--- /dev/null
+Index: gcc-4.2.3/libstdc++-v3/acinclude.m4
+===================================================================
+--- gcc-4.2.3.orig/libstdc++-v3/acinclude.m4 2007-06-29 01:02:05.000000000 +0200
++++ gcc-4.2.3/libstdc++-v3/acinclude.m4 2008-05-21 13:45:43.925289703 +0200
+@@ -1334,7 +1334,7 @@
+ AC_DEFUN([GLIBCXX_ENABLE_CLOCALE], [
+ GLIBCXX_ENABLE(clocale,auto,[@<:@=MODEL@:>@],
+ [use MODEL for target locale package],
+- [permit generic|gnu|ieee_1003.1-2001|yes|no|auto])
++ [permit generic|gnu|ieee_1003.1-2001|uclibc|yes|no|auto])
+
+ # Deal with gettext issues. Default to not using it (=no) until we detect
+ # support for it later. Let the user turn it off via --e/d, but let that
+@@ -1355,6 +1355,9 @@
+ # Default to "generic".
+ if test $enable_clocale_flag = auto; then
+ case ${target_os} in
++ *-uclibc*)
++ enable_clocale_flag=uclibc
++ ;;
+ linux* | gnu* | kfreebsd*-gnu | knetbsd*-gnu)
+ enable_clocale_flag=gnu
+ ;;
+@@ -1526,6 +1529,40 @@
+ CTIME_CC=config/locale/generic/time_members.cc
+ CLOCALE_INTERNAL_H=config/locale/generic/c++locale_internal.h
+ ;;
++ uclibc)
++ AC_MSG_RESULT(uclibc)
++
++ # Declare intention to use gettext, and add support for specific
++ # languages.
++ # For some reason, ALL_LINGUAS has to be before AM-GNU-GETTEXT
++ ALL_LINGUAS="de fr"
++
++ # Don't call AM-GNU-GETTEXT here. Instead, assume glibc.
++ AC_CHECK_PROG(check_msgfmt, msgfmt, yes, no)
++ if test x"$check_msgfmt" = x"yes" && test x"$enable_nls" = x"yes"; then
++ USE_NLS=yes
++ fi
++ # Export the build objects.
++ for ling in $ALL_LINGUAS; do \
++ glibcxx_MOFILES="$glibcxx_MOFILES $ling.mo"; \
++ glibcxx_POFILES="$glibcxx_POFILES $ling.po"; \
++ done
++ AC_SUBST(glibcxx_MOFILES)
++ AC_SUBST(glibcxx_POFILES)
++
++ CLOCALE_H=config/locale/uclibc/c_locale.h
++ CLOCALE_CC=config/locale/uclibc/c_locale.cc
++ CCODECVT_CC=config/locale/uclibc/codecvt_members.cc
++ CCOLLATE_CC=config/locale/uclibc/collate_members.cc
++ CCTYPE_CC=config/locale/uclibc/ctype_members.cc
++ CMESSAGES_H=config/locale/uclibc/messages_members.h
++ CMESSAGES_CC=config/locale/uclibc/messages_members.cc
++ CMONEY_CC=config/locale/uclibc/monetary_members.cc
++ CNUMERIC_CC=config/locale/uclibc/numeric_members.cc
++ CTIME_H=config/locale/uclibc/time_members.h
++ CTIME_CC=config/locale/uclibc/time_members.cc
++ CLOCALE_INTERNAL_H=config/locale/uclibc/c++locale_internal.h
++ ;;
+ esac
+
+ # This is where the testsuite looks for locale catalogs, using the
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c++locale_internal.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c++locale_internal.h 2008-05-21 13:45:43.925289703 +0200
+@@ -0,0 +1,63 @@
++// Prototypes for GLIBC thread locale __-prefixed functions -*- C++ -*-
++
++// Copyright (C) 2002, 2004, 2005 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++// Written by Jakub Jelinek <jakub@redhat.com>
++
++#include <bits/c++config.h>
++#include <clocale>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning clean this up
++#endif
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++
++extern "C" __typeof(nl_langinfo_l) __nl_langinfo_l;
++extern "C" __typeof(strcoll_l) __strcoll_l;
++extern "C" __typeof(strftime_l) __strftime_l;
++extern "C" __typeof(strtod_l) __strtod_l;
++extern "C" __typeof(strtof_l) __strtof_l;
++extern "C" __typeof(strtold_l) __strtold_l;
++extern "C" __typeof(strxfrm_l) __strxfrm_l;
++extern "C" __typeof(newlocale) __newlocale;
++extern "C" __typeof(freelocale) __freelocale;
++extern "C" __typeof(duplocale) __duplocale;
++extern "C" __typeof(uselocale) __uselocale;
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++extern "C" __typeof(iswctype_l) __iswctype_l;
++extern "C" __typeof(towlower_l) __towlower_l;
++extern "C" __typeof(towupper_l) __towupper_l;
++extern "C" __typeof(wcscoll_l) __wcscoll_l;
++extern "C" __typeof(wcsftime_l) __wcsftime_l;
++extern "C" __typeof(wcsxfrm_l) __wcsxfrm_l;
++extern "C" __typeof(wctype_l) __wctype_l;
++#endif
++
++#endif // GLIBC 2.3 and later
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c_locale.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c_locale.cc 2008-05-21 13:45:43.925289703 +0200
+@@ -0,0 +1,160 @@
++// Wrapper for underlying C-language localization -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.8 Standard locale categories.
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#include <cerrno> // For errno
++#include <locale>
++#include <stdexcept>
++#include <langinfo.h>
++#include <bits/c++locale_internal.h>
++
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __strtol_l(S, E, B, L) strtol((S), (E), (B))
++#define __strtoul_l(S, E, B, L) strtoul((S), (E), (B))
++#define __strtoll_l(S, E, B, L) strtoll((S), (E), (B))
++#define __strtoull_l(S, E, B, L) strtoull((S), (E), (B))
++#define __strtof_l(S, E, L) strtof((S), (E))
++#define __strtod_l(S, E, L) strtod((S), (E))
++#define __strtold_l(S, E, L) strtold((S), (E))
++#warning should dummy __newlocale check for C|POSIX ?
++#define __newlocale(a, b, c) NULL
++#define __freelocale(a) ((void)0)
++#define __duplocale(a) __c_locale()
++#endif
++
++namespace std
++{
++ template<>
++ void
++ __convert_to_v(const char* __s, float& __v, ios_base::iostate& __err,
++ const __c_locale& __cloc)
++ {
++ if (!(__err & ios_base::failbit))
++ {
++ char* __sanity;
++ errno = 0;
++ float __f = __strtof_l(__s, &__sanity, __cloc);
++ if (__sanity != __s && errno != ERANGE)
++ __v = __f;
++ else
++ __err |= ios_base::failbit;
++ }
++ }
++
++ template<>
++ void
++ __convert_to_v(const char* __s, double& __v, ios_base::iostate& __err,
++ const __c_locale& __cloc)
++ {
++ if (!(__err & ios_base::failbit))
++ {
++ char* __sanity;
++ errno = 0;
++ double __d = __strtod_l(__s, &__sanity, __cloc);
++ if (__sanity != __s && errno != ERANGE)
++ __v = __d;
++ else
++ __err |= ios_base::failbit;
++ }
++ }
++
++ template<>
++ void
++ __convert_to_v(const char* __s, long double& __v, ios_base::iostate& __err,
++ const __c_locale& __cloc)
++ {
++ if (!(__err & ios_base::failbit))
++ {
++ char* __sanity;
++ errno = 0;
++ long double __ld = __strtold_l(__s, &__sanity, __cloc);
++ if (__sanity != __s && errno != ERANGE)
++ __v = __ld;
++ else
++ __err |= ios_base::failbit;
++ }
++ }
++
++ void
++ locale::facet::_S_create_c_locale(__c_locale& __cloc, const char* __s,
++ __c_locale __old)
++ {
++ __cloc = __newlocale(1 << LC_ALL, __s, __old);
++#ifdef __UCLIBC_HAS_XLOCALE__
++ if (!__cloc)
++ {
++ // This named locale is not supported by the underlying OS.
++ __throw_runtime_error(__N("locale::facet::_S_create_c_locale "
++ "name not valid"));
++ }
++#endif
++ }
++
++ void
++ locale::facet::_S_destroy_c_locale(__c_locale& __cloc)
++ {
++ if (_S_get_c_locale() != __cloc)
++ __freelocale(__cloc);
++ }
++
++ __c_locale
++ locale::facet::_S_clone_c_locale(__c_locale& __cloc)
++ { return __duplocale(__cloc); }
++} // namespace std
++
++namespace __gnu_cxx
++{
++ const char* const category_names[6 + _GLIBCXX_NUM_CATEGORIES] =
++ {
++ "LC_CTYPE",
++ "LC_NUMERIC",
++ "LC_TIME",
++ "LC_COLLATE",
++ "LC_MONETARY",
++ "LC_MESSAGES",
++#if _GLIBCXX_NUM_CATEGORIES != 0
++ "LC_PAPER",
++ "LC_NAME",
++ "LC_ADDRESS",
++ "LC_TELEPHONE",
++ "LC_MEASUREMENT",
++ "LC_IDENTIFICATION"
++#endif
++ };
++}
++
++namespace std
++{
++ const char* const* const locale::_S_categories = __gnu_cxx::category_names;
++} // namespace std
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c_locale.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/c_locale.h 2008-05-21 13:45:43.925289703 +0200
+@@ -0,0 +1,117 @@
++// Wrapper for underlying C-language localization -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.8 Standard locale categories.
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#ifndef _C_LOCALE_H
++#define _C_LOCALE_H 1
++
++#pragma GCC system_header
++
++#include <cstring> // get std::strlen
++#include <cstdio> // get std::snprintf or std::sprintf
++#include <clocale>
++#include <langinfo.h> // For codecvt
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix this
++#endif
++#ifdef __UCLIBC_HAS_LOCALE__
++#include <iconv.h> // For codecvt using iconv, iconv_t
++#endif
++#ifdef __UCLIBC_HAS_GETTEXT_AWARENESS__
++#include <libintl.h> // For messages
++#endif
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning what is _GLIBCXX_C_LOCALE_GNU for
++#endif
++#define _GLIBCXX_C_LOCALE_GNU 1
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix categories
++#endif
++// #define _GLIBCXX_NUM_CATEGORIES 6
++#define _GLIBCXX_NUM_CATEGORIES 0
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++namespace __gnu_cxx
++{
++ extern "C" __typeof(uselocale) __uselocale;
++}
++#endif
++
++namespace std
++{
++#ifdef __UCLIBC_HAS_XLOCALE__
++ typedef __locale_t __c_locale;
++#else
++ typedef int* __c_locale;
++#endif
++
++ // Convert numeric value of type _Tv to string and return length of
++ // string. If snprintf is available use it, otherwise fall back to
++ // the unsafe sprintf which, in general, can be dangerous and should
++ // be avoided.
++ template<typename _Tv>
++ int
++ __convert_from_v(char* __out,
++ const int __size __attribute__ ((__unused__)),
++ const char* __fmt,
++#ifdef __UCLIBC_HAS_XCLOCALE__
++ _Tv __v, const __c_locale& __cloc, int __prec)
++ {
++ __c_locale __old = __gnu_cxx::__uselocale(__cloc);
++#else
++ _Tv __v, const __c_locale&, int __prec)
++ {
++# ifdef __UCLIBC_HAS_LOCALE__
++ char* __old = std::setlocale(LC_ALL, NULL);
++ char* __sav = new char[std::strlen(__old) + 1];
++ std::strcpy(__sav, __old);
++ std::setlocale(LC_ALL, "C");
++# endif
++#endif
++
++ const int __ret = std::snprintf(__out, __size, __fmt, __prec, __v);
++
++#ifdef __UCLIBC_HAS_XCLOCALE__
++ __gnu_cxx::__uselocale(__old);
++#elif defined __UCLIBC_HAS_LOCALE__
++ std::setlocale(LC_ALL, __sav);
++ delete [] __sav;
++#endif
++ return __ret;
++ }
++}
++
++#endif
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/codecvt_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/codecvt_members.cc 2008-05-21 13:45:43.929287698 +0200
+@@ -0,0 +1,306 @@
++// std::codecvt implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2002, 2003 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.1.5 - Template class codecvt
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#include <locale>
++#include <bits/c++locale_internal.h>
++
++namespace std
++{
++ // Specializations.
++#ifdef _GLIBCXX_USE_WCHAR_T
++ codecvt_base::result
++ codecvt<wchar_t, char, mbstate_t>::
++ do_out(state_type& __state, const intern_type* __from,
++ const intern_type* __from_end, const intern_type*& __from_next,
++ extern_type* __to, extern_type* __to_end,
++ extern_type*& __to_next) const
++ {
++ result __ret = ok;
++ state_type __tmp_state(__state);
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_codecvt);
++#endif
++
++ // wcsnrtombs is *very* fast but stops if encounters NUL characters:
++ // in case we fall back to wcrtomb and then continue, in a loop.
++ // NB: wcsnrtombs is a GNU extension
++ for (__from_next = __from, __to_next = __to;
++ __from_next < __from_end && __to_next < __to_end
++ && __ret == ok;)
++ {
++ const intern_type* __from_chunk_end = wmemchr(__from_next, L'\0',
++ __from_end - __from_next);
++ if (!__from_chunk_end)
++ __from_chunk_end = __from_end;
++
++ __from = __from_next;
++ const size_t __conv = wcsnrtombs(__to_next, &__from_next,
++ __from_chunk_end - __from_next,
++ __to_end - __to_next, &__state);
++ if (__conv == static_cast<size_t>(-1))
++ {
++ // In case of error, in order to stop at the exact place we
++ // have to start again from the beginning with a series of
++ // wcrtomb.
++ for (; __from < __from_next; ++__from)
++ __to_next += wcrtomb(__to_next, *__from, &__tmp_state);
++ __state = __tmp_state;
++ __ret = error;
++ }
++ else if (__from_next && __from_next < __from_chunk_end)
++ {
++ __to_next += __conv;
++ __ret = partial;
++ }
++ else
++ {
++ __from_next = __from_chunk_end;
++ __to_next += __conv;
++ }
++
++ if (__from_next < __from_end && __ret == ok)
++ {
++ extern_type __buf[MB_LEN_MAX];
++ __tmp_state = __state;
++ const size_t __conv = wcrtomb(__buf, *__from_next, &__tmp_state);
++ if (__conv > static_cast<size_t>(__to_end - __to_next))
++ __ret = partial;
++ else
++ {
++ memcpy(__to_next, __buf, __conv);
++ __state = __tmp_state;
++ __to_next += __conv;
++ ++__from_next;
++ }
++ }
++ }
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++
++ return __ret;
++ }
++
++ codecvt_base::result
++ codecvt<wchar_t, char, mbstate_t>::
++ do_in(state_type& __state, const extern_type* __from,
++ const extern_type* __from_end, const extern_type*& __from_next,
++ intern_type* __to, intern_type* __to_end,
++ intern_type*& __to_next) const
++ {
++ result __ret = ok;
++ state_type __tmp_state(__state);
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_codecvt);
++#endif
++
++ // mbsnrtowcs is *very* fast but stops if encounters NUL characters:
++ // in case we store a L'\0' and then continue, in a loop.
++ // NB: mbsnrtowcs is a GNU extension
++ for (__from_next = __from, __to_next = __to;
++ __from_next < __from_end && __to_next < __to_end
++ && __ret == ok;)
++ {
++ const extern_type* __from_chunk_end;
++ __from_chunk_end = static_cast<const extern_type*>(memchr(__from_next, '\0',
++ __from_end
++ - __from_next));
++ if (!__from_chunk_end)
++ __from_chunk_end = __from_end;
++
++ __from = __from_next;
++ size_t __conv = mbsnrtowcs(__to_next, &__from_next,
++ __from_chunk_end - __from_next,
++ __to_end - __to_next, &__state);
++ if (__conv == static_cast<size_t>(-1))
++ {
++ // In case of error, in order to stop at the exact place we
++ // have to start again from the beginning with a series of
++ // mbrtowc.
++ for (;; ++__to_next, __from += __conv)
++ {
++ __conv = mbrtowc(__to_next, __from, __from_end - __from,
++ &__tmp_state);
++ if (__conv == static_cast<size_t>(-1)
++ || __conv == static_cast<size_t>(-2))
++ break;
++ }
++ __from_next = __from;
++ __state = __tmp_state;
++ __ret = error;
++ }
++ else if (__from_next && __from_next < __from_chunk_end)
++ {
++ // It is unclear what to return in this case (see DR 382).
++ __to_next += __conv;
++ __ret = partial;
++ }
++ else
++ {
++ __from_next = __from_chunk_end;
++ __to_next += __conv;
++ }
++
++ if (__from_next < __from_end && __ret == ok)
++ {
++ if (__to_next < __to_end)
++ {
++ // XXX Probably wrong for stateful encodings
++ __tmp_state = __state;
++ ++__from_next;
++ *__to_next++ = L'\0';
++ }
++ else
++ __ret = partial;
++ }
++ }
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++
++ return __ret;
++ }
++
++ int
++ codecvt<wchar_t, char, mbstate_t>::
++ do_encoding() const throw()
++ {
++ // XXX This implementation assumes that the encoding is
++ // stateless and is either single-byte or variable-width.
++ int __ret = 0;
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_codecvt);
++#endif
++ if (MB_CUR_MAX == 1)
++ __ret = 1;
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++ return __ret;
++ }
++
++ int
++ codecvt<wchar_t, char, mbstate_t>::
++ do_max_length() const throw()
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_codecvt);
++#endif
++ // XXX Probably wrong for stateful encodings.
++ int __ret = MB_CUR_MAX;
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++ return __ret;
++ }
++
++ int
++ codecvt<wchar_t, char, mbstate_t>::
++ do_length(state_type& __state, const extern_type* __from,
++ const extern_type* __end, size_t __max) const
++ {
++ int __ret = 0;
++ state_type __tmp_state(__state);
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_codecvt);
++#endif
++
++ // mbsnrtowcs is *very* fast but stops if encounters NUL characters:
++ // in case we advance past it and then continue, in a loop.
++ // NB: mbsnrtowcs is a GNU extension
++
++ // A dummy internal buffer is needed in order for mbsnrtocws to consider
++ // its fourth parameter (it wouldn't with NULL as first parameter).
