocal_goto
13715 +;;-----------------------------------------------------------------------------
13716 +;; Jump from one function to a label in an outer function.
13717 +;; Must invalidate return stack, since the function will be exited without
13718 +;; a return
13719 +;;=============================================================================
13720 +(define_expand "nonlocal_goto"
13721 + [(use (match_operand 0 "" ""))
13722 + (use (match_operand 1 "" ""))
13723 + (use (match_operand 2 "" ""))
13724 + (use (match_operand 3 "" ""))]
13725 + ""
13726 + {
13727 + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__nonlocal_goto"),
13728 + 0, VOIDmode, 3,
13729 + operands[0], SImode,
13730 + operands[1], Pmode,
13731 + operands[2], SImode);
13732 +
13733 + DONE;
13734 + }
13735 +)
13736 +
13737 +
13738 +(define_expand "builtin_longjmp"
13739 + [(use (match_operand 0 "" ""))]
13740 + ""
13741 + {
13742 + rtx ops[3];
13743 +
13744 + ops[0] = gen_rtx_MEM (Pmode, gen_rtx_PLUS(SImode, operands[0], gen_rtx_CONST_INT(SImode,0)));
13745 + ops[1] = gen_rtx_MEM (Pmode, gen_rtx_PLUS(SImode, operands[0], gen_rtx_CONST_INT(SImode,4)));
13746 + ops[2] = gen_rtx_MEM (Pmode, gen_rtx_PLUS(SImode, operands[0], gen_rtx_CONST_INT(SImode,8)));
13747 +
13748 +
13749 + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__nonlocal_goto"),
13750 + 0, VOIDmode, 3,
13751 + ops[0], SImode,
13752 + ops[1], Pmode,
13753 + ops[2], SImode);
13754 +
13755 + DONE;
13756 + }
13757 + )
13758 +
13759 +
13760 +;;=============================================================================
13761 +;; indirect_jump
13762 +;;-----------------------------------------------------------------------------
13763 +;; Jump to an address in reg or memory.
13764 +;;=============================================================================
13765 +(define_expand "indirect_jump"
13766 + [(set (pc)
13767 + (match_operand:SI 0 "general_operand" "r,m"))]
13768 + ""
13769 + {
13770 + /* One of the ops has to be in a register. */
13771 + if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS )
13772 + && !avr32_legitimate_pic_operand_p(operands[0]) )
13773 + operands[0] = legitimize_pic_address (operands[0], SImode, 0);
13774 + else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) )
13775 + /* If we have an address operand then this function uses the pic register. */
13776 + current_function_uses_pic_offset_table = 1;
13777 + })
13778 +
13779 +
13780 +(define_insn "indirect_jump_internal"
13781 + [(set (pc)
13782 + (match_operand:SI 0 "general_operand" "r,m,W"))]
13783 + ""
13784 + {
13785 + switch( which_alternative ){
13786 + case 0:
13787 + return "mov\tpc, %0";
13788 + case 1:
13789 + if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) )
13790 + return "lddpc\tpc, %0";
13791 + else
13792 + return "ld.w\tpc, %0";
13793 + case 2:
13794 + if ( flag_pic )
13795 + return "ld.w\tpc, r6[%0@got]";
13796 + else
13797 + return "lda.w\tpc, %0";
13798 + default:
13799 + abort();
13800 + }
13801 + }
13802 + [(set_attr "length" "2,4,8")
13803 + (set_attr "type" "call,call,call")
13804 + (set_attr "cc" "none,none,clobber")])
13805 +
13806 +
13807 +;;=============================================================================
13808 +;; casesi
13809 +;;=============================================================================
13810 +
13811 +
13812 +(define_expand "casesi"
13813 + [(match_operand:SI 0 "register_operand" "") ; index to jump on
13814 + (match_operand:SI 1 "const_int_operand" "") ; lower bound
13815 + (match_operand:SI 2 "const_int_operand" "") ; total range
13816 + (match_operand:SI 3 "" "") ; table label
13817 + (match_operand:SI 4 "" "")] ; Out of range label
13818 + ""
13819 + "
13820 + {
13821 + rtx reg;
13822 + if (operands[1] != const0_rtx)
13823 + {
13824 + if (!avr32_const_ok_for_constraint_p(INTVAL (operands[1]), 'I', \"Is21\")){
13825 + reg = force_reg(SImode, GEN_INT (INTVAL (operands[1])));
13826 + emit_insn (gen_subsi3 (reg, operands[0],
13827 + reg));
13828 + } else {
13829 + reg = gen_reg_rtx (SImode);
13830 + emit_insn (gen_addsi3 (reg, operands[0],
13831 + GEN_INT (-INTVAL (operands[1]))));
13832 + }
13833 + operands[0] = reg;
13834 + }
13835 +
13836 + if (!avr32_const_ok_for_constraint_p(INTVAL (operands[2]), 'K', \"Ks21\"))
13837 + operands[2] = force_reg (SImode, operands[2]);
13838 +
13839 + emit_jump_insn (gen_casesi_internal (operands[0], operands[2], operands[3],
13840 + operands[4], gen_reg_rtx(SImode)));
13841 + DONE;
13842 + }"
13843 +)
13844 +
13845 +;; The USE in this pattern is needed to tell flow analysis that this is
13846 +;; a CASESI insn. It has no other purpose.
13847 +(define_insn "casesi_internal"
13848 + [(parallel [(set (pc)
13849 + (if_then_else
13850 + (leu (match_operand:SI 0 "register_operand" "r")
13851 + (match_operand:SI 1 "register_immediate_operand" "rKu03"))
13852 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
13853 + (label_ref (match_operand 2 "" ""))))
13854 + (label_ref (match_operand 3 "" ""))))
13855 + (clobber (match_operand:SI 4 "register_operand" "=r"))
13856 + (use (label_ref (match_dup 2)))])]
13857 + ""
13858 + {
13859 + if (flag_pic)
13860 + return "cp.w\t%0, %1\;brhi\t%3\;sub\t%4, pc, -(%2 - .)\;add\tpc, %4, %0 << 2";
13861 + return "cp.w\t%0, %1\;brhi\t%3\;sub\t%4, pc, -(%2 - .)\;ld.w\tpc, %4[%0 << 2]";
13862 + }
13863 + [(set_attr "cc" "clobber")
13864 + (set_attr "length" "16")]
13865 +)
13866 +
13867 +
13868 +(define_insn "prefetch"
13869 + [(prefetch (match_operand:SI 0 "register_operand" "r")
13870 + (match_operand 1 "const_int_operand" "")
13871 + (match_operand 2 "const_int_operand" ""))]
13872 + ""
13873 + {
13874 + return "pref\t%0[0]";
13875 + }
13876 +
13877 + [(set_attr "length" "4")
13878 + (set_attr "type" "load")
13879 + (set_attr "cc" "none")])
13880 +
13881 +
13882 +
13883 +;;=============================================================================
13884 +;; prologue
13885 +;;-----------------------------------------------------------------------------
13886 +;; This pattern, if defined, emits RTL for entry to a function. The function
13887 +;; entry i responsible for setting up the stack frame, initializing the frame
13888 +;; pointer register, saving callee saved registers, etc.
13889 +;;=============================================================================
13890 +(define_expand "prologue"
13891 + [(clobber (const_int 0))]
13892 + ""
13893 + "
13894 + avr32_expand_prologue();
13895 + DONE;
13896 + "
13897 + )
13898 +
13899 +;;=============================================================================
13900 +;; eh_return
13901 +;;-----------------------------------------------------------------------------
13902 +;; This pattern, if defined, affects the way __builtin_eh_return, and
13903 +;; thence the call frame exception handling library routines, are
13904 +;; built. It is intended to handle non-trivial actions needed along
13905 +;; the abnormal return path.
13906 +;;
13907 +;; The address of the exception handler to which the function should
13908 +;; return is passed as operand to this pattern. It will normally need
13909 +;; to copied by the pattern to some special register or memory
13910 +;; location. If the pattern needs to determine the location of the
13911 +;; target call frame in order to do so, it may use
13912 +;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been
13913 +;; assigned.
13914 +;;
13915 +;; If this pattern is not defined, the default action will be to
13916 +;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either
13917 +;; that macro or this pattern needs to be defined if call frame
13918 +;; exception handling is to be used.
13919 +(define_expand "eh_return"
13920 + [(use (match_operand 0 "general_operand" ""))]
13921 + ""
13922 + "
13923 + avr32_set_return_address (operands[0]);
13924 + DONE;
13925 + "
13926 + )
13927 +
13928 +;;=============================================================================
13929 +;; ffssi2
13930 +;;-----------------------------------------------------------------------------
13931 +(define_insn "ffssi2"
13932 + [ (set (match_operand:SI 0 "register_operand" "=r")
13933 + (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ]
13934 + ""
13935 + "mov %0, %1
13936 + brev %0
13937 + clz %0, %0
13938 + sub %0, -1
13939 + cp %0, 33
13940 + moveq %0, 0"
13941 + [(set_attr "length" "18")
13942 + (set_attr "cc" "clobber")]
13943 + )
13944 +
13945 +
13946 +
13947 +;;=============================================================================
13948 +;; swap_h
13949 +;;-----------------------------------------------------------------------------
13950 +(define_insn "*swap_h"
13951 + [ (set (match_operand:SI 0 "register_operand" "=r")
13952 + (ior:SI (ashift:SI (match_dup 0) (const_int 16))
13953 + (lshiftrt:SI (match_dup 0) (const_int 16))))]
13954 + ""
13955 + "swap.h %0"
13956 + [(set_attr "length" "2")]
13957 + )
13958 +
13959 +(define_insn_and_split "bswap_16"
13960 + [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r")
13961 + (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13")
13962 + (const_int 8))
13963 + (const_int 255))
13964 + (ashift:HI (and:HI (match_dup 1)
13965 + (const_int 255))
13966 + (const_int 8))))]
13967 + ""
13968 + {
13969 + switch ( which_alternative ){
13970 + case 0:
13971 + if ( REGNO(operands[0]) == REGNO(operands[1]))
13972 + return "swap.bh\t%0";
13973 + else
13974 + return "mov\t%0, %1\;swap.bh\t%0";
13975 + case 1:
13976 + return "stswp.h\t%0, %1";
13977 + case 2:
13978 + return "ldswp.sh\t%0, %1";
13979 + default:
13980 + abort();
13981 + }
13982 + }
13983 +
13984 + "(reload_completed &&
13985 + REG_P(operands[0]) && REG_P(operands[1])
13986 + && (REGNO(operands[0]) != REGNO(operands[1])))"
13987 + [(set (match_dup 0) (match_dup 1))
13988 + (set (match_dup 0)
13989 + (ior:HI (and:HI (lshiftrt:HI (match_dup 0)
13990 + (const_int 8))
13991 + (const_int 255))
13992 + (ashift:HI (and:HI (match_dup 0)
13993 + (const_int 255))
13994 + (const_int 8))))]
13995 + ""
13996 +
13997 + [(set_attr "length" "4,4,4")
13998 + (set_attr "type" "alu,store,load_rm")]
13999 + )
14000 +
14001 +(define_insn_and_split "bswap_32"
14002 + [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r")
14003 + (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "=r,r,RKs14")
14004 + (const_int 4278190080))
14005 + (const_int 24))
14006 + (lshiftrt:SI (and:SI (match_dup 1)
14007 + (const_int 16711680))
14008 + (const_int 8)))
14009 + (ior:SI (ashift:SI (and:SI (match_dup 1)
14010 + (const_int 65280))
14011 + (const_int 8))
14012 + (ashift:SI (and:SI (match_dup 1)
14013 + (const_int 255))
14014 + (const_int 24)))))]
14015 + ""
14016 + {
14017 + switch ( which_alternative ){
14018 + case 0:
14019 + if ( REGNO(operands[0]) == REGNO(operands[1]))
14020 + return "swap.b\t%0";
14021 + else
14022 + return "mov\t%0, %1\;swap.b\t%0";
14023 + case 1:
14024 + return "stswp.w\t%0, %1";
14025 + case 2:
14026 + return "ldswp.w\t%0, %1";
14027 + default:
14028 + abort();
14029 + }
14030 + }
14031 + "(reload_completed &&
14032 + REG_P(operands[0]) && REG_P(operands[1])
14033 + && (REGNO(operands[0]) != REGNO(operands[1])))"
14034 + [(set (match_dup 0) (match_dup 1))
14035 + (set (match_dup 0)
14036 + (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0)
14037 + (const_int 4278190080))
14038 + (const_int 24))
14039 + (lshiftrt:SI (and:SI (match_dup 0)
14040 + (const_int 16711680))
14041 + (const_int 8)))
14042 + (ior:SI (ashift:SI (and:SI (match_dup 0)
14043 + (const_int 65280))
14044 + (const_int 8))
14045 + (ashift:SI (and:SI (match_dup 0)
14046 + (const_int 255))
14047 + (const_int 24)))))]
14048 + ""
14049 +
14050 + [(set_attr "length" "4,4,4")
14051 + (set_attr "type" "alu,store,load_rm")]
14052 + )
14053 +
14054 +
14055 +;;=============================================================================
14056 +;; blockage
14057 +;;-----------------------------------------------------------------------------
14058 +;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
14059 +;; all of memory. This blocks insns from being moved across this point.
14060 +
14061 +(define_insn "blockage"
14062 + [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)]
14063 + ""
14064 + ""
14065 + [(set_attr "length" "0")]
14066 +)
14067 +
14068 +;;=============================================================================
14069 +;; clzsi2
14070 +;;-----------------------------------------------------------------------------
14071 +(define_insn "clzsi2"
14072 + [ (set (match_operand:SI 0 "register_operand" "=r")
14073 + (clz:SI (match_operand:SI 1 "register_operand" "r"))) ]
14074 + ""
14075 + "clz %0, %1"
14076 + [(set_attr "length" "4")
14077 + (set_attr "cc" "set_z")]
14078 + )
14079 +
14080 +;;=============================================================================
14081 +;; ctzsi2
14082 +;;-----------------------------------------------------------------------------
14083 +(define_insn "ctzsi2"
14084 + [ (set (match_operand:SI 0 "register_operand" "=r,r")
14085 + (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ]
14086 + ""
14087 + "@
14088 + brev\t%0\;clz\t%0, %0
14089 + mov\t%0, %1\;brev\t%0\;clz\t%0, %0"
14090 + [(set_attr "length" "8")
14091 + (set_attr "cc" "set_z")]
14092 + )
14093 +
14094 +;;=============================================================================
14095 +;; cache instructions
14096 +;;-----------------------------------------------------------------------------
14097 +(define_insn "cache"
14098 + [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")
14099 + (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)]
14100 + ""
14101 + "cache %0[0], %1"
14102 + [(set_attr "length" "4")]
14103 + )
14104 +
14105 +(define_insn "sync"
14106 + [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)]
14107 + ""
14108 + "sync %0"
14109 + [(set_attr "length" "4")]
14110 + )
14111 +
14112 +;;=============================================================================
14113 +;; TLB instructions
14114 +;;-----------------------------------------------------------------------------
14115 +(define_insn "tlbr"
14116 + [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)]
14117 + ""
14118 + "tlbr"
14119 + [(set_attr "length" "2")]
14120 + )
14121 +
14122 +(define_insn "tlbw"
14123 + [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)]
14124 + ""
14125 + "tlbw"
14126 + [(set_attr "length" "2")]
14127 + )
14128 +
14129 +(define_insn "tlbs"
14130 + [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)]
14131 + ""
14132 + "tlbs"
14133 + [(set_attr "length" "2")]
14134 + )
14135 +
14136 +;;=============================================================================
14137 +;; Breakpoint instruction
14138 +;;-----------------------------------------------------------------------------
14139 +(define_insn "breakpoint"
14140 + [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)]
14141 + ""
14142 + "breakpoint"
14143 + [(set_attr "length" "2")]
14144 + )
14145 +
14146 +;;=============================================================================
14147 +;; Xchg instruction
14148 +;;-----------------------------------------------------------------------------
14149 +(define_insn "xchg"
14150 + [ (parallel [(set (match_operand:SI 0 "register_operand" "=&r")
14151 + (mem:SI (match_operand:SI 1 "register_operand" "r")))
14152 + (set (mem:SI (match_operand:SI 2 "register_operand" "=1"))
14153 + (match_operand:SI 3 "register_operand" "r"))])]
14154 + ""
14155 + "xchg\t%0, %1, %3"
14156 + [(set_attr "length" "4")]
14157 + )
14158 +
14159 +;;=============================================================================
14160 +;; mtsr/mfsr instruction
14161 +;;-----------------------------------------------------------------------------
14162 +(define_insn "mtsr"
14163 + [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
14164 + (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)]
14165 + ""
14166 + "mtsr\t%0, %1"
14167 + [(set_attr "length" "4")]
14168 + )
14169 +
14170 +(define_insn "mfsr"
14171 + [ (set (match_operand:SI 0 "register_operand" "=r")
14172 + (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ]
14173 + ""
14174 + "mfsr\t%0, %1"
14175 + [(set_attr "length" "4")]
14176 + )
14177 +
14178 +;;=============================================================================
14179 +;; mtdr/mfdr instruction
14180 +;;-----------------------------------------------------------------------------
14181 +(define_insn "mtdr"
14182 + [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
14183 + (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)]
14184 + ""
14185 + "mtdr\t%0, %1"
14186 + [(set_attr "length" "4")]
14187 + )
14188 +
14189 +(define_insn "mfdr"
14190 + [ (set (match_operand:SI 0 "register_operand" "=r")
14191 + (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ]
14192 + ""
14193 + "mfdr\t%0, %1"
14194 + [(set_attr "length" "4")]
14195 + )
14196 +
14197 +;;=============================================================================
14198 +;; musfr
14199 +;;-----------------------------------------------------------------------------
14200 +(define_insn "musfr"
14201 + [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)]
14202 + ""
14203 + "musfr\t%0"
14204 + [(set_attr "length" "2")
14205 + (set_attr "cc" "clobber")]
14206 + )
14207 +
14208 +(define_insn "mustr"
14209 + [ (set (match_operand:SI 0 "register_operand" "=r")
14210 + (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ]
14211 + ""
14212 + "mustr\t%0"
14213 + [(set_attr "length" "2")]
14214 + )
14215 +
14216 +;;=============================================================================
14217 +;; Saturation Round Scale instruction
14218 +;;-----------------------------------------------------------------------------
14219 +(define_insn "sats"
14220 + [ (set (match_operand:SI 0 "register_operand" "+r")
14221 + (unspec:SI [(match_dup 0)
14222 + (match_operand 1 "immediate_operand" "Ku05")
14223 + (match_operand 2 "immediate_operand" "Ku05")]
14224 + UNSPEC_SATS)) ]
14225 + "TARGET_DSP"
14226 + "sats\t%0 >> %1, %2"
14227 + [(set_attr "type" "alu_sat")
14228 + (set_attr "length" "4")]
14229 + )
14230 +
14231 +(define_insn "satu"
14232 + [ (set (match_operand:SI 0 "register_operand" "+r")
14233 + (unspec:SI [(match_dup 0)
14234 + (match_operand 1 "immediate_operand" "Ku05")
14235 + (match_operand 2 "immediate_operand" "Ku05")]
14236 + UNSPEC_SATU)) ]
14237 + "TARGET_DSP"
14238 + "satu\t%0 >> %1, %2"
14239 + [(set_attr "type" "alu_sat")
14240 + (set_attr "length" "4")]
14241 + )
14242 +
14243 +(define_insn "satrnds"
14244 + [ (set (match_operand:SI 0 "register_operand" "+r")
14245 + (unspec:SI [(match_dup 0)
14246 + (match_operand 1 "immediate_operand" "Ku05")
14247 + (match_operand 2 "immediate_operand" "Ku05")]
14248 + UNSPEC_SATRNDS)) ]
14249 + "TARGET_DSP"
14250 + "satrnds\t%0 >> %1, %2"
14251 + [(set_attr "type" "alu_sat")
14252 + (set_attr "length" "4")]
14253 + )
14254 +
14255 +(define_insn "satrndu"
14256 + [ (set (match_operand:SI 0 "register_operand" "+r")
14257 + (unspec:SI [(match_dup 0)
14258 + (match_operand 1 "immediate_operand" "Ku05")
14259 + (match_operand 2 "immediate_operand" "Ku05")]
14260 + UNSPEC_SATRNDU)) ]
14261 + "TARGET_DSP"
14262 + "sats\t%0 >> %1, %2"
14263 + [(set_attr "type" "alu_sat")
14264 + (set_attr "length" "4")]
14265 + )
14266 +
14267 +;; Special patterns for dealing with the constant pool
14268 +
14269 +(define_insn "align_4"
14270 + [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)]
14271 + ""
14272 + {
14273 + assemble_align (32);
14274 + return "";
14275 + }
14276 + [(set_attr "length" "2")]
14277 +)
14278 +
14279 +(define_insn "consttable_start"
14280 + [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)]
14281 + ""
14282 + {
14283 + return ".cpool";
14284 + }
14285 + [(set_attr "length" "0")]
14286 + )
14287 +
14288 +(define_insn "consttable_end"
14289 + [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)]
14290 + ""
14291 + {
14292 + making_const_table = FALSE;
14293 + return "";
14294 + }
14295 + [(set_attr "length" "0")]
14296 +)
14297 +
14298 +
14299 +(define_insn "consttable_4"
14300 + [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)]
14301 + ""
14302 + {
14303 + making_const_table = TRUE;
14304 + switch (GET_MODE_CLASS (GET_MODE (operands[0])))
14305 + {
14306 + case MODE_FLOAT:
14307 + {
14308 + REAL_VALUE_TYPE r;
14309 + char real_string[1024];
14310 + REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
14311 + real_to_decimal(real_string, &r, 1024, 0, 1);
14312 + asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string);
14313 + break;
14314 + }
14315 + default:
14316 + assemble_integer (operands[0], 4, 0, 1);
14317 + break;
14318 + }
14319 + return "";
14320 + }
14321 + [(set_attr "length" "4")]
14322 +)
14323 +
14324 +(define_insn "consttable_8"
14325 + [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)]
14326 + ""
14327 + {
14328 + making_const_table = TRUE;
14329 + switch (GET_MODE_CLASS (GET_MODE (operands[0])))
14330 + {
14331 + case MODE_FLOAT:
14332 + {
14333 + REAL_VALUE_TYPE r;
14334 + char real_string[1024];
14335 + REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
14336 + real_to_decimal(real_string, &r, 1024, 0, 1);
14337 + asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string);
14338 + break;
14339 + }
14340 + default:
14341 + assemble_integer(operands[0], 8, 0, 1);
14342 + break;
14343 + }
14344 + return "";
14345 + }
14346 + [(set_attr "length" "8")]
14347 +)
14348 +
14349 +;;=============================================================================
14350 +;; coprocessor instructions
14351 +;;-----------------------------------------------------------------------------
14352 +(define_insn "cop"
14353 + [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03")
14354 + (match_operand 1 "immediate_operand" "Ku04")
14355 + (match_operand 2 "immediate_operand" "Ku04")
14356 + (match_operand 3 "immediate_operand" "Ku04")
14357 + (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)]
14358 + ""
14359 + "cop\tcp%0, cr%1, cr%2, cr%3, %4"
14360 + [(set_attr "length" "4")]
14361 + )
14362 +
14363 +(define_insn "mvcrsi"
14364 + [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z")
14365 + (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
14366 + (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
14367 + VUNSPEC_MVCR)) ]
14368 + ""
14369 + "@
14370 + mvcr.w\tcp%1, %0, cr%2
14371 + stcm.w\tcp%1, %0, cr%2
14372 + stc.w\tcp%1, %0, cr%2"
14373 + [(set_attr "length" "4")]
14374 + )
14375 +
14376 +(define_insn "mvcrdi"
14377 + [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z")
14378 + (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
14379 + (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
14380 + VUNSPEC_MVCR)) ]
14381 + ""
14382 + "@
14383 + mvcr.d\tcp%1, %0, cr%2
14384 + stcm.d\tcp%1, %0, cr%2-cr%i2
14385 + stc.d\tcp%1, %0, cr%2"
14386 + [(set_attr "length" "4")]
14387 + )
14388 +
14389 +(define_insn "mvrcsi"
14390 + [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
14391 + (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
14392 + (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")]
14393 + VUNSPEC_MVRC)]
14394 + ""
14395 + {
14396 + switch (which_alternative){
14397 + case 0:
14398 + return "mvrc.w\tcp%0, cr%1, %2";
14399 + case 1:
14400 + return "ldcm.w\tcp%0, %2, cr%1";
14401 + case 2:
14402 + return "ldc.w\tcp%0, cr%1, %2";
14403 + default:
14404 + abort();
14405 + }
14406 + }
14407 + [(set_attr "length" "4")]
14408 + )
14409 +
14410 +(define_insn "mvrcdi"
14411 + [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
14412 + (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
14413 + (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")]
14414 + VUNSPEC_MVRC)]
14415 + ""
14416 + {
14417 + switch (which_alternative){
14418 + case 0:
14419 + return "mvrc.d\tcp%0, cr%1, %2";
14420 + case 1:
14421 + return "ldcm.d\tcp%0, %2, cr%1-cr%i1";
14422 + case 2:
14423 + return "ldc.d\tcp%0, cr%1, %2";
14424 + default:
14425 + abort();
14426 + }
14427 + }
14428 + [(set_attr "length" "4")]
14429 + )
14430 +
14431 +;;=============================================================================
14432 +;; epilogue
14433 +;;-----------------------------------------------------------------------------
14434 +;; This pattern emits RTL for exit from a function. The function exit is
14435 +;; responsible for deallocating the stack frame, restoring callee saved
14436 +;; registers and emitting the return instruction.
14437 +;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead.
14438 +;;=============================================================================
14439 +(define_expand "epilogue"
14440 + [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
14441 + ""
14442 + "
14443 + if (USE_RETURN_INSN (FALSE)){
14444 + emit_jump_insn (gen_return ());
14445 + DONE;
14446 + }
14447 + emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode,
14448 + gen_rtvec (1,
14449 + gen_rtx_RETURN (VOIDmode)),
14450 + VUNSPEC_EPILOGUE));
14451 + DONE;
14452 + "
14453 + )
14454 +
14455 +(define_insn "*epilogue_insns"
14456 + [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
14457 + ""
14458 + {
14459 + avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
14460 + return "";
14461 + }
14462 + ; Length is absolute worst case
14463 + [(set_attr "type" "branch")
14464 + (set_attr "length" "12")]
14465 + )
14466 +
14467 +(define_insn "*epilogue_insns_ret_imm"
14468 + [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
14469 + (use (reg RETVAL_REGNUM))
14470 + (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])]
14471 + "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
14472 + {
14473 + avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
14474 + return "";
14475 + }
14476 + ; Length is absolute worst case
14477 + [(set_attr "type" "branch")
14478 + (set_attr "length" "12")]
14479 + )
14480 +
14481 +(define_insn "sibcall_epilogue"
14482 + [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)]
14483 + ""
14484 + {
14485 + avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
14486 + return "";
14487 + }
14488 +;; Length is absolute worst case
14489 + [(set_attr "type" "branch")
14490 + (set_attr "length" "12")]
14491 + )
14492 +
14493 +(define_insn "*sibcall_epilogue_insns_ret_imm"
14494 + [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
14495 + (use (reg RETVAL_REGNUM))
14496 + (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])]
14497 + "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
14498 + {
14499 + avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
14500 + return "";
14501 + }
14502 + ; Length is absolute worst case
14503 + [(set_attr "type" "branch")
14504 + (set_attr "length" "12")]
14505 + )
14506 +
14507 +(define_insn "ldxi"
14508 + [(set (match_operand:SI 0 "register_operand" "=r")
14509 + (mem:SI (plus:SI
14510 + (match_operand:SI 1 "register_operand" "r")
14511 + (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r")
14512 + (const_int 8)
14513 + (match_operand:SI 3 "immediate_operand" "Ku05"))
14514 + (const_int 4)))))]
14515 + "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8
14516 + || INTVAL(operands[3]) == 0)"
14517 + {
14518 + switch ( INTVAL(operands[3]) ){
14519 + case 0:
14520 + return "ld.w %0, %1[%2:b << 2]";
14521 + case 8:
14522 + return "ld.w %0, %1[%2:l << 2]";
14523 + case 16:
14524 + return "ld.w %0, %1[%2:u << 2]";
14525 + case 24:
14526 + return "ld.w %0, %1[%2:t << 2]";
14527 + default:
14528 + internal_error("illegal operand for ldxi");
14529 + }
14530 + }
14531 + [(set_attr "type" "load")
14532 + (set_attr "length" "4")
14533 + (set_attr "cc" "none")])
14534 +
14535 +
14536 +
14537 +
14538 +
14539 +
14540 +;;=============================================================================
14541 +;; Peephole optimizing
14542 +;;-----------------------------------------------------------------------------
14543 +;; Changing
14544 +;; sub r8, r7, 8
14545 +;; st.w r8[0x0], r12
14546 +;; to
14547 +;; sub r8, r7, 8
14548 +;; st.w r7[-0x8], r12
14549 +;;=============================================================================
14550 +; (set (reg:SI 9 r8)
14551 +; (plus:SI (reg/f:SI 6 r7)
14552 +; (const_int ...)))