++ wchar_t* __to = static_cast<wchar_t*>(__builtin_alloca(sizeof(wchar_t)
++ * __max));
++ while (__from < __end && __max)
++ {
++ const extern_type* __from_chunk_end;
++ __from_chunk_end = static_cast<const extern_type*>(memchr(__from, '\0',
++ __end
++ - __from));
++ if (!__from_chunk_end)
++ __from_chunk_end = __end;
++
++ const extern_type* __tmp_from = __from;
++ size_t __conv = mbsnrtowcs(__to, &__from,
++ __from_chunk_end - __from,
++ __max, &__state);
++ if (__conv == static_cast<size_t>(-1))
++ {
++ // In case of error, in order to stop at the exact place we
++ // have to start again from the beginning with a series of
++ // mbrtowc.
++ for (__from = __tmp_from;; __from += __conv)
++ {
++ __conv = mbrtowc(NULL, __from, __end - __from,
++ &__tmp_state);
++ if (__conv == static_cast<size_t>(-1)
++ || __conv == static_cast<size_t>(-2))
++ break;
++ }
++ __state = __tmp_state;
++ __ret += __from - __tmp_from;
++ break;
++ }
++ if (!__from)
++ __from = __from_chunk_end;
++
++ __ret += __from - __tmp_from;
++ __max -= __conv;
++
++ if (__from < __end && __max)
++ {
++ // XXX Probably wrong for stateful encodings
++ __tmp_state = __state;
++ ++__from;
++ ++__ret;
++ --__max;
++ }
++ }
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++
++ return __ret;
++ }
++#endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/collate_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/collate_members.cc 2008-05-21 13:45:43.929287698 +0200
+@@ -0,0 +1,80 @@
++// std::collate implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.4.1.2 collate virtual functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#include <locale>
++#include <bits/c++locale_internal.h>
++
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __strcoll_l(S1, S2, L) strcoll((S1), (S2))
++#define __strxfrm_l(S1, S2, N, L) strxfrm((S1), (S2), (N))
++#define __wcscoll_l(S1, S2, L) wcscoll((S1), (S2))
++#define __wcsxfrm_l(S1, S2, N, L) wcsxfrm((S1), (S2), (N))
++#endif
++
++namespace std
++{
++ // These are basically extensions to char_traits, and perhaps should
++ // be put there instead of here.
++ template<>
++ int
++ collate<char>::_M_compare(const char* __one, const char* __two) const
++ {
++ int __cmp = __strcoll_l(__one, __two, _M_c_locale_collate);
++ return (__cmp >> (8 * sizeof (int) - 2)) | (__cmp != 0);
++ }
++
++ template<>
++ size_t
++ collate<char>::_M_transform(char* __to, const char* __from,
++ size_t __n) const
++ { return __strxfrm_l(__to, __from, __n, _M_c_locale_collate); }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ template<>
++ int
++ collate<wchar_t>::_M_compare(const wchar_t* __one,
++ const wchar_t* __two) const
++ {
++ int __cmp = __wcscoll_l(__one, __two, _M_c_locale_collate);
++ return (__cmp >> (8 * sizeof (int) - 2)) | (__cmp != 0);
++ }
++
++ template<>
++ size_t
++ collate<wchar_t>::_M_transform(wchar_t* __to, const wchar_t* __from,
++ size_t __n) const
++ { return __wcsxfrm_l(__to, __from, __n, _M_c_locale_collate); }
++#endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/ctype_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/ctype_members.cc 2008-05-21 13:45:43.929287698 +0200
+@@ -0,0 +1,300 @@
++// std::ctype implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.1.1.2 ctype virtual functions.
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#define _LIBC
++#include <locale>
++#undef _LIBC
++#include <bits/c++locale_internal.h>
++
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __wctype_l(S, L) wctype((S))
++#define __towupper_l(C, L) towupper((C))
++#define __towlower_l(C, L) towlower((C))
++#define __iswctype_l(C, M, L) iswctype((C), (M))
++#endif
++
++namespace std
++{
++ // NB: The other ctype<char> specializations are in src/locale.cc and
++ // various /config/os/* files.
++ template<>
++ ctype_byname<char>::ctype_byname(const char* __s, size_t __refs)
++ : ctype<char>(0, false, __refs)
++ {
++ if (std::strcmp(__s, "C") != 0 && std::strcmp(__s, "POSIX") != 0)
++ {
++ this->_S_destroy_c_locale(this->_M_c_locale_ctype);
++ this->_S_create_c_locale(this->_M_c_locale_ctype, __s);
++#ifdef __UCLIBC_HAS_XLOCALE__
++ this->_M_toupper = this->_M_c_locale_ctype->__ctype_toupper;
++ this->_M_tolower = this->_M_c_locale_ctype->__ctype_tolower;
++ this->_M_table = this->_M_c_locale_ctype->__ctype_b;
++#endif
++ }
++ }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ ctype<wchar_t>::__wmask_type
++ ctype<wchar_t>::_M_convert_to_wmask(const mask __m) const
++ {
++ __wmask_type __ret;
++ switch (__m)
++ {
++ case space:
++ __ret = __wctype_l("space", _M_c_locale_ctype);
++ break;
++ case print:
++ __ret = __wctype_l("print", _M_c_locale_ctype);
++ break;
++ case cntrl:
++ __ret = __wctype_l("cntrl", _M_c_locale_ctype);
++ break;
++ case upper:
++ __ret = __wctype_l("upper", _M_c_locale_ctype);
++ break;
++ case lower:
++ __ret = __wctype_l("lower", _M_c_locale_ctype);
++ break;
++ case alpha:
++ __ret = __wctype_l("alpha", _M_c_locale_ctype);
++ break;
++ case digit:
++ __ret = __wctype_l("digit", _M_c_locale_ctype);
++ break;
++ case punct:
++ __ret = __wctype_l("punct", _M_c_locale_ctype);
++ break;
++ case xdigit:
++ __ret = __wctype_l("xdigit", _M_c_locale_ctype);
++ break;
++ case alnum:
++ __ret = __wctype_l("alnum", _M_c_locale_ctype);
++ break;
++ case graph:
++ __ret = __wctype_l("graph", _M_c_locale_ctype);
++ break;
++ default:
++ __ret = __wmask_type();
++ }
++ return __ret;
++ }
++
++ wchar_t
++ ctype<wchar_t>::do_toupper(wchar_t __c) const
++ { return __towupper_l(__c, _M_c_locale_ctype); }
++
++ const wchar_t*
++ ctype<wchar_t>::do_toupper(wchar_t* __lo, const wchar_t* __hi) const
++ {
++ while (__lo < __hi)
++ {
++ *__lo = __towupper_l(*__lo, _M_c_locale_ctype);
++ ++__lo;
++ }
++ return __hi;
++ }
++
++ wchar_t
++ ctype<wchar_t>::do_tolower(wchar_t __c) const
++ { return __towlower_l(__c, _M_c_locale_ctype); }
++
++ const wchar_t*
++ ctype<wchar_t>::do_tolower(wchar_t* __lo, const wchar_t* __hi) const
++ {
++ while (__lo < __hi)
++ {
++ *__lo = __towlower_l(*__lo, _M_c_locale_ctype);
++ ++__lo;
++ }
++ return __hi;
++ }
++
++ bool
++ ctype<wchar_t>::
++ do_is(mask __m, wchar_t __c) const
++ {
++ // Highest bitmask in ctype_base == 10, but extra in "C"
++ // library for blank.
++ bool __ret = false;
++ const size_t __bitmasksize = 11;
++ for (size_t __bitcur = 0; __bitcur <= __bitmasksize; ++__bitcur)
++ if (__m & _M_bit[__bitcur]
++ && __iswctype_l(__c, _M_wmask[__bitcur], _M_c_locale_ctype))
++ {
++ __ret = true;
++ break;
++ }
++ return __ret;
++ }
++
++ const wchar_t*
++ ctype<wchar_t>::
++ do_is(const wchar_t* __lo, const wchar_t* __hi, mask* __vec) const
++ {
++ for (; __lo < __hi; ++__vec, ++__lo)
++ {
++ // Highest bitmask in ctype_base == 10, but extra in "C"
++ // library for blank.
++ const size_t __bitmasksize = 11;
++ mask __m = 0;
++ for (size_t __bitcur = 0; __bitcur <= __bitmasksize; ++__bitcur)
++ if (__iswctype_l(*__lo, _M_wmask[__bitcur], _M_c_locale_ctype))
++ __m |= _M_bit[__bitcur];
++ *__vec = __m;
++ }
++ return __hi;
++ }
++
++ const wchar_t*
++ ctype<wchar_t>::
++ do_scan_is(mask __m, const wchar_t* __lo, const wchar_t* __hi) const
++ {
++ while (__lo < __hi && !this->do_is(__m, *__lo))
++ ++__lo;
++ return __lo;
++ }
++
++ const wchar_t*
++ ctype<wchar_t>::
++ do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const
++ {
++ while (__lo < __hi && this->do_is(__m, *__lo) != 0)
++ ++__lo;
++ return __lo;
++ }
++
++ wchar_t
++ ctype<wchar_t>::
++ do_widen(char __c) const
++ { return _M_widen[static_cast<unsigned char>(__c)]; }
++
++ const char*
++ ctype<wchar_t>::
++ do_widen(const char* __lo, const char* __hi, wchar_t* __dest) const
++ {
++ while (__lo < __hi)
++ {
++ *__dest = _M_widen[static_cast<unsigned char>(*__lo)];
++ ++__lo;
++ ++__dest;
++ }
++ return __hi;
++ }
++
++ char
++ ctype<wchar_t>::
++ do_narrow(wchar_t __wc, char __dfault) const
++ {
++ if (__wc >= 0 && __wc < 128 && _M_narrow_ok)
++ return _M_narrow[__wc];
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_ctype);
++#endif
++ const int __c = wctob(__wc);
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++ return (__c == EOF ? __dfault : static_cast<char>(__c));
++ }
++
++ const wchar_t*
++ ctype<wchar_t>::
++ do_narrow(const wchar_t* __lo, const wchar_t* __hi, char __dfault,
++ char* __dest) const
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_ctype);
++#endif
++ if (_M_narrow_ok)
++ while (__lo < __hi)
++ {
++ if (*__lo >= 0 && *__lo < 128)
++ *__dest = _M_narrow[*__lo];
++ else
++ {
++ const int __c = wctob(*__lo);
++ *__dest = (__c == EOF ? __dfault : static_cast<char>(__c));
++ }
++ ++__lo;
++ ++__dest;
++ }
++ else
++ while (__lo < __hi)
++ {
++ const int __c = wctob(*__lo);
++ *__dest = (__c == EOF ? __dfault : static_cast<char>(__c));
++ ++__lo;
++ ++__dest;
++ }
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++ return __hi;
++ }
++
++ void
++ ctype<wchar_t>::_M_initialize_ctype()
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_ctype);
++#endif
++ wint_t __i;
++ for (__i = 0; __i < 128; ++__i)
++ {
++ const int __c = wctob(__i);
++ if (__c == EOF)
++ break;
++ else
++ _M_narrow[__i] = static_cast<char>(__c);
++ }
++ if (__i == 128)
++ _M_narrow_ok = true;
++ else
++ _M_narrow_ok = false;
++ for (size_t __j = 0;
++ __j < sizeof(_M_widen) / sizeof(wint_t); ++__j)
++ _M_widen[__j] = btowc(__j);
++
++ for (size_t __k = 0; __k <= 11; ++__k)
++ {
++ _M_bit[__k] = static_cast<mask>(_ISbit(__k));
++ _M_wmask[__k] = _M_convert_to_wmask(_M_bit[__k]);
++ }
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#endif
++ }
++#endif // _GLIBCXX_USE_WCHAR_T
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/messages_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/messages_members.cc 2008-05-21 13:45:43.929287698 +0200
+@@ -0,0 +1,100 @@
++// std::messages implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.7.1.2 messages virtual functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#include <locale>
++#include <bits/c++locale_internal.h>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix gettext stuff
++#endif
++#ifdef __UCLIBC_HAS_GETTEXT_AWARENESS__
++extern "C" char *__dcgettext(const char *domainname,
++ const char *msgid, int category);
++#undef gettext
++#define gettext(msgid) __dcgettext(NULL, msgid, LC_MESSAGES)
++#else
++#undef gettext
++#define gettext(msgid) (msgid)
++#endif
++
++namespace std
++{
++ // Specializations.
++ template<>
++ string
++ messages<char>::do_get(catalog, int, int, const string& __dfault) const
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_messages);
++ const char* __msg = const_cast<const char*>(gettext(__dfault.c_str()));
++ __uselocale(__old);
++ return string(__msg);
++#elif defined __UCLIBC_HAS_LOCALE__
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, _M_name_messages);
++ const char* __msg = gettext(__dfault.c_str());
++ setlocale(LC_ALL, __old);
++ free(__old);
++ return string(__msg);
++#else
++ const char* __msg = gettext(__dfault.c_str());
++ return string(__msg);
++#endif
++ }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ template<>
++ wstring
++ messages<wchar_t>::do_get(catalog, int, int, const wstring& __dfault) const
++ {
++# ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(_M_c_locale_messages);
++ char* __msg = gettext(_M_convert_to_char(__dfault));
++ __uselocale(__old);
++ return _M_convert_from_char(__msg);
++# elif defined __UCLIBC_HAS_LOCALE__
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, _M_name_messages);
++ char* __msg = gettext(_M_convert_to_char(__dfault));
++ setlocale(LC_ALL, __old);
++ free(__old);
++ return _M_convert_from_char(__msg);
++# else
++ char* __msg = gettext(_M_convert_to_char(__dfault));
++ return _M_convert_from_char(__msg);
++# endif
++ }
++#endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/messages_members.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/messages_members.h 2008-05-21 13:45:43.929287698 +0200
+@@ -0,0 +1,118 @@
++// std::messages implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.7.1.2 messages functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix prototypes for *textdomain funcs
++#endif
++#ifdef __UCLIBC_HAS_GETTEXT_AWARENESS__
++extern "C" char *__textdomain(const char *domainname);
++extern "C" char *__bindtextdomain(const char *domainname,
++ const char *dirname);
++#else
++#undef __textdomain
++#undef __bindtextdomain
++#define __textdomain(D) ((void)0)
++#define __bindtextdomain(D,P) ((void)0)
++#endif
++
++ // Non-virtual member functions.
++ template<typename _CharT>
++ messages<_CharT>::messages(size_t __refs)
++ : facet(__refs), _M_c_locale_messages(_S_get_c_locale()),
++ _M_name_messages(_S_get_c_name())
++ { }
++
++ template<typename _CharT>
++ messages<_CharT>::messages(__c_locale __cloc, const char* __s,
++ size_t __refs)
++ : facet(__refs), _M_c_locale_messages(_S_clone_c_locale(__cloc)),
++ _M_name_messages(__s)
++ {
++ char* __tmp = new char[std::strlen(__s) + 1];
++ std::strcpy(__tmp, __s);
++ _M_name_messages = __tmp;
++ }
++
++ template<typename _CharT>
++ typename messages<_CharT>::catalog
++ messages<_CharT>::open(const basic_string<char>& __s, const locale& __loc,
++ const char* __dir) const
++ {
++ __bindtextdomain(__s.c_str(), __dir);
++ return this->do_open(__s, __loc);
++ }
++
++ // Virtual member functions.
++ template<typename _CharT>
++ messages<_CharT>::~messages()
++ {
++ if (_M_name_messages != _S_get_c_name())
++ delete [] _M_name_messages;
++ _S_destroy_c_locale(_M_c_locale_messages);
++ }
++
++ template<typename _CharT>
++ typename messages<_CharT>::catalog
++ messages<_CharT>::do_open(const basic_string<char>& __s,
++ const locale&) const
++ {
++ // No error checking is done, assume the catalog exists and can
++ // be used.
++ __textdomain(__s.c_str());
++ return 0;
++ }
++
++ template<typename _CharT>
++ void
++ messages<_CharT>::do_close(catalog) const
++ { }
++
++ // messages_byname
++ template<typename _CharT>
++ messages_byname<_CharT>::messages_byname(const char* __s, size_t __refs)
++ : messages<_CharT>(__refs)
++ {
++ if (this->_M_name_messages != locale::facet::_S_get_c_name())
++ delete [] this->_M_name_messages;
++ char* __tmp = new char[std::strlen(__s) + 1];
++ std::strcpy(__tmp, __s);
++ this->_M_name_messages = __tmp;
++
++ if (std::strcmp(__s, "C") != 0 && std::strcmp(__s, "POSIX") != 0)
++ {
++ this->_S_destroy_c_locale(this->_M_c_locale_messages);
++ this->_S_create_c_locale(this->_M_c_locale_messages, __s);
++ }
++ }
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/monetary_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/monetary_members.cc 2008-05-21 13:45:43.933287929 +0200
+@@ -0,0 +1,692 @@
++// std::moneypunct implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.6.3.2 moneypunct virtual functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#define _LIBC
++#include <locale>
++#undef _LIBC
++#include <bits/c++locale_internal.h>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning optimize this for uclibc
++#warning tailor for stub locale support
++#endif
++
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __nl_langinfo_l(N, L) nl_langinfo((N))
++#endif
++
++namespace std
++{
++ // Construct and return valid pattern consisting of some combination of:
++ // space none symbol sign value
++ money_base::pattern
++ money_base::_S_construct_pattern(char __precedes, char __space, char __posn)
++ {
++ pattern __ret;
++
++ // This insanely complicated routine attempts to construct a valid
++ // pattern for use with monyepunct. A couple of invariants:
++
++ // if (__precedes) symbol -> value
++ // else value -> symbol
++
++ // if (__space) space
++ // else none
++
++ // none == never first
++ // space never first or last
++
++ // Any elegant implementations of this are welcome.
++ switch (__posn)
++ {
++ case 0:
++ case 1:
++ // 1 The sign precedes the value and symbol.
++ __ret.field[0] = sign;
++ if (__space)
++ {
++ // Pattern starts with sign.
++ if (__precedes)
++ {
++ __ret.field[1] = symbol;
++ __ret.field[3] = value;
++ }
++ else
++ {
++ __ret.field[1] = value;
++ __ret.field[3] = symbol;
++ }
++ __ret.field[2] = space;
++ }
++ else
++ {
++ // Pattern starts with sign and ends with none.