14553 +; (set (mem:SI (reg:SI 9 r8))
14554 +; (reg:SI 12 r12))
14555 +(define_peephole2
14556 + [(set (match_operand:SI 0 "register_operand" "")
14557 + (plus:SI (match_operand:SI 1 "register_operand" "")
14558 + (match_operand:SI 2 "immediate_operand" "")))
14559 + (set (mem:SI (match_dup 0))
14560 + (match_operand:SI 3 "register_operand" ""))]
14561 + "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
14562 + [(set (match_dup 0)
14563 + (plus:SI (match_dup 1)
14564 + (match_dup 2)))
14565 + (set (mem:SI (plus:SI (match_dup 1)
14566 + (match_dup 2)))
14567 + (match_dup 3))]
14568 + "")
14569 +
14570 +;;=============================================================================
14571 +;; Peephole optimizing
14572 +;;-----------------------------------------------------------------------------
14573 +;; Changing
14574 +;; sub r6, r7, 4
14575 +;; ld.w r6, r6[0x0]
14576 +;; to
14577 +;; sub r6, r7, 4
14578 +;; ld.w r6, r7[-0x4]
14579 +;;=============================================================================
14580 +; (set (reg:SI 7 r6)
14581 +; (plus:SI (reg/f:SI 6 r7)
14582 +; (const_int -4 [0xfffffffc])))
14583 +; (set (reg:SI 7 r6)
14584 +; (mem:SI (reg:SI 7 r6)))
14585 +(define_peephole2
14586 + [(set (match_operand:SI 0 "register_operand" "")
14587 + (plus:SI (match_operand:SI 1 "register_operand" "")
14588 + (match_operand:SI 2 "immediate_operand" "")))
14589 + (set (match_operand:SI 3 "register_operand" "")
14590 + (mem:SI (match_dup 0)))]
14591 + "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
14592 + [(set (match_dup 0)
14593 + (plus:SI (match_dup 1)
14594 + (match_dup 2)))
14595 + (set (match_dup 3)
14596 + (mem:SI (plus:SI (match_dup 1)
14597 + (match_dup 2))))]
14598 + "")
14599 +
14600 +;;=============================================================================
14601 +;; Peephole optimizing
14602 +;;-----------------------------------------------------------------------------
14603 +;; Changing
14604 +;; ld.sb r0, r7[-0x6]
14605 +;; cashs.b r0
14606 +;; to
14607 +;; ld.sb r0, r7[-0x6]
14608 +;;=============================================================================
14609 +(define_peephole2
14610 + [(set (match_operand:QI 0 "register_operand" "")
14611 + (match_operand:QI 1 "load_sb_memory_operand" ""))
14612 + (set (match_operand:SI 2 "register_operand" "")
14613 + (sign_extend:SI (match_dup 0)))]
14614 + "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))"
14615 + [(set (match_dup 2)
14616 + (sign_extend:SI (match_dup 1)))]
14617 + "")
14618 +
14619 +;;=============================================================================
14620 +;; Peephole optimizing
14621 +;;-----------------------------------------------------------------------------
14622 +;; Changing
14623 +;; ld.ub r0, r7[-0x6]
14624 +;; cashu.b r0
14625 +;; to
14626 +;; ld.ub r0, r7[-0x6]
14627 +;;=============================================================================
14628 +(define_peephole2
14629 + [(set (match_operand:QI 0 "register_operand" "")
14630 + (match_operand:QI 1 "memory_operand" ""))
14631 + (set (match_operand:SI 2 "register_operand" "")
14632 + (zero_extend:SI (match_dup 0)))]
14633 + "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
14634 + [(set (match_dup 2)
14635 + (zero_extend:SI (match_dup 1)))]
14636 + "")
14637 +
14638 +;;=============================================================================
14639 +;; Peephole optimizing
14640 +;;-----------------------------------------------------------------------------
14641 +;; Changing
14642 +;; ld.sh r0, r7[-0x6]
14643 +;; casts.h r0
14644 +;; to
14645 +;; ld.sh r0, r7[-0x6]
14646 +;;=============================================================================
14647 +(define_peephole2
14648 + [(set (match_operand:HI 0 "register_operand" "")
14649 + (match_operand:HI 1 "memory_operand" ""))
14650 + (set (match_operand:SI 2 "register_operand" "")
14651 + (sign_extend:SI (match_dup 0)))]
14652 + "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
14653 + [(set (match_dup 2)
14654 + (sign_extend:SI (match_dup 1)))]
14655 + "")
14656 +
14657 +;;=============================================================================
14658 +;; Peephole optimizing
14659 +;;-----------------------------------------------------------------------------
14660 +;; Changing
14661 +;; ld.uh r0, r7[-0x6]
14662 +;; castu.h r0
14663 +;; to
14664 +;; ld.uh r0, r7[-0x6]
14665 +;;=============================================================================
14666 +(define_peephole2
14667 + [(set (match_operand:HI 0 "register_operand" "")
14668 + (match_operand:HI 1 "memory_operand" ""))
14669 + (set (match_operand:SI 2 "register_operand" "")
14670 + (zero_extend:SI (match_dup 0)))]
14671 + "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
14672 + [(set (match_dup 2)
14673 + (zero_extend:SI (match_dup 1)))]
14674 + "")
14675 +
14676 +;;=============================================================================
14677 +;; Peephole optimizing
14678 +;;-----------------------------------------------------------------------------
14679 +;; Changing
14680 +;; mul rd, rx, ry
14681 +;; add rd2, rd
14682 +;; to
14683 +;; mac rd2, rx, ry
14684 +;;=============================================================================
14685 +(define_peephole2
14686 + [(set (match_operand:SI 0 "register_operand" "")
14687 + (mult:SI (match_operand:SI 1 "register_operand" "")
14688 + (match_operand:SI 2 "register_operand" "")))
14689 + (set (match_operand:SI 3 "register_operand" "")
14690 + (plus:SI (match_dup 3)
14691 + (match_dup 0)))]
14692 + "peep2_reg_dead_p(2, operands[0])"
14693 + [(set (match_dup 3)
14694 + (plus:SI (mult:SI (match_dup 1)
14695 + (match_dup 2))
14696 + (match_dup 3)))]
14697 + "")
14698 +
14699 +
14700 +
14701 +;;=============================================================================
14702 +;; Peephole optimizing
14703 +;;-----------------------------------------------------------------------------
14704 +;; Changing
14705 +;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask
14706 +;; to
14707 +;; bld rs, k5
14708 +;;
14709 +;; If rd is dead after the operation.
14710 +;;=============================================================================
14711 +(define_peephole2
14712 + [ (set (match_operand:SI 0 "register_operand" "")
14713 + (zero_extract:SI (match_operand:SI 1 "register_operand" "")
14714 + (const_int 1)
14715 + (match_operand:SI 2 "immediate_operand" "")))
14716 + (set (cc0)
14717 + (match_dup 0))]
14718 + "peep2_reg_dead_p(2, operands[0])"
14719 + [(set (cc0)
14720 + (and:SI (match_dup 1)
14721 + (match_dup 2)))]
14722 + "operands[2] = GEN_INT(1 << INTVAL(operands[2]));")
14723 +
14724 +(define_peephole2
14725 + [ (set (match_operand:SI 0 "register_operand" "")
14726 + (and:SI (match_operand:SI 1 "register_operand" "")
14727 + (match_operand:SI 2 "one_bit_set_operand" "")))
14728 + (set (cc0)
14729 + (match_dup 0))]
14730 + "peep2_reg_dead_p(2, operands[0])"
14731 + [(set (cc0)
14732 + (and:SI (match_dup 1)
14733 + (match_dup 2)))]
14734 + "")
14735 +
14736 +;;=============================================================================
14737 +;; Peephole optimizing
14738 +;;-----------------------------------------------------------------------------
14739 +;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2]
14740 +;;
14741 +;;=============================================================================
14742 +
14743 +
14744 +(define_peephole
14745 + [(set (match_operand:SI 0 "register_operand" "")
14746 + (zero_extract:SI (match_operand:SI 1 "register_operand" "")
14747 + (const_int 8)
14748 + (match_operand:SI 2 "avr32_extract_shift_operand" "")))
14749 + (set (match_operand:SI 3 "register_operand" "")
14750 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14751 + (match_operand:SI 4 "register_operand" ""))))]
14752 +
14753 + "(dead_or_set_p(insn, operands[0]))"
14754 + {
14755 + switch ( INTVAL(operands[2]) ){
14756 + case 0:
14757 + return "ld.w %3, %4[%1:b << 2]";
14758 + case 8:
14759 + return "ld.w %3, %4[%1:l << 2]";
14760 + case 16:
14761 + return "ld.w %3, %4[%1:u << 2]";
14762 + case 24:
14763 + return "ld.w %3, %4[%1:t << 2]";
14764 + default:
14765 + internal_error("illegal operand for ldxi");
14766 + }
14767 + }
14768 + [(set_attr "type" "load")
14769 + (set_attr "length" "4")
14770 + (set_attr "cc" "clobber")]
14771 + )
14772 +
14773 +
14774 +
14775 +(define_peephole
14776 + [(set (match_operand:SI 0 "register_operand" "")
14777 + (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255)))
14778 + (set (match_operand:SI 2 "register_operand" "")
14779 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14780 + (match_operand:SI 3 "register_operand" ""))))]
14781 +
14782 + "(dead_or_set_p(insn, operands[0]))"
14783 +
14784 + "ld.w %2, %3[%1:b << 2]"
14785 + [(set_attr "type" "load")
14786 + (set_attr "length" "4")
14787 + (set_attr "cc" "clobber")]
14788 + )
14789 +
14790 +
14791 +(define_peephole2
14792 + [(set (match_operand:SI 0 "register_operand" "")
14793 + (zero_extract:SI (match_operand:SI 1 "register_operand" "")
14794 + (const_int 8)
14795 + (match_operand:SI 2 "avr32_extract_shift_operand" "")))
14796 + (set (match_operand:SI 3 "register_operand" "")
14797 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14798 + (match_operand:SI 4 "register_operand" ""))))]
14799 +
14800 + "(peep2_reg_dead_p(2, operands[0]))
14801 + || (REGNO(operands[0]) == REGNO(operands[3]))"
14802 + [(set (match_dup 3)
14803 + (mem:SI (plus:SI
14804 + (match_dup 4)
14805 + (mult:SI (zero_extract:SI (match_dup 1)
14806 + (const_int 8)
14807 + (match_dup 2))
14808 + (const_int 4)))))]
14809 + )
14810 +
14811 +(define_peephole2
14812 + [(set (match_operand:SI 0 "register_operand" "")
14813 + (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
14814 + (set (match_operand:SI 2 "register_operand" "")
14815 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14816 + (match_operand:SI 3 "register_operand" ""))))]
14817 +
14818 + "(peep2_reg_dead_p(2, operands[0]))
14819 + || (REGNO(operands[0]) == REGNO(operands[2]))"
14820 + [(set (match_dup 2)
14821 + (mem:SI (plus:SI
14822 + (match_dup 3)
14823 + (mult:SI (zero_extract:SI (match_dup 1)
14824 + (const_int 8)
14825 + (const_int 0))
14826 + (const_int 4)))))]
14827 + "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));"
14828 + )
14829 +
14830 +
14831 +(define_peephole2
14832 + [(set (match_operand:SI 0 "register_operand" "")
14833 + (and:SI (match_operand:SI 1 "register_operand" "")
14834 + (const_int 255)))
14835 + (set (match_operand:SI 2 "register_operand" "")
14836 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14837 + (match_operand:SI 3 "register_operand" ""))))]
14838 +
14839 + "(peep2_reg_dead_p(2, operands[0]))
14840 + || (REGNO(operands[0]) == REGNO(operands[2]))"
14841 + [(set (match_dup 2)
14842 + (mem:SI (plus:SI
14843 + (match_dup 3)
14844 + (mult:SI (zero_extract:SI (match_dup 1)
14845 + (const_int 8)
14846 + (const_int 0))
14847 + (const_int 4)))))]
14848 + ""
14849 + )
14850 +
14851 +
14852 +
14853 +(define_peephole2
14854 + [(set (match_operand:SI 0 "register_operand" "")
14855 + (lshiftrt:SI (match_operand:SI 1 "register_operand" "")
14856 + (const_int 24)))
14857 + (set (match_operand:SI 2 "register_operand" "")
14858 + (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
14859 + (match_operand:SI 3 "register_operand" ""))))]
14860 +
14861 + "(peep2_reg_dead_p(2, operands[0]))
14862 + || (REGNO(operands[0]) == REGNO(operands[2]))"
14863 + [(set (match_dup 2)
14864 + (mem:SI (plus:SI
14865 + (match_dup 3)
14866 + (mult:SI (zero_extract:SI (match_dup 1)
14867 + (const_int 8)
14868 + (const_int 24))
14869 + (const_int 4)))))]
14870 + ""
14871 + )
14872 +
14873 +
14874 +;;************************************************
14875 +;; ANDN
14876 +;;
14877 +;;************************************************
14878 +
14879 +
14880 +(define_peephole2
14881 + [(set (match_operand:SI 0 "register_operand" "")
14882 + (not:SI (match_operand:SI 1 "register_operand" "")))
14883 + (set (match_operand:SI 2 "register_operand" "")
14884 + (and:SI (match_dup 2)
14885 + (match_dup 0)))]
14886 + "peep2_reg_dead_p(2, operands[0])"
14887 +
14888 + [(set (match_dup 2)
14889 + (and:SI (match_dup 2)
14890 + (not:SI (match_dup 1))
14891 + ))]
14892 + ""
14893 +)
14894 +
14895 +(define_peephole2
14896 + [(set (match_operand:SI 0 "register_operand" "")
14897 + (not:SI (match_operand:SI 1 "register_operand" "")))
14898 + (set (match_operand:SI 2 "register_operand" "")
14899 + (and:SI (match_dup 0)
14900 + (match_dup 2)
14901 + ))]
14902 + "peep2_reg_dead_p(2, operands[0])"
14903 +
14904 + [(set (match_dup 2)
14905 + (and:SI (match_dup 2)
14906 + (not:SI (match_dup 1))
14907 + ))]
14908 +
14909 + ""
14910 +)
14911 +
14912 +
14913 +;;=================================================================
14914 +;; Addabs peephole
14915 +;;=================================================================
14916 +
14917 +(define_peephole
14918 + [(set (match_operand:SI 2 "register_operand" "=r")
14919 + (abs:SI (match_operand:SI 1 "register_operand" "r")))
14920 + (set (match_operand:SI 0 "register_operand" "=r")
14921 + (plus:SI (match_operand:SI 3 "register_operand" "r")
14922 + (match_dup 2)))]
14923 + "dead_or_set_p(insn, operands[2])"
14924 + "addabs %0, %3, %1"
14925 + [(set_attr "length" "4")
14926 + (set_attr "cc" "set_z")])
14927 +
14928 +(define_peephole
14929 + [(set (match_operand:SI 2 "register_operand" "=r")
14930 + (abs:SI (match_operand:SI 1 "register_operand" "r")))
14931 + (set (match_operand:SI 0 "register_operand" "=r")
14932 + (plus:SI (match_dup 2)
14933 + (match_operand:SI 3 "register_operand" "r")))]
14934 + "dead_or_set_p(insn, operands[2])"
14935 + "addabs %0, %3, %1"
14936 + [(set_attr "length" "4")
14937 + (set_attr "cc" "set_z")])
14938 +
14939 +
14940 +;;=================================================================
14941 +;; Detect roundings
14942 +;;=================================================================
14943 +
14944 +(define_insn "*round"
14945 + [(set (match_operand:SI 0 "register_operand" "=r")
14946 + (ashiftrt:SI (plus:SI (match_operand:SI 1 "register_operand" "0")
14947 + (match_operand:SI 2 "immediate_operand" "i"))
14948 + (match_operand:SI 3 "immediate_operand" "i")))]
14949 + "avr32_rnd_operands(operands[2], operands[3])"
14950 +
14951 + "satrnds %0 >> %3, 31"
14952 +
14953 + [(set_attr "type" "alu_sat")
14954 + (set_attr "length" "4")]
14955 +
14956 + )
14957 +
14958 +
14959 +(define_peephole2
14960 + [(set (match_operand:SI 0 "register_operand" "")
14961 + (plus:SI (match_dup 0)
14962 + (match_operand:SI 1 "immediate_operand" "")))
14963 + (set (match_dup 0)
14964 + (ashiftrt:SI (match_dup 0)
14965 + (match_operand:SI 2 "immediate_operand" "")))]
14966 + "avr32_rnd_operands(operands[1], operands[2])"
14967 +
14968 + [(set (match_dup 0)
14969 + (ashiftrt:SI (plus:SI (match_dup 0)
14970 + (match_dup 1))
14971 + (match_dup 2)))]
14972 + )
14973 +
14974 +(define_peephole
14975 + [(set (match_operand:SI 0 "register_operand" "r")
14976 + (plus:SI (match_dup 0)
14977 + (match_operand:SI 1 "immediate_operand" "i")))
14978 + (set (match_dup 0)
14979 + (ashiftrt:SI (match_dup 0)
14980 + (match_operand:SI 2 "immediate_operand" "i")))]
14981 + "avr32_rnd_operands(operands[1], operands[2])"
14982 +
14983 + "satrnds %0 >> %2, 31"
14984 +
14985 + [(set_attr "type" "alu_sat")
14986 + (set_attr "length" "4")
14987 + (set_attr "cc" "clobber")]
14988 +
14989 + )
14990 +
14991 +
14992 +
14993 +
14994 +;;=================================================================
14995 +;; Conditional Subtract
14996 +;;=================================================================
14997 +
14998 +
14999 +(define_peephole
15000 + [(set (match_operand:SI 0 "register_operand" "")
15001 + (minus:SI (match_operand:SI 1 "register_operand" "")
15002 + (match_operand:SI 2 "immediate_operand" "")))
15003 + (set (match_dup 1)
15004 + (unspec:SI [(match_operand 5 "avr32_comparison_operator" "")
15005 + (match_dup 0)
15006 + (match_dup 1)
15007 + (match_operand 3 "general_operand" "")
15008 + (match_operand 4 "general_operand" "")]
15009 + UNSPEC_MOVSICC))]
15010 +
15011 + "(dead_or_set_p(insn, operands[0])) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks08\")"
15012 +
15013 + {
15014 +
15015 + operands[5] = avr32_output_cmp(operands[5], GET_MODE(operands[3]), operands[3], operands[4]);
15016 +
15017 + return "sub%5 %1, %2";
15018 + }
15019 +
15020 + [(set_attr "length" "10")
15021 + (set_attr "cc" "clobber")]
15022 + )
15023 +
15024 +(define_peephole
15025 + [(set (match_operand:SI 0 "register_operand" "")
15026 + (plus:SI (match_operand:SI 1 "register_operand" "")
15027 + (match_operand:SI 2 "immediate_operand" "")))
15028 + (set (match_dup 1)
15029 + (unspec:SI [(match_operand 5 "avr32_comparison_operator" "")
15030 + (match_dup 0)
15031 + (match_dup 1)
15032 + (match_operand 3 "general_operand" "")
15033 + (match_operand 4 "general_operand" "")]
15034 + UNSPEC_MOVSICC))]
15035 +
15036 + "(dead_or_set_p(insn, operands[0]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'I', \"Is08\"))"
15037 +
15038 + {
15039 + operands[5] = avr32_output_cmp(operands[5], GET_MODE(operands[3]), operands[3], operands[4]);
15040 +
15041 + return "sub%5 %1, %n2";
15042 + }
15043 + [(set_attr "length" "10")
15044 + (set_attr "cc" "clobber")]
15045 + )
15046 +
15047 +;;=================================================================
15048 +;; mcall
15049 +;;=================================================================
15050 +(define_peephole
15051 + [(set (match_operand:SI 0 "register_operand" "")
15052 + (match_operand 1 "avr32_const_pool_ref_operand" ""))
15053 + (parallel [(call (mem:SI (match_dup 0))
15054 + (match_operand 2 "" ""))
15055 + (clobber (reg:SI LR_REGNUM))])]
15056 + "dead_or_set_p(insn, operands[0])"
15057 + "mcall %1"
15058 + [(set_attr "type" "call")
15059 + (set_attr "length" "4")
15060 + (set_attr "cc" "clobber")]
15061 +)
15062 +
15063 +(define_peephole
15064 + [(set (match_operand:SI 2 "register_operand" "")
15065 + (match_operand 1 "avr32_const_pool_ref_operand" ""))
15066 + (parallel [(set (match_operand 0 "register_operand" "")
15067 + (call (mem:SI (match_dup 2))
15068 + (match_operand 3 "" "")))
15069 + (clobber (reg:SI LR_REGNUM))])]
15070 + "dead_or_set_p(insn, operands[2])"
15071 + "mcall %1"
15072 + [(set_attr "type" "call")
15073 + (set_attr "length" "4")
15074 + (set_attr "cc" "call_set")]
15075 +)
15076 +
15077 +
15078 +(define_peephole2
15079 + [(set (match_operand:SI 0 "register_operand" "")
15080 + (match_operand 1 "avr32_const_pool_ref_operand" ""))
15081 + (parallel [(call (mem:SI (match_dup 0))
15082 + (match_operand 2 "" ""))
15083 + (clobber (reg:SI LR_REGNUM))])]
15084 + "peep2_reg_dead_p(2, operands[0])"
15085 + [(parallel [(call (mem:SI (match_dup 1))
15086 + (match_dup 2))
15087 + (clobber (reg:SI LR_REGNUM))])]
15088 + ""
15089 +)
15090 +
15091 +(define_peephole2
15092 + [(set (match_operand:SI 0 "register_operand" "")
15093 + (match_operand 1 "avr32_const_pool_ref_operand" ""))
15094 + (parallel [(set (match_operand 2 "register_operand" "")
15095 + (call (mem:SI (match_dup 0))
15096 + (match_operand 3 "" "")))
15097 + (clobber (reg:SI LR_REGNUM))])]
15098 + "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))"
15099 + [(parallel [(set (match_dup 2)
15100 + (call (mem:SI (match_dup 1))
15101 + (match_dup 3)))
15102 + (clobber (reg:SI LR_REGNUM))])]
15103 + ""
15104 +)
15105 +
15106 +;;=================================================================
15107 +;; Returning a value
15108 +;;=================================================================
15109 +
15110 +
15111 +(define_peephole
15112 + [(set (match_operand 0 "register_operand" "")
15113 + (match_operand 1 "register_operand" ""))
15114 + (return)]
15115 + "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)
15116 + && (REGNO(operands[1]) != LR_REGNUM)
15117 + && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)"
15118 + "retal %1"
15119 + [(set_attr "type" "call")
15120 + (set_attr "length" "2")]
15121 + )
15122 +
15123 +
15124 +(define_peephole
15125 + [(set (match_operand 0 "register_operand" "r")
15126 + (match_operand 1 "immediate_operand" "i"))
15127 + (return)]
15128 + "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) &&
15129 + ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))"
15130 + {
15131 + avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]);
15132 + return "";
15133 + }
15134 + [(set_attr "type" "call")
15135 + (set_attr "length" "4")]
15136 + )
15137 +
15138 +(define_peephole
15139 + [(set (match_operand 0 "register_operand" "r")
15140 + (match_operand 1 "immediate_operand" "i"))
15141 + (unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
15142 + "(REGNO(operands[0]) == RETVAL_REGNUM) &&
15143 + ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))"
15144 + {
15145 + avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]);
15146 + return "";
15147 + }
15148 + ; Length is absolute worst case
15149 + [(set_attr "type" "branch")
15150 + (set_attr "length" "12")]
15151 + )
15152 +
15153 +(define_peephole
15154 + [(set (match_operand 0 "register_operand" "r")
15155 + (unspec [(match_operand 1 "avr32_comparison_operator" "")
15156 + (match_operand 2 "register_immediate_operand" "rKs08")
15157 + (match_operand 3 "register_immediate_operand" "rKs08")
15158 + (match_operand 4 "register_immediate_operand" "r")
15159 + (match_operand 5 "register_immediate_operand" "rKs21")
15160 + ]
15161 + UNSPEC_MOVSICC ))
15162 + (return)]
15163 + "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM) &&
15164 + ((GET_MODE(operands[4]) == SImode) ||
15165 + ((GET_MODE(operands[4]) != SImode) && (GET_CODE(operands[5]) == REG)))"
15166 + {
15167 + operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
15168 +
15169 + if ( GET_CODE(operands[2]) == REG
15170 + && GET_CODE(operands[3]) == REG
15171 + && REGNO(operands[2]) != LR_REGNUM
15172 + && REGNO(operands[3]) != LR_REGNUM ){
15173 + return "ret%1 %2\;ret%i1 %3";
15174 + } else if ( GET_CODE(operands[2]) == REG
15175 + && GET_CODE(operands[3]) == CONST_INT ){
15176 + if ( INTVAL(operands[3]) == -1
15177 + || INTVAL(operands[3]) == 0
15178 + || INTVAL(operands[3]) == 1 ){
15179 + return "ret%1 %2\;ret%i1 %d3";
15180 + } else {
15181 + return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
15182 + }
15183 + } else if ( GET_CODE(operands[2]) == CONST_INT
15184 + && GET_CODE(operands[3]) == REG ){
15185 + if ( INTVAL(operands[2]) == -1
15186 + || INTVAL(operands[2]) == 0
15187 + || INTVAL(operands[2]) == 1 ){
15188 + return "ret%1 %d2\;ret%i1 %3";
15189 + } else {
15190 + return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
15191 + }
15192 + } else {
15193 + if ( (INTVAL(operands[2]) == -1
15194 + || INTVAL(operands[2]) == 0
15195 + || INTVAL(operands[2]) == 1 )
15196 + && (INTVAL(operands[3]) == -1
15197 + || INTVAL(operands[3]) == 0
15198 + || INTVAL(operands[3]) == 1 )){
15199 + return "ret%1 %d2\;ret%i1 %d3";
15200 + } else {
15201 + return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
15202 + }
15203 + }
15204 + }
15205 +
15206 + [(set_attr "length" "14")
15207 + (set_attr "cc" "clobber")
15208 + (set_attr "type" "call")])
15209 +
15210 +
15211 +;;=================================================================
15212 +;; mulnhh.w
15213 +;;=================================================================
15214 +
15215 +(define_peephole2
15216 + [(set (match_operand:HI 0 "register_operand" "")
15217 + (neg:HI (match_operand:HI 1 "register_operand" "")))
15218 + (set (match_operand:SI 2 "register_operand" "")
15219 + (mult:SI
15220 + (sign_extend:SI (match_dup 0))
15221 + (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))]
15222 + "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
15223 + [ (set (match_dup 2)
15224 + (mult:SI
15225 + (sign_extend:SI (neg:HI (match_dup 1)))
15226 + (sign_extend:SI (match_dup 3))))]
15227 + ""
15228 + )
15229 +
15230 +(define_peephole2
15231 + [(set (match_operand:HI 0 "register_operand" "")
15232 + (neg:HI (match_operand:HI 1 "register_operand" "")))
15233 + (set (match_operand:SI 2 "register_operand" "")
15234 + (mult:SI
15235 + (sign_extend:SI (match_operand:HI 3 "register_operand" ""))
15236 + (sign_extend:SI (match_dup 0))))]
15237 + "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
15238 + [ (set (match_dup 2)
15239 + (mult:SI
15240 + (sign_extend:SI (neg:HI (match_dup 1)))
15241 + (sign_extend:SI (match_dup 3))))]
15242 + ""
15243 + )
15244 +
15245 +
15246 +
15247 +;;=================================================================
15248 +;; sthh.w
15249 +;;=================================================================
15250 +(define_insn "vec_setv2hi"
15251 + [(set (match_operand:V2HI 0 "register_operand" "=r")
15252 + (vec_merge:V2HI
15253 + (match_dup 0)
15254 + (vec_duplicate:V2HI
15255 + (match_operand:HI 1 "register_operand" "r"))
15256 + (const_int 1)))]
15257 + ""
15258 + "bfins\t%0, %1, 16, 16"
15259 + [(set_attr "type" "alu")
15260 + (set_attr "length" "4")
15261 + (set_attr "cc" "clobber")])
15262 +
15263 +(define_insn "vec_setv2lo"
15264 + [(set (match_operand:V2HI 0 "register_operand" "+r")
15265 + (vec_merge:V2HI
15266 + (match_dup 0)
15267 + (vec_duplicate:V2HI
15268 + (match_operand:HI 1 "register_operand" "r"))
15269 + (const_int 2)))]
15270 + ""
15271 + "bfins\t%0, %1, 0, 16"
15272 + [(set_attr "type" "alu")
15273 + (set_attr "length" "4")
15274 + (set_attr "cc" "clobber")])
15275 +
15276 +(define_expand "vec_setv2"
15277 + [(set (match_operand:V2HI 0 "register_operand" "")
15278 + (vec_merge:V2HI
15279 + (match_dup 0)
15280 + (vec_duplicate:V2HI
15281 + (match_operand:HI 1 "register_operand" ""))
15282 + (match_operand 2 "immediate_operand" "")))]
15283 + ""
15284 + { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); }
15285 + )
15286 +
15287 +(define_insn "vec_extractv2hi"
15288 + [(set (match_operand:HI 0 "register_operand" "=r")
15289 + (vec_select:HI
15290 + (match_operand:V2HI 1 "register_operand" "r")
15291 + (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
15292 + ""
15293 + {
15294 + if ( INTVAL(operands[2]) == 0 )
15295 + return "bfextu\t%0, %1, 16, 16";
15296 + else
15297 + return "bfextu\t%0, %1, 0, 16";
15298 + }
15299 + [(set_attr "type" "alu")
15300 + (set_attr "length" "4")
15301 + (set_attr "cc" "clobber")])
15302 +
15303 +(define_insn "vec_extractv4qi"
15304 + [(set (match_operand:QI 0 "register_operand" "=r")
15305 + (vec_select:QI
15306 + (match_operand:V4QI 1 "register_operand" "r")
15307 + (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
15308 + ""
15309 + {
15310 + switch ( INTVAL(operands[2]) ){
15311 + case 0:
15312 + return "bfextu\t%0, %1, 24, 8";
15313 + case 1:
15314 + return "bfextu\t%0, %1, 16, 8";
15315 + case 2:
15316 + return "bfextu\t%0, %1, 8, 8";
15317 + case 3:
15318 + return "bfextu\t%0, %1, 0, 8";
15319 + default:
15320 + abort();
15321 + }
15322 + }
15323 + [(set_attr "type" "alu")
15324 + (set_attr "length" "4")
15325 + (set_attr "cc" "clobber")])
15326 +
15327 +
15328 +(define_insn "concatv2hi"
15329 + [(set (match_operand:V2HI 0 "register_operand" "=r, r, r")
15330 + (vec_concat:V2HI
15331 + (match_operand:HI 1 "register_operand" "r, r, 0")
15332 + (match_operand:HI 2 "register_operand" "r, 0, r")))]
15333 + ""
15334 + "@
15335 + mov\t%0, %1\;bfins\t%0, %2, 0, 16
15336 + bfins\t%0, %2, 0, 16
15337 + bfins\t%0, %1, 16, 16"
15338 + [(set_attr "length" "6, 4, 4")
15339 + (set_attr "type" "alu")])
15340 +
15341 +;(define_peephole2
15342 +; [(set (match_operand:HI 0 "register_operand" "r")
15343 +; (plus:HI (match_operand:HI 3 "register_operand" "r")
15344 +; (match_operand:HI 4 "register_operand" "r")))
15345 +; (set (match_operand:HI 1 "register_operand" "r")
15346 +; (minus:HI (match_dup 3)
15347 +; (match_dup 4)))]
15348 +; "REGNO(operands[0]) != REGNO(operands[3])"
15349 +; [(set (match_dup 2)
15350 +; (vec_concat:V2HI
15351 +; (minus:HI (match_dup 3)
15352 +; (match_dup 4))
15353 +; (plus:HI (match_dup 3) (match_dup 4))))
15354 +; (set (match_dup 1) (vec_select:HI (match_dup 2)
15355 +; (parallel [(const_int 0)])))]
15356 +;
15357 +; "operands[2] = gen_rtx_REG(V2HImode, REGNO(operands[0]));"
15358 +; )
15359 +;
15360 +;(define_peephole2
15361 +; [(set (match_operand:HI 0 "register_operand" "r")
15362 +; (minus:HI (match_operand:HI 3 "register_operand" "r")
15363 +; (match_operand:HI 4 "register_operand" "r")))
15364 +; (set (match_operand:HI 1 "register_operand" "r")
15365 +; (plus:HI (match_dup 3)
15366 +; (match_dup 4)))]
15367 +; "REGNO(operands[0]) != REGNO(operands[3])"
15368 +; [(set (match_dup 2)
15369 +; (vec_concat:V2HI
15370 +; (plus:HI (match_dup 3)
15371 +; (match_dup 4))
15372 +; (minus:HI (match_dup 3) (match_dup 4))))
15373 +; (set (match_dup 1) (vec_select:HI (match_dup 2)
15374 +; (parallel [(const_int 0)])))]
15375 +;
15376 +; "operands[2] = gen_rtx_REG(V2HImode, REGNO(operands[0]));"
15377 +; )
15378 +
15379 +
15380 +;(define_peephole2
15381 +; [(match_scratch:V2HI 5 "r")
15382 +; (set (mem:HI (plus:SI (match_operand:SI 0 "register_operand" "")
15383 +; (match_operand:HI 1 "immediate_operand" "")))
15384 +; (match_operand:HI 2 "register_operand" "r"))
15385 +; (set (mem:HI (plus:SI (match_dup 0)
15386 +; (match_operand:HI 3 "immediate_operand" "")))
15387 +; (match_operand:HI 4 "register_operand" "r"))]
15388 +; "(GET_CODE(operands[1]) == CONST_INT) && (GET_CODE(operands[3]) == CONST_INT)
15389 +; && (INTVAL(operands[3]) == (INTVAL(operands[1]) + 2))"
15390 +;
15391 +; [(set (match_dup 5)
15392 +; (vec_concat:V2HI
15393 +; (match_dup 2)
15394 +; (match_dup 4)))
15395 +; (set (mem:V2HI (plus:SI (match_dup 0) (match_dup 1)))
15396 +; (match_dup 5))]
15397 +; ""
15398 +; )
15399 +;
15400 +
15401 +;(define_insn "sthh_w"
15402 +; [(set (match_operand:V2HI 0 "avr32_sthh_w_memory_operand" "m")
15403 +; (vec_concat:V2HI
15404 +; (vec_select:HI (match_operand:V2HI 1 "register_operand" "r")
15405 +; (parallel [(match_operand 3 "immediate_operand" "i")]))
15406 +; (vec_select:HI (match_operand:V2HI 2 "register_operand" "r")
15407 +; (parallel [(match_operand 4 "immediate_operand" "i")]))))]
15408 +; "MEM_ALIGN(operands[0]) >= 32"
15409 +; "sthh.w\t%0, %1:%h3, %2:%h4"
15410 +; [(set_attr "length" "4")
15411 +; (set_attr "type" "store")])
15412 +;
15413 +;(define_peephole2
15414 +; [(set (mem:HI (plus:SI (match_operand:SI 0 "register_operand" "")
15415 +; (match_operand:HI 1 "immediate_operand" "")))
15416 +; (match_operand:HI 2 "register_operand" "r"))
15417 +; (set (mem:HI (plus:SI (match_dup 0)
15418 +; (match_operand:HI 3 "avr32_sthh_operand" "")))
15419 +; (match_operand:HI 4 "register_operand" "r"))]
15420 +; "(GET_CODE(operands[1]) == CONST_INT) && (GET_CODE(operands[3]) == CONST_INT)
15421 +; && (INTVAL(operands[3]) == (INTVAL(operands[1]) - 2))"
15422 +;
15423 +; [(paralell [(set (mem:HI (plus:SI (match_dup 0)
15424 +; (match_dup 3)))
15425 +; (match_dup 4))
15426 +; (set (mem:HI (plus:SI (match_dup 0)
15427 +; (plus:SI (match_dup 3) (const_int 2))))
15428 +; (match_dup 2))])]
15429 +; ""
15430 +; )
15431 +
15432 +
15433 +;; Load the SIMD description
15434 +(include "simd.md")
15435 +
15436 +;; Load the FP coprocessor patterns
15437 +(include "fpcp.md")
15438 --- /dev/null
15439 +++ b/gcc/config/avr32/avr32-modes.def
15440 @@ -0,0 +1 @@
15441 +VECTOR_MODES (INT, 4); /* V4QI V2HI */
15442 --- /dev/null
15443 +++ b/gcc/config/avr32/avr32.opt
15444 @@ -0,0 +1,78 @@
15445 +; Options for the ATMEL AVR32 port of the compiler.
15446 +
15447 +; Copyright 2007 Atmel Corporation.
15448 +;
15449 +; This file is part of GCC.
15450 +;
15451 +; GCC is free software; you can redistribute it and/or modify it under
15452 +; the terms of the GNU General Public License as published by the Free
15453 +; Software Foundation; either version 2, or (at your option) any later
15454 +; version.
15455 +;
15456 +; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15457 +; WARRANTY; without even the implied warranty of MERCHANTABILITY or
15458 +; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15459 +; for more details.
15460 +;
15461 +; You should have received a copy of the GNU General Public License
15462 +; along with GCC; see the file COPYING. If not, write to the Free
15463 +; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
15464 +; 02110-1301, USA.
15465 +
15466 +muse-rodata-section
15467 +Target Report Mask(USE_RODATA_SECTION)
15468 +Do not put readonly-data in .text section, but in .rodata.
15469 +
15470 +mhard-float
15471 +Target Report Mask(HARD_FLOAT)
15472 +Use floating point coprocessor instructions.
15473 +
15474 +msoft-float
15475 +Target Report InverseMask(HARD_FLOAT, SOFT_FLOAT)
15476 +Use software floating-point library for floating-point operations.
15477 +
15478 +force-double-align
15479 +Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN)
15480 +Force double-word alignment for double-word memory accesses.
15481 +
15482 +mno-init-got
15483 +Target Report RejectNegative Mask(NO_INIT_GOT)
15484 +Do not initialize GOT register before using it when compiling PIC code.
15485 +
15486 +mrelax
15487 +Target Report Mask(RELAX)
15488 +Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1).
15489 +
15490 +mno-reorg-opt
15491 +Target Report RejectNegative Mask(NO_REORG_OPT)
15492 +Do not perform machine dependent optimizations in reorg stage.
15493 +
15494 +mmd-reorg-opt
15495 +Target Report RejectNegative InverseMask(NO_REORG_OPT,MD_REORG_OPTIMIZATION)
15496 +Perform machine dependent optimizations in reorg stage.
15497 +
15498 +masm-addr-pseudos
15499 +Target Report RejectNegative InverseMask(NO_ASM_ADDR_PSEUDOS, HAS_ASM_ADDR_PSEUDOS)
15500 +Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default)
15501 +
15502 +mno-asm-addr-pseudos
15503 +Target Report RejectNegative Mask(NO_ASM_ADDR_PSEUDOS)
15504 +Do not use assembler pseudo-instructions lda.w and call for handling direct addresses.
15505 +
15506 +mno-pic
15507 +Target Report RejectNegative Mask(NO_PIC)
15508 +Do not emit position-independent code (will break dynamic linking.)
15509 +
15510 +mpart=
15511 +Target Report RejectNegative Joined Var(avr32_part_name)
15512 +Specify the AVR32 part name
15513 +
15514 +mcpu=
15515 +Target Report RejectNegative Joined Undocumented Var(avr32_part_name)
15516 +Specify the AVR32 part name (deprecated)
15517 +
15518 +march=
15519 +Target Report RejectNegative Joined Var(avr32_arch_name)
15520 +Specify the AVR32 architecture name
15521 +
15522 +
15523 --- /dev/null
15524 +++ b/gcc/config/avr32/avr32-protos.h
15525 @@ -0,0 +1,175 @@
15526 +/*
15527 + Prototypes for exported functions defined in avr32.c
15528 + Copyright 2003-2006 Atmel Corporation.
15529 +
15530 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
15531 + Initial porting by Anders Ådland.
15532 +
15533 + This file is part of GCC.
15534 +
15535 + This program is free software; you can redistribute it and/or modify
15536 + it under the terms of the GNU General Public License as published by
15537 + the Free Software Foundation; either version 2 of the License, or
15538 + (at your option) any later version.
15539 +
15540 + This program is distributed in the hope that it will be useful,
15541 + but WITHOUT ANY WARRANTY; without even the implied warranty of
15542 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15543 + GNU General Public License for more details.
15544 +
15545 + You should have received a copy of the GNU General Public License
15546 + along with this program; if not, write to the Free Software
15547 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
15548 +
15549 +
15550 +#ifndef AVR32_PROTOS_H
15551 +#define AVR32_PROTOS_H
15552 +
15553 +extern const int swap_reg[];
15554 +
15555 +extern int avr32_valid_macmac_bypass (rtx, rtx);
15556 +extern int avr32_valid_mulmac_bypass (rtx, rtx);
15557 +
15558 +extern int avr32_decode_lcomm_symbol_offset (rtx, int *);
15559 +extern void avr32_encode_lcomm_symbol_offset (tree, char *, int);
15560 +
15561 +extern const char *avr32_strip_name_encoding (const char *);
15562 +
15563 +extern rtx avr32_get_note_reg_equiv (rtx insn);
15564 +
15565 +extern int avr32_use_return_insn (int iscond);
15566 +
15567 +extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string);
15568 +
15569 +extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string);
15570 +extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string);
15571 +extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string);
15572 +
15573 +extern void avr32_output_return_instruction (int single_ret_inst,
15574 + int iscond, rtx cond,
15575 + rtx r12_imm);
15576 +extern void avr32_expand_prologue (void);
15577 +extern void avr32_set_return_address (rtx source);
15578 +
15579 +extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode);
15580 +extern int avr32_extra_constraint_s (rtx value, const int strict);
15581 +extern int avr32_eh_return_data_regno (const int n);
15582 +extern int avr32_initial_elimination_offset (const int from, const int to);
15583 +extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
15584 + tree type, int named);
15585 +extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
15586 + rtx libname, tree fndecl);
15587 +extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum,
15588 + enum machine_mode mode,
15589 + tree type, int named);
15590 +#ifdef ARGS_SIZE_RTX
15591 +/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */
15592 +extern enum direction avr32_function_arg_padding (enum machine_mode mode,
15593 + tree type);
15594 +#endif /* ARGS_SIZE_RTX */
15595 +extern rtx avr32_function_value (tree valtype, tree func);
15596 +extern rtx avr32_libcall_value (enum machine_mode mode);
15597 +extern int avr32_sched_use_dfa_pipeline_interface (void);
15598 +extern bool avr32_return_in_memory (tree type, tree fntype);
15599 +extern void avr32_regs_to_save (char *operand);
15600 +extern void avr32_target_asm_function_prologue (FILE * file,
15601 + HOST_WIDE_INT size);
15602 +extern void avr32_target_asm_function_epilogue (FILE * file,
15603 + HOST_WIDE_INT size);
15604 +extern void avr32_trampoline_template (FILE * file);
15605 +extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr,
15606 + rtx static_chain);
15607 +extern int avr32_legitimate_address (enum machine_mode mode, rtx x,
15608 + int strict);
15609 +extern int avr32_legitimate_constant_p (rtx x);
15610 +
15611 +extern int avr32_legitimate_pic_operand_p (rtx x);
15612 +
15613 +extern rtx avr32_find_symbol (rtx x);
15614 +extern void avr32_select_section (rtx exp, int reloc, int align);
15615 +extern void avr32_encode_section_info (tree decl, rtx rtl, int first);
15616 +extern void avr32_asm_file_end (FILE * stream);
15617 +extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len);
15618 +extern void avr32_asm_output_common (FILE * stream, const char *name,
15619 + int size, int rounded);
15620 +extern void avr32_asm_output_label (FILE * stream, const char *name);
15621 +extern void avr32_asm_declare_object_name (FILE * stream, char *name,
15622 + tree decl);
15623 +extern void avr32_asm_globalize_label (FILE * stream, const char *name);
15624 +extern void avr32_asm_weaken_label (FILE * stream, const char *name);
15625 +extern void avr32_asm_output_external (FILE * stream, tree decl,
15626 + const char *name);
15627 +extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref);
15628 +extern void avr32_asm_output_labelref (FILE * stream, const char *name);
15629 +extern void avr32_notice_update_cc (rtx exp, rtx insn);
15630 +extern void avr32_print_operand (FILE * stream, rtx x, int code);
15631 +extern void avr32_print_operand_address (FILE * stream, rtx x);
15632 +
15633 +extern int avr32_symbol (rtx x);
15634 +
15635 +extern void avr32_select_rtx_section (enum machine_mode mode, rtx x,
15636 + unsigned HOST_WIDE_INT align);
15637 +
15638 +extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode);
15639 +extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode);
15640 +
15641 +extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c,
15642 + const char *str);
15643 +
15644 +extern bool avr32_cannot_force_const_mem (rtx x);
15645 +
15646 +extern void avr32_init_builtins (void);
15647 +
15648 +extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget,
15649 + enum machine_mode mode, int ignore);
15650 +
15651 +extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type);
15652 +
15653 +extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca);
15654 +
15655 +extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum,
15656 + enum machine_mode mode,
15657 + tree type, bool named);
15658 +
15659 +extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from,
15660 + int write_back, int in_struct_p,
15661 + int scalar_p);
15662 +extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to,
15663 + int in_struct_p, int scalar_p);
15664 +extern int avr32_gen_movmemsi (rtx * operands);
15665 +
15666 +extern int avr32_rnd_operands (rtx add, rtx shift);
15667 +extern int avr32_adjust_insn_length (rtx insn, int length);
15668 +
15669 +extern int symbol_mentioned_p (rtx x);
15670 +extern int label_mentioned_p (rtx x);
15671 +extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg);
15672 +extern int avr32_address_register_rtx_p (rtx x, int strict_p);
15673 +extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index,
15674 + int strict_p);
15675 +
15676 +extern int avr32_const_double_immediate (rtx value);
15677 +extern void avr32_init_expanders (void);
15678 +extern rtx avr32_return_addr (int count, rtx frame);
15679 +extern bool avr32_got_mentioned_p (rtx addr);
15680 +
15681 +extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands);
15682 +
15683 +extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]);
15684 +extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]);
15685 +#ifdef RTX_CODE
15686 +extern int avr32_expand_scc (RTX_CODE cond, rtx * operands);
15687 +#endif
15688 +
15689 +extern int avr32_store_bypass (rtx insn_out, rtx insn_in);
15690 +extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in);
15691 +extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in);
15692 +extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in);
15693 +extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode,
15694 + rtx op0, rtx op1);
15695 +
15696 +rtx get_next_insn_cond (rtx cur_insn);
15697 +int set_next_insn_cond (rtx cur_insn, rtx cond);
15698 +void avr32_override_options (void);
15699 +
15700 +#endif /* AVR32_PROTOS_H */
15701 --- /dev/null
15702 +++ b/gcc/config/avr32/crti.asm
15703 @@ -0,0 +1,64 @@
15704 +/*
15705 + Init/fini stuff for AVR32.
15706 + Copyright 2003-2006 Atmel Corporation.
15707 +
15708 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
15709 +
15710 + This file is part of GCC.
15711 +
15712 + This program is free software; you can redistribute it and/or modify
15713 + it under the terms of the GNU General Public License as published by
15714 + the Free Software Foundation; either version 2 of the License, or
15715 + (at your option) any later version.
15716 +
15717 + This program is distributed in the hope that it will be useful,
15718 + but WITHOUT ANY WARRANTY; without even the implied warranty of
15719 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15720 + GNU General Public License for more details.
15721 +
15722 + You should have received a copy of the GNU General Public License
15723 + along with this program; if not, write to the Free Software
15724 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
15725 +
15726 +
15727 +/* The code in sections .init and .fini is supposed to be a single
15728 + regular function. The function in .init is called directly from
15729 + start in crt1.asm. The function in .fini is atexit()ed in crt1.asm
15730 + too.
15731 +
15732 + crti.asm contributes the prologue of a function to these sections,
15733 + and crtn.asm comes up the epilogue. STARTFILE_SPEC should list
15734 + crti.o before any other object files that might add code to .init
15735 + or .fini sections, and ENDFILE_SPEC should list crtn.o after any
15736 + such object files. */
15737 +
15738 + .file "crti.asm"
15739 +
15740 + .section ".init"
15741 +/* Just load the GOT */
15742 + .align 2
15743 + .global _init
15744 +_init:
15745 + stm --sp, r6, lr
15746 + lddpc r6, 1f
15747 +0:
15748 + rsub r6, pc
15749 + rjmp 2f
15750 + .align 2
15751 +1: .long 0b - _GLOBAL_OFFSET_TABLE_
15752 +2:
15753 +
15754 + .section ".fini"
15755 +/* Just load the GOT */
15756 + .align 2
15757 + .global _fini
15758 +_fini:
15759 + stm --sp, r6, lr
15760 + lddpc r6, 1f
15761 +0:
15762 + rsub r6, pc
15763 + rjmp 2f
15764 + .align 2
15765 +1: .long 0b - _GLOBAL_OFFSET_TABLE_
15766 +2:
15767 +
15768 --- /dev/null
15769 +++ b/gcc/config/avr32/crtn.asm
15770 @@ -0,0 +1,44 @@
15771 +/* Copyright (C) 2001 Free Software Foundation, Inc.
15772 + Written By Nick Clifton
15773 +
15774 + This file is free software; you can redistribute it and/or modify it
15775 + under the terms of the GNU General Public License as published by the
15776 + Free Software Foundation; either version 2, or (at your option) any
15777 + later version.
15778 +
15779 + In addition to the permissions in the GNU General Public License, the
15780 + Free Software Foundation gives you unlimited permission to link the
15781 + compiled version of this file with other programs, and to distribute
15782 + those programs without any restriction coming from the use of this
15783 + file. (The General Public License restrictions do apply in other
15784 + respects; for example, they cover modification of the file, and
15785 + distribution when not linked into another program.)
15786 +
15787 + This file is distributed in the hope that it will be useful, but
15788 + WITHOUT ANY WARRANTY; without even the implied warranty of
15789 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15790 + General Public License for more details.
15791 +
15792 + You should have received a copy of the GNU General Public License
15793 + along with this program; see the file COPYING. If not, write to
15794 + the Free Software Foundation, 59 Temple Place - Suite 330,
15795 + Boston, MA 02111-1307, USA.
15796 +
15797 + As a special exception, if you link this library with files
15798 + compiled with GCC to produce an executable, this does not cause
15799 + the resulting executable to be covered by the GNU General Public License.
15800 + This exception does not however invalidate any other reasons why
15801 + the executable file might be covered by the GNU General Public License.
15802 +*/
15803 +
15804 +
15805 +
15806 +
15807 + .file "crtn.asm"
15808 +
15809 + .section ".init"
15810 + ldm sp++, r6, pc
15811 +
15812 + .section ".fini"
15813 + ldm sp++, r6, pc
15814 +
15815 --- /dev/null
15816 +++ b/gcc/config/avr32/fpcp.md
15817 @@ -0,0 +1,551 @@
15818 +;; AVR32 machine description file for Floating-Point instructions.
15819 +;; Copyright 2003-2006 Atmel Corporation.
15820 +;;
15821 +;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
15822 +;;
15823 +;; This file is part of GCC.
15824 +;;
15825 +;; This program is free software; you can redistribute it and/or modify
15826 +;; it under the terms of the GNU General Public License as published by
15827 +;; the Free Software Foundation; either version 2 of the License, or
15828 +;; (at your option) any later version.
15829 +;;
15830 +;; This program is distributed in the hope that it will be useful,
15831 +;; but WITHOUT ANY WARRANTY; without even the implied warranty of
15832 +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15833 +;; GNU General Public License for more details.