++ if (__precedes)
++ {
++ __ret.field[1] = symbol;
++ __ret.field[2] = value;
++ }
++ else
++ {
++ __ret.field[1] = value;
++ __ret.field[2] = symbol;
++ }
++ __ret.field[3] = none;
++ }
++ break;
++ case 2:
++ // 2 The sign follows the value and symbol.
++ if (__space)
++ {
++ // Pattern either ends with sign.
++ if (__precedes)
++ {
++ __ret.field[0] = symbol;
++ __ret.field[2] = value;
++ }
++ else
++ {
++ __ret.field[0] = value;
++ __ret.field[2] = symbol;
++ }
++ __ret.field[1] = space;
++ __ret.field[3] = sign;
++ }
++ else
++ {
++ // Pattern ends with sign then none.
++ if (__precedes)
++ {
++ __ret.field[0] = symbol;
++ __ret.field[1] = value;
++ }
++ else
++ {
++ __ret.field[0] = value;
++ __ret.field[1] = symbol;
++ }
++ __ret.field[2] = sign;
++ __ret.field[3] = none;
++ }
++ break;
++ case 3:
++ // 3 The sign immediately precedes the symbol.
++ if (__precedes)
++ {
++ __ret.field[0] = sign;
++ __ret.field[1] = symbol;
++ if (__space)
++ {
++ __ret.field[2] = space;
++ __ret.field[3] = value;
++ }
++ else
++ {
++ __ret.field[2] = value;
++ __ret.field[3] = none;
++ }
++ }
++ else
++ {
++ __ret.field[0] = value;
++ if (__space)
++ {
++ __ret.field[1] = space;
++ __ret.field[2] = sign;
++ __ret.field[3] = symbol;
++ }
++ else
++ {
++ __ret.field[1] = sign;
++ __ret.field[2] = symbol;
++ __ret.field[3] = none;
++ }
++ }
++ break;
++ case 4:
++ // 4 The sign immediately follows the symbol.
++ if (__precedes)
++ {
++ __ret.field[0] = symbol;
++ __ret.field[1] = sign;
++ if (__space)
++ {
++ __ret.field[2] = space;
++ __ret.field[3] = value;
++ }
++ else
++ {
++ __ret.field[2] = value;
++ __ret.field[3] = none;
++ }
++ }
++ else
++ {
++ __ret.field[0] = value;
++ if (__space)
++ {
++ __ret.field[1] = space;
++ __ret.field[2] = symbol;
++ __ret.field[3] = sign;
++ }
++ else
++ {
++ __ret.field[1] = symbol;
++ __ret.field[2] = sign;
++ __ret.field[3] = none;
++ }
++ }
++ break;
++ default:
++ ;
++ }
++ return __ret;
++ }
++
++ template<>
++ void
++ moneypunct<char, true>::_M_initialize_moneypunct(__c_locale __cloc,
++ const char*)
++ {
++ if (!_M_data)
++ _M_data = new __moneypunct_cache<char, true>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_decimal_point = '.';
++ _M_data->_M_thousands_sep = ',';
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_curr_symbol = "";
++ _M_data->_M_curr_symbol_size = 0;
++ _M_data->_M_positive_sign = "";
++ _M_data->_M_positive_sign_size = 0;
++ _M_data->_M_negative_sign = "";
++ _M_data->_M_negative_sign_size = 0;
++ _M_data->_M_frac_digits = 0;
++ _M_data->_M_pos_format = money_base::_S_default_pattern;
++ _M_data->_M_neg_format = money_base::_S_default_pattern;
++
++ for (size_t __i = 0; __i < money_base::_S_end; ++__i)
++ _M_data->_M_atoms[__i] = money_base::_S_atoms[__i];
++ }
++ else
++ {
++ // Named locale.
++ _M_data->_M_decimal_point = *(__nl_langinfo_l(__MON_DECIMAL_POINT,
++ __cloc));
++ _M_data->_M_thousands_sep = *(__nl_langinfo_l(__MON_THOUSANDS_SEP,
++ __cloc));
++ _M_data->_M_grouping = __nl_langinfo_l(__MON_GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++ _M_data->_M_positive_sign = __nl_langinfo_l(__POSITIVE_SIGN, __cloc);
++ _M_data->_M_positive_sign_size = strlen(_M_data->_M_positive_sign);
++
++ char __nposn = *(__nl_langinfo_l(__INT_N_SIGN_POSN, __cloc));
++ if (!__nposn)
++ _M_data->_M_negative_sign = "()";
++ else
++ _M_data->_M_negative_sign = __nl_langinfo_l(__NEGATIVE_SIGN,
++ __cloc);
++ _M_data->_M_negative_sign_size = strlen(_M_data->_M_negative_sign);
++
++ // _Intl == true
++ _M_data->_M_curr_symbol = __nl_langinfo_l(__INT_CURR_SYMBOL, __cloc);
++ _M_data->_M_curr_symbol_size = strlen(_M_data->_M_curr_symbol);
++ _M_data->_M_frac_digits = *(__nl_langinfo_l(__INT_FRAC_DIGITS,
++ __cloc));
++ char __pprecedes = *(__nl_langinfo_l(__INT_P_CS_PRECEDES, __cloc));
++ char __pspace = *(__nl_langinfo_l(__INT_P_SEP_BY_SPACE, __cloc));
++ char __pposn = *(__nl_langinfo_l(__INT_P_SIGN_POSN, __cloc));
++ _M_data->_M_pos_format = _S_construct_pattern(__pprecedes, __pspace,
++ __pposn);
++ char __nprecedes = *(__nl_langinfo_l(__INT_N_CS_PRECEDES, __cloc));
++ char __nspace = *(__nl_langinfo_l(__INT_N_SEP_BY_SPACE, __cloc));
++ _M_data->_M_neg_format = _S_construct_pattern(__nprecedes, __nspace,
++ __nposn);
++ }
++ }
++
++ template<>
++ void
++ moneypunct<char, false>::_M_initialize_moneypunct(__c_locale __cloc,
++ const char*)
++ {
++ if (!_M_data)
++ _M_data = new __moneypunct_cache<char, false>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_decimal_point = '.';
++ _M_data->_M_thousands_sep = ',';
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_curr_symbol = "";
++ _M_data->_M_curr_symbol_size = 0;
++ _M_data->_M_positive_sign = "";
++ _M_data->_M_positive_sign_size = 0;
++ _M_data->_M_negative_sign = "";
++ _M_data->_M_negative_sign_size = 0;
++ _M_data->_M_frac_digits = 0;
++ _M_data->_M_pos_format = money_base::_S_default_pattern;
++ _M_data->_M_neg_format = money_base::_S_default_pattern;
++
++ for (size_t __i = 0; __i < money_base::_S_end; ++__i)
++ _M_data->_M_atoms[__i] = money_base::_S_atoms[__i];
++ }
++ else
++ {
++ // Named locale.
++ _M_data->_M_decimal_point = *(__nl_langinfo_l(__MON_DECIMAL_POINT,
++ __cloc));
++ _M_data->_M_thousands_sep = *(__nl_langinfo_l(__MON_THOUSANDS_SEP,
++ __cloc));
++ _M_data->_M_grouping = __nl_langinfo_l(__MON_GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++ _M_data->_M_positive_sign = __nl_langinfo_l(__POSITIVE_SIGN, __cloc);
++ _M_data->_M_positive_sign_size = strlen(_M_data->_M_positive_sign);
++
++ char __nposn = *(__nl_langinfo_l(__N_SIGN_POSN, __cloc));
++ if (!__nposn)
++ _M_data->_M_negative_sign = "()";
++ else
++ _M_data->_M_negative_sign = __nl_langinfo_l(__NEGATIVE_SIGN,
++ __cloc);
++ _M_data->_M_negative_sign_size = strlen(_M_data->_M_negative_sign);
++
++ // _Intl == false
++ _M_data->_M_curr_symbol = __nl_langinfo_l(__CURRENCY_SYMBOL, __cloc);
++ _M_data->_M_curr_symbol_size = strlen(_M_data->_M_curr_symbol);
++ _M_data->_M_frac_digits = *(__nl_langinfo_l(__FRAC_DIGITS, __cloc));
++ char __pprecedes = *(__nl_langinfo_l(__P_CS_PRECEDES, __cloc));
++ char __pspace = *(__nl_langinfo_l(__P_SEP_BY_SPACE, __cloc));
++ char __pposn = *(__nl_langinfo_l(__P_SIGN_POSN, __cloc));
++ _M_data->_M_pos_format = _S_construct_pattern(__pprecedes, __pspace,
++ __pposn);
++ char __nprecedes = *(__nl_langinfo_l(__N_CS_PRECEDES, __cloc));
++ char __nspace = *(__nl_langinfo_l(__N_SEP_BY_SPACE, __cloc));
++ _M_data->_M_neg_format = _S_construct_pattern(__nprecedes, __nspace,
++ __nposn);
++ }
++ }
++
++ template<>
++ moneypunct<char, true>::~moneypunct()
++ { delete _M_data; }
++
++ template<>
++ moneypunct<char, false>::~moneypunct()
++ { delete _M_data; }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ template<>
++ void
++ moneypunct<wchar_t, true>::_M_initialize_moneypunct(__c_locale __cloc,
++#ifdef __UCLIBC_HAS_XLOCALE__
++ const char*)
++#else
++ const char* __name)
++#endif
++ {
++ if (!_M_data)
++ _M_data = new __moneypunct_cache<wchar_t, true>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_decimal_point = L'.';
++ _M_data->_M_thousands_sep = L',';
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_curr_symbol = L"";
++ _M_data->_M_curr_symbol_size = 0;
++ _M_data->_M_positive_sign = L"";
++ _M_data->_M_positive_sign_size = 0;
++ _M_data->_M_negative_sign = L"";
++ _M_data->_M_negative_sign_size = 0;
++ _M_data->_M_frac_digits = 0;
++ _M_data->_M_pos_format = money_base::_S_default_pattern;
++ _M_data->_M_neg_format = money_base::_S_default_pattern;
++
++ // Use ctype::widen code without the facet...
++ for (size_t __i = 0; __i < money_base::_S_end; ++__i)
++ _M_data->_M_atoms[__i] =
++ static_cast<wchar_t>(money_base::_S_atoms[__i]);
++ }
++ else
++ {
++ // Named locale.
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(__cloc);
++#else
++ // Switch to named locale so that mbsrtowcs will work.
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, __name);
++#endif
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix this... should be monetary
++#endif
++#ifdef __UCLIBC__
++# ifdef __UCLIBC_HAS_XLOCALE__
++ _M_data->_M_decimal_point = __cloc->decimal_point_wc;
++ _M_data->_M_thousands_sep = __cloc->thousands_sep_wc;
++# else
++ _M_data->_M_decimal_point = __global_locale->decimal_point_wc;
++ _M_data->_M_thousands_sep = __global_locale->thousands_sep_wc;
++# endif
++#else
++ union { char *__s; wchar_t __w; } __u;
++ __u.__s = __nl_langinfo_l(_NL_MONETARY_DECIMAL_POINT_WC, __cloc);
++ _M_data->_M_decimal_point = __u.__w;
++
++ __u.__s = __nl_langinfo_l(_NL_MONETARY_THOUSANDS_SEP_WC, __cloc);
++ _M_data->_M_thousands_sep = __u.__w;
++#endif
++ _M_data->_M_grouping = __nl_langinfo_l(__MON_GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++
++ const char* __cpossign = __nl_langinfo_l(__POSITIVE_SIGN, __cloc);
++ const char* __cnegsign = __nl_langinfo_l(__NEGATIVE_SIGN, __cloc);
++ const char* __ccurr = __nl_langinfo_l(__INT_CURR_SYMBOL, __cloc);
++
++ wchar_t* __wcs_ps = 0;
++ wchar_t* __wcs_ns = 0;
++ const char __nposn = *(__nl_langinfo_l(__INT_N_SIGN_POSN, __cloc));
++ try
++ {
++ mbstate_t __state;
++ size_t __len = strlen(__cpossign);
++ if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ __wcs_ps = new wchar_t[__len];
++ mbsrtowcs(__wcs_ps, &__cpossign, __len, &__state);
++ _M_data->_M_positive_sign = __wcs_ps;
++ }
++ else
++ _M_data->_M_positive_sign = L"";
++ _M_data->_M_positive_sign_size = wcslen(_M_data->_M_positive_sign);
++
++ __len = strlen(__cnegsign);
++ if (!__nposn)
++ _M_data->_M_negative_sign = L"()";
++ else if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ __wcs_ns = new wchar_t[__len];
++ mbsrtowcs(__wcs_ns, &__cnegsign, __len, &__state);
++ _M_data->_M_negative_sign = __wcs_ns;
++ }
++ else
++ _M_data->_M_negative_sign = L"";
++ _M_data->_M_negative_sign_size = wcslen(_M_data->_M_negative_sign);
++
++ // _Intl == true.
++ __len = strlen(__ccurr);
++ if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ wchar_t* __wcs = new wchar_t[__len];
++ mbsrtowcs(__wcs, &__ccurr, __len, &__state);
++ _M_data->_M_curr_symbol = __wcs;
++ }
++ else
++ _M_data->_M_curr_symbol = L"";
++ _M_data->_M_curr_symbol_size = wcslen(_M_data->_M_curr_symbol);
++ }
++ catch (...)
++ {
++ delete _M_data;
++ _M_data = 0;
++ delete __wcs_ps;
++ delete __wcs_ns;
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#else
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ __throw_exception_again;
++ }
++
++ _M_data->_M_frac_digits = *(__nl_langinfo_l(__INT_FRAC_DIGITS,
++ __cloc));
++ char __pprecedes = *(__nl_langinfo_l(__INT_P_CS_PRECEDES, __cloc));
++ char __pspace = *(__nl_langinfo_l(__INT_P_SEP_BY_SPACE, __cloc));
++ char __pposn = *(__nl_langinfo_l(__INT_P_SIGN_POSN, __cloc));
++ _M_data->_M_pos_format = _S_construct_pattern(__pprecedes, __pspace,
++ __pposn);
++ char __nprecedes = *(__nl_langinfo_l(__INT_N_CS_PRECEDES, __cloc));
++ char __nspace = *(__nl_langinfo_l(__INT_N_SEP_BY_SPACE, __cloc));
++ _M_data->_M_neg_format = _S_construct_pattern(__nprecedes, __nspace,
++ __nposn);
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#else
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ }
++ }
++
++ template<>
++ void
++ moneypunct<wchar_t, false>::_M_initialize_moneypunct(__c_locale __cloc,
++#ifdef __UCLIBC_HAS_XLOCALE__
++ const char*)
++#else
++ const char* __name)
++#endif
++ {
++ if (!_M_data)
++ _M_data = new __moneypunct_cache<wchar_t, false>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_decimal_point = L'.';
++ _M_data->_M_thousands_sep = L',';
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_curr_symbol = L"";
++ _M_data->_M_curr_symbol_size = 0;
++ _M_data->_M_positive_sign = L"";
++ _M_data->_M_positive_sign_size = 0;
++ _M_data->_M_negative_sign = L"";
++ _M_data->_M_negative_sign_size = 0;
++ _M_data->_M_frac_digits = 0;
++ _M_data->_M_pos_format = money_base::_S_default_pattern;
++ _M_data->_M_neg_format = money_base::_S_default_pattern;
++
++ // Use ctype::widen code without the facet...
++ for (size_t __i = 0; __i < money_base::_S_end; ++__i)
++ _M_data->_M_atoms[__i] =
++ static_cast<wchar_t>(money_base::_S_atoms[__i]);
++ }
++ else
++ {
++ // Named locale.
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __c_locale __old = __uselocale(__cloc);
++#else
++ // Switch to named locale so that mbsrtowcs will work.
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, __name);
++#endif
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning fix this... should be monetary
++#endif
++#ifdef __UCLIBC__
++# ifdef __UCLIBC_HAS_XLOCALE__
++ _M_data->_M_decimal_point = __cloc->decimal_point_wc;
++ _M_data->_M_thousands_sep = __cloc->thousands_sep_wc;
++# else
++ _M_data->_M_decimal_point = __global_locale->decimal_point_wc;
++ _M_data->_M_thousands_sep = __global_locale->thousands_sep_wc;
++# endif
++#else
++ union { char *__s; wchar_t __w; } __u;
++ __u.__s = __nl_langinfo_l(_NL_MONETARY_DECIMAL_POINT_WC, __cloc);
++ _M_data->_M_decimal_point = __u.__w;
++
++ __u.__s = __nl_langinfo_l(_NL_MONETARY_THOUSANDS_SEP_WC, __cloc);
++ _M_data->_M_thousands_sep = __u.__w;
++#endif
++ _M_data->_M_grouping = __nl_langinfo_l(__MON_GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++
++ const char* __cpossign = __nl_langinfo_l(__POSITIVE_SIGN, __cloc);
++ const char* __cnegsign = __nl_langinfo_l(__NEGATIVE_SIGN, __cloc);
++ const char* __ccurr = __nl_langinfo_l(__CURRENCY_SYMBOL, __cloc);
++
++ wchar_t* __wcs_ps = 0;
++ wchar_t* __wcs_ns = 0;
++ const char __nposn = *(__nl_langinfo_l(__N_SIGN_POSN, __cloc));
++ try
++ {
++ mbstate_t __state;
++ size_t __len;
++ __len = strlen(__cpossign);
++ if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ __wcs_ps = new wchar_t[__len];
++ mbsrtowcs(__wcs_ps, &__cpossign, __len, &__state);
++ _M_data->_M_positive_sign = __wcs_ps;
++ }
++ else
++ _M_data->_M_positive_sign = L"";
++ _M_data->_M_positive_sign_size = wcslen(_M_data->_M_positive_sign);
++
++ __len = strlen(__cnegsign);
++ if (!__nposn)
++ _M_data->_M_negative_sign = L"()";
++ else if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ __wcs_ns = new wchar_t[__len];
++ mbsrtowcs(__wcs_ns, &__cnegsign, __len, &__state);
++ _M_data->_M_negative_sign = __wcs_ns;
++ }
++ else
++ _M_data->_M_negative_sign = L"";
++ _M_data->_M_negative_sign_size = wcslen(_M_data->_M_negative_sign);
++
++ // _Intl == true.
++ __len = strlen(__ccurr);
++ if (__len)
++ {
++ ++__len;
++ memset(&__state, 0, sizeof(mbstate_t));
++ wchar_t* __wcs = new wchar_t[__len];
++ mbsrtowcs(__wcs, &__ccurr, __len, &__state);
++ _M_data->_M_curr_symbol = __wcs;
++ }
++ else
++ _M_data->_M_curr_symbol = L"";
++ _M_data->_M_curr_symbol_size = wcslen(_M_data->_M_curr_symbol);
++ }
++ catch (...)
++ {
++ delete _M_data;
++ _M_data = 0;
++ delete __wcs_ps;
++ delete __wcs_ns;
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#else
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ __throw_exception_again;
++ }
++
++ _M_data->_M_frac_digits = *(__nl_langinfo_l(__FRAC_DIGITS, __cloc));
++ char __pprecedes = *(__nl_langinfo_l(__P_CS_PRECEDES, __cloc));
++ char __pspace = *(__nl_langinfo_l(__P_SEP_BY_SPACE, __cloc));
++ char __pposn = *(__nl_langinfo_l(__P_SIGN_POSN, __cloc));
++ _M_data->_M_pos_format = _S_construct_pattern(__pprecedes, __pspace,
++ __pposn);
++ char __nprecedes = *(__nl_langinfo_l(__N_CS_PRECEDES, __cloc));
++ char __nspace = *(__nl_langinfo_l(__N_SEP_BY_SPACE, __cloc));
++ _M_data->_M_neg_format = _S_construct_pattern(__nprecedes, __nspace,
++ __nposn);
++
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __uselocale(__old);
++#else
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ }
++ }
++
++ template<>
++ moneypunct<wchar_t, true>::~moneypunct()
++ {
++ if (_M_data->_M_positive_sign_size)
++ delete [] _M_data->_M_positive_sign;
++ if (_M_data->_M_negative_sign_size
++ && wcscmp(_M_data->_M_negative_sign, L"()") != 0)
++ delete [] _M_data->_M_negative_sign;
++ if (_M_data->_M_curr_symbol_size)
++ delete [] _M_data->_M_curr_symbol;
++ delete _M_data;
++ }
++
++ template<>
++ moneypunct<wchar_t, false>::~moneypunct()
++ {
++ if (_M_data->_M_positive_sign_size)
++ delete [] _M_data->_M_positive_sign;
++ if (_M_data->_M_negative_sign_size
++ && wcscmp(_M_data->_M_negative_sign, L"()") != 0)
++ delete [] _M_data->_M_negative_sign;
++ if (_M_data->_M_curr_symbol_size)
++ delete [] _M_data->_M_curr_symbol;
++ delete _M_data;
++ }
++#endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/numeric_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/numeric_members.cc 2008-05-21 13:45:43.933287929 +0200
+@@ -0,0 +1,160 @@
++// std::numpunct implementation details, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.3.1.2 numpunct virtual functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#define _LIBC
++#include <locale>
++#undef _LIBC
++#include <bits/c++locale_internal.h>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning tailor for stub locale support
++#endif
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __nl_langinfo_l(N, L) nl_langinfo((N))
++#endif
++
++namespace std
++{
++ template<>
++ void
++ numpunct<char>::_M_initialize_numpunct(__c_locale __cloc)
++ {
++ if (!_M_data)
++ _M_data = new __numpunct_cache<char>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_use_grouping = false;
++
++ _M_data->_M_decimal_point = '.';
++ _M_data->_M_thousands_sep = ',';
++
++ for (size_t __i = 0; __i < __num_base::_S_oend; ++__i)
++ _M_data->_M_atoms_out[__i] = __num_base::_S_atoms_out[__i];
++
++ for (size_t __j = 0; __j < __num_base::_S_iend; ++__j)
++ _M_data->_M_atoms_in[__j] = __num_base::_S_atoms_in[__j];
++ }
++ else
++ {
++ // Named locale.
++ _M_data->_M_decimal_point = *(__nl_langinfo_l(DECIMAL_POINT,
++ __cloc));
++ _M_data->_M_thousands_sep = *(__nl_langinfo_l(THOUSANDS_SEP,
++ __cloc));
++
++ // Check for NULL, which implies no grouping.
++ if (_M_data->_M_thousands_sep == '\0')
++ _M_data->_M_grouping = "";
++ else
++ _M_data->_M_grouping = __nl_langinfo_l(GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++ }
++
++ // NB: There is no way to extact this info from posix locales.
++ // _M_truename = __nl_langinfo_l(YESSTR, __cloc);
++ _M_data->_M_truename = "true";
++ _M_data->_M_truename_size = 4;
++ // _M_falsename = __nl_langinfo_l(NOSTR, __cloc);
++ _M_data->_M_falsename = "false";
++ _M_data->_M_falsename_size = 5;
++ }
++
++ template<>
++ numpunct<char>::~numpunct()
++ { delete _M_data; }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ template<>
++ void
++ numpunct<wchar_t>::_M_initialize_numpunct(__c_locale __cloc)
++ {
++ if (!_M_data)
++ _M_data = new __numpunct_cache<wchar_t>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_data->_M_grouping = "";
++ _M_data->_M_grouping_size = 0;
++ _M_data->_M_use_grouping = false;
++
++ _M_data->_M_decimal_point = L'.';
++ _M_data->_M_thousands_sep = L',';
++
++ // Use ctype::widen code without the facet...
++ for (size_t __i = 0; __i < __num_base::_S_oend; ++__i)
++ _M_data->_M_atoms_out[__i] =
++ static_cast<wchar_t>(__num_base::_S_atoms_out[__i]);
++
++ for (size_t __j = 0; __j < __num_base::_S_iend; ++__j)
++ _M_data->_M_atoms_in[__j] =
++ static_cast<wchar_t>(__num_base::_S_atoms_in[__j]);
++ }
++ else
++ {
++ // Named locale.
++ // NB: In the GNU model wchar_t is always 32 bit wide.
++ union { char *__s; wchar_t __w; } __u;
++ __u.__s = __nl_langinfo_l(_NL_NUMERIC_DECIMAL_POINT_WC, __cloc);
++ _M_data->_M_decimal_point = __u.__w;
++
++ __u.__s = __nl_langinfo_l(_NL_NUMERIC_THOUSANDS_SEP_WC, __cloc);
++ _M_data->_M_thousands_sep = __u.__w;
++
++ if (_M_data->_M_thousands_sep == L'\0')
++ _M_data->_M_grouping = "";
++ else
++ _M_data->_M_grouping = __nl_langinfo_l(GROUPING, __cloc);
++ _M_data->_M_grouping_size = strlen(_M_data->_M_grouping);
++ }
++
++ // NB: There is no way to extact this info from posix locales.
++ // _M_truename = __nl_langinfo_l(YESSTR, __cloc);
++ _M_data->_M_truename = L"true";
++ _M_data->_M_truename_size = 4;
++ // _M_falsename = __nl_langinfo_l(NOSTR, __cloc);
++ _M_data->_M_falsename = L"false";
++ _M_data->_M_falsename_size = 5;
++ }
++
++ template<>
++ numpunct<wchar_t>::~numpunct()
++ { delete _M_data; }
++ #endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/time_members.cc
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/time_members.cc 2008-05-21 13:45:43.933287929 +0200
+@@ -0,0 +1,406 @@
++// std::time_get, std::time_put implementation, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.5.1.2 - time_get virtual functions
++// ISO C++ 14882: 22.2.5.3.2 - time_put virtual functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++#include <locale>
++#include <bits/c++locale_internal.h>
++
++#ifdef __UCLIBC_MJN3_ONLY__
++#warning tailor for stub locale support
++#endif
++#ifndef __UCLIBC_HAS_XLOCALE__
++#define __nl_langinfo_l(N, L) nl_langinfo((N))
++#endif
++
++namespace std
++{
++ template<>
++ void
++ __timepunct<char>::
++ _M_put(char* __s, size_t __maxlen, const char* __format,
++ const tm* __tm) const
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ const size_t __len = __strftime_l(__s, __maxlen, __format, __tm,
++ _M_c_locale_timepunct);
++#else
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, _M_name_timepunct);
++ const size_t __len = strftime(__s, __maxlen, __format, __tm);
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ // Make sure __s is null terminated.
++ if (__len == 0)
++ __s[0] = '\0';
++ }
++
++ template<>
++ void
++ __timepunct<char>::_M_initialize_timepunct(__c_locale __cloc)
++ {
++ if (!_M_data)
++ _M_data = new __timepunct_cache<char>;
++
++ if (!__cloc)
++ {
++ // "C" locale
++ _M_c_locale_timepunct = _S_get_c_locale();
++
++ _M_data->_M_date_format = "%m/%d/%y";
++ _M_data->_M_date_era_format = "%m/%d/%y";
++ _M_data->_M_time_format = "%H:%M:%S";
++ _M_data->_M_time_era_format = "%H:%M:%S";
++ _M_data->_M_date_time_format = "";
++ _M_data->_M_date_time_era_format = "";
++ _M_data->_M_am = "AM";
++ _M_data->_M_pm = "PM";
++ _M_data->_M_am_pm_format = "";
++
++ // Day names, starting with "C"'s Sunday.
++ _M_data->_M_day1 = "Sunday";
++ _M_data->_M_day2 = "Monday";
++ _M_data->_M_day3 = "Tuesday";
++ _M_data->_M_day4 = "Wednesday";
++ _M_data->_M_day5 = "Thursday";
++ _M_data->_M_day6 = "Friday";
++ _M_data->_M_day7 = "Saturday";
++
++ // Abbreviated day names, starting with "C"'s Sun.
++ _M_data->_M_aday1 = "Sun";
++ _M_data->_M_aday2 = "Mon";
++ _M_data->_M_aday3 = "Tue";
++ _M_data->_M_aday4 = "Wed";
++ _M_data->_M_aday5 = "Thu";
++ _M_data->_M_aday6 = "Fri";
++ _M_data->_M_aday7 = "Sat";
++
++ // Month names, starting with "C"'s January.
++ _M_data->_M_month01 = "January";
++ _M_data->_M_month02 = "February";
++ _M_data->_M_month03 = "March";
++ _M_data->_M_month04 = "April";
++ _M_data->_M_month05 = "May";
++ _M_data->_M_month06 = "June";
++ _M_data->_M_month07 = "July";
++ _M_data->_M_month08 = "August";
++ _M_data->_M_month09 = "September";
++ _M_data->_M_month10 = "October";
++ _M_data->_M_month11 = "November";
++ _M_data->_M_month12 = "December";
++
++ // Abbreviated month names, starting with "C"'s Jan.
++ _M_data->_M_amonth01 = "Jan";
++ _M_data->_M_amonth02 = "Feb";
++ _M_data->_M_amonth03 = "Mar";
++ _M_data->_M_amonth04 = "Apr";
++ _M_data->_M_amonth05 = "May";
++ _M_data->_M_amonth06 = "Jun";
++ _M_data->_M_amonth07 = "Jul";
++ _M_data->_M_amonth08 = "Aug";
++ _M_data->_M_amonth09 = "Sep";
++ _M_data->_M_amonth10 = "Oct";
++ _M_data->_M_amonth11 = "Nov";
++ _M_data->_M_amonth12 = "Dec";
++ }
++ else
++ {
++ _M_c_locale_timepunct = _S_clone_c_locale(__cloc);
++
++ _M_data->_M_date_format = __nl_langinfo_l(D_FMT, __cloc);
++ _M_data->_M_date_era_format = __nl_langinfo_l(ERA_D_FMT, __cloc);
++ _M_data->_M_time_format = __nl_langinfo_l(T_FMT, __cloc);
++ _M_data->_M_time_era_format = __nl_langinfo_l(ERA_T_FMT, __cloc);
++ _M_data->_M_date_time_format = __nl_langinfo_l(D_T_FMT, __cloc);
++ _M_data->_M_date_time_era_format = __nl_langinfo_l(ERA_D_T_FMT,
++ __cloc);
++ _M_data->_M_am = __nl_langinfo_l(AM_STR, __cloc);
++ _M_data->_M_pm = __nl_langinfo_l(PM_STR, __cloc);
++ _M_data->_M_am_pm_format = __nl_langinfo_l(T_FMT_AMPM, __cloc);
++
++ // Day names, starting with "C"'s Sunday.
++ _M_data->_M_day1 = __nl_langinfo_l(DAY_1, __cloc);
++ _M_data->_M_day2 = __nl_langinfo_l(DAY_2, __cloc);
++ _M_data->_M_day3 = __nl_langinfo_l(DAY_3, __cloc);
++ _M_data->_M_day4 = __nl_langinfo_l(DAY_4, __cloc);
++ _M_data->_M_day5 = __nl_langinfo_l(DAY_5, __cloc);
++ _M_data->_M_day6 = __nl_langinfo_l(DAY_6, __cloc);
++ _M_data->_M_day7 = __nl_langinfo_l(DAY_7, __cloc);
++
++ // Abbreviated day names, starting with "C"'s Sun.
++ _M_data->_M_aday1 = __nl_langinfo_l(ABDAY_1, __cloc);
++ _M_data->_M_aday2 = __nl_langinfo_l(ABDAY_2, __cloc);
++ _M_data->_M_aday3 = __nl_langinfo_l(ABDAY_3, __cloc);
++ _M_data->_M_aday4 = __nl_langinfo_l(ABDAY_4, __cloc);
++ _M_data->_M_aday5 = __nl_langinfo_l(ABDAY_5, __cloc);
++ _M_data->_M_aday6 = __nl_langinfo_l(ABDAY_6, __cloc);
++ _M_data->_M_aday7 = __nl_langinfo_l(ABDAY_7, __cloc);
++
++ // Month names, starting with "C"'s January.
++ _M_data->_M_month01 = __nl_langinfo_l(MON_1, __cloc);
++ _M_data->_M_month02 = __nl_langinfo_l(MON_2, __cloc);
++ _M_data->_M_month03 = __nl_langinfo_l(MON_3, __cloc);
++ _M_data->_M_month04 = __nl_langinfo_l(MON_4, __cloc);
++ _M_data->_M_month05 = __nl_langinfo_l(MON_5, __cloc);
++ _M_data->_M_month06 = __nl_langinfo_l(MON_6, __cloc);
++ _M_data->_M_month07 = __nl_langinfo_l(MON_7, __cloc);
++ _M_data->_M_month08 = __nl_langinfo_l(MON_8, __cloc);
++ _M_data->_M_month09 = __nl_langinfo_l(MON_9, __cloc);
++ _M_data->_M_month10 = __nl_langinfo_l(MON_10, __cloc);
++ _M_data->_M_month11 = __nl_langinfo_l(MON_11, __cloc);
++ _M_data->_M_month12 = __nl_langinfo_l(MON_12, __cloc);
++
++ // Abbreviated month names, starting with "C"'s Jan.
++ _M_data->_M_amonth01 = __nl_langinfo_l(ABMON_1, __cloc);
++ _M_data->_M_amonth02 = __nl_langinfo_l(ABMON_2, __cloc);
++ _M_data->_M_amonth03 = __nl_langinfo_l(ABMON_3, __cloc);
++ _M_data->_M_amonth04 = __nl_langinfo_l(ABMON_4, __cloc);
++ _M_data->_M_amonth05 = __nl_langinfo_l(ABMON_5, __cloc);
++ _M_data->_M_amonth06 = __nl_langinfo_l(ABMON_6, __cloc);
++ _M_data->_M_amonth07 = __nl_langinfo_l(ABMON_7, __cloc);
++ _M_data->_M_amonth08 = __nl_langinfo_l(ABMON_8, __cloc);
++ _M_data->_M_amonth09 = __nl_langinfo_l(ABMON_9, __cloc);
++ _M_data->_M_amonth10 = __nl_langinfo_l(ABMON_10, __cloc);
++ _M_data->_M_amonth11 = __nl_langinfo_l(ABMON_11, __cloc);
++ _M_data->_M_amonth12 = __nl_langinfo_l(ABMON_12, __cloc);
++ }
++ }
++
++#ifdef _GLIBCXX_USE_WCHAR_T
++ template<>
++ void
++ __timepunct<wchar_t>::
++ _M_put(wchar_t* __s, size_t __maxlen, const wchar_t* __format,
++ const tm* __tm) const
++ {
++#ifdef __UCLIBC_HAS_XLOCALE__
++ __wcsftime_l(__s, __maxlen, __format, __tm, _M_c_locale_timepunct);
++ const size_t __len = __wcsftime_l(__s, __maxlen, __format, __tm,
++ _M_c_locale_timepunct);
++#else
++ char* __old = strdup(setlocale(LC_ALL, NULL));
++ setlocale(LC_ALL, _M_name_timepunct);
++ const size_t __len = wcsftime(__s, __maxlen, __format, __tm);
++ setlocale(LC_ALL, __old);
++ free(__old);
++#endif
++ // Make sure __s is null terminated.
++ if (__len == 0)
++ __s[0] = L'\0';
++ }
++
++ template<>
++ void
++ __timepunct<wchar_t>::_M_initialize_timepunct(__c_locale __cloc)
++ {
++ if (!_M_data)
++ _M_data = new __timepunct_cache<wchar_t>;
++
++#warning wide time stuff
++// if (!__cloc)
++ {
++ // "C" locale
++ _M_c_locale_timepunct = _S_get_c_locale();
++
++ _M_data->_M_date_format = L"%m/%d/%y";
++ _M_data->_M_date_era_format = L"%m/%d/%y";
++ _M_data->_M_time_format = L"%H:%M:%S";
++ _M_data->_M_time_era_format = L"%H:%M:%S";
++ _M_data->_M_date_time_format = L"";
++ _M_data->_M_date_time_era_format = L"";
++ _M_data->_M_am = L"AM";
++ _M_data->_M_pm = L"PM";
++ _M_data->_M_am_pm_format = L"";
++
++ // Day names, starting with "C"'s Sunday.
++ _M_data->_M_day1 = L"Sunday";
++ _M_data->_M_day2 = L"Monday";
++ _M_data->_M_day3 = L"Tuesday";
++ _M_data->_M_day4 = L"Wednesday";
++ _M_data->_M_day5 = L"Thursday";
++ _M_data->_M_day6 = L"Friday";
++ _M_data->_M_day7 = L"Saturday";
++
++ // Abbreviated day names, starting with "C"'s Sun.