15834 +;;
15835 +;; You should have received a copy of the GNU General Public License
15836 +;; along with this program; if not, write to the Free Software
15837 +;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15838 +
15839 +;; -*- Mode: Scheme -*-
15840 +
15841 +;;******************************************************************************
15842 +;; Automaton pipeline description for floating-point coprocessor insns
15843 +;;******************************************************************************
15844 +(define_cpu_unit "fid,fm1,fm2,fm3,fm4,fwb,fcmp,fcast" "avr32_ap")
15845 +
15846 +(define_insn_reservation "fmv_op" 1
15847 + (and (eq_attr "pipeline" "ap")
15848 + (eq_attr "type" "fmv"))
15849 + "is,da,d,fid,fwb")
15850 +
15851 +(define_insn_reservation "fmul_op" 5
15852 + (and (eq_attr "pipeline" "ap")
15853 + (eq_attr "type" "fmul"))
15854 + "is,da,d,fid,fm1,fm2,fm3,fm4,fwb")
15855 +
15856 +(define_insn_reservation "fcmps_op" 1
15857 + (and (eq_attr "pipeline" "ap")
15858 + (eq_attr "type" "fcmps"))
15859 + "is,da,d,fid,fcmp")
15860 +
15861 +(define_insn_reservation "fcmpd_op" 2
15862 + (and (eq_attr "pipeline" "ap")
15863 + (eq_attr "type" "fcmpd"))
15864 + "is,da,d,fid*2,fcmp")
15865 +
15866 +(define_insn_reservation "fcast_op" 3
15867 + (and (eq_attr "pipeline" "ap")
15868 + (eq_attr "type" "fcast"))
15869 + "is,da,d,fid,fcmp,fcast,fwb")
15870 +
15871 +(define_insn_reservation "fmvcpu_op" 2
15872 + (and (eq_attr "pipeline" "ap")
15873 + (eq_attr "type" "fmvcpu"))
15874 + "is,da,d")
15875 +
15876 +(define_insn_reservation "fldd_op" 1
15877 + (and (eq_attr "pipeline" "ap")
15878 + (eq_attr "type" "fldd"))
15879 + "is,da,d,fwb")
15880 +
15881 +(define_insn_reservation "flds_op" 1
15882 + (and (eq_attr "pipeline" "ap")
15883 + (eq_attr "type" "flds"))
15884 + "is,da,d,fwb")
15885 +
15886 +(define_insn_reservation "fsts_op" 0
15887 + (and (eq_attr "pipeline" "ap")
15888 + (eq_attr "type" "fsts"))
15889 + "is,da*2,d")
15890 +
15891 +(define_insn_reservation "fstd_op" 0
15892 + (and (eq_attr "pipeline" "ap")
15893 + (eq_attr "type" "fstd"))
15894 + "is,da*2,d")
15895 +
15896 +
15897 +(define_insn "*movsf_fpcp"
15898 + [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,r,m")
15899 + (match_operand:SF 1 "general_operand" " f,r,f,m,f,r,G,m,r"))]
15900 + "TARGET_HARD_FLOAT"
15901 + "@
15902 + fmov.s\t%0, %1
15903 + fmov.s\t%0, %1
15904 + fmov.s\t%0, %1
15905 + fld.s\t%0, %1
15906 + fst.s\t%0, %1
15907 + mov\t%0, %1
15908 + mov\t%0, %1
15909 + ld.w\t%0, %1
15910 + st.w\t%0, %1"
15911 + [(set_attr "length" "4,4,4,4,4,2,4,4,4")
15912 + (set_attr "type" "fmv,flds,fmvcpu,flds,fsts,alu,alu,load,store")])
15913 +
15914 +(define_insn_and_split "*movdf_fpcp"
15915 + [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,m")
15916 + (match_operand:DF 1 "general_operand" " f,r,f,m,f,r,m,r"))]
15917 + "TARGET_HARD_FLOAT"
15918 + "@
15919 + fmov.d\t%0, %1
15920 + fmov.d\t%0, %1
15921 + fmov.d\t%0, %1
15922 + fld.d\t%0, %1
15923 + fst.d\t%0, %1
15924 + mov\t%0, %1\;mov\t%m0, %m1
15925 + ld.d\t%0, %1
15926 + st.d\t%0, %1"
15927 +
15928 + "TARGET_HARD_FLOAT
15929 + && reload_completed
15930 + && (REG_P(operands[0]) && (REGNO_REG_CLASS(REGNO(operands[0])) == GENERAL_REGS))
15931 + && (REG_P(operands[1]) && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS))"
15932 + [(set (match_dup 0) (match_dup 1))
15933 + (set (match_dup 2) (match_dup 3))]
15934 + "
15935 + {
15936 + operands[2] = gen_highpart (SImode, operands[0]);
15937 + operands[0] = gen_lowpart (SImode, operands[0]);
15938 + operands[3] = gen_highpart(SImode, operands[1]);
15939 + operands[1] = gen_lowpart(SImode, operands[1]);
15940 + }
15941 + "
15942 +
15943 + [(set_attr "length" "4,4,4,4,4,4,4,4")
15944 + (set_attr "type" "fmv,fldd,fmvcpu,fldd,fstd,alu2,load2,store2")])
15945 +
15946 +
15947 +(define_insn "mulsf3"
15948 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
15949 + (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
15950 + (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
15951 + "TARGET_HARD_FLOAT"
15952 + "fmul.s\t%0, %1, %2"
15953 + [(set_attr "length" "4")
15954 + (set_attr "type" "fmul")])
15955 +
15956 +(define_insn "nmulsf3"
15957 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
15958 + (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
15959 + (match_operand:SF 2 "avr32_fp_register_operand" "f"))))]
15960 + "TARGET_HARD_FLOAT"
15961 + "fnmul.s\t%0, %1, %2"
15962 + [(set_attr "length" "4")
15963 + (set_attr "type" "fmul")])
15964 +
15965 +(define_peephole2
15966 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
15967 + (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
15968 + (match_operand:SF 2 "avr32_fp_register_operand" "")))
15969 + (set (match_operand:SF 3 "avr32_fp_register_operand" "")
15970 + (neg:SF (match_dup 0)))]
15971 + "TARGET_HARD_FLOAT &&
15972 + (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
15973 + [(set (match_dup 3)
15974 + (neg:SF (mult:SF (match_dup 1)
15975 + (match_dup 2))))]
15976 +)
15977 +
15978 +
15979 +(define_insn "macsf3"
15980 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
15981 + (plus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
15982 + (match_operand:SF 2 "avr32_fp_register_operand" "f"))
15983 + (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
15984 + "TARGET_HARD_FLOAT"
15985 + "fmac.s\t%0, %1, %2"
15986 + [(set_attr "length" "4")
15987 + (set_attr "type" "fmul")])
15988 +
15989 +(define_insn "nmacsf3"
15990 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
15991 + (plus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
15992 + (match_operand:SF 2 "avr32_fp_register_operand" "f")))
15993 + (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
15994 + "TARGET_HARD_FLOAT"
15995 + "fnmac.s\t%0, %1, %2"
15996 + [(set_attr "length" "4")
15997 + (set_attr "type" "fmul")])
15998 +
15999 +(define_peephole2
16000 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
16001 + (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
16002 + (match_operand:SF 2 "avr32_fp_register_operand" "")))
16003 + (set (match_operand:SF 3 "avr32_fp_register_operand" "")
16004 + (minus:SF
16005 + (match_dup 3)
16006 + (match_dup 0)))]
16007 + "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
16008 + [(set (match_dup 3)
16009 + (plus:SF (neg:SF (mult:SF (match_dup 1)
16010 + (match_dup 2)))
16011 + (match_dup 3)))]
16012 +)
16013 +
16014 +
16015 +(define_insn "msubacsf3"
16016 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16017 + (minus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
16018 + (match_operand:SF 2 "avr32_fp_register_operand" "f"))
16019 + (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
16020 + "TARGET_HARD_FLOAT"
16021 + "fmsc.s\t%0, %1, %2"
16022 + [(set_attr "length" "4")
16023 + (set_attr "type" "fmul")])
16024 +
16025 +(define_peephole2
16026 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
16027 + (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
16028 + (match_operand:SF 2 "avr32_fp_register_operand" "")))
16029 + (set (match_operand:SF 3 "avr32_fp_register_operand" "")
16030 + (minus:SF
16031 + (match_dup 0)
16032 + (match_dup 3)))]
16033 + "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
16034 + [(set (match_dup 3)
16035 + (minus:SF (mult:SF (match_dup 1)
16036 + (match_dup 2))
16037 + (match_dup 3)))]
16038 +)
16039 +
16040 +(define_insn "nmsubacsf3"
16041 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16042 + (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
16043 + (match_operand:SF 2 "avr32_fp_register_operand" "f")))
16044 + (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
16045 + "TARGET_HARD_FLOAT"
16046 + "fnmsc.s\t%0, %1, %2"
16047 + [(set_attr "length" "4")
16048 + (set_attr "type" "fmul")])
16049 +
16050 +
16051 +
16052 +(define_insn "addsf3"
16053 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16054 + (plus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
16055 + (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
16056 + "TARGET_HARD_FLOAT"
16057 + "fadd.s\t%0, %1, %2"
16058 + [(set_attr "length" "4")
16059 + (set_attr "type" "fmul")])
16060 +
16061 +(define_insn "subsf3"
16062 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16063 + (minus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
16064 + (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
16065 + "TARGET_HARD_FLOAT"
16066 + "fsub.s\t%0, %1, %2"
16067 + [(set_attr "length" "4")
16068 + (set_attr "type" "fmul")])
16069 +
16070 +
16071 +(define_insn "negsf2"
16072 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16073 + (neg:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
16074 + "TARGET_HARD_FLOAT"
16075 + "fneg.s\t%0, %1"
16076 + [(set_attr "length" "4")
16077 + (set_attr "type" "fmv")])
16078 +
16079 +(define_insn "abssf2"
16080 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16081 + (abs:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
16082 + "TARGET_HARD_FLOAT"
16083 + "fabs.s\t%0, %1"
16084 + [(set_attr "length" "4")
16085 + (set_attr "type" "fmv")])
16086 +
16087 +(define_insn "truncdfsf2"
16088 + [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
16089 + (float_truncate:SF
16090 + (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
16091 + "TARGET_HARD_FLOAT"
16092 + "fcastd.s\t%0, %1"
16093 + [(set_attr "length" "4")
16094 + (set_attr "type" "fcast")])
16095 +
16096 +(define_insn "extendsfdf2"
16097 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16098 + (float_extend:DF
16099 + (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
16100 + "TARGET_HARD_FLOAT"
16101 + "fcasts.d\t%0, %1"
16102 + [(set_attr "length" "4")
16103 + (set_attr "type" "fcast")])
16104 +
16105 +(define_insn "muldf3"
16106 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16107 + (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16108 + (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
16109 + "TARGET_HARD_FLOAT"
16110 + "fmul.d\t%0, %1, %2"
16111 + [(set_attr "length" "4")
16112 + (set_attr "type" "fmul")])
16113 +
16114 +(define_insn "nmuldf3"
16115 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16116 + (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16117 + (match_operand:DF 2 "avr32_fp_register_operand" "f"))))]
16118 + "TARGET_HARD_FLOAT"
16119 + "fnmul.d\t%0, %1, %2"
16120 + [(set_attr "length" "4")
16121 + (set_attr "type" "fmul")])
16122 +
16123 +(define_peephole2
16124 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
16125 + (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
16126 + (match_operand:DF 2 "avr32_fp_register_operand" "")))
16127 + (set (match_operand:DF 3 "avr32_fp_register_operand" "")
16128 + (neg:DF (match_dup 0)))]
16129 + "TARGET_HARD_FLOAT &&
16130 + (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
16131 + [(set (match_dup 3)
16132 + (neg:DF (mult:DF (match_dup 1)
16133 + (match_dup 2))))]
16134 +)
16135 +
16136 +(define_insn "macdf3"
16137 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16138 + (plus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16139 + (match_operand:DF 2 "avr32_fp_register_operand" "f"))
16140 + (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
16141 + "TARGET_HARD_FLOAT"
16142 + "fmac.d\t%0, %1, %2"
16143 + [(set_attr "length" "4")
16144 + (set_attr "type" "fmul")])
16145 +
16146 +(define_insn "msubacdf3"
16147 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16148 + (minus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16149 + (match_operand:DF 2 "avr32_fp_register_operand" "f"))
16150 + (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
16151 + "TARGET_HARD_FLOAT"
16152 + "fmsc.d\t%0, %1, %2"
16153 + [(set_attr "length" "4")
16154 + (set_attr "type" "fmul")])
16155 +
16156 +(define_peephole2
16157 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
16158 + (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
16159 + (match_operand:DF 2 "avr32_fp_register_operand" "")))
16160 + (set (match_operand:DF 3 "avr32_fp_register_operand" "")
16161 + (minus:DF
16162 + (match_dup 0)
16163 + (match_dup 3)))]
16164 + "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
16165 + [(set (match_dup 3)
16166 + (minus:DF (mult:DF (match_dup 1)
16167 + (match_dup 2))
16168 + (match_dup 3)))]
16169 + )
16170 +
16171 +(define_insn "nmsubacdf3"
16172 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16173 + (minus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16174 + (match_operand:DF 2 "avr32_fp_register_operand" "f")))
16175 + (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
16176 + "TARGET_HARD_FLOAT"
16177 + "fnmsc.d\t%0, %1, %2"
16178 + [(set_attr "length" "4")
16179 + (set_attr "type" "fmul")])
16180 +
16181 +(define_insn "nmacdf3"
16182 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16183 + (plus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16184 + (match_operand:DF 2 "avr32_fp_register_operand" "f")))
16185 + (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
16186 + "TARGET_HARD_FLOAT"
16187 + "fnmac.d\t%0, %1, %2"
16188 + [(set_attr "length" "4")
16189 + (set_attr "type" "fmul")])
16190 +
16191 +(define_peephole2
16192 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
16193 + (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
16194 + (match_operand:DF 2 "avr32_fp_register_operand" "")))
16195 + (set (match_operand:DF 3 "avr32_fp_register_operand" "")
16196 + (minus:DF
16197 + (match_dup 3)
16198 + (match_dup 0)))]
16199 + "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
16200 + [(set (match_dup 3)
16201 + (plus:DF (neg:DF (mult:DF (match_dup 1)
16202 + (match_dup 2)))
16203 + (match_dup 3)))]
16204 +)
16205 +
16206 +(define_insn "adddf3"
16207 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16208 + (plus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16209 + (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
16210 + "TARGET_HARD_FLOAT"
16211 + "fadd.d\t%0, %1, %2"
16212 + [(set_attr "length" "4")
16213 + (set_attr "type" "fmul")])
16214 +
16215 +(define_insn "subdf3"
16216 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16217 + (minus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
16218 + (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
16219 + "TARGET_HARD_FLOAT"
16220 + "fsub.d\t%0, %1, %2"
16221 + [(set_attr "length" "4")
16222 + (set_attr "type" "fmul")])
16223 +
16224 +(define_insn "negdf2"
16225 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16226 + (neg:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
16227 + "TARGET_HARD_FLOAT"
16228 + "fneg.d\t%0, %1"
16229 + [(set_attr "length" "4")
16230 + (set_attr "type" "fmv")])
16231 +
16232 +(define_insn "absdf2"
16233 + [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
16234 + (abs:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
16235 + "TARGET_HARD_FLOAT"
16236 + "fabs.d\t%0, %1"
16237 + [(set_attr "length" "4")
16238 + (set_attr "type" "fmv")])
16239 +
16240 +
16241 +(define_expand "cmpdf"
16242 + [(set (cc0)
16243 + (compare:DF
16244 + (match_operand:DF 0 "general_operand" "")
16245 + (match_operand:DF 1 "general_operand" "")))]
16246 + "TARGET_HARD_FLOAT"
16247 + "{
16248 + rtx tmpreg;
16249 + if ( !REG_P(operands[0]) )
16250 + operands[0] = force_reg(DFmode, operands[0]);
16251 +
16252 + if ( !REG_P(operands[1]) )
16253 + operands[1] = force_reg(DFmode, operands[1]);
16254 +
16255 + avr32_compare_op0 = operands[0];
16256 + avr32_compare_op1 = operands[1];
16257 +
16258 + emit_insn(gen_cmpdf_internal(operands[0], operands[1]));
16259 +
16260 + tmpreg = gen_reg_rtx(SImode);
16261 + emit_insn(gen_fpcc_to_reg(tmpreg));
16262 + emit_insn(gen_reg_to_cc(tmpreg));
16263 +
16264 + DONE;
16265 + }"
16266 +)
16267 +
16268 +(define_insn "cmpdf_internal"
16269 + [(set (reg:CC FPCC_REGNUM)
16270 + (compare:CC
16271 + (match_operand:DF 0 "avr32_fp_register_operand" "f")
16272 + (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
16273 + "TARGET_HARD_FLOAT"
16274 + {
16275 + if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
16276 + return "fcmp.d\t%0, %1";
16277 + return "";
16278 + }
16279 + [(set_attr "length" "4")
16280 + (set_attr "type" "fcmpd")
16281 + (set_attr "cc" "fpcompare")])
16282 +
16283 +(define_expand "cmpsf"
16284 + [(set (cc0)
16285 + (compare:SF
16286 + (match_operand:SF 0 "general_operand" "")
16287 + (match_operand:SF 1 "general_operand" "")))]
16288 + "TARGET_HARD_FLOAT"
16289 + "{
16290 + rtx tmpreg;
16291 + if ( !REG_P(operands[0]) )
16292 + operands[0] = force_reg(SFmode, operands[0]);
16293 +
16294 + if ( !REG_P(operands[1]) )
16295 + operands[1] = force_reg(SFmode, operands[1]);
16296 +
16297 + avr32_compare_op0 = operands[0];
16298 + avr32_compare_op1 = operands[1];
16299 +
16300 + emit_insn(gen_cmpsf_internal(operands[0], operands[1]));
16301 +
16302 + tmpreg = gen_reg_rtx(SImode);
16303 + emit_insn(gen_fpcc_to_reg(tmpreg));
16304 + emit_insn(gen_reg_to_cc(tmpreg));
16305 +
16306 + DONE;
16307 + }"
16308 +)
16309 +
16310 +(define_insn "cmpsf_internal"
16311 + [(set (reg:CC FPCC_REGNUM)
16312 + (compare:CC
16313 + (match_operand:SF 0 "avr32_fp_register_operand" "f")
16314 + (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
16315 + "TARGET_HARD_FLOAT"
16316 + {
16317 + if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
16318 + return "fcmp.s\t%0, %1";
16319 + return "";
16320 + }
16321 + [(set_attr "length" "4")
16322 + (set_attr "type" "fcmps")
16323 + (set_attr "cc" "fpcompare")])
16324 +
16325 +(define_insn "fpcc_to_reg"
16326 + [(set (match_operand:SI 0 "register_operand" "=r")
16327 + (unspec:SI [(reg:CC FPCC_REGNUM)]
16328 + UNSPEC_FPCC_TO_REG))]
16329 + "TARGET_HARD_FLOAT"
16330 + "fmov.s\t%0, fsr"
16331 + [(set_attr "length" "4")
16332 + (set_attr "type" "fmvcpu")])
16333 +
16334 +(define_insn "reg_to_cc"
16335 + [(set (cc0)
16336 + (unspec:SI [(match_operand:SI 0 "register_operand" "r")]
16337 + UNSPEC_REG_TO_CC))]
16338 + "TARGET_HARD_FLOAT"
16339 + "musfr\t%0"
16340 + [(set_attr "length" "2")
16341 + (set_attr "type" "alu")
16342 + (set_attr "cc" "from_fpcc")])
16343 +
16344 +(define_insn "stm_fp"
16345 + [(unspec [(match_operand 0 "register_operand" "r")
16346 + (match_operand 1 "const_int_operand" "")
16347 + (match_operand 2 "const_int_operand" "")]
16348 + UNSPEC_STMFP)]
16349 + "TARGET_HARD_FLOAT"
16350 + {
16351 + int cop_reglist = INTVAL(operands[1]);
16352 +
16353 + if (INTVAL(operands[2]) != 0)
16354 + return "stcm.w\tcp0, --%0, %C1";
16355 + else
16356 + return "stcm.w\tcp0, %0, %C1";
16357 +
16358 + if ( cop_reglist & ~0xff ){
16359 + operands[1] = GEN_INT(cop_reglist & ~0xff);
16360 + if (INTVAL(operands[2]) != 0)
16361 + return "stcm.d\tcp0, --%0, %D1";
16362 + else
16363 + return "stcm.d\tcp0, %0, %D1";
16364 + }
16365 + }
16366 + [(set_attr "type" "fstm")
16367 + (set_attr "length" "4")
16368 + (set_attr "cc" "none")])
16369 --- /dev/null
16370 +++ b/gcc/config/avr32/lib1funcs.S
16371 @@ -0,0 +1,1678 @@
16372 +/*#define __IEEE_LARGE_FLOATS__*/
16373 +
16374 +/* Adjust the unpacked double number if it is a subnormal number.
16375 + The exponent and mantissa pair are stored
16376 + in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in
16377 + the MSB is passed in [sign]. Needs two scratch
16378 + registers [scratch1] and [scratch2]. An adjusted and packed double float
16379 + is present in [mant_hi,mant_lo] after macro has executed */
16380 +.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2
16381 + /* We have an exponent which is <=0 indicating a subnormal number
16382 + As it should be stored as if the exponent was 1 (although the
16383 + exponent field is all zeros to indicate a subnormal number)
16384 + we have to shift down the mantissa to its correct position. */
16385 + neg \exp
16386 + sub \exp,-1 /* amount to shift down */
16387 + cp.w \exp,54
16388 + brlo 50f /* if more than 53 shift steps, the
16389 + entire mantissa will disappear
16390 + without any rounding to occur */
16391 + mov \mant_hi, 0
16392 + mov \mant_lo, 0
16393 + rjmp 52f
16394 +50:
16395 + sub \exp,-10 /* do the shift to position the
16396 + mantissa at the same time
16397 + note! this does not include the
16398 + final 1 step shift to add the sign */
16399 +
16400 + /* when shifting, save all shifted out bits in [scratch2]. we may need to
16401 + look at them to make correct rounding. */
16402 +
16403 + rsub \scratch1,\exp,32 /* get inverted shift count */
16404 + cp.w \exp,32 /* handle shifts >= 32 separately */
16405 + brhs 51f
16406 +
16407 + /* small (<32) shift amount, both words are part of the shift */
16408 + lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/
16409 + lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/
16410 + lsr \mant_lo,\mant_lo,\exp /* shift down lsw */
16411 + lsr \mant_hi,\mant_hi,\exp /* shift down msw */
16412 + or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */
16413 + rjmp 50f
16414 +
16415 + /* large (>=32) shift amount, only lsw will have bits left after shift.
16416 + note that shift operations will use ((shift count) mod 32) so
16417 + we do not need to subtract 32 from shift count. */
16418 +51:
16419 + lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */
16420 + or \scratch2,\mant_lo /* also save all bits from lsw */
16421 + mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */
16422 + mov \mant_hi,0 /* clear msw */
16423 + lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */
16424 +
16425 +50:
16426 + /* result is almost ready to return, except that least significant bit
16427 + and the part we already shifted out may cause the result to be
16428 + rounded */
16429 + bld \mant_lo,0 /* get bit to be shifted out */
16430 + brcc 51f /* if bit was 0, no rounding */
16431 +
16432 + /* msb of part to remove is 1, so rounding depends on rest of bits */
16433 + tst \scratch2,\scratch2 /* get shifted out tail */
16434 + brne 50f /* if rest > 0, do round */
16435 + bld \mant_lo,1 /* we have to look at lsb in result */
16436 + brcc 51f /* if lsb is 0, don't round */
16437 +
16438 +50:
16439 + /* subnormal result requires rounding
16440 + rounding may cause subnormal to become smallest normal number
16441 + luckily, smallest normal number has exactly the representation
16442 + we got by rippling a one bit up from mantissa into exponent field. */
16443 + sub \mant_lo,-1
16444 + subcc \mant_hi,-1
16445 +
16446 +51:
16447 + /* shift and return packed double with correct sign */
16448 + rol \sign
16449 + ror \mant_hi
16450 + ror \mant_lo
16451 +52:
16452 +.endm
16453 +
16454 +
16455 +/* Adjust subnormal single float number with exponent [exp]
16456 + and mantissa [mant] and round. */
16457 +.macro adjust_subnormal_sf sf, exp, mant, sign, scratch
16458 + /* subnormal number */
16459 + rsub \exp,\exp, 1 /* shift amount */
16460 + cp.w \exp, 25
16461 + movhs \mant, 0
16462 + brhs 90f /* Return zero */
16463 + rsub \scratch, \exp, 32
16464 + lsl \scratch, \mant,\scratch/* Check if there are any bits set
16465 + in the bits discarded in the mantissa */
16466 + srne \scratch /* If so set the lsb of the shifted mantissa */
16467 + lsr \mant,\mant,\exp /* Shift the mantissa */
16468 + or \mant, \scratch /* Round lsb if any bits were shifted out */
16469 + /* Rounding : For explaination, see round_sf. */
16470 + mov \scratch, 0x7f /* Set rounding constant */
16471 + bld \mant, 8
16472 + subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */
16473 + add \mant, \scratch /* Add rounding constant to mantissa */
16474 + /* We can't overflow because mantissa is at least shifted one position
16475 + to the right so the implicit bit is zero. We can however get the implicit
16476 + bit set after rounding which means that we have the lowest normal number
16477 + but this is ok since this bit has the same position as the LSB of the
16478 + exponent */
16479 + lsr \sf, \mant, 7
16480 + /* Rotate in sign */
16481 + lsl \sign, 1
16482 + ror \sf
16483 +90:
16484 +.endm
16485 +
16486 +
16487 +/* Round the unpacked df number with exponent [exp] and
16488 + mantissa [mant_hi, mant_lo]. Uses scratch register
16489 + [scratch] */
16490 +.macro round_df exp, mant_lo, mant_hi, scratch
16491 + mov \scratch, 0x3ff /* Rounding constant */
16492 + bld \mant_lo,11 /* Check if lsb in the final result is
16493 + set */
16494 + subeq \scratch, -1 /* Adjust rounding constant to 0x400
16495 + if rounding 0.5 upwards */
16496 + add \mant_lo, \scratch /* Round */
16497 + acr \mant_hi /* If overflowing we know that
16498 + we have all zeros in the bits not
16499 + scaled out so we can leave them
16500 + but we must increase the exponent with
16501 + two since we had an implicit bit
16502 + which is lost + the extra overflow bit */
16503 + subcs \exp, -2 /* Update exponent */
16504 +.endm
16505 +
16506 +/* Round single float number stored in [mant] and [exp] */
16507 +.macro round_sf exp, mant, scratch
16508 + /* Round:
16509 + For 0.5 we round to nearest even integer
16510 + for all other cases we round to nearest integer.
16511 + This means that if the digit left of the "point" (.)
16512 + is 1 we can add 0x80 to the mantissa since the
16513 + corner case 0x180 will round up to 0x200. If the
16514 + digit left of the "point" is 0 we will have to
16515 + add 0x7f since this will give 0xff and hence a
16516 + truncation/rounding downwards for the corner
16517 + case when the 9 lowest bits are 0x080 */
16518 + mov \scratch, 0x7f /* Set rounding constant */
16519 + /* Check if the mantissa is even or odd */
16520 + bld \mant, 8
16521 + subeq \scratch, -1 /* Rounding constant should be 0x80 */
16522 + add \mant, \scratch
16523 + subcs \exp, -2 /* Adjust exponent if we overflowed */
16524 +.endm
16525 +
16526 +/* Scale mantissa [mant_hi, mant_lo] with amount [shift_count].
16527 + Uses scratch registers [scratch1] and [scratch2] */
16528 +.macro scale_df shift_count, mant_lo, mant_hi, scratch1, scratch2
16529 + /* Scale [mant_hi, mant_lo] with shift_amount.
16530 + Must not forget the sticky bits we intend to shift out. */
16531 +
16532 + rsub \scratch1,\shift_count,32/* get (32 - shift count)
16533 + (if shift count > 32 we get a
16534 + negative value, but that will
16535 + work as well in the code below.) */
16536 +
16537 + cp.w \shift_count,32 /* handle shifts >= 32 separately */
16538 + brhs 70f
16539 +
16540 + /* small (<32) shift amount, both words are part of the shift
16541 + first remember whether part that is lost contains any 1 bits ... */
16542 + lsl \scratch2,\mant_lo,\scratch1 /*shift away bits that are part of
16543 + final mantissa. only part that goes
16544 + to scratch2 are bits that will be lost */
16545 +
16546 + /* ... and now to the actual shift */
16547 + lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/
16548 + lsr \mant_lo,\mant_lo,\shift_count /* shift down lsw of mantissa */
16549 + lsr \mant_hi,\mant_hi,\shift_count /* shift down msw of mantissa */
16550 + or \mant_lo,\scratch1 /* combine these bits with prepared lsw*/
16551 + rjmp 71f
16552 +
16553 + /* large (>=32) shift amount, only lsw will have bits left after shift.