++ _M_data->_M_aday1 = L"Sun";
++ _M_data->_M_aday2 = L"Mon";
++ _M_data->_M_aday3 = L"Tue";
++ _M_data->_M_aday4 = L"Wed";
++ _M_data->_M_aday5 = L"Thu";
++ _M_data->_M_aday6 = L"Fri";
++ _M_data->_M_aday7 = L"Sat";
++
++ // Month names, starting with "C"'s January.
++ _M_data->_M_month01 = L"January";
++ _M_data->_M_month02 = L"February";
++ _M_data->_M_month03 = L"March";
++ _M_data->_M_month04 = L"April";
++ _M_data->_M_month05 = L"May";
++ _M_data->_M_month06 = L"June";
++ _M_data->_M_month07 = L"July";
++ _M_data->_M_month08 = L"August";
++ _M_data->_M_month09 = L"September";
++ _M_data->_M_month10 = L"October";
++ _M_data->_M_month11 = L"November";
++ _M_data->_M_month12 = L"December";
++
++ // Abbreviated month names, starting with "C"'s Jan.
++ _M_data->_M_amonth01 = L"Jan";
++ _M_data->_M_amonth02 = L"Feb";
++ _M_data->_M_amonth03 = L"Mar";
++ _M_data->_M_amonth04 = L"Apr";
++ _M_data->_M_amonth05 = L"May";
++ _M_data->_M_amonth06 = L"Jun";
++ _M_data->_M_amonth07 = L"Jul";
++ _M_data->_M_amonth08 = L"Aug";
++ _M_data->_M_amonth09 = L"Sep";
++ _M_data->_M_amonth10 = L"Oct";
++ _M_data->_M_amonth11 = L"Nov";
++ _M_data->_M_amonth12 = L"Dec";
++ }
++#if 0
++ else
++ {
++ _M_c_locale_timepunct = _S_clone_c_locale(__cloc);
++
++ union { char *__s; wchar_t *__w; } __u;
++
++ __u.__s = __nl_langinfo_l(_NL_WD_FMT, __cloc);
++ _M_data->_M_date_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WERA_D_FMT, __cloc);
++ _M_data->_M_date_era_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WT_FMT, __cloc);
++ _M_data->_M_time_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WERA_T_FMT, __cloc);
++ _M_data->_M_time_era_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WD_T_FMT, __cloc);
++ _M_data->_M_date_time_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WERA_D_T_FMT, __cloc);
++ _M_data->_M_date_time_era_format = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WAM_STR, __cloc);
++ _M_data->_M_am = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WPM_STR, __cloc);
++ _M_data->_M_pm = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WT_FMT_AMPM, __cloc);
++ _M_data->_M_am_pm_format = __u.__w;
++
++ // Day names, starting with "C"'s Sunday.
++ __u.__s = __nl_langinfo_l(_NL_WDAY_1, __cloc);
++ _M_data->_M_day1 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_2, __cloc);
++ _M_data->_M_day2 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_3, __cloc);
++ _M_data->_M_day3 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_4, __cloc);
++ _M_data->_M_day4 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_5, __cloc);
++ _M_data->_M_day5 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_6, __cloc);
++ _M_data->_M_day6 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WDAY_7, __cloc);
++ _M_data->_M_day7 = __u.__w;
++
++ // Abbreviated day names, starting with "C"'s Sun.
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_1, __cloc);
++ _M_data->_M_aday1 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_2, __cloc);
++ _M_data->_M_aday2 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_3, __cloc);
++ _M_data->_M_aday3 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_4, __cloc);
++ _M_data->_M_aday4 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_5, __cloc);
++ _M_data->_M_aday5 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_6, __cloc);
++ _M_data->_M_aday6 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABDAY_7, __cloc);
++ _M_data->_M_aday7 = __u.__w;
++
++ // Month names, starting with "C"'s January.
++ __u.__s = __nl_langinfo_l(_NL_WMON_1, __cloc);
++ _M_data->_M_month01 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_2, __cloc);
++ _M_data->_M_month02 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_3, __cloc);
++ _M_data->_M_month03 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_4, __cloc);
++ _M_data->_M_month04 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_5, __cloc);
++ _M_data->_M_month05 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_6, __cloc);
++ _M_data->_M_month06 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_7, __cloc);
++ _M_data->_M_month07 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_8, __cloc);
++ _M_data->_M_month08 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_9, __cloc);
++ _M_data->_M_month09 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_10, __cloc);
++ _M_data->_M_month10 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_11, __cloc);
++ _M_data->_M_month11 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WMON_12, __cloc);
++ _M_data->_M_month12 = __u.__w;
++
++ // Abbreviated month names, starting with "C"'s Jan.
++ __u.__s = __nl_langinfo_l(_NL_WABMON_1, __cloc);
++ _M_data->_M_amonth01 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_2, __cloc);
++ _M_data->_M_amonth02 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_3, __cloc);
++ _M_data->_M_amonth03 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_4, __cloc);
++ _M_data->_M_amonth04 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_5, __cloc);
++ _M_data->_M_amonth05 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_6, __cloc);
++ _M_data->_M_amonth06 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_7, __cloc);
++ _M_data->_M_amonth07 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_8, __cloc);
++ _M_data->_M_amonth08 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_9, __cloc);
++ _M_data->_M_amonth09 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_10, __cloc);
++ _M_data->_M_amonth10 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_11, __cloc);
++ _M_data->_M_amonth11 = __u.__w;
++ __u.__s = __nl_langinfo_l(_NL_WABMON_12, __cloc);
++ _M_data->_M_amonth12 = __u.__w;
++ }
++#endif // 0
++ }
++#endif
++}
+Index: gcc-4.2.3/libstdc++-v3/config/locale/uclibc/time_members.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/libstdc++-v3/config/locale/uclibc/time_members.h 2008-05-21 13:45:43.933287929 +0200
+@@ -0,0 +1,68 @@
++// std::time_get, std::time_put implementation, GNU version -*- C++ -*-
++
++// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
++//
++// This file is part of the GNU ISO C++ Library. This library is free
++// software; you can redistribute it and/or modify it under the
++// terms of the GNU General Public License as published by the
++// Free Software Foundation; either version 2, or (at your option)
++// any later version.
++
++// This library is distributed in the hope that it will be useful,
++// but WITHOUT ANY WARRANTY; without even the implied warranty of
++// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++// GNU General Public License for more details.
++
++// You should have received a copy of the GNU General Public License along
++// with this library; see the file COPYING. If not, write to the Free
++// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
++// USA.
++
++// As a special exception, you may use this file as part of a free software
++// library without restriction. Specifically, if other files instantiate
++// templates or use macros or inline functions from this file, or you compile
++// this file and link it with other files to produce an executable, this
++// file does not by itself cause the resulting executable to be covered by
++// the GNU General Public License. This exception does not however
++// invalidate any other reasons why the executable file might be covered by
++// the GNU General Public License.
++
++//
++// ISO C++ 14882: 22.2.5.1.2 - time_get functions
++// ISO C++ 14882: 22.2.5.3.2 - time_put functions
++//
++
++// Written by Benjamin Kosnik <bkoz@redhat.com>
++
++ template<typename _CharT>
++ __timepunct<_CharT>::__timepunct(size_t __refs)
++ : facet(__refs), _M_data(NULL), _M_c_locale_timepunct(NULL),
++ _M_name_timepunct(_S_get_c_name())
++ { _M_initialize_timepunct(); }
++
++ template<typename _CharT>
++ __timepunct<_CharT>::__timepunct(__cache_type* __cache, size_t __refs)
++ : facet(__refs), _M_data(__cache), _M_c_locale_timepunct(NULL),
++ _M_name_timepunct(_S_get_c_name())
++ { _M_initialize_timepunct(); }
++
++ template<typename _CharT>
++ __timepunct<_CharT>::__timepunct(__c_locale __cloc, const char* __s,
++ size_t __refs)
++ : facet(__refs), _M_data(NULL), _M_c_locale_timepunct(NULL),
++ _M_name_timepunct(__s)
++ {
++ char* __tmp = new char[std::strlen(__s) + 1];
++ std::strcpy(__tmp, __s);
++ _M_name_timepunct = __tmp;
++ _M_initialize_timepunct(__cloc);
++ }
++
++ template<typename _CharT>
++ __timepunct<_CharT>::~__timepunct()
++ {
++ if (_M_name_timepunct != _S_get_c_name())
++ delete [] _M_name_timepunct;
++ delete _M_data;
++ _S_destroy_c_locale(_M_c_locale_timepunct);
++ }
+Index: gcc-4.2.3/libstdc++-v3/configure
+===================================================================
+--- gcc-4.2.3.orig/libstdc++-v3/configure 2008-05-21 13:45:41.725287971 +0200
++++ gcc-4.2.3/libstdc++-v3/configure 2008-05-21 13:45:44.017287734 +0200
+@@ -5769,7 +5769,7 @@
+ enableval="$enable_clocale"
+
+ case "$enableval" in
+- generic|gnu|ieee_1003.1-2001|yes|no|auto) ;;
++ generic|gnu|ieee_1003.1-2001|uclibc|yes|no|auto) ;;
+ *) { { echo "$as_me:$LINENO: error: Unknown argument to enable/disable clocale" >&5
+ echo "$as_me: error: Unknown argument to enable/disable clocale" >&2;}
+ { (exit 1); exit 1; }; } ;;
+@@ -5802,6 +5802,9 @@
+ # Default to "generic".
+ if test $enable_clocale_flag = auto; then
+ case ${target_os} in
++ linux-uclibc*)
++ enable_clocale_flag=uclibc
++ ;;
+ linux* | gnu* | kfreebsd*-gnu | knetbsd*-gnu)
+ enable_clocale_flag=gnu
+ ;;
+@@ -6190,6 +6193,76 @@
+ CTIME_CC=config/locale/generic/time_members.cc
+ CLOCALE_INTERNAL_H=config/locale/generic/c++locale_internal.h
+ ;;
++ uclibc)
++ echo "$as_me:$LINENO: result: uclibc" >&5
++echo "${ECHO_T}uclibc" >&6
++
++ # Declare intention to use gettext, and add support for specific
++ # languages.
++ # For some reason, ALL_LINGUAS has to be before AM-GNU-GETTEXT
++ ALL_LINGUAS="de fr"
++
++ # Don't call AM-GNU-GETTEXT here. Instead, assume glibc.
++ # Extract the first word of "msgfmt", so it can be a program name with args.
++set dummy msgfmt; ac_word=$2
++echo "$as_me:$LINENO: checking for $ac_word" >&5
++echo $ECHO_N "checking for $ac_word... $ECHO_C" >&6
++if test "${ac_cv_prog_check_msgfmt+set}" = set; then
++ echo $ECHO_N "(cached) $ECHO_C" >&6
++else
++ if test -n "$check_msgfmt"; then
++ ac_cv_prog_check_msgfmt="$check_msgfmt" # Let the user override the test.
++else
++as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
++for as_dir in $PATH
++do
++ IFS=$as_save_IFS
++ test -z "$as_dir" && as_dir=.
++ for ac_exec_ext in '' $ac_executable_extensions; do
++ if $as_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
++ ac_cv_prog_check_msgfmt="yes"
++ echo "$as_me:$LINENO: found $as_dir/$ac_word$ac_exec_ext" >&5
++ break 2
++ fi
++done
++done
++
++ test -z "$ac_cv_prog_check_msgfmt" && ac_cv_prog_check_msgfmt="no"
++fi
++fi
++check_msgfmt=$ac_cv_prog_check_msgfmt
++if test -n "$check_msgfmt"; then
++ echo "$as_me:$LINENO: result: $check_msgfmt" >&5
++echo "${ECHO_T}$check_msgfmt" >&6
++else
++ echo "$as_me:$LINENO: result: no" >&5
++echo "${ECHO_T}no" >&6
++fi
++
++ if test x"$check_msgfmt" = x"yes" && test x"$enable_nls" = x"yes"; then
++ USE_NLS=yes
++ fi
++ # Export the build objects.
++ for ling in $ALL_LINGUAS; do \
++ glibcxx_MOFILES="$glibcxx_MOFILES $ling.mo"; \
++ glibcxx_POFILES="$glibcxx_POFILES $ling.po"; \
++ done
++
++
++
++ CLOCALE_H=config/locale/uclibc/c_locale.h
++ CLOCALE_CC=config/locale/uclibc/c_locale.cc
++ CCODECVT_CC=config/locale/uclibc/codecvt_members.cc
++ CCOLLATE_CC=config/locale/uclibc/collate_members.cc
++ CCTYPE_CC=config/locale/uclibc/ctype_members.cc
++ CMESSAGES_H=config/locale/uclibc/messages_members.h
++ CMESSAGES_CC=config/locale/uclibc/messages_members.cc
++ CMONEY_CC=config/locale/uclibc/monetary_members.cc
++ CNUMERIC_CC=config/locale/uclibc/numeric_members.cc
++ CTIME_H=config/locale/uclibc/time_members.h
++ CTIME_CC=config/locale/uclibc/time_members.cc
++ CLOCALE_INTERNAL_H=config/locale/uclibc/c++locale_internal.h
++ ;;
+ esac
+
+ # This is where the testsuite looks for locale catalogs, using the
+Index: gcc-4.2.3/libstdc++-v3/include/c_compatibility/wchar.h
+===================================================================
+--- gcc-4.2.3.orig/libstdc++-v3/include/c_compatibility/wchar.h 2005-08-17 04:28:44.000000000 +0200
++++ gcc-4.2.3/libstdc++-v3/include/c_compatibility/wchar.h 2008-05-21 13:45:44.021288244 +0200
+@@ -101,7 +101,9 @@
+ using std::wmemcpy;
+ using std::wmemmove;
+ using std::wmemset;
++#if _GLIBCXX_HAVE_WCSFTIME
+ using std::wcsftime;
++#endif
+
+ #if _GLIBCXX_USE_C99
+ using std::wcstold;
+Index: gcc-4.2.3/libstdc++-v3/include/c_std/std_cwchar.h
+===================================================================
+--- gcc-4.2.3.orig/libstdc++-v3/include/c_std/std_cwchar.h 2006-12-07 10:33:51.000000000 +0100
++++ gcc-4.2.3/libstdc++-v3/include/c_std/std_cwchar.h 2008-05-21 13:45:44.021288244 +0200
+@@ -182,7 +182,9 @@
+ using ::wcscoll;
+ using ::wcscpy;
+ using ::wcscspn;
++#if _GLIBCXX_HAVE_WCSFTIME
+ using ::wcsftime;
++#endif
+ using ::wcslen;
+ using ::wcsncat;
+ using ::wcsncmp;
--- /dev/null
+Index: gcc-4.2.3/configure.in
+===================================================================
+--- gcc-4.2.3.orig/configure.in 2007-09-15 02:42:24.000000000 +0200
++++ gcc-4.2.3/configure.in 2008-05-21 13:45:54.101287819 +0200
+@@ -503,6 +503,9 @@
+ arm-*-riscix*)
+ noconfigdirs="$noconfigdirs ld target-libgloss ${libgcj}"
+ ;;
++ avr32-*-*)
++ noconfigdirs="$noconfigdirs target-libiberty target-libmudflap target-libffi ${libgcj}"
++ ;;
+ avr-*-*)
+ noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
+ ;;
+Index: gcc-4.2.3/gcc/builtins.c
+===================================================================
+--- gcc-4.2.3.orig/gcc/builtins.c 2008-01-23 11:38:21.000000000 +0100
++++ gcc-4.2.3/gcc/builtins.c 2008-05-21 13:45:54.109288559 +0200
+@@ -9223,7 +9223,7 @@
+
+ do
+ {
+- code = va_arg (ap, enum tree_code);
++ code = va_arg (ap, int);
+ switch (code)
+ {
+ case 0:
+Index: gcc-4.2.3/gcc/calls.c
+===================================================================
+--- gcc-4.2.3.orig/gcc/calls.c 2007-09-01 17:28:30.000000000 +0200
++++ gcc-4.2.3/gcc/calls.c 2008-05-21 13:45:54.117288181 +0200
+@@ -3447,7 +3447,7 @@
+ for (; count < nargs; count++)
+ {
+ rtx val = va_arg (p, rtx);
+- enum machine_mode mode = va_arg (p, enum machine_mode);
++ enum machine_mode mode = va_arg (p, int);
+
+ /* We cannot convert the arg value to the mode the library wants here;
+ must do it earlier where we know the signedness of the arg. */
+Index: gcc-4.2.3/gcc/config/avr32/avr32.c
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ gcc-4.2.3/gcc/config/avr32/avr32.c 2008-05-21 13:45:54.145288116 +0200
+@@ -0,0 +1,7060 @@
++/*
++ Target hooks and helper functions for AVR32.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++ Initial porting by Anders �dland.
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#include "config.h"
++#include "system.h"
++#include "coretypes.h"
++#include "tm.h"
++#include "rtl.h"
++#include "tree.h"
++#include "obstack.h"
++#include "regs.h"
++#include "hard-reg-set.h"
++#include "real.h"
++#include "insn-config.h"
++#include "conditions.h"
++#include "output.h"
++#include "insn-attr.h"
++#include "flags.h"
++#include "reload.h"
++#include "function.h"
++#include "expr.h"
++#include "optabs.h"
++#include "toplev.h"
++#include "recog.h"
++#include "ggc.h"
++#include "except.h"
++#include "c-pragma.h"
++#include "integrate.h"
++#include "tm_p.h"
++#include "langhooks.h"
++
++#include "target.h"
++#include "target-def.h"
++
++#include <ctype.h>
++
++/* Forward definitions of types. */
++typedef struct minipool_node Mnode;
++typedef struct minipool_fixup Mfix;
++
++/* Obstack for minipool constant handling. */
++static struct obstack minipool_obstack;
++static char *minipool_startobj;
++static rtx minipool_vector_label;
++
++/* True if we are currently building a constant table. */
++int making_const_table;
++
++/* Some forward function declarations */
++static unsigned long avr32_isr_value (tree);
++static unsigned long avr32_compute_func_type (void);
++static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *);
++static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *);
++static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args,
++ int flags, bool * no_add_attrs);
++static void avr32_reorg (void);
++bool avr32_return_in_msb (tree type);
++bool avr32_vector_mode_supported (enum machine_mode mode);
++static void avr32_init_libfuncs (void);
++
++
++static void
++avr32_add_gc_roots (void)
++ {
++ gcc_obstack_init (&minipool_obstack);
++ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
++ }
++
++
++/* List of all known AVR32 parts */
++static const struct part_type_s avr32_part_types[] = {
++ /* name, part_type, architecture type, macro */
++ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"},
++ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"},
++ {"ap7010", PART_TYPE_AVR32_AP7010, ARCH_TYPE_AVR32_AP, "__AVR32_AP7010__"},
++ {"ap7020", PART_TYPE_AVR32_AP7020, ARCH_TYPE_AVR32_AP, "__AVR32_AP7020__"},
++ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3A0256__"},
++ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3A0512__"},
++ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3A1128__"},
++ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3A1256__"},
++ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3A1512__"},
++ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B064__"},
++ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B0128__"},
++ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B0256__"},
++ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B164__"},
++ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B1128__"},
++ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UC,
++ "__AVR32_UC3B1256__"},
++ {NULL, 0, 0, NULL}
++};
++
++/* List of all known AVR32 architectures */
++static const struct arch_type_s avr32_arch_types[] = {
++ /* name, architecture type, microarchitecture type, feature flags, macro */
++ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B,
++ (FLAG_AVR32_HAS_DSP
++ | FLAG_AVR32_HAS_SIMD
++ | FLAG_AVR32_HAS_UNALIGNED_WORD
++ | FLAG_AVR32_HAS_CACHES
++ | FLAG_AVR32_HAS_BRANCH_PRED
++ | FLAG_AVR32_HAS_RETURN_STACK),
++ "__AVR32_AP__"},
++ {"uc", ARCH_TYPE_AVR32_UC, UARCH_TYPE_AVR32A,
++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW),
++ "__AVR32_UC__"},
++ {NULL, 0, 0, 0, NULL}
++};
++
++/* Default arch name */
++const char *avr32_arch_name = "ap";
++const char *avr32_part_name = "none";
++
++const struct part_type_s *avr32_part;
++const struct arch_type_s *avr32_arch;
++
++/* Set default target_flags. */
++#undef TARGET_DEFAULT_TARGET_FLAGS
++#define TARGET_DEFAULT_TARGET_FLAGS \
++ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION)
++
++void
++avr32_optimization_options (int level,
++ int size){
++ if (AVR32_ALWAYS_PIC)
++ flag_pic = 1;
++
++ /* Enable section anchors if optimization is enabled. */
++ if (level > 0 || size)
++ flag_section_anchors = 1;
++}
++
++/* Override command line options */
++void
++avr32_override_options (void)
++ {
++ const struct part_type_s *part;
++ const struct arch_type_s *arch;
++
++ /* Check if part type is set. */
++ for (part = avr32_part_types; part->name; part++)
++ if (strcmp (part->name, avr32_part_name) == 0)
++ break;
++
++ avr32_part = part;
++
++ if (!part->name)
++ {
++ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n",
++ avr32_part_name);
++ for (part = avr32_part_types; part->name; part++)
++ fprintf (stderr, "\t%s\n", part->name);
++ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE];
++ }
++
++ avr32_arch = &avr32_arch_types[avr32_part->arch_type];
++
++ /* If part was set to "none" then check if arch was set. */
++ if (strcmp (avr32_part->name, "none") == 0)
++ {
++ /* Check if arch type is set. */
++ for (arch = avr32_arch_types; arch->name; arch++)
++ if (strcmp (arch->name, avr32_arch_name) == 0)
++ break;
++
++ avr32_arch = arch;
++
++ if (!arch->name)
++ {
++ fprintf (stderr, "Unknown arch `%s' specified\nKnown arch names:\n",
++ avr32_arch_name);
++ for (arch = avr32_arch_types; arch->name; arch++)
++ fprintf (stderr, "\t%s\n", arch->name);
++ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP];
++ }
++ }
++
++ /* If optimization level is two or greater, then align start of loops to a
++ word boundary since this will allow folding the first insn of the loop.
++ Do this only for targets supporting branch prediction. */
++ if (optimize >= 2 && TARGET_BRANCH_PRED)
++ align_loops = 2;
++
++
++ /* Enable section anchors if optimization is enabled. */
++ if (optimize > 0 || optimize_size)
++ flag_section_anchors = 1;
++
++ /* Enable fast-float library if unsafe math optimizations
++ are used. */
++ if (flag_unsafe_math_optimizations)
++ target_flags |= MASK_FAST_FLOAT;
++
++ /* Check if we should set avr32_imm_in_const_pool
++ based on if caches are present or not. */
++ if ( avr32_imm_in_const_pool == -1 )
++ {
++ if ( TARGET_CACHES )
++ avr32_imm_in_const_pool = 1;
++ else
++ avr32_imm_in_const_pool = 0;
++ }
++
++ avr32_add_gc_roots ();
++ }
++
++
++/*
++If defined, a function that outputs the assembler code for entry to a
++function. The prologue is responsible for setting up the stack frame,
++initializing the frame pointer register, saving registers that must be
++saved, and allocating size additional bytes of storage for the
++local variables. size is an integer. file is a stdio
++stream to which the assembler code should be output.
++
++The label for the beginning of the function need not be output by this
++macro. That has already been done when the macro is run.
++
++To determine which registers to save, the macro can refer to the array
++regs_ever_live: element r is nonzero if hard register
++r is used anywhere within the function. This implies the function
++prologue should save register r, provided it is not one of the
++call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use
++regs_ever_live.)
++
++On machines that have ``register windows'', the function entry code does
++not save on the stack the registers that are in the windows, even if
++they are supposed to be preserved by function calls; instead it takes
++appropriate steps to ``push'' the register stack, if any non-call-used
++registers are used in the function.
++
++On machines where functions may or may not have frame-pointers, the
++function entry code must vary accordingly; it must set up the frame
++pointer if one is wanted, and not otherwise. To determine whether a
++frame pointer is in wanted, the macro can refer to the variable
++frame_pointer_needed. The variable's value will be 1 at run
++time in a function that needs a frame pointer. (see Elimination).
++
++The function entry code is responsible for allocating any stack space
++required for the function. This stack space consists of the regions
++listed below. In most cases, these regions are allocated in the
++order listed, with the last listed region closest to the top of the
++stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and
++the highest address if it is not defined). You can use a different order
++for a machine if doing so is more convenient or required for
++compatibility reasons. Except in cases where required by standard
++or by a debugger, there is no reason why the stack layout used by GCC
++need agree with that used by other compilers for a machine.
++ */
++
++#undef TARGET_ASM_FUNCTION_PROLOGUE
++#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue
++
++
++#undef TARGET_DEFAULT_SHORT_ENUMS
++#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false
++
++#undef TARGET_PROMOTE_FUNCTION_ARGS
++#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
++
++#undef TARGET_PROMOTE_FUNCTION_RETURN
++#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
++
++#undef TARGET_PROMOTE_PROTOTYPES
++#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
++
++#undef TARGET_MUST_PASS_IN_STACK
++#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack
++
++#undef TARGET_PASS_BY_REFERENCE
++#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference
++
++#undef TARGET_STRICT_ARGUMENT_NAMING
++#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming
++
++#undef TARGET_VECTOR_MODE_SUPPORTED_P
++#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported
++
++#undef TARGET_RETURN_IN_MEMORY
++#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory
++
++#undef TARGET_RETURN_IN_MSB
++#define TARGET_RETURN_IN_MSB avr32_return_in_msb
++
++#undef TARGET_ARG_PARTIAL_BYTES
++#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes
++
++#undef TARGET_STRIP_NAME_ENCODING
++#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding
++
++#define streq(string1, string2) (strcmp (string1, string2) == 0)
++
++#undef TARGET_NARROW_VOLATILE_BITFIELD
++#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false
++
++#undef TARGET_ATTRIBUTE_TABLE
++#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table
++
++#undef TARGET_COMP_TYPE_ATTRIBUTES
++#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes
++
++
++#undef TARGET_RTX_COSTS
++#define TARGET_RTX_COSTS avr32_rtx_costs
++
++#undef TARGET_CANNOT_FORCE_CONST_MEM
++#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem
++
++#undef TARGET_ASM_INTEGER
++#define TARGET_ASM_INTEGER avr32_assemble_integer
++
++#undef TARGET_FUNCTION_VALUE
++#define TARGET_FUNCTION_VALUE avr32_function_value
++
++#undef TARGET_MIN_ANCHOR_OFFSET
++#define TARGET_MIN_ANCHOR_OFFSET (0)
++
++#undef TARGET_MAX_ANCHOR_OFFSET
++#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1)
++
++
++/*
++ * Switches to the appropriate section for output of constant pool
++ * entry x in mode. You can assume that x is some kind of constant in
++ * RTL. The argument mode is redundant except in the case of a
++ * const_int rtx. Select the section by calling readonly_data_ section
++ * or one of the alternatives for other sections. align is the
++ * constant alignment in bits.
++ *
++ * The default version of this function takes care of putting symbolic
++ * constants in flag_ pic mode in data_section and everything else in
++ * readonly_data_section.
++ */
++//#undef TARGET_ASM_SELECT_RTX_SECTION
++//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section
++
++
++/*
++ * If non-null, this hook performs a target-specific pass over the
++ * instruction stream. The compiler will run it at all optimization
++ * levels, just before the point at which it normally does
++ * delayed-branch scheduling.
++ *
++ * The exact purpose of the hook varies from target to target. Some
++ * use it to do transformations that are necessary for correctness,
++ * such as laying out in-function constant pools or avoiding hardware
++ * hazards. Others use it as an opportunity to do some
++ * machine-dependent optimizations.
++ *
++ * You need not implement the hook if it has nothing to do. The
++ * default definition is null.
++ */
++#undef TARGET_MACHINE_DEPENDENT_REORG
++#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg
++
++/* Target hook for assembling integer objects.
++ Need to handle integer vectors */
++static bool
++avr32_assemble_integer (rtx x, unsigned int size, int aligned_p)
++ {
++ if (avr32_vector_mode_supported (GET_MODE (x)))
++ {
++ int i, units;
++
++ if (GET_CODE (x) != CONST_VECTOR)
++ abort ();
++
++ units = CONST_VECTOR_NUNITS (x);
++
++ switch (GET_MODE (x))
++ {
++ case V2HImode:
++ size = 2;
++ break;
++ case V4QImode:
++ size = 1;
++ break;
++ default:
++ abort ();
++ }
++
++ for (i = 0; i < units; i++)
++ {
++ rtx elt;
++
++ elt = CONST_VECTOR_ELT (x, i);
++ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1);
++ }
++
++ return true;
++ }
++
++ return default_assemble_integer (x, size, aligned_p);
++ }
++
++/*
++ * This target hook describes the relative costs of RTL expressions.
++ *
++ * The cost may depend on the precise form of the expression, which is
++ * available for examination in x, and the rtx code of the expression
++ * in which it is contained, found in outer_code. code is the
++ * expression code--redundant, since it can be obtained with GET_CODE
++ * (x).
++ *
++ * In implementing this hook, you can use the construct COSTS_N_INSNS
++ * (n) to specify a cost equal to n fast instructions.
++ *
++ * On entry to the hook, *total contains a default estimate for the
++ * cost of the expression. The hook should modify this value as
++ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5)
++ * for multiplications, COSTS_N_INSNS (7) for division and modulus
++ * operations, and COSTS_N_INSNS (1) for all other operations.
++ *
++ * When optimizing for code size, i.e. when optimize_size is non-zero,
++ * this target hook should be used to estimate the relative size cost
++ * of an expression, again relative to COSTS_N_INSNS.
++ *
++ * The hook returns true when all subexpressions of x have been
++ * processed, and false when rtx_cost should recurse.
++ */
++
++/* Worker routine for avr32_rtx_costs. */
++static inline int
++avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED,
++ enum rtx_code outer ATTRIBUTE_UNUSED)
++ {
++ enum machine_mode mode = GET_MODE (x);
++
++ switch (GET_CODE (x))
++ {
++ case MEM:
++ /* Using pre decrement / post increment memory operations on the
++ avr32_uc architecture means that two writebacks must be performed
++ and hence two cycles are needed. */
++ if (!optimize_size
++ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD
++ && avr32_arch->arch_type == ARCH_TYPE_AVR32_UC
++ && (GET_CODE (XEXP (x, 0)) == PRE_DEC
++ || GET_CODE (XEXP (x, 0)) == POST_INC))
++ return COSTS_N_INSNS (5);
++
++ /* Memory costs quite a lot for the first word, but subsequent words
++ load at the equivalent of a single insn each. */
++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
++ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD));
++
++ return COSTS_N_INSNS (4);
++ case SYMBOL_REF:
++ case CONST:
++ /* These are valid for the pseudo insns: lda.w and call which operates
++ on direct addresses. We assume that the cost of a lda.w is the same
++ as the cost of a ld.w insn. */
++ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1);
++ case DIV:
++ case MOD:
++ case UDIV:
++ case UMOD:
++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
++
++ case ROTATE:
++ case ROTATERT:
++ if (mode == TImode)
++ return COSTS_N_INSNS (100);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (10);
++ return COSTS_N_INSNS (4);
++ case ASHIFT:
++ case LSHIFTRT:
++ case ASHIFTRT:
++ case NOT:
++ if (mode == TImode)
++ return COSTS_N_INSNS (10);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (4);
++ return COSTS_N_INSNS (1);
++ case PLUS:
++ case MINUS:
++ case NEG:
++ case COMPARE:
++ case ABS:
++ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
++ return COSTS_N_INSNS (100);
++
++ if (mode == TImode)
++ return COSTS_N_INSNS (50);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (2);
++ return COSTS_N_INSNS (1);
++
++ case MULT:
++ {
++ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
++ return COSTS_N_INSNS (300);
++
++ if (mode == TImode)
++ return COSTS_N_INSNS (16);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (4);
++
++ if (mode == HImode)
++ return COSTS_N_INSNS (2);
++
++ return COSTS_N_INSNS (3);
++ }
++ case IF_THEN_ELSE:
++ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
++ return COSTS_N_INSNS (4);
++ return COSTS_N_INSNS (1);
++ case SIGN_EXTEND:
++ case ZERO_EXTEND:
++ /* Sign/Zero extensions of registers cost quite much since these
++ instrcutions only take one register operand which means that gcc
++ often must insert some move instrcutions */
++ if (mode == QImode || mode == HImode)
++ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1));
++ return COSTS_N_INSNS (4);
++ case UNSPEC:
++ /* divmod operations */
++ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL
++ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL)
++ {
++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
++ }
++ /* Fallthrough */
++ default:
++ return COSTS_N_INSNS (1);
++ }
++ }
++
++static bool
++avr32_rtx_costs (rtx x, int code, int outer_code, int *total)
++ {
++ *total = avr32_rtx_costs_1 (x, code, outer_code);
++ return true;
++ }
++
++
++bool
++avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
++ {
++ /* Do not want symbols in the constant pool when compiling pic or if using
++ address pseudo instructions. */
++ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
++ && avr32_find_symbol (x) != NULL_RTX);
++ }
++
++
++/* Table of machine attributes. */
++const struct attribute_spec avr32_attribute_table[] = {
++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
++ /* Interrupt Service Routines have special prologue and epilogue
++ requirements. */
++ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute},
++ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute},
++ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute},
++ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute},
++ {NULL, 0, 0, false, false, false, NULL}
++};
++
++
++typedef struct
++{
++ const char *const arg;
++ const unsigned long return_value;
++}
++isr_attribute_arg;
++
++static const isr_attribute_arg isr_attribute_args[] = {
++ {"FULL", AVR32_FT_ISR_FULL},
++ {"full", AVR32_FT_ISR_FULL},
++ {"HALF", AVR32_FT_ISR_HALF},
++ {"half", AVR32_FT_ISR_HALF},
++ {"NONE", AVR32_FT_ISR_NONE},
++ {"none", AVR32_FT_ISR_NONE},
++ {"UNDEF", AVR32_FT_ISR_NONE},
++ {"undef", AVR32_FT_ISR_NONE},
++ {"SWI", AVR32_FT_ISR_NONE},
++ {"swi", AVR32_FT_ISR_NONE},
++ {NULL, AVR32_FT_ISR_NONE}
++};
++
++/* Returns the (interrupt) function type of the current
++ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */
++
++static unsigned long
++avr32_isr_value (tree argument)
++ {
++ const isr_attribute_arg *ptr;
++ const char *arg;
++
++ /* No argument - default to ISR_NONE. */
++ if (argument == NULL_TREE)
++ return AVR32_FT_ISR_NONE;
++
++ /* Get the value of the argument. */
++ if (TREE_VALUE (argument) == NULL_TREE
++ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
++ return AVR32_FT_UNKNOWN;
++
++ arg = TREE_STRING_POINTER (TREE_VALUE (argument));
++
++ /* Check it against the list of known arguments. */
++ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
++ if (streq (arg, ptr->arg))
++ return ptr->return_value;
++
++ /* An unrecognized interrupt type. */
++ return AVR32_FT_UNKNOWN;
++ }
++
++
++
++/*
++These hooks specify assembly directives for creating certain kinds
++of integer object. The TARGET_ASM_BYTE_OP directive creates a
++byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an
++aligned two-byte object, and so on. Any of the hooks may be
++NULL, indicating that no suitable directive is available.
++
++The compiler will print these strings at the start of a new line,
++followed immediately by the object's initial value. In most cases,
++the string should contain a tab, a pseudo-op, and then another tab.
++ */
++#undef TARGET_ASM_BYTE_OP
++#define TARGET_ASM_BYTE_OP "\t.byte\t"
++#undef TARGET_ASM_ALIGNED_HI_OP
++#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t"
++#undef TARGET_ASM_ALIGNED_SI_OP
++#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t"
++#undef TARGET_ASM_ALIGNED_DI_OP
++#define TARGET_ASM_ALIGNED_DI_OP NULL
++#undef TARGET_ASM_ALIGNED_TI_OP
++#define TARGET_ASM_ALIGNED_TI_OP NULL
++#undef TARGET_ASM_UNALIGNED_HI_OP
++#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
++#undef TARGET_ASM_UNALIGNED_SI_OP
++#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t"
++#undef TARGET_ASM_UNALIGNED_DI_OP
++#define TARGET_ASM_UNALIGNED_DI_OP NULL
++#undef TARGET_ASM_UNALIGNED_TI_OP
++#define TARGET_ASM_UNALIGNED_TI_OP NULL
++
++#undef TARGET_ASM_OUTPUT_MI_THUNK
++#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk
++
++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
++
++static void
++avr32_output_mi_thunk (FILE * file,
++ tree thunk ATTRIBUTE_UNUSED,
++ HOST_WIDE_INT delta,
++ HOST_WIDE_INT vcall_offset, tree function)
++ {
++ int mi_delta = delta;
++ int this_regno =
++ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ?
++ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12));
++
++
++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
++ || vcall_offset
++ || flag_pic)
++ {
++ fputs ("\tpushm\tlr\n", file);
++ }
++
++
++ if (mi_delta != 0)
++ {
++ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21"))
++ {
++ fprintf (file, "\tsub\t%s, -0x%x\n", reg_names[this_regno],
++ mi_delta);
++ }
++ else
++ {
++ /* Immediate is larger than k21 we must make us a temp register by
++ pushing a register to the stack. */
++ fprintf (file, "\tmov\tlr, lo(%x)\n", mi_delta);
++ fprintf (file, "\torh\tlr, hi(%x)\n", mi_delta);
++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
++ }
++ }
++
++
++ if (vcall_offset != 0)
++ {
++ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]);
++ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset);
++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
++ }
++
++
++ if ( (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
++ || vcall_offset)
++ && !flag_pic )
++ {
++ fputs ("\tpopm\tlr\n", file);
++ }
++
++ if (flag_pic)
++ {
++ /* Load the got into lr and then load the pointer
++ to the function from the got and put it on the stack.
++ We can then call the function and restore lr by issuing
++ a doubleword load from the stack. We do not use a popm/ldm
++ since it will be treated as a return and might need a flushing
++ of the return-stack if available. */
++ rtx label = gen_label_rtx ();
++ /* Load the got. */
++ fputs ("\tlddpc\tlr, 0f\n", file);
++ (*targetm.asm_out.internal_label) (file, "L",
++ CODE_LABEL_NUMBER (label));
++ fputs ("\trsub\tlr, pc\n", file);
++ /* Load the function pointer. */
++ fputs ("\tld.w\tlr, lr[", file);
++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
++ fputs ("@got]\n", file);
++ /* Push the function pointer on the stack.*/
++ fputs ("\tpushm\tlr\n", file);
++ /* Restore the old lr value and load the function pointer into
++ pc. */
++ fputs ("\tld.d\tlr,sp++\n", file);
++ fprintf (file, "\t.align 2\n");
++ fprintf (file, "0:\t.long\t.L%d - _GLOBAL_OFFSET_TABLE_\n", CODE_LABEL_NUMBER (label));
++ }
++ else
++ {
++ fprintf (file, "\tlddpc\tpc, 0f\n");
++ fprintf (file, "\t.align 2\n");
++ fputs ("0:\t.long\t", file);
++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
++ fputc ('\n', file);
++ }
++ }
++
++/* Implements target hook vector_mode_supported. */
++bool
++avr32_vector_mode_supported (enum machine_mode mode)
++ {
++ if ((mode == V2HImode) || (mode == V4QImode))
++ return true;
++
++ return false;
++ }
++
++
++#undef TARGET_INIT_LIBFUNCS
++#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs
++
++#undef TARGET_INIT_BUILTINS
++#define TARGET_INIT_BUILTINS avr32_init_builtins
++
++#undef TARGET_EXPAND_BUILTIN
++#define TARGET_EXPAND_BUILTIN avr32_expand_builtin
++
++tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int,
++void_ftype_ptr_int;
++tree void_ftype_int, void_ftype_void, int_ftype_ptr_int;
++tree short_ftype_short, int_ftype_int_short, int_ftype_short_short,
++short_ftype_short_short;
++tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short;
++tree void_ftype_int_int_int_int_int, void_ftype_int_int_int;
++tree longlong_ftype_int_int, void_ftype_int_int_longlong;
++tree int_ftype_int_int_int, longlong_ftype_longlong_int_short;
++tree longlong_ftype_longlong_short_short, int_ftype_int_short_short;
++
++#define def_builtin(NAME, TYPE, CODE) \
++ lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
++ BUILT_IN_MD, NULL, NULL_TREE)
++
++#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
++ do \
++ { \
++ if ((MASK)) \
++ lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
++ BUILT_IN_MD, NULL, NULL_TREE); \
++ } \
++ while (0)
++
++struct builtin_description
++{
++ const unsigned int mask;
++ const enum insn_code icode;
++ const char *const name;
++ const int code;
++ const enum rtx_code comparison;
++ const unsigned int flag;
++ const tree *ftype;
++};
++
++static const struct builtin_description bdesc_2arg[] = {
++#define DSP_BUILTIN(code, builtin, ftype) \
++ { 1, CODE_FOR_##code, "__builtin_" #code , \
++ AVR32_BUILTIN_##builtin, 0, 0, ftype }
++
++ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short),
++ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short),
++ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short),
++ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short),
++ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short),
++ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short),
++ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short),
++ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int),
++ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int),
++ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short),
++ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short)
++};
++
++
++void
++avr32_init_builtins (void)
++ {
++ unsigned int i;
++ const struct builtin_description *d;
++ tree endlink = void_list_node;
++ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink);
++ tree longlong_endlink =
++ tree_cons (NULL_TREE, long_long_integer_type_node, endlink);
++ tree short_endlink =
++ tree_cons (NULL_TREE, short_integer_type_node, endlink);
++ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink);
++
++ /* int func (int) */
++ int_ftype_int = build_function_type (integer_type_node, int_endlink);
++
++ /* short func (short) */
++ short_ftype_short
++ = build_function_type (short_integer_type_node, short_endlink);
++
++ /* short func (short, short) */
++ short_ftype_short_short
++ = build_function_type (short_integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* long long func (long long, short, short) */
++ longlong_ftype_longlong_short_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, long_long_integer_type_node,
++ tree_cons (NULL_TREE,
++ short_integer_type_node,
++ short_endlink)));
++
++ /* long long func (short, short) */
++ longlong_ftype_short_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* int func (int, int) */
++ int_ftype_int_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* long long func (int, int) */
++ longlong_ftype_int_int
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* long long int func (long long, int, short) */
++ longlong_ftype_longlong_int_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink)));
++
++ /* long long int func (int, short) */
++ longlong_ftype_int_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink));
++
++ /* int func (int, short, short) */
++ int_ftype_int_short_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE,
++ short_integer_type_node,
++ short_endlink)));
++
++ /* int func (short, short) */
++ int_ftype_short_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* int func (int, short) */
++ int_ftype_int_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink));
++
++ /* void func (int, int) */
++ void_ftype_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* void func (int, int, int) */
++ void_ftype_int_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink)));
++
++ /* void func (int, int, long long) */
++ void_ftype_int_int_longlong
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ longlong_endlink)));
++
++ /* void func (int, int, int, int, int) */
++ void_ftype_int_int_int_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE,
++ integer_type_node,
++ tree_cons
++ (NULL_TREE,
++ integer_type_node,
++ int_endlink)))));
++
++ /* void func (void *, int) */
++ void_ftype_ptr_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
++
++ /* void func (int) */
++ void_ftype_int = build_function_type (void_type_node, int_endlink);
++
++ /* void func (void) */
++ void_ftype_void = build_function_type (void_type_node, void_endlink);
++
++ /* int func (void) */
++ int_ftype_void = build_function_type (integer_type_node, void_endlink);
++
++ /* int func (void *, int) */
++ int_ftype_ptr_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
++
++ /* int func (int, int, int) */
++ int_ftype_int_int_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink)));
++
++ /* Initialize avr32 builtins. */
++ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR);
++ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR);
++ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR);
++ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR);
++ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE);
++ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC);
++ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR);
++ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS);
++ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW);
++ def_builtin ("__builtin_breakpoint", void_ftype_void,
++ AVR32_BUILTIN_BREAKPOINT);
++ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG);
++ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI);
++ def_builtin ("__builtin_bswap_16", short_ftype_short,
++ AVR32_BUILTIN_BSWAP16);
++ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32);
++ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int,
++ AVR32_BUILTIN_COP);
++ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W);
++ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int,
++ AVR32_BUILTIN_MVRC_W);
++ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int,
++ AVR32_BUILTIN_MVCR_D);
++ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong,
++ AVR32_BUILTIN_MVRC_D);
++ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS);
++ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU);
++ def_builtin ("__builtin_satrnds", int_ftype_int_int_int,
++ AVR32_BUILTIN_SATRNDS);
++ def_builtin ("__builtin_satrndu", int_ftype_int_int_int,
++ AVR32_BUILTIN_SATRNDU);
++ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR);
++ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR);
++ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short,
++ AVR32_BUILTIN_MACSATHH_W);
++ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short,
++ AVR32_BUILTIN_MACWH_D);
++ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short,
++ AVR32_BUILTIN_MACHH_D);
++
++ /* Add all builtins that are more or less simple operations on two
++ operands. */
++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
++ {
++ /* Use one of the operands; the target can have a different mode for
++ mask-generating compares. */
++
++ if (d->name == 0)
++ continue;
++
++ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code);
++ }
++ }
++
++
++/* Subroutine of avr32_expand_builtin to take care of binop insns. */
++
++static rtx
++avr32_expand_binop_builtin (enum insn_code icode, tree arglist, rtx target)
++ {
++ rtx pat;
++ tree arg0 = TREE_VALUE (arglist);
++ tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ enum machine_mode tmode = insn_data[icode].operand[0].mode;
++ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
++ enum machine_mode mode1 = insn_data[icode].operand[2].mode;
++
++ if (!target
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ /* In case the insn wants input operands in modes different from the
++ result, abort. */
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ /* If op0 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op0))
++ op0 = convert_to_mode (mode0, op0, 1);
++ else
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op1))
++ op1 = convert_to_mode (mode1, op1, 1);
++ else
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ }
++
++/* Expand an expression EXP that calls a built-in function,
++ with result going to TARGET if that's convenient
++ (and in mode MODE if that's convenient).
++ SUBTARGET may be used as the target for computing one of EXP's operands.
++ IGNORE is nonzero if the value is to be ignored. */
++
++rtx
++avr32_expand_builtin (tree exp,
++ rtx target,
++ rtx subtarget ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ int ignore ATTRIBUTE_UNUSED)
++ {
++ const struct builtin_description *d;
++ unsigned int i;
++ enum insn_code icode;
++ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
++ tree arglist = TREE_OPERAND (exp, 1);
++ tree arg0, arg1, arg2;
++ rtx op0, op1, op2, pat;
++ enum machine_mode tmode, mode0, mode1;
++ enum machine_mode arg0_mode;
++ int fcode = DECL_FUNCTION_CODE (fndecl);
++
++ switch (fcode)
++ {
++ default:
++ break;
++
++ case AVR32_BUILTIN_SATS:
++ case AVR32_BUILTIN_SATU:
++ case AVR32_BUILTIN_SATRNDS:
++ case AVR32_BUILTIN_SATRNDU:
++ {
++ const char *fname;
++ switch (fcode)
++ {
++ default:
++ case AVR32_BUILTIN_SATS:
++ icode = CODE_FOR_sats;
++ fname = "sats";
++ break;
++ case AVR32_BUILTIN_SATU:
++ icode = CODE_FOR_satu;
++ fname = "satu";
++ break;
++ case AVR32_BUILTIN_SATRNDS:
++ icode = CODE_FOR_satrnds;
++ fname = "satrnds";
++ break;
++ case AVR32_BUILTIN_SATRNDU:
++ icode = CODE_FOR_satrndu;
++ fname = "satrndu";
++ break;
++ }
++
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
++
++ tmode = insn_data[icode].operand[0].mode;
++
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0)))
++ {
++ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0);
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error ("Parameter 2 to __builtin_%s should be a constant number.",
++ fname);
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode))
++ {
++ error ("Parameter 3 to __builtin_%s should be a constant number.",
++ fname);
++ return NULL_RTX;
++ }
++
++ emit_move_insn (target, op0);
++ pat = GEN_FCN (icode) (target, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MUSTR:
++ icode = CODE_FOR_mustr;
++ tmode = insn_data[icode].operand[0].mode;
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++
++ case AVR32_BUILTIN_MFSR:
++ icode = CODE_FOR_mfsr;
++ arg0 = TREE_VALUE (arglist);
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mfsr must be a constant number");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_MTSR:
++ icode = CODE_FOR_mtsr;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mtsr must be a constant number");
++ return gen_reg_rtx (mode0);
++ }
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ op1 = copy_to_mode_reg (mode1, op1);
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_MFDR:
++ icode = CODE_FOR_mfdr;
++ arg0 = TREE_VALUE (arglist);
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mfdr must be a constant number");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_MTDR:
++ icode = CODE_FOR_mtdr;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mtdr must be a constant number");
++ return gen_reg_rtx (mode0);
++ }
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ op1 = copy_to_mode_reg (mode1, op1);
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_CACHE:
++ icode = CODE_FOR_cache;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ {
++ error ("Parameter 2 to __builtin_cache must be a constant number");
++ return gen_reg_rtx (mode1);
++ }
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ op0 = copy_to_mode_reg (mode0, op0);
++
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_SYNC:
++ case AVR32_BUILTIN_MUSFR:
++ {
++ const char *fname;
++ switch (fcode)
++ {
++ default:
++ case AVR32_BUILTIN_SYNC:
++ icode = CODE_FOR_sync;
++ fname = "sync";
++ break;
++ case AVR32_BUILTIN_MUSFR:
++ icode = CODE_FOR_musfr;
++ fname = "musfr";
++ break;
++ }
++
++ arg0 = TREE_VALUE (arglist);
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ mode0 = insn_data[icode].operand[0].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ if (icode == CODE_FOR_musfr)
++ op0 = copy_to_mode_reg (mode0, op0);
++ else
++ {
++ error ("Parameter to __builtin_%s is illegal.", fname);
++ return gen_reg_rtx (mode0);
++ }
++ }
++ pat = GEN_FCN (icode) (op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ }
++ case AVR32_BUILTIN_TLBR:
++ icode = CODE_FOR_tlbr;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_TLBS:
++ icode = CODE_FOR_tlbs;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_TLBW:
++ icode = CODE_FOR_tlbw;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_BREAKPOINT:
++ icode = CODE_FOR_breakpoint;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_XCHG:
++ icode = CODE_FOR_sync_lock_test_and_setsi;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++
++ op0 = gen_rtx_MEM (SImode, op0);
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error
++ ("Parameter 1 to __builtin_xchg must be a pointer to an integer.");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_LDXI:
++ icode = CODE_FOR_ldxi;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++
++ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode))
++ {
++ error
++ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)");
++ return gen_reg_rtx (mode0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_BSWAP16:
++ {
++ icode = CODE_FOR_bswap_16;
++ arg0 = TREE_VALUE (arglist);
++ arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
++ mode0 = insn_data[icode].operand[1].mode;
++ if (arg0_mode != mode0)
++ arg0 = build1 (NOP_EXPR,
++ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0);
++
++ op0 = expand_expr (arg0, NULL_RTX, HImode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ {
++ target = gen_reg_rtx (tmode);
++ }
++
++
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_BSWAP32:
++ {
++ icode = CODE_FOR_bswap_32;
++ arg0 = TREE_VALUE (arglist);
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MVCR_W:
++ case AVR32_BUILTIN_MVCR_D:
++ {
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++
++ if (fcode == AVR32_BUILTIN_MVCR_W)
++ icode = CODE_FOR_mvcrsi;
++ else
++ icode = CODE_FOR_mvcrdi;
++
++ tmode = insn_data[icode].operand[0].mode;
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode))
++ {
++ error
++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode))
++ {
++ error
++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MACSATHH_W:
++ case AVR32_BUILTIN_MACWH_D:
++ case AVR32_BUILTIN_MACHH_D:
++ {
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
++
++ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w :
++ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d :
++ CODE_FOR_machh_d);
++
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++
++ if (!target
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode))
++ {
++ /* If op0 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op0))
++ op0 = convert_to_mode (tmode, op0, 1);
++ else
++ op0 = copy_to_mode_reg (tmode, op0);
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op1))
++ op1 = convert_to_mode (mode0, op1, 1);
++ else
++ op1 = copy_to_mode_reg (mode0, op1);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op2))
++ op2 = convert_to_mode (mode1, op2, 1);
++ else
++ op2 = copy_to_mode_reg (mode1, op2);
++ }
++
++ emit_move_insn (target, op0);
++
++ pat = GEN_FCN (icode) (target, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ }
++ case AVR32_BUILTIN_MVRC_W:
++ case AVR32_BUILTIN_MVRC_D:
++ {
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
++
++ if (fcode == AVR32_BUILTIN_MVRC_W)
++ icode = CODE_FOR_mvrcsi;
++ else
++ icode = CODE_FOR_mvrcdi;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
++ {
++ error ("Parameter 1 is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error ("Parameter 2 is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (GET_CODE (op2) == CONST_INT
++ || GET_CODE (op2) == CONST
++ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF)
++ {
++ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2)))
++ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
++
++
++ pat = GEN_FCN (icode) (op0, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return NULL_RTX;
++ }
++ case AVR32_BUILTIN_COP:
++ {
++ rtx op3, op4;
++ tree arg3, arg4;
++ icode = CODE_FOR_cop;
++ arg0 = TREE_VALUE (arglist);
++ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
++ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
++ arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
++ arg4 =
++ TREE_VALUE (TREE_CHAIN
++ (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist)))));
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
++ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
++ op3 = expand_expr (arg3, NULL_RTX, VOIDmode, 0);
++ op4 = expand_expr (arg4, NULL_RTX, VOIDmode, 0);
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
++ {
++ error
++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error
++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode))
++ {
++ error
++ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode))
++ {
++ error
++ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode))
++ {
++ error
++ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation.");
++ error ("Number should be between 0 and 127.");
++ return NULL_RTX;
++ }
++
++ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ }
++
++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
++ if (d->code == fcode)
++ return avr32_expand_binop_builtin (d->icode, arglist, target);
++
++
++ /* @@@ Should really do something sensible here. */
++ return NULL_RTX;
++ }
++
++
++/* Handle an "interrupt" or "isr" attribute;
++ arguments as in struct attribute_spec.handler. */
++
++static tree
++avr32_handle_isr_attribute (tree * node, tree name, tree args,
++ int flags, bool * no_add_attrs)
++ {
++ if (DECL_P (*node))
++ {
++ if (TREE_CODE (*node) != FUNCTION_DECL)
++ {
++ warning ("`%s' attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++ /* FIXME: the argument if any is checked for type attributes; should it
++ be checked for decl ones? */
++ }
++ else
++ {
++ if (TREE_CODE (*node) == FUNCTION_TYPE
++ || TREE_CODE (*node) == METHOD_TYPE)
++ {
++ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN)
++ {
++ warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++ }
++ else if (TREE_CODE (*node) == POINTER_TYPE
++ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
++ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
++ && avr32_isr_value (args) != AVR32_FT_UNKNOWN)
++ {
++ *node = build_variant_type_copy (*node);
++ TREE_TYPE (*node) = build_type_attribute_variant
++ (TREE_TYPE (*node),
++ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
++ *no_add_attrs = true;
++ }
++ else
++ {
++ /* Possibly pass this attribute on from the type to a decl. */
++ if (flags & ((int) ATTR_FLAG_DECL_NEXT
++ | (int) ATTR_FLAG_FUNCTION_NEXT
++ | (int) ATTR_FLAG_ARRAY_NEXT))
++ {
++ *no_add_attrs = true;
++ return tree_cons (name, args, NULL_TREE);
++ }
++ else
++ {
++ warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
++ }
++ }
++ }
++
++ return NULL_TREE;
++ }
++
++/* Handle an attribute requiring a FUNCTION_DECL;
++ arguments as in struct attribute_spec.handler. */
++static tree
++avr32_handle_fndecl_attribute (tree * node, tree name,
++ tree args ATTRIBUTE_UNUSED,
++ int flags ATTRIBUTE_UNUSED,
++ bool * no_add_attrs)
++ {
++ if (TREE_CODE (*node) != FUNCTION_DECL)
++ {
++ warning ("%qs attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++
++ return NULL_TREE;
++ }
++
++
++/* Handle an acall attribute;
++ arguments as in struct attribute_spec.handler. */
++
++static tree
++avr32_handle_acall_attribute (tree * node, tree name,
++ tree args ATTRIBUTE_UNUSED,
++ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
++ {
++ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE)
++ {
++ warning ("`%s' attribute not yet supported...",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ return NULL_TREE;
++ }
++
++ warning ("`%s' attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ return NULL_TREE;
++ }
++
++
++/* Return 0 if the attributes for two types are incompatible, 1 if they
++ are compatible, and 2 if they are nearly compatible (which causes a
++ warning to be generated). */
++
++static int
++avr32_comp_type_attributes (tree type1, tree type2)
++ {
++ int acall1, acall2, isr1, isr2, naked1, naked2;
++
++ /* Check for mismatch of non-default calling convention. */
++ if (TREE_CODE (type1) != FUNCTION_TYPE)
++ return 1;
++
++ /* Check for mismatched call attributes. */
++ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL;
++ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL;
++ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL;
++ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL;
++ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
++ if (!isr1)
++ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
++
++ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
++ if (!isr2)
++ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
++
++ if ((acall1 && isr2)
++ || (acall2 && isr1) || (naked1 && isr2) || (naked2 && isr1))
++ return 0;
++
++ return 1;
++ }
++
++
++/* Computes the type of the current function. */
++
++static unsigned long
++avr32_compute_func_type (void)
++ {
++ unsigned long type = AVR32_FT_UNKNOWN;
++ tree a;
++ tree attr;
++
++ if (TREE_CODE (current_function_decl) != FUNCTION_DECL)
++ abort ();
++
++ /* Decide if the current function is volatile. Such functions never
++ return, and many memory cycles can be saved by not storing register
++ values that will never be needed again. This optimization was added to
++ speed up context switching in a kernel application. */
++ if (optimize > 0
++ && TREE_NOTHROW (current_function_decl)
++ && TREE_THIS_VOLATILE (current_function_decl))
++ type |= AVR32_FT_VOLATILE;
++
++ if (cfun->static_chain_decl != NULL)
++ type |= AVR32_FT_NESTED;
++
++ attr = DECL_ATTRIBUTES (current_function_decl);
++
++ a = lookup_attribute ("isr", attr);
++ if (a == NULL_TREE)
++ a = lookup_attribute ("interrupt", attr);
++
++ if (a == NULL_TREE)
++ type |= AVR32_FT_NORMAL;
++ else
++ type |= avr32_isr_value (TREE_VALUE (a));
++
++
++ a = lookup_attribute ("acall", attr);
++ if (a != NULL_TREE)
++ type |= AVR32_FT_ACALL;
++
++ a = lookup_attribute ("naked", attr);
++ if (a != NULL_TREE)
++ type |= AVR32_FT_NAKED;
++
++ return type;
++ }
++
++/* Returns the type of the current function. */
++
++static unsigned long
++avr32_current_func_type (void)
++ {
++ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN)
++ cfun->machine->func_type = avr32_compute_func_type ();
++
++ return cfun->machine->func_type;
++ }
++
++/*
++ This target hook should return true if we should not pass type solely
++ in registers. The file expr.h defines a definition that is usually appropriate,
++ refer to expr.h for additional documentation.