16554 + note that shift operations will use ((shift count) mod 32) so
16555 + we do not need to subtract 32 from shift count. */
16556 +70:
16557 + /* first remember whether part that is lost contains any 1 bits ... */
16558 + lsl \scratch2,\mant_hi,\scratch1 /* save all lost bits from msw */
16559 + or \scratch2,\mant_lo /* also save lost bits (all) from lsw
16560 + now scratch2<>0 if we lose any bits */
16561 +
16562 + /* ... and now to the actual shift */
16563 + mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first")*/
16564 + mov \mant_hi,0 /* clear msw */
16565 + lsr \mant_lo,\mant_lo,\shift_count /* make rest of shift inside lsw*/
16566 +
16567 +71:
16568 + cp.w \scratch2,0 /* if any '1' bit in part we lost ...*/
16569 + breq 70f
16570 +
16571 + sbr \mant_lo,0 /* ... we need to set sticky bit*/
16572 +70:
16573 +.endm
16574 +
16575 +/* Unpack exponent and mantissa from the double number
16576 + stored in [df_hi,df_lo]. The exponent is stored in [exp]
16577 + while the mantissa is stored in [df_hi,df_lo]. */
16578 +
16579 +.macro unpack_df exp, df_lo, df_hi
16580 + lsr \exp, \df_hi,21 /* Extract exponent */
16581 + lsl \df_hi,10 /* Get mantissa */
16582 + or \df_hi,\df_hi,\df_lo>>21
16583 + lsl \df_lo,11
16584 +
16585 + neg \exp /* Fix implicit bit */
16586 + bst \df_hi,31
16587 + subeq \exp,1
16588 + neg \exp /* negate back exponent */
16589 + .endm
16590 +
16591 +/* Unpack exponent and mantissa from the single float number
16592 + stored in [sf]. The exponent is stored in [exp]
16593 + while the mantissa is stored in [sf]. */
16594 +.macro unpack_sf exp, sf
16595 + lsr \exp, \sf, 24
16596 + brne 80f
16597 + /* Fix subnormal number */
16598 + lsl \sf,7
16599 + clz \exp,\sf
16600 + lsl \sf,\sf,\exp
16601 + rsub \exp,\exp,1
16602 + rjmp 81f
16603 +80:
16604 + lsl \sf,7
16605 + sbr \sf, 31 /*Implicit bit*/
16606 +81:
16607 +.endm
16608 +
16609 +
16610 +
16611 +/* Pack a single float number stored in [mant] and [exp]
16612 + into a single float number in [sf] */
16613 +.macro pack_sf sf, exp, mant
16614 + bld \mant,31 /* implicit bit to z */
16615 + subne \exp,1 /* if subnormal (implicit bit 0)
16616 + adjust exponent to storage format */
16617 +
16618 + lsr \sf, \mant, 7
16619 + bfins \sf, \exp, 24, 8
16620 +.endm
16621 +
16622 +/* Pack exponent [exp] and mantissa [mant_hi, mant_lo]
16623 + into [df_hi, df_lo]. [df_hi] is shifted
16624 + one bit up so the sign bit can be shifted into it */
16625 +
16626 +.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi
16627 + bld \mant_hi,31 /* implicit bit to z */
16628 + subne \exp,1 /* if subnormal (implicit bit 0)
16629 + adjust exponent to storage format */
16630 +
16631 + lsr \mant_lo,11 /* shift back lsw */
16632 + or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */
16633 + lsl \mant_hi,1 /* get rid of implicit bit */
16634 + lsr \mant_hi,11 /* shift back msw except for one step*/
16635 + or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */
16636 +.endm
16637 +
16638 +/* Normalize single float number stored in [mant] and [exp]
16639 + using scratch register [scratch] */
16640 +.macro normalize_sf exp, mant, scratch
16641 + /* Adjust exponent and mantissa */
16642 + clz \scratch, \mant
16643 + sub \exp, \scratch
16644 + lsl \mant, \mant, \scratch
16645 +.endm
16646 +
16647 +/* Normalize the exponent and mantissa pair stored
16648 + in [mant_hi,mant_lo] and [exp]. Needs two scratch
16649 + registers [scratch1] and [scratch2]. */
16650 +.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2
16651 + clz \scratch1,\mant_hi /* Check if we have zeros in high bits */
16652 + breq 80f /* No need for scaling if no zeros in high bits */
16653 + cp.w \scratch1,32 /* Check for all zeros */
16654 + breq 81f
16655 +
16656 + /* shift amount is smaller than 32, and involves both msw and lsw*/
16657 + rsub \scratch2,\scratch1,32 /* shift mantissa */
16658 + lsl \mant_hi,\mant_hi,\scratch1
16659 + lsr \scratch2,\mant_lo,\scratch2
16660 + or \mant_hi,\scratch2
16661 + lsl \mant_lo,\mant_lo,\scratch1
16662 + sub \exp,\scratch1 /* adjust exponent */
16663 + rjmp 80f /* Finished */
16664 +81:
16665 + /* shift amount is greater than 32 */
16666 + clz \scratch1,\mant_lo /* shift mantissa */
16667 + sub \scratch1,-32
16668 + mov \mant_hi,\mant_lo
16669 + lsl \mant_hi,\mant_hi,\scratch1
16670 + mov \mant_lo,0
16671 + sub \exp,\scratch1 /* adjust exponent */
16672 +80:
16673 +.endm
16674 +
16675 +
16676 +#ifdef L_avr32_f64_mul
16677 + .align 2
16678 + .global __avr32_f64_mul
16679 + .type __avr32_f64_mul,@function
16680 +
16681 +__avr32_f64_mul:
16682 + pushm r0-r3,r4-r7,lr
16683 +
16684 + /* Unpack */
16685 + eor r12, r11, r9 /* Sign op1 ^ Sign op2 is MSB of r12*/
16686 + lsl r11,1 /* Unpack op1 */
16687 + lsl r9,1 /* Unpack op2 */
16688 +
16689 + /* Sort operands op1 >= op2 */
16690 + lddpc r5, .Linf
16691 + cp.w r10,r8
16692 + cpc r11,r9
16693 + brhs 0f
16694 +
16695 + mov r7,r11 /* swap operands if op2 was larger */
16696 + mov r6,r10
16697 + mov r11,r9
16698 + mov r10,r8
16699 + mov r9,r7
16700 + mov r8,r6
16701 +
16702 +0:
16703 + /* Check against infinity */
16704 + cp.w r11,r5
16705 + brlo 1f
16706 + /* infinity or nan */
16707 + /* we have to check low word as well as nan mantissa may be 0 in msw*/
16708 + cpc r10
16709 + /* we know that op1 is inf or nan. if z != 1 then we have nan.
16710 + in this case, also return nan. */
16711 + breq 0f
16712 + /* Return NaN */
16713 + mov r11, -1
16714 + rjmp __dfmul_return_op1
16715 +0:
16716 +
16717 + /* op1 is infinity. op2 is smaller or same so it cannot be nan.
16718 + it can be infinity or a (sub-)normal number.
16719 + we should return op1 (infinity) except when op2 is zero when
16720 + result should be nan. */
16721 + or r5,r9,r8
16722 + brne __dfmul_return_op1 /* op2 is not zero. return op1.*/
16723 + /* Return NaN */
16724 + mov r11, -1
16725 + rjmp __dfmul_return_op1
16726 +
16727 +1:
16728 + /* no operand is inf/nan, and operands have been arranged in order
16729 + with op1 >= op2, implying that if we have a zero, it is found in
16730 + op2. in this case, result should be zero (with sign from both ops). */
16731 +
16732 + or r5,r9,r8 /* check the smaller value for zero */
16733 + brne 0f
16734 + mov r10, 0
16735 + mov r11, 0
16736 + rjmp __dfmul_return_op1 /* Early exit */
16737 +0:
16738 +
16739 + /* we have two "normal" (can be subnormal) nonzero numbers in r11:r10
16740 + and r9:r8. sign of result is already calculated in r12.
16741 + perform a normal multiplication. */
16742 +
16743 + /* Unpack and normalize*/
16744 + unpack_df r7 /*exp*/, r10, r11 /* mantissa */
16745 + normalize_df r7 /*exp*/, r10, r11 /* mantissa */, r4, r5 /* scratch */
16746 +
16747 +
16748 + /* Unpack and normalize*/
16749 + unpack_df r6 /*exp*/, r8, r9 /* mantissa */
16750 + normalize_df r6 /*exp*/, r8, r9 /* mantissa */, r4, r5 /* scratch */
16751 +
16752 + /* Multiply */
16753 +
16754 + mulu.d r0,r10,r8
16755 + add lr,r7,r6 /* calculate new exponent after mul */
16756 + mulu.d r2,r11,r8
16757 + sub lr,(1023-1) /* remove exponent bias as we have
16758 + included bias from both op1 and op2
16759 + sub one less, or in other words
16760 + add one to exponent. see below why. */
16761 + mulu.d r6,r11,r9
16762 + add r2,r1
16763 + mulu.d r4,r10,r9
16764 +
16765 +
16766 + adc r6,r6,r3
16767 + acr r7
16768 +
16769 + add r4,r2
16770 + adc r6,r6,r5
16771 + acr r7
16772 +
16773 + // r7:r6 is now in range [0x4000...0000 - 0xffff...fffe]
16774 + // remaining bits in r0 and r4 are of no interest, except that we have
16775 + // to add a sticky bit to r10 in case we had a 1 bit in r4 or r0.
16776 +
16777 + or r4,r0
16778 + movne r0, 1 /* If we have bits in r4 or r0 */
16779 + or r6,r0 /* set lsb of result to 1 */
16780 +
16781 +
16782 + // if msb is set, it was because multiplication gave an "overflow"
16783 + // of one bit so exponent should be incremented.
16784 + // we already did that above so we are done.
16785 + // if msb is *not* set it will be normalized and exponent will be
16786 + // decremented (which will compensate the one we added above).
16787 +
16788 + normalize_df lr /*exp*/, r6, r7 /* mantissa */, r8, r9 /* scratch */
16789 +
16790 + /* Check if a subnormal result was created */
16791 + cp.w lr, 0
16792 + brgt 0f
16793 +
16794 + adjust_subnormal_df lr, r6, r7, r12, r8, r9
16795 + mov r10, r6
16796 + mov r11, r7
16797 + popm r0-r3,r4-r7, pc
16798 +0:
16799 +
16800 + /* Round result */
16801 + round_df lr /*exp*/, r6, r7 /* Mantissa */, r4 /*scratch*/
16802 + cp.w lr,0x7ff
16803 + brlt 0f
16804 + /*Return infinity */
16805 + lddpc r11, .Linf
16806 + mov r10, 0
16807 + rjmp __dfmul_return_op1
16808 +
16809 +0:
16810 +
16811 + /* Pack */
16812 + pack_df lr /*exp*/, r6, r7 /* mantissa */, r10, r11 /* Output df number*/
16813 +__dfmul_return_op1:
16814 + lsl r12,1 /* shift in sign bit */
16815 + ror r11
16816 +
16817 + popm r0-r3,r4-r7, pc
16818 +
16819 +#endif
16820 +
16821 +
16822 +#ifdef L_avr32_f64_addsub
16823 + .align 2
16824 + .global __avr32_f64_sub
16825 + .type __avr32_f64_sub,@function
16826 +
16827 +__avr32_f64_sub:
16828 + pushm r4-r7,lr
16829 +
16830 + eor r12,r11,r9 // compare signs of operands
16831 + bld r12,31
16832 + brcc __dfsub // same sign => subtract
16833 +
16834 + eorh r9,0x8000
16835 + rjmp __dfadd // different signs => op1 + (-op2)
16836 +__dfsub:
16837 +
16838 + lsl r11,1 // unpack op1 msw and get sign in c
16839 + or r4,r11,r10 // check if all bits zero
16840 + brne 1f
16841 +
16842 + // op1 is zero, negate op2 and handle as add
16843 + eorh r9,0x8000
16844 + // op1 is +/-0, and is unpacked with sign in c. add to op2.
16845 + // also used by sub, but op2 has been negated in this case
16846 + ror r12 // save sign of op1 in msb of r12
16847 + lsl r9,1 // unpack msw and get sign of op2
16848 + or r4,r9,r8 // check all bits in op2
16849 + breq 0f
16850 +
16851 + // if op2 != 0, then return op2 unchanged.
16852 + ror r9 // pack op2 msw again with sign from c
16853 + mov r11,r9
16854 + mov r10,r8
16855 + popm r4-r7,pc
16856 +
16857 +0:
16858 + // both op1 and op2 zero, but sign unknown. result should and signs.
16859 + ror r9 // pack op2 msw again with sign from c
16860 + lsl r12,1 // get back sign of op1 into c ...
16861 + ror r11 // and back in original op1
16862 + and r11,r9 // and sign bits. as op1 is zero, the
16863 + // only bit which can be 1 is sign bit
16864 + popm r4-r7,pc
16865 +
16866 +1:
16867 + ror r12 // save op1 sign in msb of r12
16868 +
16869 + lsl r9,1 // unpack op2 msw
16870 + or r4,r8,r9
16871 + brne 0f
16872 + // op2 is zero, return op1
16873 + // whatever it is. the only case
16874 + // requiring special handling is if
16875 + // op1 is zero, but that was handled
16876 + // above.
16877 + lsl r12, 1
16878 + ror r11
16879 + popm r4-r7,pc
16880 +
16881 +0:
16882 + // make sure that op1 >= op2, flip sign if we swap ops
16883 + cp.w r10,r8
16884 + cpc r11,r9
16885 + brhs 0f
16886 +
16887 + com r12 // sign of op1 and result in lsb(r12)
16888 + mov r7,r11 // swap operands if op2 was larger
16889 + mov r6,r10
16890 + mov r11,r9
16891 + mov r10,r8
16892 + mov r9,r7
16893 + mov r8,r6
16894 +
16895 +0:
16896 + // check if op1 is nan or inf.
16897 + lddpc r5,.Linf
16898 + cp.w r11,r5
16899 + brlo 1f
16900 + /* Op 1 is nan or inf */
16901 + // we have to check low word as well as nan mantissa may be 0 in msw
16902 + cpc r10
16903 + // we know that op1 is inf or nan. if z != 1 then we have nan.
16904 + // if we have nan, return nan.
16905 + breq 0f
16906 + mov r11, -1
16907 + rjmp __dfsub_return_op1
16908 +0:
16909 +
16910 + // op1 is infinity. check if op2 is nan, infinty or a normal number.
16911 + cp.w r9,r5
16912 + movhs r11, -1 // op2 is a normal number. return op1.
16913 +
16914 + // op2 can be infinity (of the same sign as op1) or nan.
16915 + // in both cases we should return nan.
16916 + rjmp __dfsub_return_op1
16917 +1:
16918 + // if op1 is not inf or nan, then op2 cannot be since op1 >= op2
16919 +
16920 + // now prepare the operands by expanding them and shifting op2
16921 + // to the correct position for the subtract. note! if op2 is
16922 + // insignificant compared to op1, the function will take care of
16923 + // this and return op1 directly to the application.
16924 +
16925 + /* Unpack operands */
16926 + unpack_df r7 /* exp op1*/, r10, r11 /* Mantissa op1 */
16927 + unpack_df r6 /* exp op2*/, r8, r9 /* Mantissa op2 */
16928 +
16929 + /* Get shift amount required for aligning op1 and op2 */
16930 + rsub r6, r7
16931 + breq __perform_dfsub /* No shift needed */
16932 +
16933 + cp.w r6, 63
16934 + brhs __dfsub_pack_result /* Op 2 insignificant compared to op1 */
16935 +
16936 + /* Shift mantissa of op2 so that op1 and op2 are aligned */
16937 + scale_df r6 /* shift_count*/, r8, r9 /* Mantissa */, r4, r5 /*Scratch*/
16938 +
16939 +__perform_dfsub:
16940 + sub r10,r8 /* subtract mantissa of op2 from op1 */
16941 + sbc r11,r11,r9
16942 + or r4,r11,r10 /* check if result is all zeroes */
16943 + brne 0f
16944 + popm r4-r7,pc /* Early return */
16945 +0:
16946 +
16947 + normalize_df r7 /*exp*/, r10, r11 /* mantissa */, r8, r9 /* scratch */
16948 +
16949 + /* Check if a subnormal result was created */
16950 + cp.w r7, 0
16951 + brgt 0f
16952 +
16953 + adjust_subnormal_df r7 /*exp*/, r10, r11 /* Mantissa */, r12 /*sign*/, r8, r9 /*scratch*/
16954 + popm r4-r7,pc
16955 +0:
16956 +
16957 + /* Round result */
16958 + round_df r7 /*exp*/, r10, r11 /* Mantissa */, r9 /*scratch*/
16959 + cp.w r7,0x7ff
16960 + brlt __dfsub_pack_result
16961 + /*Return infinity */
16962 + lddpc r11, .Linf
16963 + mov r10, 0
16964 + rjmp __dfsub_return_op1
16965 +
16966 +__dfsub_pack_result:
16967 + /* Pack */
16968 + pack_df r7 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
16969 +
16970 +__dfsub_return_op1:
16971 + lsl r12,1
16972 + ror r11
16973 + popm r4-r7,pc
16974 +
16975 + .align 2
16976 + .global __avr32_f64_add
16977 + .type __avr32_f64_add,@function
16978 +__avr32_f64_add:
16979 + pushm r4-r7,lr
16980 + eor r12,r11,r9 // compare signs of operands
16981 + lsl r12,1
16982 + brcc __dfadd // same sign => add
16983 +
16984 + eorh r9,0x8000
16985 + rjmp __dfsub // different signs => op1 - (-op2)
16986 +__dfadd:
16987 +
16988 + lsl r11,1 // unpack op1 msw and get sign in c
16989 + or r4,r11,r10 // check if all bits zero
16990 + brne 1f
16991 +
16992 + // op1 is +/-0, and is unpacked with sign in c. add to op2.
16993 + // also used by sub, but op2 has been negated in this case
16994 + ror r12 // save sign of op1 in msb of r12
16995 + lsl r9,1 // unpack msw and get sign of op2
16996 + or r4,r9,r8 // check all bits in op2
16997 + breq 0f
16998 +
16999 + // if op2 != 0, then return op2 unchanged.
17000 + ror r9 // pack op2 msw again with sign from c
17001 + mov r11,r9
17002 + mov r10,r8
17003 + popm r4-r7,pc
17004 +
17005 +0:
17006 + // both op1 and op2 zero, but sign unknown. result should and signs.
17007 + ror r9 // pack op2 msw again with sign from c
17008 + lsl r12,1 // get back sign of op1 into c ...
17009 + ror r11 // and back in original op1
17010 + and r11,r9 // and sign bits. as op1 is zero, the
17011 + // only bit which can be 1 is sign bit
17012 + popm r4-r7,pc
17013 +1:
17014 + ror r12 // save op1 sign in msb of r12
17015 +
17016 + lsl r9,1 // unpack op2 msw
17017 + or r4,r8,r9
17018 + brne 0f
17019 + // op2 is zero, return op1
17020 + // whatever it is. the only case
17021 + // requiring special handling is if
17022 + // op1 is zero, but that was handled
17023 + // above.
17024 + lsl r12, 1
17025 + ror r11
17026 + popm r4-r7,pc
17027 +0:
17028 + // make sure that exp[op1] >= exp[op2]
17029 + cp.w r11,r9
17030 + brhs 0f
17031 +
17032 + mov r7,r11 // swap operands if op2 was larger
17033 + mov r6,r10
17034 + mov r11,r9
17035 + mov r10,r8
17036 + mov r9,r7
17037 + mov r8,r6
17038 +
17039 +0:
17040 + // check if op1 is nan or inf.
17041 + lddpc r5,.Linf
17042 + cp.w r11,r5
17043 + brlo 1f
17044 + /* Op 1 is nan or inf */
17045 + // we have to check low word as well as nan mantissa may be 0 in msw
17046 + cpc r10
17047 + // we know that op1 is inf or nan. if z != 1 then we have nan.
17048 + // if we have nan, return nan.
17049 + breq 0f
17050 + mov r11, -1
17051 + rjmp __dfadd_return_op1
17052 +0:
17053 +
17054 + // op1 is infinity. check if op2 is nan, infinty or a normal number.
17055 + cp.w r9,r5
17056 + // Op2 is NaN of Inf. Return op2 but with sign of result.
17057 + // If Op2 is NaN, sign doesn't matter but no need to separate NaN
17058 + movhs r11, r9
17059 + movhs r10, r8
17060 +
17061 + // op2 can be infinity (of the same sign as op1) or nan.
17062 + // in both cases we should return nan.
17063 + rjmp __dfadd_return_op1
17064 +1:
17065 + // if op1 is not inf or nan, then op2 cannot be since exp[op1] >=
17066 + // exp[op2]
17067 +
17068 + // now prepare the operands by expanding them and shifting op2
17069 + // to the correct position for the add. note! if op2 is
17070 + // insignificant compared to op1, the function will take care of
17071 + // this and return op1 directly to the application.
17072 +
17073 + /* Unpack operands */
17074 + unpack_df r7 /* exp op1*/, r10, r11 /* Mantissa op1 */
17075 + unpack_df r6 /* exp op2*/, r8, r9 /* Mantissa op2 */
17076 +
17077 + /* Get shift amount required for aligning op1 and op2 */
17078 + rsub r6, r7
17079 + breq __perform_dfadd /* No shift needed */
17080 +
17081 + cp.w r6, 63
17082 + brhs __dfadd_pack_result /* Op 2 insignificant compared to op1 */
17083 +
17084 + /* Shift mantissa of op2 so that op1 and op2 are aligned */
17085 + scale_df r6 /* shift_count*/, r8, r9 /* Mantissa */, r4, r5 /*Scratch*/
17086 +
17087 +__perform_dfadd:
17088 + add r10,r8 // add mantissas
17089 + adc r11,r11,r9
17090 + brcc 0f
17091 + ror r11 // overflow => shift down mantissa
17092 + ror r10
17093 + brcc 1f // sticky bit shifted out?
17094 + sbr r10,0 // if so, merge it into result again
17095 +1:
17096 + sub r7,-1 // increase exponent with 1
17097 +0:
17098 + normalize_df r7 /*exp*/, r10, r11 /* mantissa */, r8, r9 /* scratch */
17099 +
17100 + /* Check if a subnormal result was created */
17101 + cp.w r7, 0
17102 + brgt 0f
17103 +
17104 + adjust_subnormal_df r7 /*exp*/, r10, r11 /* Mantissa */, r12 /*sign*/, r8, r9 /*scratch*/
17105 + popm r4-r7,pc
17106 +0:
17107 +
17108 + /* Round result */
17109 + round_df r7 /*exp*/, r10, r11 /* Mantissa */, r9 /*scratch*/
17110 + cp.w r7,0x7ff
17111 + brlt __dfadd_pack_result
17112 + /*Return infinity */
17113 + lddpc r11, .Linf
17114 + mov r10, 0
17115 + rjmp __dfadd_return_op1
17116 +
17117 +__dfadd_pack_result:
17118 + /* Pack */
17119 + pack_df r7 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
17120 +
17121 +__dfadd_return_op1:
17122 + lsl r12,1
17123 + ror r11
17124 + popm r4-r7,pc
17125 +#endif
17126 +
17127 +#ifdef L_avr32_f64_to_u32
17128 + /* This goes into L_fixdfsi */
17129 +#endif
17130 +
17131 +
17132 +#ifdef L_avr32_f64_to_s32
17133 + .global __avr32_f64_to_u32
17134 + .type __avr32_f64_to_u32,@function
17135 +__avr32_f64_to_u32:
17136 + cp.w r11, 0
17137 + retmi 0 /* Negative returns 0 */
17138 +#ifdef __LARGE_FLOATS__
17139 + lsl r12,r11,1
17140 + lsr r12,21 /* extract exponent*/
17141 + sub r12,1023 /* convert to unbiased exponent.*/
17142 + retlo 0 /* too small exponent implies zero. */
17143 + cp.w r12,32
17144 + brcc 0f
17145 + rjmp 1f
17146 +#endif
17147 +
17148 + /* Fallthrough to df to signed si conversion */
17149 + .global __avr32_f64_to_s32
17150 + .type __avr32_f64_to_s32,@function
17151 +__avr32_f64_to_s32:
17152 + lsl r12,r11,1
17153 + lsr r12,21 /* extract exponent*/
17154 + sub r12,1023 /* convert to unbiased exponent.*/
17155 + retlo 0 /* too small exponent implies zero. */
17156 +
17157 +#ifdef __LARGE_FLOATS__
17158 + cp.w r12,31
17159 + brcc 0f
17160 +#endif
17161 +1:
17162 + rsub r12,r12,31 /* shift count = 31 - exponent */
17163 + mov r9,r11 /* save sign for later...*/
17164 + lsl r11,11 /* remove exponent and sign*/
17165 + sbr r11,31 /* add implicit bit*/
17166 + or r11,r11,r10>>21 /* get rest of bits from lsw of double */
17167 + lsr r11,r11,r12 /* shift down mantissa to final place */
17168 + lsl r9,1 /* sign -> carry */
17169 + retcc r11 /* if positive, we are done */
17170 + neg r11 /* if negative float, negate result */
17171 + ret r11
17172 +
17173 +#ifdef __LARGE_FLOATS__
17174 +0:
17175 + mov r12,-1 /* r11 = 0xffffffff */
17176 + lsr r12,1 /* r11 = 0x7fffffff */
17177 + lsl r11,1 /* sign -> carry */
17178 + acr r12 /* r11 = signed ? 0x80000000
17179 + : 0x7fffffff */
17180 + ret r12
17181 +#endif
17182 +#endif /* L_fixdfsi*/
17183 +
17184 +#ifdef L_avr32_f64_to_u64
17185 + /* Actual function is in L_fixdfdi */
17186 +#endif
17187 +
17188 +#ifdef L_avr32_f64_to_s64
17189 + .global __avr32_f64_to_u64
17190 + .type __avr32_f64_to_u64,@function
17191 +__avr32_f64_to_u64:
17192 + cp.w r11,0
17193 + /* Negative numbers return zero */
17194 + movmi r10, 0
17195 + movmi r11, 0
17196 + retmi r11
17197 +#ifdef __LARGE_FLOATS__
17198 + lsl r9,r11,1
17199 + lsr r9,21 /* get exponent*/
17200 + sub r9,1023 /* convert to correct range*/
17201 + /* Return zero if exponent to small */
17202 + movlo r10, 0
17203 + movlo r11, 0
17204 + retlo r11
17205 + cp.w r9,64
17206 + mov r8,r11 /* save sign for later...*/
17207 + brcs 1f
17208 + rjmp 2f /* Number to large */
17209 +
17210 +#endif
17211 +
17212 +
17213 +
17214 + /* Fallthrough */
17215 + .global __avr32_f64_to_s64
17216 + .type __avr32_f64_to_s64,@function
17217 +__avr32_f64_to_s64:
17218 + lsl r9,r11,1
17219 + lsr r9,21 /* get exponent*/
17220 + sub r9,1023 /* convert to correct range*/
17221 + /* Return zero if exponent to small */
17222 + movlo r10, 0
17223 + movlo r11, 0
17224 + retlo r11
17225 +
17226 +#ifdef __LARGE_FLOATS__
17227 + cp.w r9,63
17228 + mov r8,r11 /* save sign for later...*/
17229 + brcc 2f
17230 +#else
17231 + mov r8,r11 /* save sign for later...*/
17232 +#endif
17233 +1:
17234 + lsl r11,11 /* remove exponent */
17235 + sbr r11,31 /* add implicit bit*/
17236 + or r11,r11,r10>>21 /* get rest of bits from lsw of double*/
17237 + lsl r10,11 /* align lsw correctly as well */
17238 + rsub r9,r9,63 /* shift count = 63 - exponent */
17239 + breq 1f
17240 +
17241 + cp.w r9,32 /* is shift count more than one reg? */
17242 + brhs 0f
17243 +
17244 + mov r12,r11 /* save msw */
17245 + lsr r10,r10,r9 /* small shift count, shift down lsw */
17246 + lsr r11,r11,r9 /* small shift count, shift down msw */
17247 + rsub r9,r9,32 /* get 32-size of shifted out tail */
17248 + lsl r12,r12,r9 /* align part to move from msw to lsw */
17249 + or r10,r12 /* combine to get new lsw */
17250 + rjmp 1f
17251 +
17252 +0:
17253 + lsr r10,r11,r9 /* large shift count,only lsw get bits
17254 + note that shift count is modulo 32*/
17255 + mov r11,0 /* msw will be 0 */
17256 +
17257 +1:
17258 + lsl r8,1 /* sign -> carry */
17259 + retcc r11 /* if positive, we are done */
17260 +
17261 + neg r11 /* if negative float, negate result */
17262 + neg r10
17263 + scr r11
17264 + ret r11
17265 +
17266 +
17267 +#ifdef __LARGE_FLOATS__
17268 +2:
17269 + mov r11,-1 /* r11 = 0xffffffff */
17270 + lsr r11,1 /* r11 = 0x7fffffff */
17271 + lsl r8,1 /* sign -> carry */
17272 + acr r11 /* r11 = signed ? 0x80000000 */
17273 + /* : 0x7fffffff */
17274 + lsl r10,r11,31 /* extend last bit of msw*/
17275 + asr r10,31
17276 + ret r11
17277 +#endif
17278 +#endif
17279 +
17280 +#ifdef L_avr32_u32_to_f64
17281 + /* Code located in L_floatsidf */
17282 +#endif
17283 +
17284 +#ifdef L_avr32_s32_to_f64
17285 + .global __avr32_u32_to_f64
17286 + .type __avr32_u32_to_f64,@function
17287 +__avr32_u32_to_f64:
17288 + sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */
17289 + mov r12, 0 /* always positive */
17290 + rjmp 0f /* Jump to common code for floatsidf */
17291 +
17292 + .global __avr32_s32_to_f64
17293 + .type __avr32_s32_to_f64,@function
17294 +__avr32_s32_to_f64:
17295 + mov r11, r12 /* Keep original value in r12 for sign */
17296 + abs r11 /* Absolute value if r12 */
17297 +0:
17298 + mov r10,0 /* let remaining bits be zero */
17299 + reteq r11 /* zero long will return zero float */
17300 +
17301 + pushm lr
17302 + mov r9,31+1023 /* set exponent */
17303 +
17304 + normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */
17305 +
17306 + /* Check if a subnormal result was created */
17307 + cp.w r9, 0
17308 + brgt 0f
17309 +
17310 + adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */
17311 + popm pc
17312 +0:
17313 +
17314 + /* Round result */
17315 + round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/
17316 + cp.w r9,0x7ff
17317 + brlt 0f
17318 + /*Return infinity */
17319 + lddpc r11, .Linf
17320 + mov r10, 0
17321 + rjmp __floatsidf_return_op1
17322 +
17323 +0:
17324 +
17325 + /* Pack */
17326 + pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
17327 +__floatsidf_return_op1:
17328 + lsl r12,1 /* shift in sign bit */
17329 + ror r11
17330 +
17331 + popm pc
17332 +#endif
17333 +
17334 +
17335 +#ifdef L_avr32_f32_cmp_eq
17336 + .global __avr32_f32_cmp_eq
17337 + .type __avr32_f32_cmp_eq,@function
17338 +__avr32_f32_cmp_eq:
17339 + cp.w r12, r11
17340 + brne 0f /* If not equal check for +/-0 */
17341 +
17342 + /* Check for NaN or Inf */
17343 + lddpc r11,.Linf_sf
17344 + lsl r12, 1
17345 + cp.w r12, r11
17346 + srls r12 /* 0 if NaN, 1 otherwise */
17347 + ret r12
17348 +0:
17349 + /* Or together the two values and shift out the sign bit.
17350 + If the result is zero, then the two values are both zero. */
17351 + or r12, r11
17352 + lsl r12, 1
17353 + sreq r12
17354 + ret r12
17355 +#endif
17356 +
17357 +#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt)
17358 +#ifdef L_avr32_f32_cmp_ge
17359 + .global __avr32_f32_cmp_ge
17360 + .type __avr32_f32_cmp_ge,@function
17361 +__avr32_f32_cmp_ge:
17362 +#endif
17363 +#ifdef L_avr32_f32_cmp_lt
17364 + .global __avr32_f32_cmp_lt
17365 + .type __avr32_f32_cmp_lt,@function
17366 +__avr32_f32_cmp_lt:
17367 +#endif
17368 + lsl r10, r12, 1 /* Remove sign bits */
17369 + lsl r9, r11, 1
17370 + lddpc r8, .Linf_sf
17371 + cp.w r10, r8
17372 + rethi 0 /* Op0 is NaN */
17373 + cp.w r9, r8
17374 + rethi 0 /* Op1 is Nan */
17375 +
17376 + eor r8, r11, r12
17377 + bld r12, 31
17378 +#ifdef L_avr32_f32_cmp_ge
17379 + srcc r8 /* Set result to true if op0 is positive*/
17380 +#endif
17381 +#ifdef L_avr32_f32_cmp_lt
17382 + srcs r8 /* Set result to true if op0 is negative*/
17383 +#endif
17384 + retmi r8 /* Return if signs are different */
17385 + brcs 0f /* Both signs negative? */
17386 +
17387 + /* Both signs positive */
17388 + cp.w r12, r11
17389 +#ifdef L_avr32_f32_cmp_ge
17390 + srhs r12
17391 +#endif
17392 +#ifdef L_avr32_f32_cmp_lt
17393 + srlo r12
17394 +#endif
17395 + retal r12
17396 +0:
17397 + /* Both signs negative */
17398 + cp.w r11, r12
17399 +#ifdef L_avr32_f32_cmp_ge
17400 + srhs r12
17401 +#endif
17402 +#ifdef L_avr32_f32_cmp_lt
17403 + srlo r12
17404 +#endif
17405 + retal r12
17406 +#endif
17407 +
17408 +
17409 +#ifdef L_avr32_f64_cmp_eq
17410 + .global __avr32_f64_cmp_eq
17411 + .type __avr32_f64_cmp_eq,@function
17412 +__avr32_f64_cmp_eq:
17413 + cp.w r10,r8
17414 + cpc r11,r9
17415 + brne 0f /* Both args could be zero with different sign bits */
17416 +
17417 + /* check for NaN */
17418 + lsl r11,1
17419 + lddpc r12,.Linf
17420 + cp.w r10,0
17421 + cpc r11,r12 /* check if nan or inf */
17422 + srls r12 /* If Arg is NaN return 0 else 1*/
17423 + ret r12 /* Return */
17424 +
17425 +0:
17426 + lsl r11,1 /* get rid of sign bits */
17427 + lsl r9,1
17428 + or r11,r10 /* Check if all bits are zero */
17429 + or r11,r9
17430 + or r11,r8
17431 + sreq r12 /* If all zeros the arguments are equal
17432 + so return 1 else return 0 */
17433 + ret r12
17434 +#endif
17435 +
17436 +
17437 +#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt)
17438 +
17439 +#ifdef L_avr32_f64_cmp_ge
17440 + .global __avr32_f64_cmp_ge
17441 + .type __avr32_f64_cmp_ge,@function
17442 +__avr32_f64_cmp_ge:
17443 +#endif
17444 +#ifdef L_avr32_f64_cmp_lt
17445 + .global __avr32_f64_cmp_lt
17446 + .type __avr32_f64_cmp_lt,@function
17447 +__avr32_f64_cmp_lt:
17448 +#endif
17449 +
17450 + /* compare magnitude of op1 and op2 */
17451 + pushm lr
17452 +
17453 + lsl r11,1 /* Remove sign bit of op1 */
17454 + srcs lr /* Sign op1 to lsb of lr*/
17455 + lsl r9,1 /* Remove sign bit of op2 */
17456 + rol lr /* Sign op2 to lsb of lr, sign bit op1 bit 1 of lr*/
17457 +
17458 + /* Check for Nan */
17459 + lddpc r12,.Linf
17460 + cp.w r10,0
17461 + cpc r11,r12
17462 + movhi r12, 0 /* Return false for NaN */
17463 + brhi 0f /* We have NaN */
17464 + cp.w r8,0
17465 + cpc r9,r12
17466 + movhi r12, 0 /* Return false for NaN */
17467 + brhi 0f /* We have NaN */
17468 +
17469 + cp.w lr,3 /* both operands negative ?*/
17470 + breq 1f
17471 +
17472 + cp.w lr,1 /* both operands positive? */
17473 + brlo 2f
17474 +
17475 + /* Different signs. If sign of op1 is negative the difference
17476 + between op1 and op2 will always be negative, and if op1 is
17477 + positive the difference will always be positive */
17478 +#ifdef L_avr32_f64_cmp_ge
17479 + sreq r12
17480 +#endif
17481 +#ifdef L_avr32_f64_cmp_lt
17482 + srne r12
17483 +#endif
17484 + popm pc
17485 +
17486 +
17487 +2:
17488 + /* Both operands positive. Just compute the difference */
17489 + cp.w r10,r8
17490 + cpc r11,r9
17491 +#ifdef L_avr32_f64_cmp_ge
17492 + srhs r12
17493 +#endif
17494 +#ifdef L_avr32_f64_cmp_lt
17495 + srlo r12
17496 +#endif
17497 + popm pc
17498 +
17499 +1:
17500 + /* Both operands negative. Compute the difference with operands switched */
17501 + cp r8,r10
17502 + cpc r9,r11
17503 +#ifdef L_avr32_f64_cmp_ge
17504 + srhs r12
17505 +#endif
17506 +#ifdef L_avr32_f64_cmp_lt
17507 + srlo r12
17508 +#endif
17509 +0:
17510 + popm pc
17511 +#endif
17512 +
17513 +
17514 +
17515 +#ifdef L_avr32_f64_div
17516 + .global __avr32_f64_div
17517 + .type __avr32_f64_div,@function
17518 +__avr32_f64_div:
17519 + stm --sp, r2-r7,lr
17520 + eor r12, r11, r9 /* Sign(op1) ^ Sign(op2) to msb of r12*/
17521 + lsl r11,1 /* unpack op1*/
17522 + lddpc lr,.Linf
17523 + lsl r9,1 /* unpack op2*/
17524 +
17525 + cp.w r11,lr
17526 + brhs 0f /* op1 is NaN or infinity */
17527 + cp.w r9,lr
17528 + brhs 1f /* op2 is NaN or infinity */
17529 + or r5,r9,r8
17530 + breq 2f /* op2 is zero */
17531 + or r5,r11,r10
17532 + breq __dfdiv_return_op1 /* op1 is zero return zero*/
17533 +
17534 + /* Unpack and normalize */
17535 + /* op1 */
17536 + unpack_df r7 /*exp*/, r10, r11 /*df number*/
17537 + normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/
17538 +
17539 + /* op1 */
17540 + unpack_df r6 /*exp*/, r8, r9 /*df number*/
17541 + normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/
17542 +
17543 + /* Compute new exponent */
17544 + sub r7,r6
17545 + sub r7,-1023
17546 +
17547 + /* Do fixed point division of mantissas*/
17548 + mov r6,55
17549 + lsr r11,1
17550 + ror r10
17551 + lsr r9,1
17552 + ror r8
17553 +
17554 +3:
17555 + /* Check if dividend is higher or same than divisor */
17556 + sub r2,r10,r8
17557 + sbc r3,r11,r9
17558 + /* If so move the difference back into the dividend */
17559 + movhs r10, r2
17560 + movhs r11, r3
17561 + /* Update the Quotient */
17562 + rol r4
17563 + rol r5
17564 + eorl r4,1
17565 +
17566 + /* Shift the dividend */
17567 + lsl r10,1
17568 + rol r11
17569 +
17570 + sub r6,1
17571 + brne 3b
17572 +
17573 + /* Check if we have a remainder which will the propagate into
17574 + the last bit */
17575 +
17576 + or r11,r11,r10
17577 + neg r11
17578 + rol r4
17579 + rol r5
17580 +
17581 + /* Adjust mantissa into correct alignment */
17582 + lsl r11, r5,(64-56)
17583 + or r11,r11,r4>>(32-64+56)
17584 + lsl r10,r4, (64-56)
17585 +
17586 + /* Normalize result */
17587 + normalize_df r7 /*exp*/, r10, r11 /* mantissa */, r8, r9 /* scratch */
17588 +
17589 + /* Check if a subnormal result was created */
17590 + cp.w r7, 0
17591 + brgt 3f
17592 +
17593 + adjust_subnormal_df r7 /*exp*/, r10, r11 /* Mantissa */, r12 /*sign*/, r8, r9 /*scratch*/
17594 + ldm sp++, r2-r7,pc
17595 +3:
17596 +
17597 + /* Round result */
17598 + round_df r7 /*exp*/, r10, r11 /* Mantissa */, r9 /*scratch*/
17599 + cp.w r7,0x7ff
17600 + brlt __dfdiv_pack_result
17601 + /*Return infinity */
17602 + lddpc r11, .Linf
17603 + mov r10, 0
17604 + rjmp __dfdiv_return_op1
17605 +
17606 +__dfdiv_pack_result:
17607 + /* Pack */
17608 + pack_df r7 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
17609 +
17610 +__dfdiv_return_op1:
17611 + lsl r12,1
17612 + ror r11
17613 + ldm sp++, r2-r7,pc
17614 +
17615 +0:
17616 + /* Op1 is NaN or Inf */
17617 + cpc r10
17618 + /* If op1 is a NaN the we should return a NaN */
17619 + brne __dfdiv_return_op1
17620 +
17621 + /* Op1 is infinity, check op2*/
17622 + cp.w r9,lr
17623 + brlo __dfdiv_return_op1 /* Op2 is a normal number return inf */
17624 + /* Other combinations: return NaN */
17625 + mov r11, -1
17626 + ldm sp++, r2-r7,pc
17627 +
17628 +1:
17629 + /* Op2 is NaN or Inf */
17630 + cpc r8
17631 + /* If inf return zero else return NaN*/
17632 + mov r10, 0
17633 + moveq r11, 0
17634 + movne r11, -1
17635 + ldm sp++, r2-r7,pc
17636 +
17637 +2:
17638 + /* Op2 is zero */
17639 + or r6,r11,r10 /* 0.0/0.0 yields NaN */
17640 + mov r10, 0
17641 + moveq r11, -1 /* Return NaN */
17642 + movne r11, lr /* Return inf */
17643 + rjmp __dfdiv_return_op1
17644 +
17645 +#endif
17646 +
17647 +
17648 +#ifdef L_avr32_f32_div
17649 + .global __avr32_f32_div
17650 + .type __avr32_f32_div,@function
17651 +__avr32_f32_div:
17652 + eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
17653 + /* Unpack */
17654 + lsl r12,1
17655 + reteq 0 /* Return zero if op1 is zero */
17656 + lddpc r9, .Linf_sf
17657 + lsl r11,1
17658 +
17659 + /* Check op1 for NaN or Inf */
17660 + cp r12,r9
17661 + brhs 2f
17662 +
17663 + /* Check op2 for NaN or Inf */
17664 + cp r11,r9
17665 + brhs 3f
17666 + /* Check op2 for zero */
17667 + tst r11,r11
17668 + breq 4f
17669 +
17670 + /* If op1 is zero return zero */
17671 + tst r12, r12
17672 + reteq 0
17673 +
17674 + /* Unpack op1*/
17675 + unpack_sf r9 /*exp*/, r12 /*sf*/
17676 +
17677 + /* Unpack op2*/
17678 + unpack_sf r10 /*exp*/, r11 /*sf*/
17679 +
17680 + /* Calculate new exponent */
17681 + stm --sp,r7,lr
17682 + sub r9, r10
17683 + sub r9,-127
17684 +
17685 + /* Divide */
17686 + mov r7,26
17687 +
17688 + lsr r12,1 /* Make room for one more bit in mantissas */
17689 + lsr r11,1
17690 +
17691 +0:
17692 + sub r10,r12,r11
17693 + movcc r12, r10 /* update dividend if divisor smaller */
17694 + rol lr /* shift result into lr */
17695 + eorl lr,1 /* flip bit. */
17696 + lsl r12,1 /* Shift dividend */
17697 + sub r7,1
17698 + brne 0b
17699 +
17700 + /* round and scale*/
17701 + neg r12 /* c = 1 iff r12 != 0 */
17702 + rol lr
17703 + lsl r10,lr,(32-27) /* Adjust mantissa */
17704 + ldm sp++, r7, lr
17705 +
17706 +
17707 + normalize_sf r9 /*exp*/, r10 /*mant*/, r11 /*scratch*/
17708 +
17709 + /* Check for subnormal result */
17710 + cp.w r9, 0
17711 + brgt 0f
17712 +
17713 + /* Adjust a subnormal result */
17714 + adjust_subnormal_sf r12 /*sf*/, r9 /*exp*/, r10 /*mant*/, r8 /*sign*/,r11 /*scratch*/
17715 + ret r12
17716 +0:
17717 + round_sf r9 /*exp*/, r10 /*mant*/, r11 /*scratch*/
17718 + pack_sf r12 /*sf*/, r9 /*exp*/, r10 /*mant*/
17719 +__divsf_return_op1:
17720 + lsl r8, 1
17721 + ror r12
17722 + ret r12
17723 +
17724 +2:
17725 + /* Op1 is NaN or inf */
17726 + retne -1 /* Return NaN if op1 is NaN */
17727 + /* Op1 is inf check op2 */
17728 + cp r11, r9
17729 + brlo __divsf_return_op1 /* inf/number gives inf */
17730 + ret -1 /* The rest gives NaN*/
17731 +3:
17732 + /* Op1 is NaN or inf */
17733 + reteq 0 /* Return zero if number/inf*/
17734 + ret -1 /* Return NaN*/
17735 +4:
17736 + /* Op2 is zero ? */
17737 + tst r12,r12
17738 + reteq -1 /* 0.0/0.0 is NaN */
17739 + lddpc r12, .Linf_sf
17740 + rjmp __divsf_return_op1
17741 +
17742 +#endif
17743 +
17744 +#ifdef L_avr32_f32_mul
17745 + .global __avr32_f32_mul
17746 + .type __avr32_f32_mul,@function
17747 +__avr32_f32_mul:
17748 + eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
17749 + lsl r12,1 /* unpack op1 */
17750 + lsl r11,1 /* unpack op2 */
17751 +
17752 + /* arrange operands so that that op1 >= op2 */
17753 + sub r9,r12,r11
17754 + brcc 0f
17755 +
17756 + sub r12,r9 /* swap operands if op2 was larger */
17757 + add r11,r9
17758 +
17759 +0:
17760 + lddpc r9,.Linf_sf
17761 + cp r12,r9
17762 + brhs 2f
17763 +
17764 + /* Check op2 for zero */
17765 + tst r11,r11
17766 + reteq 0 /* Return zero */
17767 +
17768 + /* Unpack op1 */
17769 + unpack_sf r9 /*exp*/, r12 /*sf*/
17770 + /* Unpack op2 */
17771 + unpack_sf r10 /*exp*/, r11 /*sf*/
17772 +
17773 + /* Calculate new exponent */
17774 + add r9,r10
17775 +
17776 + /* Do the multiplication */
17777 + mulu.d r10,r12,r11
17778 +
17779 + sub r9,(127-1) /* remove extra exponent bias */
17780 +
17781 + /* Check if we have any bits in r10 which
17782 + means a rounding bit should be inserted in LSB of result */
17783 + tst r10,r10
17784 + srne r10
17785 + or r12,r11,r10
17786 +
17787 + /* Normalize */
17788 + normalize_sf r9 /*exp*/, r12 /*mant*/, r11 /*scratch*/
17789 +
17790 + /* Check for subnormal result */
17791 + cp.w r9, 0
17792 + brgt 0f
17793 +
17794 + /* Adjust a subnormal result */
17795 + adjust_subnormal_sf r12/*sf*/, r9 /*exp*/, r12 /*mant*/, r8 /*sign*/, r11 /*scratch */
17796 + ret r12
17797 +0:
17798 + round_sf r9 /*exp*/, r12 /*mant*/, r11 /*scratch*/
17799 + cp.w r9, 0xff
17800 + brlo 1f
17801 + lddpc r12,.Linf_sf
17802 + rjmp __mulsf_return_op1
17803 +1:
17804 + pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/
17805 +__mulsf_return_op1:
17806 + lsl r8, 1
17807 + ror r12
17808 + ret r12
17809 +
17810 +2:
17811 + /* Op1 is inf or NaN */
17812 + retne -1 /* Op1 is NaN return NaN */
17813 +
17814 + /* Op1 is inf and op2 is smaller so it is either infinity
17815 + or a subnormal number */
17816 + cp r11,0
17817 + brne __mulsf_return_op1 /* op2 is not zero. return op1.*/
17818 + ret -1 /* inf * 0 return NaN */
17819 +#endif
17820 +
17821 +
17822 +#ifdef L_avr32_s32_to_f32
17823 + .global __avr32_s32_to_f32
17824 + .type __avr32_s32_to_f32,@function
17825 +__avr32_s32_to_f32:
17826 + cp r12, 0
17827 + reteq r12 /* If zero then return zero float */
17828 + mov r11, r12 /* Keep the sign */
17829 + abs r12 /* Compute the absolute value */
17830 + mov r10, 31 + 127 /* Set the correct exponent */
17831 +
17832 + /* Normalize */
17833 + normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
17834 +
17835 + /* Check for subnormal result */
17836 + cp.w r10, 0
17837 + brgt 0f
17838 +
17839 + /* Adjust a subnormal result */
17840 + adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/
17841 + ret r12
17842 +0:
17843 + round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
17844 + pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
17845 +__floatsisf_return_op1:
17846 + lsl r11, 1
17847 + ror r12
17848 + ret r12
17849 +#endif
17850 +
17851 +#ifdef L_avr32_u32_to_f32
17852 + .global __avr32_u32_to_f32
17853 + .type __avr32_u32_to_f32,@function
17854 +__avr32_u32_to_f32:
17855 + cp r12, 0
17856 + reteq r12 /* If zero then return zero float */
17857 + mov r10, 31 + 127 /* Set the correct exponent */
17858 +
17859 + /* Normalize */
17860 + normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
17861 +
17862 + /* Check for subnormal result */
17863 + cp.w r10, 0
17864 + brgt 0f
17865 +
17866 + /* Adjust a subnormal result */
17867 + mov r8, 0
17868 + adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/
17869 + ret r12
17870 +0:
17871 + round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
17872 + pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
17873 +__floatunsisf_return_op1:
17874 + lsr r12,1 /* Sign bit is 0 for unsigned int */
17875 + ret r12
17876 +#endif
17877 +
17878 +
17879 +#ifdef L_avr32_f32_to_s32
17880 + .global __avr32_f32_to_s32
17881 + .type __avr32_f32_to_s32,@function
17882 +__avr32_f32_to_s32:
17883 + lsr r11,r12,23 /* Extract exponent */
17884 + castu.b r11
17885 + sub r11,127 /* Fix bias */
17886 + retlo 0 /* Negative exponent yields zero integer */
17887 +
17888 +#ifdef __IEEE_LARGE_FLOATS__
17889 + cp r11,31
17890 + brcc 0f
17891 +#endif
17892 + /* Shift mantissa into correct position */
17893 + rsub r11,r11,31 /* Shift amount */
17894 + lsl r10,r12,8 /* Get mantissa */
17895 + sbr r10,31 /* Add implicit bit */
17896 + lsr r10,r10,r11 /* Perform shift */
17897 + lsl r12,1 /* Check sign */
17898 + retcc r10 /* if positive, we are done */
17899 + neg r10 /* if negative float, negate result */
17900 + ret r10
17901 +
17902 +#ifdef __IEEE_LARGE_FLOATS__
17903 +0:
17904 + mov r11,-1
17905 + lsr r11,1
17906 + lsl r12,1
17907 + acr r11
17908 +
17909 + ret r11
17910 +#endif
17911 +#endif
17912 +
17913 +#ifdef L_avr32_f32_to_u32
17914 + .global __avr32_f32_to_u32
17915 + .type __avr32_f32_to_u32,@function
17916 +__avr32_f32_to_u32:
17917 + cp r12,0
17918 + retmi 0 /* Negative numbers gives 0 */
17919 + bfextu r11, r12, 23, 8 /* Extract exponent */
17920 + sub r11,127 /* Fix bias */
17921 + retlo 0 /* Negative exponent yields zero integer */
17922 +
17923 +#ifdef __IEEE_LARGE_FLOATS__
17924 + cp r11,32
17925 + brcc 0f
17926 +#endif
17927 + /* Shift mantissa into correct position */
17928 + rsub r11,r11,31 /* Shift amount */
17929 + lsl r12,8 /* Get mantissa */
17930 + sbr r12,31 /* Add implicit bit */
17931 + lsr r12,r12,r11 /* Perform shift */
17932 + ret r12
17933 +
17934 +#ifdef __IEEE_LARGE_FLOATS__
17935 +0:
17936 + mov r11,-1
17937 + lsr r11,1
17938 + lsl r12,1
17939 + acr r11
17940 +
17941 + ret r11
17942 +#endif
17943 +#endif
17944 +
17945 +#ifdef L_avr32_f32_to_f64
17946 + .global __avr32_f32_to_f64
17947 + .type __avr32_f32_to_f64,@function
17948 +
17949 +__avr32_f32_to_f64:
17950 + lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/
17951 + moveq r10, 0
17952 + reteq r11 /* Return zero if input is zero */
17953 +
17954 + bfextu r9,r11,24,8 /* Get exponent */
17955 + cp.w r9,0xff /* check for NaN or inf */
17956 + breq 0f
17957 +
17958 + lsl r11,7 /* Convert sf mantissa to df format */
17959 + mov r10,0
17960 +
17961 + /* Check if implicit bit should be set */
17962 + cp.w r9, 0
17963 + subeq r9,-1 /* Adjust exponent if it was 0 */
17964 + srne r8
17965 + or r11, r11, r8 << 31 /* Set implicit bit if needed */
17966 + sub r9,(127-0x3ff) /* Convert exponent to df format exponent */
17967 +
17968 + pushm lr
17969 + normalize_df r9 /*exp*/, r10, r11 /*mantissa*/, r8, lr /*scratch*/
17970 + popm lr
17971 + pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/
17972 +
17973 +__extendsfdf_return_op1:
17974 + /* Rotate in sign bit */
17975 + lsl r12, 1
17976 + ror r11
17977 + ret r11
17978 +
17979 +0:
17980 + /* Inf or NaN*/
17981 + lddpc r10, .Linf
17982 + lsl r11,8 /* check mantissa */
17983 + movne r11, -1 /* Return NaN */
17984 + moveq r11, r10 /* Return inf */
17985 + rjmp __extendsfdf_return_op1
17986 +#endif
17987 +
17988 +
17989 +#ifdef L_avr32_f64_to_f32
17990 + .global __avr32_f64_to_f32
17991 + .type __avr32_f64_to_f32,@function
17992 +
17993 +__avr32_f64_to_f32:
17994 + /* Unpack */
17995 + lsl r9,r11,1 /* Unpack exponent */
17996 + lsr r9,21
17997 +
17998 + reteq 0 /* If exponent is 0 the number is so small
17999 + that the conversion to single float gives
18000 + zero */
18001 +
18002 + lsl r8,r11,10 /* Adjust mantissa */
18003 + or r12,r8,r10>>22
18004 +
18005 + lsl r10,10 /* Check if there are any remaining bits
18006 + in the low part of the mantissa.*/
18007 + neg r10
18008 + rol r12 /* If there were remaining bits then set lsb
18009 + of mantissa to 1 */
18010 +
18011 + cp r9,0x7ff
18012 + breq 2f /* Check for NaN or inf */
18013 +
18014 + sub r9,(0x3ff-127) /* Adjust bias of exponent */
18015 + sbr r12,31 /* set the implicit bit.*/
18016 +
18017 + cp.w r9, 0 /* Check for subnormal number */
18018 + brgt 0f
18019 +
18020 + /* Adjust a subnormal result */
18021 + adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/
18022 + ret r12
18023 +0:
18024 + round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/
18025 + pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/
18026 +__truncdfsf_return_op1:
18027 + /* Rotate in sign bit */
18028 + lsl r11, 1
18029 + ror r12
18030 + ret r12
18031 +
18032 +
18033 +2:
18034 + /* NaN or inf */
18035 + cbr r12,31 /* clear implicit bit */
18036 + retne -1 /* Return NaN if mantissa not zero */
18037 + lddpc r12,.Linf_sf
18038 + ret r12 /* Return inf */
18039 +#endif
18040 +
18041 +
18042 + .align 2
18043 +.Linf:
18044 + .long 0xffe00000
18045 +
18046 + .align 2
18047 +.Linf_sf:
18048 + .long 0xff000000
18049 +
18050 --- /dev/null
18051 +++ b/gcc/config/avr32/lib2funcs.S
18052 @@ -0,0 +1,21 @@
18053 + .align 4
18054 + .global __nonlocal_goto
18055 + .type __nonlocal_goto,@function
18056 +
18057 +/* __nonlocal_goto: This function handles nonlocal_goto's in gcc.
18058 +
18059 + parameter 0 (r12) = New Frame Pointer
18060 + parameter 1 (r11) = Address to goto
18061 + parameter 2 (r10) = New Stack Pointer
18062 +
18063 + This function invalidates the return stack, since it returns from a
18064 + function without using a return instruction.
18065 +*/
18066 +__nonlocal_goto:
18067 + mov r7, r12
18068 + mov sp, r10
18069 + frs # Flush return stack
18070 + mov pc, r11
18071 +
18072 +
18073 +
18074 --- /dev/null
18075 +++ b/gcc/config/avr32/linux-elf.h
18076 @@ -0,0 +1,154 @@
18077 +/*
18078 + Linux/Elf specific definitions.
18079 + Copyright 2003-2006 Atmel Corporation.
18080 +
18081 + Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
18082 + and Håvard Skinnemoen, Atmel Norway, <hskinnemoen@atmel.com>
18083 +
18084 + This file is part of GCC.
18085 +
18086 + This program is free software; you can redistribute it and/or modify
18087 + it under the terms of the GNU General Public License as published by
18088 + the Free Software Foundation; either version 2 of the License, or
18089 + (at your option) any later version.
18090 +
18091 + This program is distributed in the hope that it will be useful,
18092 + but WITHOUT ANY WARRANTY; without even the implied warranty of
18093 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18094 + GNU General Public License for more details.
18095 +
18096 + You should have received a copy of the GNU General Public License
18097 + along with this program; if not, write to the Free Software
18098 + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
18099 +
18100 +
18101 +
18102 +/* elfos.h should have already been included. Now just override
18103 + any conflicting definitions and add any extras. */
18104 +
18105 +/* Run-time Target Specification. */
18106 +#undef TARGET_VERSION
18107 +#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr);
18108 +
18109 +/* Do not assume anything about header files. */
18110 +#define NO_IMPLICIT_EXTERN_C
18111 +
18112 +/* The GNU C++ standard library requires that these macros be defined. */
18113 +#undef CPLUSPLUS_CPP_SPEC
18114 +#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
18115 +
18116 +/* Now we define the strings used to build the spec file. */
18117 +#undef LIB_SPEC
18118 +#define LIB_SPEC \
18119 + "%{pthread:-lpthread} \
18120 + %{shared:-lc} \
18121 + %{!shared:%{profile:-lc_p}%{!profile:-lc}}"
18122 +
18123 +/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add
18124 + the GNU/Linux magical crtbegin.o file (see crtstuff.c) which
18125 + provides part of the support for getting C++ file-scope static
18126 + object constructed before entering `main'. */
18127 +
18128 +#undef STARTFILE_SPEC
18129 +#define STARTFILE_SPEC \
18130 + "%{!shared: \
18131 + %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \
18132 + %{!p:%{profile:gcrt1.o%s} \
18133 + %{!profile:crt1.o%s}}}} \
18134 + crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}"
18135 +
18136 +/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on
18137 + the GNU/Linux magical crtend.o file (see crtstuff.c) which
18138 + provides part of the support for getting C++ file-scope static
18139 + object constructed before entering `main', followed by a normal
18140 + GNU/Linux "finalizer" file, `crtn.o'. */
18141 +
18142 +#undef ENDFILE_SPEC
18143 +#define ENDFILE_SPEC \
18144 + "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s"
18145 +
18146 +#undef ASM_SPEC
18147 +#define ASM_SPEC "%{!mno-pic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}"
18148 +
18149 +#undef LINK_SPEC
18150 +#define LINK_SPEC "%{version:-v} \
18151 + %{static:-Bstatic} \
18152 + %{shared:-shared} \
18153 + %{symbolic:-Bsymbolic} \
18154 + %{rdynamic:-export-dynamic} \
18155 + %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \
18156 + %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}"
18157 +
18158 +#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS()
18159 +
18160 +/* This is how we tell the assembler that two symbols have the same value. */
18161 +#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \
18162 + do \
18163 + { \
18164 + assemble_name (FILE, NAME1); \
18165 + fputs (" = ", FILE); \
18166 + assemble_name (FILE, NAME2); \
18167 + fputc ('\n', FILE); \
18168 + } \
18169 + while (0)
18170 +
18171 +
18172 +
18173 +#undef CC1_SPEC
18174 +#define CC1_SPEC "%{profile:-p}"
18175 +
18176 +/* Target CPU builtins. */
18177 +#define TARGET_CPU_CPP_BUILTINS() \
18178 + do \
18179 + { \
18180 + builtin_define ("__avr32__"); \
18181 + builtin_define ("__AVR32__"); \
18182 + builtin_define ("__AVR32_LINUX__"); \
18183 + builtin_define (avr32_part->macro); \
18184 + builtin_define (avr32_arch->macro); \
18185 + if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
18186 + builtin_define ("__AVR32_AVR32A__"); \
18187 + else \
18188 + builtin_define ("__AVR32_AVR32B__"); \
18189 + if (TARGET_UNALIGNED_WORD) \
18190 + builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
18191 + if (TARGET_SIMD) \
18192 + builtin_define ("__AVR32_HAS_SIMD__"); \
18193 + if (TARGET_DSP) \
18194 + builtin_define ("__AVR32_HAS_DSP__"); \
18195 + if (TARGET_RMW) \
18196 + builtin_define ("__AVR32_HAS_RMW__"); \
18197 + if (TARGET_BRANCH_PRED) \
18198 + builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
18199 + if (flag_pic) \
18200 + { \
18201 + builtin_define ("__PIC__"); \
18202 + builtin_define ("__pic__"); \
18203 + } \
18204 + } \
18205 + while (0)
18206 +
18207 +
18208 +
18209 +/* Call the function profiler with a given profile label. */
18210 +#undef FUNCTION_PROFILER
18211 +#define FUNCTION_PROFILER(STREAM, LABELNO) \
18212 + do \
18213 + { \
18214 + fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \
18215 + fprintf (STREAM, "\ticall lr\n"); \
18216 + } \
18217 + while (0)
18218 +
18219 +#define NO_PROFILE_COUNTERS 1
18220 +
18221 +/* For dynamic libraries to work */
18222 +/* #define PLT_REG_CALL_CLOBBERED 1 */
18223 +#define AVR32_ALWAYS_PIC 1
18224 +
18225 +/* uclibc does not implement sinf, cosf etc. */
18226 +#undef TARGET_C99_FUNCTIONS
18227 +#define TARGET_C99_FUNCTIONS 0
18228 +
18229 +#define LINK_GCC_C_SEQUENCE_SPEC \
18230 + "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}"
18231 --- /dev/null
18232 +++ b/gcc/config/avr32/predicates.md
18233 @@ -0,0 +1,303 @@
18234 +;; AVR32 predicates file.
18235 +;; Copyright 2003-2006 Atmel Corporation.
18236 +;;
18237 +;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
18238 +;;
18239 +;; This file is part of GCC.
18240 +;;
18241 +;; This program is free software; you can redistribute it and/or modify
18242 +;; it under the terms of the GNU General Public License as published by
18243 +;; the Free Software Foundation; either version 2 of the License, or
18244 +;; (at your option) any later version.
18245 +;;
18246 +;; This program is distributed in the hope that it will be useful,
18247 +;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18248 +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18249 +;; GNU General Public License for more details.
18250 +;;
18251 +;; You should have received a copy of the GNU General Public License
18252 +;; along with this program; if not, write to the Free Software
18253 +;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18254 +
18255 +
18256 +;; True if the operand is a memory reference which contains an
18257 +;; Address consisting of a single pointer register
18258 +(define_predicate "avr32_indirect_register_operand"
18259 + (and (match_code "mem")
18260 + (match_test "register_operand(XEXP(op, 0), SImode)")))
18261 +
18262 +
18263 +
18264 +;; Address expression with a base pointer offset with
18265 +;; a register displacement
18266 +(define_predicate "avr32_indexed_memory_operand"
18267 + (and (match_code "mem")
18268 + (match_test "GET_CODE(XEXP(op, 0)) == PLUS"))
18269 + {
18270 +
18271 + rtx op0 = XEXP(XEXP(op, 0), 0);
18272 + rtx op1 = XEXP(XEXP(op, 0), 1);
18273 +
18274 + return ((avr32_address_register_rtx_p (op0, 0)
18275 + && avr32_legitimate_index_p (GET_MODE(op), op1, 0))
18276 + || (avr32_address_register_rtx_p (op1, 0)
18277 + && avr32_legitimate_index_p (GET_MODE(op), op0, 0)));
18278 +
18279 + })
18280 +
18281 +;; Operand suitable for the ld.sb instruction
18282 +(define_predicate "load_sb_memory_operand"
18283 + (ior (match_operand 0 "avr32_indirect_register_operand")
18284 + (match_operand 0 "avr32_indexed_memory_operand")))
18285 +
18286 +
18287 +;; Operand suitable as operand to insns sign extending QI values
18288 +(define_predicate "extendqi_operand"
18289 + (ior (match_operand 0 "load_sb_memory_operand")
18290 + (match_operand 0 "register_operand")))
18291 +
18292 +(define_predicate "post_inc_memory_operand"
18293 + (and (match_code "mem")
18294 + (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC)
18295 + && REG_P(XEXP(XEXP(op, 0), 0))")))
18296 +
18297 +;; Operand suitable for loading TImode values
18298 +(define_predicate "loadti_operand"
18299 + (ior (ior (match_operand 0 "register_operand")
18300 + (match_operand 0 "avr32_indirect_register_operand"))
18301 + (match_operand 0 "post_inc_memory_operand")))
18302 +
18303 +;; Operand suitable for add instructions
18304 +(define_predicate "avr32_add_operand"
18305 + (ior (match_operand 0 "register_operand")
18306 + (and (match_operand 0 "immediate_operand")
18307 + (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")"))))
18308 +
18309 +;; Operand is a power of two immediate
18310 +(define_predicate "power_of_two_operand"
18311 + (match_code "const_int")
18312 +{
18313 + HOST_WIDE_INT value = INTVAL (op);
18314 +
18315 + return value != 0 && (value & (value - 1)) == 0;
18316 +})
18317 +
18318 +;; Operand is a multiple of 8 immediate
18319 +(define_predicate "multiple_of_8_operand"
18320 + (match_code "const_int")
18321 +{
18322 + HOST_WIDE_INT value = INTVAL (op);
18323 +
18324 + return (value & 0x7) == 0 ;
18325 +})
18326 +
18327 +;; Operand is a multiple of 16 immediate
18328 +(define_predicate "multiple_of_16_operand"
18329 + (match_code "const_int")
18330 +{
18331 + HOST_WIDE_INT value = INTVAL (op);
18332 +
18333 + return (value & 0xf) == 0 ;
18334 +})
18335 +
18336 +;; Operand is a mask used for masking away upper bits of a reg
18337 +(define_predicate "avr32_mask_upper_bits_operand"
18338 + (match_code "const_int")
18339 +{
18340 + HOST_WIDE_INT value = INTVAL (op) + 1;
18341 +
18342 + return value != 1 && value != 0 && (value & (value - 1)) == 0;
18343 +})
18344 +
18345 +
18346 +;; Operand suitable for mul instructions
18347 +(define_predicate "avr32_mul_operand"
18348 + (ior (match_operand 0 "register_operand")
18349 + (and (match_operand 0 "immediate_operand")
18350 + (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))))
18351 +
18352 +;; True for logical binary operators.
18353 +(define_predicate "logical_binary_operator"
18354 + (match_code "ior,xor,and"))
18355 +
18356 +;; True for logical shift operators
18357 +(define_predicate "logical_shift_operator"
18358 + (match_code "ashift,lshiftrt"))
18359 +
18360 +;; True for shift operand for logical and, or and eor insns
18361 +(define_predicate "avr32_logical_shift_operand"
18362 + (and (match_code "ashift,lshiftrt")
18363 + (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT")
18364 + (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))
18365 + (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT")
18366 + (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))"))))
18367 + {
18368 + return 1;
18369 + }
18370 + )
18371 +
18372 +
18373 +;; Predicate for second operand to and, ior and xor insn patterns
18374 +(define_predicate "avr32_logical_insn_operand"
18375 + (ior (match_operand 0 "register_operand")
18376 + (match_operand 0 "avr32_logical_shift_operand"))
18377 + {
18378 + return 1;
18379 + }
18380 +)
18381 +
18382 +
18383 +;; True for avr32 comparison operators
18384 +(define_predicate "avr32_comparison_operator"
18385 + (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu")
18386 + (and (match_code "unspec")
18387 + (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
18388 + || (XINT(op, 1) == UNSPEC_COND_PL)"))))
18389 +
18390 +;; True if this is a const_int with one bit set
18391 +(define_predicate "one_bit_set_operand"
18392 + (match_code "const_int")
18393 + {
18394 + int i;
18395 + int value;
18396 + int ones = 0;
18397 +
18398 + value = INTVAL(op);
18399 + for ( i = 0 ; i < 32; i++ ){
18400 + if ( value & ( 1 << i ) ){
18401 + ones++;
18402 + }
18403 + }
18404 +
18405 + return ( ones == 1 );
18406 + })
18407 +
18408 +
18409 +;; True if this is a const_int with one bit cleared
18410 +(define_predicate "one_bit_cleared_operand"
18411 + (match_code "const_int")
18412 + {
18413 + int i;
18414 + int value;
18415 + int zeroes = 0;
18416 +
18417 + value = INTVAL(op);
18418 + for ( i = 0 ; i < 32; i++ ){
18419 + if ( !(value & ( 1 << i )) ){
18420 + zeroes++;
18421 + }
18422 + }
18423 +
18424 + return ( zeroes == 1 );
18425 + })
18426 +
18427 +
18428 +;; True if this is a register or immediate operand
18429 +(define_predicate "register_immediate_operand"
18430 + (ior (match_operand 0 "register_operand")
18431 + (match_operand 0 "immediate_operand")))
18432 +
18433 +
18434 +;; True is this is an operand containing a label_ref
18435 +(define_predicate "avr32_label_ref_operand"
18436 + (and (match_code "mem")
18437 + (match_test "avr32_find_symbol(op)
18438 + && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)")))
18439 +
18440 +;; True is this is a valid symbol pointing to the constant pool
18441 +(define_predicate "avr32_const_pool_operand"
18442 + (and (match_code "symbol_ref")
18443 + (match_test "CONSTANT_POOL_ADDRESS_P(op)"))
18444 + {
18445 + return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op))
18446 + || label_mentioned_p (get_pool_constant (op)))
18447 + || avr32_got_mentioned_p(get_pool_constant (op)))
18448 + : true);
18449 + }
18450 +)
18451 +
18452 +;; True is this is a memory reference to the constant or mini pool
18453 +(define_predicate "avr32_const_pool_ref_operand"
18454 + (ior (match_operand 0 "avr32_label_ref_operand")
18455 + (and (match_code "mem")
18456 + (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))"))))
18457 +
18458 +
18459 +
18460 +;; True is this is a k12 offseted memory operand
18461 +(define_predicate "avr32_k12_memory_operand"
18462 + (and (match_code "mem")
18463 + (ior (match_test "REG_P(XEXP(op, 0))")
18464 + (match_test "GET_CODE(XEXP(op, 0)) == PLUS
18465 + && REG_P(XEXP(XEXP(op, 0), 0))
18466 + && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
18467 + && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)),
18468 + 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))"))))
18469 +
18470 +;; True is this is a memory operand with an immediate displacement
18471 +(define_predicate "avr32_imm_disp_memory_operand"
18472 + (and (match_code "mem")
18473 + (match_test "GET_CODE(XEXP(op, 0)) == PLUS
18474 + && REG_P(XEXP(XEXP(op, 0), 0))
18475 + && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)")))
18476 +
18477 +;; True is this is a bswap operand
18478 +(define_predicate "avr32_bswap_operand"
18479 + (ior (match_operand 0 "avr32_k12_memory_operand")
18480 + (match_operand 0 "register_operand")))
18481 +
18482 +;; True is this is a valid coprocessor insn memory operand
18483 +(define_predicate "avr32_cop_memory_operand"
18484 + (and (match_operand 0 "memory_operand")
18485 + (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS
18486 + && REG_P(XEXP(XEXP(op, 0), 0))
18487 + && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
18488 + && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))"))))
18489 +
18490 +;; True is this is a valid source/destination operand
18491 +;; for moving values to/from a coprocessor
18492 +(define_predicate "avr32_cop_move_operand"
18493 + (ior (match_operand 0 "register_operand")
18494 + (match_operand 0 "avr32_cop_memory_operand")))
18495 +
18496 +
18497 +;; True is this is a valid extract byte offset for use in
18498 +;; load extracted index insns
18499 +(define_predicate "avr32_extract_shift_operand"
18500 + (and (match_operand 0 "const_int_operand")
18501 + (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8)
18502 + || (INTVAL(op) == 16) || (INTVAL(op) == 24)")))
18503 +
18504 +;; True is this is a floating-point register
18505 +(define_predicate "avr32_fp_register_operand"
18506 + (and (match_operand 0 "register_operand")
18507 + (match_test "REGNO_REG_CLASS(REGNO(op)) == FP_REGS")))
18508 +
18509 +;; True is this is valid avr32 symbol operand
18510 +(define_predicate "avr32_symbol_operand"
18511 + (ior (match_code "label_ref, symbol_ref")
18512 + (and (match_code "const")
18513 + (match_test "avr32_find_symbol(op)"))))
18514 +
18515 +;; True is this is valid operand for the lda.w and call pseudo insns
18516 +(define_predicate "avr32_address_operand"
18517 + (and (match_code "label_ref, symbol_ref")
18518 + (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS")
18519 + (match_test "flag_pic")) ))
18520 +
18521 +;; True if this is a avr32 call operand
18522 +(define_predicate "avr32_call_operand"
18523 + (ior (ior (match_operand 0 "register_operand")
18524 + (ior (match_operand 0 "avr32_const_pool_ref_operand")
18525 + (match_operand 0 "avr32_address_operand")))
18526 + (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)")))
18527 +
18528 +;; Return true for operators performing ALU operations
18529 +
18530 +(define_predicate "alu_operator"
18531 + (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt"))
18532 +
18533 +(define_predicate "avr32_add_shift_immediate_operand"
18534 + (and (match_operand 0 "immediate_operand")
18535 + (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")")))
18536 +
18537 --- /dev/null
18538 +++ b/gcc/config/avr32/simd.md
18539 @@ -0,0 +1,145 @@
18540 +;; AVR32 machine description file for SIMD instructions.
18541 +;; Copyright 2003-2006 Atmel Corporation.
18542 +;;
18543 +;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
18544 +;;
18545 +;; This file is part of GCC.
18546 +;;
18547 +;; This program is free software; you can redistribute it and/or modify
18548 +;; it under the terms of the GNU General Public License as published by
18549 +;; the Free Software Foundation; either version 2 of the License, or
18550 +;; (at your option) any later version.
18551 +;;
18552 +;; This program is distributed in the hope that it will be useful,
18553 +;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18554 +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18555 +;; GNU General Public License for more details.
18556 +;;
18557 +;; You should have received a copy of the GNU General Public License
18558 +;; along with this program; if not, write to the Free Software
18559 +;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18560 +
18561 +;; -*- Mode: Scheme -*-
18562 +
18563 +
18564 +;; Vector modes
18565 +(define_mode_macro VECM [V2HI V4QI])
18566 +(define_mode_attr size [(V2HI "h") (V4QI "b")])
18567 +
18568 +(define_insn "add<mode>3"
18569 + [(set (match_operand:VECM 0 "register_operand" "=r")
18570 + (plus:VECM (match_operand:VECM 1 "register_operand" "r")
18571 + (match_operand:VECM 2 "register_operand" "r")))]
18572 + "TARGET_SIMD"
18573 + "padd.<size>\t%0, %1, %2"
18574 + [(set_attr "length" "4")
18575 + (set_attr "type" "alu")])
18576 +
18577 +
18578 +(define_insn "sub<mode>3"
18579 + [(set (match_operand:VECM 0 "register_operand" "=r")
18580 + (minus:VECM (match_operand:VECM 1 "register_operand" "r")
18581 + (match_operand:VECM 2 "register_operand" "r")))]
18582 + "TARGET_SIMD"
18583 + "psub.<size>\t%0, %1, %2"
18584 + [(set_attr "length" "4")
18585 + (set_attr "type" "alu")])
18586 +
18587 +
18588 +(define_insn "abs<mode>2"
18589 + [(set (match_operand:VECM 0 "register_operand" "=r")
18590 + (abs:VECM (match_operand:VECM 1 "register_operand" "r")))]
18591 + "TARGET_SIMD"
18592 + "pabs.s<size>\t%0, %1"
18593 + [(set_attr "length" "4")
18594 + (set_attr "type" "alu")])
18595 +
18596 +(define_insn "ashl<mode>3"
18597 + [(set (match_operand:VECM 0 "register_operand" "=r")
18598 + (ashift:VECM (match_operand:VECM 1 "register_operand" "r")
18599 + (match_operand:SI 2 "immediate_operand" "Ku04")))]
18600 + "TARGET_SIMD"
18601 + "plsl.<size>\t%0, %1, %2"
18602 + [(set_attr "length" "4")
18603 + (set_attr "type" "alu")])
18604 +
18605 +(define_insn "ashr<mode>3"
18606 + [(set (match_operand:VECM 0 "register_operand" "=r")
18607 + (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
18608 + (match_operand:SI 2 "immediate_operand" "Ku04")))]
18609 + "TARGET_SIMD"
18610 + "pasr.<size>\t%0, %1, %2"
18611 + [(set_attr "length" "4")
18612 + (set_attr "type" "alu")])
18613 +
18614 +(define_insn "lshr<mode>3"
18615 + [(set (match_operand:VECM 0 "register_operand" "=r")
18616 + (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
18617 + (match_operand:SI 2 "immediate_operand" "Ku04")))]
18618 + "TARGET_SIMD"
18619 + "plsr.<size>\t%0, %1, %2"
18620 + [(set_attr "length" "4")
18621 + (set_attr "type" "alu")])
18622 +
18623 +(define_insn "smaxv2hi3"
18624 + [(set (match_operand:V2HI 0 "register_operand" "=r")
18625 + (smax:V2HI (match_operand:V2HI 1 "register_operand" "r")
18626 + (match_operand:V2HI 2 "register_operand" "r")))]
18627 +
18628 + "TARGET_SIMD"
18629 + "pmax.sh\t%0, %1, %2"
18630 + [(set_attr "length" "4")
18631 + (set_attr "type" "alu")])
18632 +
18633 +(define_insn "sminv2hi3"
18634 + [(set (match_operand:V2HI 0 "register_operand" "=r")
18635 + (smin:V2HI (match_operand:V2HI 1 "register_operand" "r")
18636 + (match_operand:V2HI 2 "register_operand" "r")))]
18637 +
18638 + "TARGET_SIMD"
18639 + "pmin.sh\t%0, %1, %2"
18640 + [(set_attr "length" "4")
18641 + (set_attr "type" "alu")])
18642 +
18643 +(define_insn "umaxv4qi3"
18644 + [(set (match_operand:V4QI 0 "register_operand" "=r")
18645 + (umax:V4QI (match_operand:V4QI 1 "register_operand" "r")
18646 + (match_operand:V4QI 2 "register_operand" "r")))]
18647 +
18648 + "TARGET_SIMD"
18649 + "pmax.ub\t%0, %1, %2"
18650 + [(set_attr "length" "4")
18651 + (set_attr "type" "alu")])
18652 +
18653 +(define_insn "uminv4qi3"
18654 + [(set (match_operand:V4QI 0 "register_operand" "=r")
18655 + (umin:V4QI (match_operand:V4QI 1 "register_operand" "r")
18656 + (match_operand:V4QI 2 "register_operand" "r")))]
18657 +
18658 + "TARGET_SIMD"
18659 + "pmin.ub\t%0, %1, %2"
18660 + [(set_attr "length" "4")
18661 + (set_attr "type" "alu")])
18662 +
18663 +
18664 +(define_insn "addsubv2hi"
18665 + [(set (match_operand:V2HI 0 "register_operand" "=r")
18666 + (vec_concat:V2HI
18667 + (plus:HI (match_operand:HI 1 "register_operand" "r")
18668 + (match_operand:HI 2 "register_operand" "r"))
18669 + (minus:HI (match_dup 1) (match_dup 2))))]
18670 + "TARGET_SIMD"
18671 + "paddsub.h\t%0, %1:b, %2:b"
18672 + [(set_attr "length" "4")
18673 + (set_attr "type" "alu")])
18674 +
18675 +(define_insn "subaddv2hi"
18676 + [(set (match_operand:V2HI 0 "register_operand" "=r")
18677 + (vec_concat:V2HI
18678 + (minus:HI (match_operand:HI 1 "register_operand" "r")
18679 + (match_operand:HI 2 "register_operand" "r"))
18680 + (plus:HI (match_dup 1) (match_dup 2))))]
18681 + "TARGET_SIMD"
18682 + "psubadd.h\t%0, %1:b, %2:b"
18683 + [(set_attr "length" "4")
18684 + (set_attr "type" "alu")])
18685 --- /dev/null
18686 +++ b/gcc/config/avr32/t-avr32
18687 @@ -0,0 +1,63 @@
18688 +
18689 +MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \
18690 + $(srcdir)/config/avr32/fpcp.md \
18691 + $(srcdir)/config/avr32/simd.md \
18692 + $(srcdir)/config/avr32/predicates.md
18693 +
18694 +s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \
18695 + s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES)
18696 +
18697 +# We want fine grained libraries, so use the new code
18698 +# to build the floating point emulation libraries.
18699 +FPBIT = fp-bit.c
18700 +DPBIT = dp-bit.c
18701 +
18702 +LIB1ASMSRC = avr32/lib1funcs.S
18703 +LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_addsub _avr32_f64_to_u32 _avr32_f64_to_s32 \
18704 + _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 _avr32_s32_to_f64 \
18705 + _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \
18706 + _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt \
18707 + _avr32_f64_div _avr32_f32_div\
18708 + _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \
18709 + _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32
18710 +
18711 +LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S
18712 +
18713 +MULTILIB_OPTIONS = march=ap/march=uc
18714 +MULTILIB_DIRNAMES = ap uc
18715 +MULTILIB_EXCEPTIONS =
18716 +MULTILIB_MATCHES = march?ap=mcpu?ap7000
18717 +MULTILIB_MATCHES += march?ap=mcpu?ap7010
18718 +MULTILIB_MATCHES += march?ap=mcpu?ap7020
18719 +MULTILIB_MATCHES += march?uc=mcpu?uc3a0256
18720 +MULTILIB_MATCHES += march?uc=mcpu?uc3a0512
18721 +MULTILIB_MATCHES += march?uc=mcpu?uc3a1128
18722 +MULTILIB_MATCHES += march?uc=mcpu?uc3a1256
18723 +MULTILIB_MATCHES += march?uc=mcpu?uc3a1512
18724 +MULTILIB_MATCHES += march?ap=mpart?ap7000
18725 +MULTILIB_MATCHES += march?ap=mpart?ap7010
18726 +MULTILIB_MATCHES += march?ap=mpart?ap7020
18727 +MULTILIB_MATCHES += march?uc=mpart?uc3a0256
18728 +MULTILIB_MATCHES += march?uc=mpart?uc3a0512
18729 +MULTILIB_MATCHES += march?uc=mpart?uc3a1128
18730 +MULTILIB_MATCHES += march?uc=mpart?uc3a1256
18731 +MULTILIB_MATCHES += march?uc=mpart?uc3a1512
18732 +
18733 +EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
18734 +
18735 +CRTSTUFF_T_CFLAGS = -mrelax
18736 +CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC
18737 +TARGET_LIBGCC2_CFLAGS += -mrelax
18738 +
18739 +LIBGCC = stmp-multilib
18740 +INSTALL_LIBGCC = install-multilib
18741 +
18742 +fp-bit.c: $(srcdir)/config/fp-bit.c
18743 + echo '#define FLOAT' > fp-bit.c
18744 + cat $(srcdir)/config/fp-bit.c >> fp-bit.c
18745 +
18746 +dp-bit.c: $(srcdir)/config/fp-bit.c
18747 + cat $(srcdir)/config/fp-bit.c > dp-bit.c
18748 +
18749 +
18750 +
18751 --- /dev/null
18752 +++ b/gcc/config/avr32/t-elf
18753 @@ -0,0 +1,16 @@
18754 +
18755 +# Assemble startup files.
18756 +$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES)
18757 + $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
18758 + -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm
18759 +
18760 +$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES)
18761 + $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
18762 + -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm
18763 +
18764 +
18765 +# Build the libraries for both hard and soft floating point
18766 +EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
18767 +
18768 +LIBGCC = stmp-multilib
18769 +INSTALL_LIBGCC = install-multilib
18770 --- /dev/null
18771 +++ b/gcc/config/avr32/uclinux-elf.h
18772 @@ -0,0 +1,20 @@
18773 +
18774 +/* Run-time Target Specification. */
18775 +#undef TARGET_VERSION
18776 +#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr)
18777 +
18778 +/* We don't want a .jcr section on uClinux. As if this makes a difference... */
18779 +#define TARGET_USE_JCR_SECTION 0
18780 +
18781 +/* Here we go. Drop the crtbegin/crtend stuff completely. */
18782 +#undef STARTFILE_SPEC
18783 +#define STARTFILE_SPEC \
18784 + "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \
18785 + " %{!p:%{profile:gcrt1.o%s}" \
18786 + " %{!profile:crt1.o%s}}}} crti.o%s"
18787 +
18788 +#undef ENDFILE_SPEC
18789 +#define ENDFILE_SPEC "crtn.o%s"
18790 +
18791 +#undef TARGET_DEFAULT
18792 +#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT)
18793 --- a/gcc/config/host-linux.c
18794 +++ b/gcc/config/host-linux.c
18795 @@ -26,6 +26,9 @@
18796 #include "hosthooks.h"
18797 #include "hosthooks-def.h"
18798
18799 +#ifndef SSIZE_MAX
18800 +#define SSIZE_MAX LONG_MAX
18801 +#endif
18802
18803 /* Linux has a feature called exec-shield-randomize that perturbs the
18804 address of non-fixed mapped segments by a (relatively) small amount.
18805 --- a/gcc/config.gcc
18806 +++ b/gcc/config.gcc
18807 @@ -751,6 +751,24 @@ avr-*-*)
18808 tm_file="avr/avr.h dbxelf.h"
18809 use_fixproto=yes
18810 ;;
18811 +avr32*-*-linux*)
18812 + tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h "
18813 + tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
18814 + extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
18815 + extra_modes=avr32/avr32-modes.def
18816 + gnu_ld=yes
18817 + ;;
18818 +avr32*-*-uclinux*)
18819 + tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h"
18820 + tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
18821 + extra_modes=avr32/avr32-modes.def
18822 + gnu_ld=yes
18823 + ;;
18824 +avr32-*-*)
18825 + tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h"
18826 + tmake_file="avr32/t-avr32 avr32/t-elf"
18827 + extra_modes=avr32/avr32-modes.def
18828 + ;;
18829 bfin*-elf*)
18830 tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h"
18831 tmake_file=bfin/t-bfin-elf
18832 @@ -1614,6 +1632,9 @@ pdp11-*-bsd)
18833 pdp11-*-*)
18834 use_fixproto=yes
18835 ;;
18836 +avr-*-*)
18837 + use_fixproto=yes
18838 + ;;
18839 # port not yet contributed
18840 #powerpc-*-openbsd*)
18841 # tmake_file="${tmake_file} rs6000/t-fprules "
18842 @@ -2581,6 +2602,21 @@ case "${target}" in
18843 fi
18844 ;;
18845
18846 + avr32*-*-*)
18847 + supported_defaults="cpu"
18848 +
18849 + case "$with_cpu" in
18850 + "" \
18851 + | morgan | ap7000 )
18852 + # OK
18853 + ;;
18854 + *)
18855 + echo "Unknown arch used in --with-arch=$with_arch" 1>&2
18856 + exit 1
18857 + ;;
18858 + esac
18859 + ;;
18860 +
18861 fr*-*-*linux*)
18862 supported_defaults=cpu
18863 case "$with_cpu" in
18864 --- a/gcc/doc/extend.texi
18865 +++ b/gcc/doc/extend.texi
18866 @@ -1887,7 +1887,7 @@ this attribute to work correctly.
18867
18868 @item interrupt
18869 @cindex interrupt handler functions
18870 -Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, MS1, and Xstormy16
18871 +Use this attribute on the ARM, AVR, AVR32, C4x, CRX, M32C, M32R/D, MS1, and Xstormy16
18872 ports to indicate that the specified function is an interrupt handler.
18873 The compiler will generate function entry and exit sequences suitable
18874 for use in an interrupt handler when this attribute is present.
18875 @@ -1906,6 +1906,15 @@ void f () __attribute__ ((interrupt ("IR
18876
18877 Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
18878
18879 +Note, for the AVR32, you can specify which banking scheme is used for
18880 +the interrupt mode this interrupt handler is used in like this:
18881 +
18882 +@smallexample
18883 +void f () __attribute__ ((interrupt ("FULL")));
18884 +@end smallexample
18885 +
18886 +Permissible values for this parameter are: FULL, HALF, NONE and UNDEF.
18887 +
18888 @item interrupt_handler
18889 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
18890 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
18891 @@ -5807,6 +5816,7 @@ instructions, but allow the compiler to
18892 @menu
18893 * Alpha Built-in Functions::
18894 * ARM Built-in Functions::
18895 +* AVR32 Built-in Functions::
18896 * Blackfin Built-in Functions::
18897 * FR-V Built-in Functions::
18898 * X86 Built-in Functions::
18899 @@ -6045,6 +6055,54 @@ long long __builtin_arm_wxor (long long,
18900 long long __builtin_arm_wzero ()
18901 @end smallexample
18902
18903 +@node AVR32 Built-in Functions
18904 +@subsection AVR32 Built-in Functions
18905 +
18906 +
18907 +@smallexample
18908 +
18909 +int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/)
18910 +int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/)
18911 +int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/)
18912 +int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/)
18913 +short __builtin_mulsathh_h (short, short)
18914 +int __builtin_mulsathh_w (short, short)
18915 +short __builtin_mulsatrndhh_h (short, short)
18916 +int __builtin_mulsatrndwh_w (int, short)
18917 +int __builtin_mulsatwh_w (int, short)
18918 +int __builtin_macsathh_w (int, short, short)
18919 +short __builtin_satadd_h (short, short)
18920 +short __builtin_satsub_h (short, short)
18921 +int __builtin_satadd_w (int, int)
18922 +int __builtin_satsub_w (int, int)
18923 +long long __builtin_mulwh_d(int, short)
18924 +long long __builtin_mulnwh_d(int, short)
18925 +long long __builtin_macwh_d(long long, int, short)
18926 +long long __builtin_machh_d(long long, short, short)
18927 +
18928 +void __builtin_musfr(int);
18929 +int __builtin_mustr(void);
18930 +int __builtin_mfsr(int /*Status Register Address*/)
18931 +void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/)
18932 +int __builtin_mfdr(int /*Debug Register Address*/)
18933 +void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/)
18934 +void __builtin_cache(void * /*Address*/, int /*Cache Operation*/)
18935 +void __builtin_sync(int /*Sync Operation*/)
18936 +void __builtin_tlbr(void)
18937 +void __builtin_tlbs(void)
18938 +void __builtin_tlbw(void)
18939 +void __builtin_breakpoint(void)
18940 +int __builtin_xchg(void * /*Address*/, int /*Value*/ )
18941 +short __builtin_bswap_16(short)
18942 +int __builtin_bswap_32(int)
18943 +void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/)
18944 +int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/)
18945 +void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/)
18946 +long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/)
18947 +void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/)
18948 +
18949 +@end smallexample
18950 +
18951 @node Blackfin Built-in Functions
18952 @subsection Blackfin Built-in Functions
18953
18954 --- a/gcc/doc/invoke.texi
18955 +++ b/gcc/doc/invoke.texi
18956 @@ -185,7 +185,7 @@ in the following sections.
18957 -fno-default-inline -fvisibility-inlines-hidden @gol
18958 -Wabi -Wctor-dtor-privacy @gol
18959 -Wnon-virtual-dtor -Wreorder @gol
18960 --Weffc++ -Wno-deprecated -Wstrict-null-sentinel @gol
18961 +-Weffc++ -Wno-deprecated @gol
18962 -Wno-non-template-friend -Wold-style-cast @gol
18963 -Woverloaded-virtual -Wno-pmf-conversions @gol
18964 -Wsign-promo}
18965 @@ -569,6 +569,10 @@ Objective-C and Objective-C++ Dialects}.
18966 -mauto-incdec -minmax -mlong-calls -mshort @gol
18967 -msoft-reg-count=@var{count}}
18968
18969 +@emph{AVR32 Options}
18970 +@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol
18971 +-muse-oscall -mforce-double-align -mno-init-got -mcpu=@var{cpu}}
18972 +
18973 @emph{MCore Options}
18974 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
18975 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
18976 @@ -1797,14 +1801,6 @@ to filter out those warnings.
18977 @opindex Wno-deprecated
18978 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
18979
18980 -@item -Wstrict-null-sentinel @r{(C++ only)}
18981 -@opindex Wstrict-null-sentinel
18982 -Warn also about the use of an uncasted @code{NULL} as sentinel. When
18983 -compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
18984 -to @code{__null}. Although it is a null pointer constant not a null pointer,
18985 -it is guaranteed to of the same size as a pointer. But this use is
18986 -not portable across different compilers.
18987 -
18988 @item -Wno-non-template-friend @r{(C++ only)}
18989 @opindex Wno-non-template-friend
18990 Disable warnings when non-templatized friend functions are declared
18991 @@ -2662,13 +2658,11 @@ get these warnings.
18992 If you want to warn about code which uses the uninitialized value of the
18993 variable in its own initializer, use the @option{-Winit-self} option.
18994
18995 -These warnings occur for individual uninitialized or clobbered
18996 -elements of structure, union or array variables as well as for
18997 -variables which are uninitialized or clobbered as a whole. They do
18998 -not occur for variables or elements declared @code{volatile}. Because
18999 -these warnings depend on optimization, the exact variables or elements
19000 -for which there are warnings will depend on the precise optimization
19001 -options and version of GCC used.
19002 +These warnings occur only for variables that are candidates for
19003 +register allocation. Therefore, they do not occur for a variable that
19004 +is declared @code{volatile}, or whose address is taken, or whose size
19005 +is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
19006 +structures, unions or arrays, even when they are in registers.
19007
19008 Note that there may be no warning about a variable that is used only
19009 to compute a value that itself is never used, because such
19010 @@ -5935,10 +5929,6 @@ If number of candidates in the set is sm
19011 we always try to remove unnecessary ivs from the set during its
19012 optimization when a new iv is added to the set.
19013
19014 -@item scev-max-expr-size
19015 -Bound on size of expressions used in the scalar evolutions analyzer.
19016 -Large expressions slow the analyzer.
19017 -
19018 @item vect-max-version-checks
19019 The maximum number of runtime checks that can be performed when doing
19020 loop versioning in the vectorizer. See option ftree-vect-loop-version
19021 @@ -7115,7 +7105,7 @@ platform.
19022 * ARC Options::
19023 * ARM Options::
19024 * AVR Options::
19025 -* Blackfin Options::
19026 +* AVR32 Options::
19027 * CRIS Options::
19028 * CRX Options::
19029 * Darwin Options::
19030 @@ -7578,81 +7568,55 @@ comply to the C standards, but it will p
19031 size.
19032 @end table
19033
19034 -@node Blackfin Options
19035 -@subsection Blackfin Options
19036 -@cindex Blackfin Options
19037 +@node AVR32 Options
19038 +@subsection AVR32 Options
19039 +@cindex AVR32 Options
19040
19041 -@table @gcctabopt
19042 -@item -momit-leaf-frame-pointer
19043 -@opindex momit-leaf-frame-pointer
19044 -Don't keep the frame pointer in a register for leaf functions. This
19045 -avoids the instructions to save, set up and restore frame pointers and
19046 -makes an extra register available in leaf functions. The option
19047 -@option{-fomit-frame-pointer} removes the frame pointer for all functions
19048 -which might make debugging harder.
19049 +These options are defined for AVR32 implementations:
19050
19051 -@item -mspecld-anomaly
19052 -@opindex mspecld-anomaly
19053 -When enabled, the compiler will ensure that the generated code does not
19054 -contain speculative loads after jump instructions. This option is enabled
19055 -by default.
19056 -
19057 -@item -mno-specld-anomaly
19058 -@opindex mno-specld-anomaly
19059 -Don't generate extra code to prevent speculative loads from occurring.
19060 -
19061 -@item -mcsync-anomaly
19062 -@opindex mcsync-anomaly
19063 -When enabled, the compiler will ensure that the generated code does not
19064 -contain CSYNC or SSYNC instructions too soon after conditional branches.
19065 -This option is enabled by default.
19066 -
19067 -@item -mno-csync-anomaly
19068 -@opindex mno-csync-anomaly
19069 -Don't generate extra code to prevent CSYNC or SSYNC instructions from
19070 -occurring too soon after a conditional branch.
19071 -
19072 -@item -mlow-64k
19073 -@opindex mlow-64k
19074 -When enabled, the compiler is free to take advantage of the knowledge that
19075 -the entire program fits into the low 64k of memory.
19076 -
19077 -@item -mno-low-64k
19078 -@opindex mno-low-64k
19079 -Assume that the program is arbitrarily large. This is the default.
19080 +@table @gcctabopt
19081 +@item -muse-rodata-section
19082 +@opindex muse-rodata-section
19083 +Use section @samp{.rodata} for read-only data instead of @samp{.text}.
19084
19085 -@item -mid-shared-library
19086 -@opindex mid-shared-library
19087 -Generate code that supports shared libraries via the library ID method.
19088 -This allows for execute in place and shared libraries in an environment
19089 -without virtual memory management. This option implies @option{-fPIC}.
19090 +@item -mhard-float
19091 +@opindex mhard-float
19092 +Use floating-point coprocessor instructions.
19093
19094 -@item -mno-id-shared-library
19095 -@opindex mno-id-shared-library
19096 -Generate code that doesn't assume ID based shared libraries are being used.
19097 -This is the default.
19098 +@item -msoft-float
19099 +@opindex msoft-float
19100 +Use software floating-point library.
19101
19102 -@item -mshared-library-id=n
19103 -@opindex mshared-library-id
19104 -Specified the identification number of the ID based shared library being
19105 -compiled. Specifying a value of 0 will generate more compact code, specifying
19106 -other values will force the allocation of that number to the current
19107 -library but is no more space or time efficient than omitting this option.
19108 +@item -mrelax
19109 +@opindex mrelax
19110 +Enable relaxing in linker. This means that when the address of symbols
19111 +are known at link time, the linker can optimize @samp{icall} and @samp{mcall}
19112 +instructions into a @samp{rcall} instruction if possible. Loading the address
19113 +of a symbol can also be optimized.
19114 +
19115 +@item -muse-oscall
19116 +@opindex muse-oscall
19117 +When using gcc as a frontend for linking this switch forces the use of
19118 +@samp{fake} system calls in the newlib c-library. These fake system
19119 +calls are handled by some AVR32 simulators which redirects these calls
19120 +to the OS in which the simulator is running. This is practical for
19121 +being able to perform file I/O when running programs in a simulator.
19122 +
19123 +@item -mforce-double-align
19124 +@opindex mforce-double-align
19125 +Force double-word alignment for double-word memory accesses.
19126 +
19127 +@item -mno-init-got
19128 +@opindex mno-init-got
19129 +Do not initialize the GOT register before using it when compiling PIC
19130 +code.
19131
19132 -@item -mlong-calls
19133 -@itemx -mno-long-calls
19134 -@opindex mlong-calls
19135 -@opindex mno-long-calls
19136 -Tells the compiler to perform function calls by first loading the
19137 -address of the function into a register and then performing a subroutine
19138 -call on this register. This switch is needed if the target function
19139 -will lie outside of the 24 bit addressing range of the offset based
19140 -version of subroutine call instruction.
19141 +@item -mcpu=@var{cpu-type}
19142 +@opindex mcpu
19143 +Generate code for the specified cpu. Permissible names are: @samp{morgan},
19144 +@samp{ap7000} and @samp{default}. @samp{default} is a dummy cpu which
19145 +allows all avr32 instructions.
19146
19147 -This feature is not enabled by default. Specifying
19148 -@option{-mno-long-calls} will restore the default behavior. Note these
19149 -switches have no effect on how the compiler generates code to handle
19150 -function calls via function pointers.
19151 @end table
19152
19153 @node CRIS Options
19154 @@ -11341,6 +11305,7 @@ conventions that adheres to the March 19
19155 Application Binary Interface, PowerPC processor supplement. This is the
19156 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19157
19158 +
19159 @item -mcall-sysv-eabi
19160 @opindex mcall-sysv-eabi
19161 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19162 --- a/gcc/doc/md.texi
19163 +++ b/gcc/doc/md.texi
19164 @@ -1686,6 +1686,59 @@ A memory reference suitable for iWMMXt l
19165 A memory reference suitable for the ARMv4 ldrsb instruction.
19166 @end table
19167
19168 +@item AVR32 family---@file{avr32.h}
19169 +@table @code
19170 +@item f
19171 +Floating-point registers (f0 to f15)
19172 +
19173 +@item Ku@var{bits}
19174 +Unsigned constant representable with @var{bits} number of bits (Must be
19175 +two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08}
19176 +
19177 +@item Ks@var{bits}
19178 +Signed constant representable with @var{bits} number of bits (Must be
19179 +two digits). I.e: A signed 12-bit constant is written as @samp{Ks12}
19180 +
19181 +@item Is@var{bits}
19182 +The negated range of a signed constant representable with @var{bits}
19183 +number of bits. The same as @samp{Ks@var{bits}} with a negated range.
19184 +This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}}
19185 +
19186 +@item G
19187 +A single/double precision floating-point immediate or 64-bit integer
19188 +immediate where the least and most significant words both can be
19189 +loaded with a move instruction. That is the the integer form of the
19190 +values in the least and most significant words both are in the range
19191 +@math{-2^{20}} to @math{2^{20}-1}.
19192 +
19193 +@item RKs@var{bits}
19194 +A memory reference where the address consists of a base register
19195 +plus a signed immediate displacement with range given by @samp{Ks@var{bits}}
19196 +which has the same format as for the signed immediate integer constraint
19197 +given above.
19198 +
19199 +@item RKu@var{bits}
19200 +A memory reference where the address consists of a base register
19201 +plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}}
19202 +which has the same format as for the unsigned immediate integer constraint
19203 +given above.
19204 +
19205 +@item S
19206 +A memory reference with an immediate or register offset
19207 +
19208 +@item T
19209 +A memory reference to a constant pool entry
19210 +
19211 +@item W
19212 +A valid operand for use in the @samp{lda.w} instruction macro when
19213 +relaxing is enabled
19214 +
19215 +@item Z
19216 +A memory reference valid for coprocessor memory instructions
19217 +
19218 +@end table
19219 +
19220 +
19221 @item AVR family---@file{avr.h}
19222 @table @code
19223 @item l
19224 @@ -2132,102 +2185,6 @@ range of 1 to 2047.
19225
19226 @end table
19227
19228 -@item Blackfin family---@file{bfin.h}
19229 -@table @code
19230 -@item a
19231 -P register
19232 -
19233 -@item d
19234 -D register
19235 -
19236 -@item z
19237 -A call clobbered P register.
19238 -
19239 -@item D
19240 -Even-numbered D register
19241 -
19242 -@item W
19243 -Odd-numbered D register
19244 -
19245 -@item e
19246 -Accumulator register.
19247 -
19248 -@item A
19249 -Even-numbered accumulator register.
19250 -
19251 -@item B
19252 -Odd-numbered accumulator register.
19253 -
19254 -@item b
19255 -I register
19256 -
19257 -@item B
19258 -B register
19259 -
19260 -@item f
19261 -M register
19262 -
19263 -@item c
19264 -Registers used for circular buffering, i.e. I, B, or L registers.
19265 -
19266 -@item C
19267 -The CC register.
19268 -
19269 -@item x
19270 -Any D, P, B, M, I or L register.
19271 -
19272 -@item y
19273 -Additional registers typically used only in prologues and epilogues: RETS,
19274 -RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
19275 -
19276 -@item w
19277 -Any register except accumulators or CC.
19278 -
19279 -@item Ksh
19280 -Signed 16 bit integer (in the range -32768 to 32767)
19281 -
19282 -@item Kuh
19283 -Unsigned 16 bit integer (in the range 0 to 65535)
19284 -
19285 -@item Ks7
19286 -Signed 7 bit integer (in the range -64 to 63)
19287 -
19288 -@item Ku7
19289 -Unsigned 7 bit integer (in the range 0 to 127)
19290 -
19291 -@item Ku5
19292 -Unsigned 5 bit integer (in the range 0 to 31)
19293 -
19294 -@item Ks4
19295 -Signed 4 bit integer (in the range -8 to 7)
19296 -
19297 -@item Ks3
19298 -Signed 3 bit integer (in the range -3 to 4)
19299 -
19300 -@item Ku3
19301 -Unsigned 3 bit integer (in the range 0 to 7)
19302 -
19303 -@item P@var{n}
19304 -Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
19305 -
19306 -@item M1
19307 -Constant 255.
19308 -
19309 -@item M2
19310 -Constant 65535.
19311 -
19312 -@item J
19313 -An integer constant with exactly a single bit set.
19314 -
19315 -@item L
19316 -An integer constant with all bits set except exactly one.
19317 -
19318 -@item H
19319 -
19320 -@item Q
19321 -Any SYMBOL_REF.
19322 -@end table
19323 -
19324 @item M32C---@file{m32c.c}
19325
19326 @item Rsp
19327 --- a/gcc/expr.c
19328 +++ b/gcc/expr.c
19329 @@ -3401,18 +3401,19 @@ emit_single_push_insn (enum machine_mode
19330 }
19331 else
19332 {
19333 + emit_move_insn (stack_pointer_rtx,
19334 + expand_binop (Pmode,
19335 #ifdef STACK_GROWS_DOWNWARD
19336 - /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
19337 - dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
19338 - GEN_INT (-(HOST_WIDE_INT) rounded_size));
19339 + sub_optab,
19340 #else
19341 - /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
19342 - dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
19343 - GEN_INT (rounded_size));
19344 + add_optab,
19345 #endif
19346 - dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
19347 + stack_pointer_rtx,
19348 + GEN_INT (rounded_size),
19349 + NULL_RTX, 0, OPTAB_LIB_WIDEN));
19350 + dest_addr = stack_pointer_rtx;
19351 }
19352 -
19353 +
19354 dest = gen_rtx_MEM (mode, dest_addr);
19355
19356 if (type != 0)
19357 --- a/gcc/genoutput.c
19358 +++ b/gcc/genoutput.c
19359 @@ -383,7 +383,7 @@ output_insn_data (void)
19360 }
19361
19362 if (d->name && d->name[0] != '*')
19363 - printf (" (insn_gen_fn) gen_%s,\n", d->name);
19364 + printf (" gen_%s,\n", d->name);
19365 else
19366 printf (" 0,\n");
19367
19368 --- a/gcc/longlong.h
19369 +++ b/gcc/longlong.h
19370 @@ -227,6 +227,39 @@ UDItype __umulsidi3 (USItype, USItype);
19371 #define UDIV_TIME 100
19372 #endif /* __arm__ */
19373
19374 +#if defined (__avr32__) && W_TYPE_SIZE == 32
19375 +#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
19376 + __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \
19377 + : "=r" ((USItype) (sh)), \
19378 + "=&r" ((USItype) (sl)) \
19379 + : "r" ((USItype) (ah)), \
19380 + "r" ((USItype) (bh)), \
19381 + "r" ((USItype) (al)), \
19382 + "r" ((USItype) (bl)) __CLOBBER_CC)
19383 +#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
19384 + __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
19385 + : "=r" ((USItype) (sh)), \
19386 + "=&r" ((USItype) (sl)) \
19387 + : "r" ((USItype) (ah)), \
19388 + "r" ((USItype) (bh)), \
19389 + "r" ((USItype) (al)), \
19390 + "r" ((USItype) (bl)) __CLOBBER_CC)
19391 +
19392 +#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b))
19393 +
19394 +#define umul_ppmm(w1, w0, u, v) \
19395 +{ \
19396 + DWunion __w; \
19397 + __w.ll = __umulsidi3 (u, v); \
19398 + w1 = __w.s.high; \
19399 + w0 = __w.s.low; \
19400 +}
19401 +
19402 +#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X))
19403 +#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X))
19404 +#define COUNT_LEADING_ZEROS_0 32
19405 +#endif
19406 +
19407 #if defined (__hppa) && W_TYPE_SIZE == 32
19408 #define add_ssaaaa(sh, sl, ah, al, bh, bl) \
19409 __asm__ ("add %4,%5,%1\n\taddc %2,%3,%0" \
19410 --- a/libstdc++-v3/acinclude.m4
19411 +++ b/libstdc++-v3/acinclude.m4
19412 @@ -125,6 +125,15 @@ AC_DEFUN([GLIBCXX_CONFIGURE], [
19413 ## other macros from doing the same. This should be automated.) -pme
19414 need_libmath=no
19415
19416 + # Check for uClibc since Linux platforms use different configuration
19417 + # directories depending on the C library in use.
19418 + AC_EGREP_CPP([_using_uclibc], [
19419 + #include <stdio.h>
19420 + #if __UCLIBC__
19421 + _using_uclibc
19422 + #endif
19423 + ], uclibc=yes, uclibc=no)
19424 +
19425 # Find platform-specific directories containing configuration info.
19426 # Also possibly modify flags used elsewhere, as needed by the platform.
19427 GLIBCXX_CHECK_HOST
19428 @@ -1043,8 +1052,8 @@ AC_DEFUN([GLIBCXX_ENABLE_CLOCALE], [
19429 #endif
19430 int main()
19431 {
19432 - const char __one[] = "Äuglein Augmen";
19433 - const char __two[] = "Äuglein";
19434 + const char __one[] = "�uglein Augmen";
19435 + const char __two[] = "�uglein";
19436 int i;
19437 int j;
19438 __locale_t loc;
19439 @@ -1953,6 +1962,14 @@ AC_DEFUN([AC_LC_MESSAGES], [
19440 ])
19441 ])
19442
19443 +# Macros that should have automatically be included, but...
19444 +m4_include([../config/enable.m4])
19445 +m4_include([../config/lead-dot.m4])
19446 +m4_include([../config/no-executables.m4])
19447 +m4_include([../libtool.m4])
19448 +m4_include([crossconfig.m4])
19449 +m4_include([linkage.m4])
19450 +
19451 # Macros from the top-level gcc directory.
19452 m4_include([../config/tls.m4])
19453
19454 --- a/libstdc++-v3/config/os/gnu-linux/ctype_base.h
19455 +++ b/libstdc++-v3/config/os/gnu-linux/ctype_base.h
19456 @@ -43,8 +43,8 @@
19457 struct ctype_base
19458 {
19459 // Non-standard typedefs.
19460 - typedef const int* __to_type;
19461 -
19462 + typedef const int* __to_type;
19463 +
19464 // NB: Offsets into ctype<char>::_M_table force a particular size
19465 // on the mask type. Because of this, we don't use an enum.
19466 typedef unsigned short mask;
19467 --- a/libstdc++-v3/configure.host
19468 +++ b/libstdc++-v3/configure.host
19469 @@ -214,8 +214,15 @@ case "${host_os}" in
19470 freebsd*)
19471 os_include_dir="os/bsd/freebsd"
19472 ;;
19473 + linux-uclibc*)
19474 + os_include_dir="os/uclibc-linux"
19475 + ;;
19476 gnu* | linux* | kfreebsd*-gnu | knetbsd*-gnu)
19477 - os_include_dir="os/gnu-linux"
19478 + if [ "$uclibc" = "yes" ]; then
19479 + os_include_dir="os/uclibc"
19480 + else
19481 + os_include_dir="os/gnu-linux"
19482 + fi
19483 ;;
19484 hpux*)
19485 os_include_dir="os/hpux"
19486 --- a/libstdc++-v3/include/Makefile.in
19487 +++ b/libstdc++-v3/include/Makefile.in
19488 @@ -36,6 +36,7 @@ POST_UNINSTALL = :
19489 build_triplet = @build@
19490 host_triplet = @host@
19491 target_triplet = @target@
19492 +LIBOBJDIR =
19493 DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
19494 $(top_srcdir)/fragment.am
19495 subdir = include
19496 --- a/libstdc++-v3/libmath/Makefile.in
19497 +++ b/libstdc++-v3/libmath/Makefile.in
19498 @@ -37,6 +37,7 @@ POST_UNINSTALL = :
19499 build_triplet = @build@
19500 host_triplet = @host@
19501 target_triplet = @target@
19502 +LIBOBJDIR =
19503 subdir = libmath
19504 DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in
19505 ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
19506 --- a/libstdc++-v3/libsupc++/Makefile.in
19507 +++ b/libstdc++-v3/libsupc++/Makefile.in
19508 @@ -38,6 +38,7 @@ POST_UNINSTALL = :
19509 build_triplet = @build@
19510 host_triplet = @host@
19511 target_triplet = @target@
19512 +LIBOBJDIR =
19513 DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \
19514 $(srcdir)/Makefile.in $(top_srcdir)/fragment.am
19515 subdir = libsupc++
19516 --- a/libstdc++-v3/Makefile.in
19517 +++ b/libstdc++-v3/Makefile.in
19518 @@ -36,6 +36,7 @@ POST_UNINSTALL = :
19519 build_triplet = @build@
19520 host_triplet = @host@
19521 target_triplet = @target@
19522 +LIBOBJDIR =
19523 DIST_COMMON = README $(am__configure_deps) $(srcdir)/../config.guess \
19524 $(srcdir)/../config.sub $(srcdir)/../install-sh \
19525 $(srcdir)/../ltmain.sh $(srcdir)/../missing \
19526 --- a/libstdc++-v3/po/Makefile.in
19527 +++ b/libstdc++-v3/po/Makefile.in
19528 @@ -36,6 +36,7 @@ POST_UNINSTALL = :
19529 build_triplet = @build@
19530 host_triplet = @host@
19531 target_triplet = @target@
19532 +LIBOBJDIR =
19533 DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
19534 $(top_srcdir)/fragment.am
19535 subdir = po
19536 --- a/libstdc++-v3/src/Makefile.in
19537 +++ b/libstdc++-v3/src/Makefile.in
19538 @@ -36,6 +36,7 @@ POST_UNINSTALL = :
19539 build_triplet = @build@
19540 host_triplet = @host@
19541 target_triplet = @target@
19542 +LIBOBJDIR =
19543 DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
19544 $(top_srcdir)/fragment.am
19545 subdir = src