++ */
++bool
++avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type)
++ {
++ if (type && AGGREGATE_TYPE_P (type)
++ /* If the alignment is less than the size then pass in the struct on
++ the stack. */
++ && ((unsigned int) TYPE_ALIGN_UNIT (type) <
++ (unsigned int) int_size_in_bytes (type))
++ /* If we support unaligned word accesses then structs of size 4 and 8
++ can have any alignment and still be passed in registers. */
++ && !(TARGET_UNALIGNED_WORD
++ && (int_size_in_bytes (type) == 4
++ || int_size_in_bytes (type) == 8))
++ /* Double word structs need only a word alignment. */
++ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4))
++ return true;
++
++ if (type && AGGREGATE_TYPE_P (type)
++ /* Structs of size 3,5,6,7 are always passed in registers. */
++ && (int_size_in_bytes (type) == 3
++ || int_size_in_bytes (type) == 5
++ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7))
++ return true;
++
++
++ return (type && TREE_ADDRESSABLE (type));
++ }
++
++
++bool
++avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
++ {
++ return true;
++ }
++
++/*
++ This target hook should return true if an argument at the position indicated
++ by cum should be passed by reference. This predicate is queried after target
++ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type).
++
++ If the hook returns true, a copy of that argument is made in memory and a
++ pointer to the argument is passed instead of the argument itself. The pointer
++ is passed in whatever way is appropriate for passing a pointer to that type.
++ */
++bool
++avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type, bool named ATTRIBUTE_UNUSED)
++ {
++ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST));
++ }
++
++static int
++avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type ATTRIBUTE_UNUSED,
++ bool named ATTRIBUTE_UNUSED)
++ {
++ return 0;
++ }
++
++
++struct gcc_target targetm = TARGET_INITIALIZER;
++
++/*
++ Table used to convert from register number in the assembler instructions and
++ the register numbers used in gcc.
++ */
++const int avr32_function_arg_reglist[] = {
++ INTERNAL_REGNUM (12),
++ INTERNAL_REGNUM (11),
++ INTERNAL_REGNUM (10),
++ INTERNAL_REGNUM (9),
++ INTERNAL_REGNUM (8)
++};
++
++rtx avr32_compare_op0 = NULL_RTX;
++rtx avr32_compare_op1 = NULL_RTX;
++rtx avr32_compare_operator = NULL_RTX;
++rtx avr32_acc_cache = NULL_RTX;
++
++/*
++ Returns nonzero if it is allowed to store a value of mode mode in hard
++ register number regno.
++ */
++int
++avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode)
++ {
++ /* We allow only float modes in the fp-registers */
++ if (regnr >= FIRST_FP_REGNUM
++ && regnr <= LAST_FP_REGNUM && GET_MODE_CLASS (mode) != MODE_FLOAT)
++ {
++ return 0;
++ }
++
++ switch (mode)
++ {
++ case DImode: /* long long */
++ case DFmode: /* double */
++ case SCmode: /* __complex__ float */
++ case CSImode: /* __complex__ int */
++ if (regnr < 4)
++ { /* long long int not supported in r12, sp, lr
++ or pc. */
++ return 0;
++ }
++ else
++ {
++ if (regnr % 2) /* long long int has to be refered in even
++ registers. */
++ return 0;
++ else
++ return 1;
++ }
++ case CDImode: /* __complex__ long long */
++ case DCmode: /* __complex__ double */
++ case TImode: /* 16 bytes */
++ if (regnr < 7)
++ return 0;
++ else if (regnr % 2)
++ return 0;
++ else
++ return 1;
++ default:
++ return 1;
++ }
++ }
++
++
++int
++avr32_rnd_operands (rtx add, rtx shift)
++ {
++ if (GET_CODE (shift) == CONST_INT &&
++ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0)
++ {
++ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add))
++ return TRUE;
++ }
++
++ return FALSE;
++ }
++
++
++
++int
++avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str)
++ {
++ switch (c)
++ {
++ case 'K':
++ case 'I':
++ {
++ HOST_WIDE_INT min_value = 0, max_value = 0;
++ char size_str[3];
++ int const_size;
++
++ size_str[0] = str[2];
++ size_str[1] = str[3];
++ size_str[2] = '\0';
++ const_size = atoi (size_str);
++
++ if (toupper (str[1]) == 'U')
++ {
++ min_value = 0;
++ max_value = (1 << const_size) - 1;
++ }
++ else if (toupper (str[1]) == 'S')
++ {
++ min_value = -(1 << (const_size - 1));
++ max_value = (1 << (const_size - 1)) - 1;
++ }
++
++ if (c == 'I')
++ {
++ value = -value;
++ }
++
++ if (value >= min_value && value <= max_value)
++ {
++ return 1;
++ }
++ break;
++ }
++ case 'M':
++ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode);
++ }
++
++ return 0;
++ }
++
++
++/*Compute mask of which floating-point registers needs saving upon
++ entry to this function*/
++static unsigned long
++avr32_compute_save_fp_reg_mask (void)
++ {
++ unsigned long func_type = avr32_current_func_type ();
++ unsigned int save_reg_mask = 0;
++ unsigned int reg;
++ unsigned int max_reg = 7;
++ int save_all_call_used_regs = FALSE;
++
++ /* This only applies for hardware floating-point implementation. */
++ if (!TARGET_HARD_FLOAT)
++ return 0;
++
++ if (IS_INTERRUPT (func_type))
++ {
++
++ /* Interrupt functions must not corrupt any registers, even call
++ clobbered ones. If this is a leaf function we can just examine the
++ registers used by the RTL, but otherwise we have to assume that
++ whatever function is called might clobber anything, and so we have
++ to save all the call-clobbered registers as well. */
++ max_reg = 13;
++ save_all_call_used_regs = !current_function_is_leaf;
++ }
++
++ /* All used registers used must be saved */
++ for (reg = 0; reg <= max_reg; reg++)
++ if (regs_ever_live[INTERNAL_FP_REGNUM (reg)]
++ || (save_all_call_used_regs
++ && call_used_regs[INTERNAL_FP_REGNUM (reg)]))
++ save_reg_mask |= (1 << reg);
++
++ return save_reg_mask;
++ }
++
++/*Compute mask of registers which needs saving upon function entry */
++static unsigned long
++avr32_compute_save_reg_mask (int push)
++ {
++ unsigned long func_type;
++ unsigned int save_reg_mask = 0;
++ unsigned int reg;
++
++ func_type = avr32_current_func_type ();
++
++ if (IS_INTERRUPT (func_type))
++ {
++ unsigned int max_reg = 12;
++
++
++ /* Get the banking scheme for the interrupt */
++ switch (func_type)
++ {
++ case AVR32_FT_ISR_FULL:
++ max_reg = 0;
++ break;
++ case AVR32_FT_ISR_HALF:
++ max_reg = 7;
++ break;
++ case AVR32_FT_ISR_NONE:
++ max_reg = 12;
++ break;
++ }
++
++ /* Interrupt functions must not corrupt any registers, even call
++ clobbered ones. If this is a leaf function we can just examine the
++ registers used by the RTL, but otherwise we have to assume that
++ whatever function is called might clobber anything, and so we have
++ to save all the call-clobbered registers as well. */
++
++ /* Need not push the registers r8-r12 for AVR32A architectures, as this
++ is automatially done in hardware. We also do not have any shadow
++ registers. */
++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A)
++ {
++ max_reg = 7;
++ func_type = AVR32_FT_ISR_NONE;
++ }
++
++ /* All registers which are used and is not shadowed must be saved */
++ for (reg = 0; reg <= max_reg; reg++)
++ if (regs_ever_live[INTERNAL_REGNUM (reg)]
++ || (!current_function_is_leaf
++ && call_used_regs[INTERNAL_REGNUM (reg)]))
++ save_reg_mask |= (1 << reg);
++
++ /* Check LR */
++ if ((regs_ever_live[LR_REGNUM]
++ || !current_function_is_leaf || frame_pointer_needed)
++ /* Only non-shadowed register models */
++ && (func_type == AVR32_FT_ISR_NONE))
++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
++
++ /* Make sure that the GOT register is pushed. */
++ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)
++ && current_function_uses_pic_offset_table)
++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
++
++ }
++ else
++ {
++ int use_pushm = optimize_size;
++
++ /* In the normal case we only need to save those registers which are
++ call saved and which are used by this function. */
++ for (reg = 0; reg <= 7; reg++)
++ if (regs_ever_live[INTERNAL_REGNUM (reg)]
++ && !call_used_regs[INTERNAL_REGNUM (reg)])
++ save_reg_mask |= (1 << reg);
++
++ /* Make sure that the GOT register is pushed. */
++ if (current_function_uses_pic_offset_table)
++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
++
++
++ /* If we optimize for size and do not have anonymous arguments: use
++ popm/pushm always */
++ if (use_pushm)
++ {
++ if ((save_reg_mask & (1 << 0))
++ || (save_reg_mask & (1 << 1))
++ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3)))
++ save_reg_mask |= 0xf;
++
++ if ((save_reg_mask & (1 << 4))
++ || (save_reg_mask & (1 << 5))
++ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7)))
++ save_reg_mask |= 0xf0;
++
++ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9)))
++ save_reg_mask |= 0x300;
++ }
++
++
++ /* Check LR */
++ if ((regs_ever_live[LR_REGNUM]
++ || !current_function_is_leaf
++ || (optimize_size
++ && save_reg_mask
++ && !current_function_calls_eh_return) || frame_pointer_needed))
++ {
++ if (push
++ /* Never pop LR into PC for functions which
++ calls __builtin_eh_return, since we need to
++ fix the SP after the restoring of the registers
++ and before returning. */
++ || current_function_calls_eh_return)
++ {
++ /* Push/Pop LR */
++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
++ }
++ else
++ {
++ /* Pop PC */
++ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM));
++ }
++ }
++ }
++
++
++ /* Save registers so the exception handler can modify them. */
++ if (current_function_calls_eh_return)
++ {
++ unsigned int i;
++
++ for (i = 0;; i++)
++ {
++ reg = EH_RETURN_DATA_REGNO (i);
++ if (reg == INVALID_REGNUM)
++ break;
++ save_reg_mask |= 1 << ASM_REGNUM (reg);
++ }
++ }
++
++ return save_reg_mask;
++ }
++
++/*Compute total size in bytes of all saved registers */
++static int
++avr32_get_reg_mask_size (int reg_mask)
++ {
++ int reg, size;
++ size = 0;
++
++ for (reg = 0; reg <= 15; reg++)
++ if (reg_mask & (1 << reg))
++ size += 4;
++
++ return size;
++ }
++
++/*Get a register from one of the registers which are saved onto the stack
++ upon function entry */
++
++static int
++avr32_get_saved_reg (int save_reg_mask)
++ {
++ unsigned int reg;
++
++ /* Find the first register which is saved in the saved_reg_mask */
++ for (reg = 0; reg <= 15; reg++)
++ if (save_reg_mask & (1 << reg))
++ return reg;
++
++ return -1;
++ }
++
++/* Return 1 if it is possible to return using a single instruction. */
++int
++avr32_use_return_insn (int iscond)
++ {
++ unsigned int func_type = avr32_current_func_type ();
++ unsigned long saved_int_regs;
++ unsigned long saved_fp_regs;
++
++ /* Never use a return instruction before reload has run. */
++ if (!reload_completed)
++ return 0;
++
++ /* Must adjust the stack for vararg functions. */
++ if (current_function_args_info.uses_anonymous_args)
++ return 0;
++
++ /* If there a stack adjstment. */
++ if (get_frame_size ())
++ return 0;
++
++ saved_int_regs = avr32_compute_save_reg_mask (TRUE);
++ saved_fp_regs = avr32_compute_save_fp_reg_mask ();
++
++ /* Functions which have saved fp-regs on the stack can not be performed in
++ one instruction */
++ if (saved_fp_regs)
++ return 0;
++
++ /* Conditional returns can not be performed in one instruction if we need
++ to restore registers from the stack */
++ if (iscond && saved_int_regs)
++ return 0;
++
++ /* Conditional return can not be used for interrupt handlers. */
++ if (iscond && IS_INTERRUPT (func_type))
++ return 0;
++
++ /* For interrupt handlers which needs to pop registers */
++ if (saved_int_regs && IS_INTERRUPT (func_type))
++ return 0;
++
++
++ /* If there are saved registers but the LR isn't saved, then we need two
++ instructions for the return. */
++ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM))))
++ return 0;
++
++
++ return 1;
++ }
++
++
++/*Generate some function prologue info in the assembly file*/
++
++void
++avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size)
++ {
++ if (IS_NAKED (avr32_current_func_type ()))
++ fprintf (f,
++ "\t# Function is naked: Prologue and epilogue provided by programmer\n");
++
++ if (IS_INTERRUPT (avr32_current_func_type ()))
++ {
++ switch (avr32_current_func_type ())
++ {
++ case AVR32_FT_ISR_FULL:
++ fprintf (f,
++ "\t# Interrupt Function: Fully shadowed register file\n");
++ break;
++ case AVR32_FT_ISR_HALF:
++ fprintf (f,
++ "\t# Interrupt Function: Half shadowed register file\n");
++ break;
++ default:
++ case AVR32_FT_ISR_NONE:
++ fprintf (f, "\t# Interrupt Function: No shadowed register file\n");
++ break;
++ }
++ }
++
++
++ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n",
++ current_function_args_size, frame_size,
++ current_function_pretend_args_size);
++
++ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n",
++ frame_pointer_needed, current_function_is_leaf);
++
++ fprintf (f, "\t# uses_anonymous_args = %i\n",
++ current_function_args_info.uses_anonymous_args);
++ if (current_function_calls_eh_return)
++ fprintf (f, "\t# Calls __builtin_eh_return.\n");
++
++ }
++
++
++/* Generate and emit an insn that we will recognize as a pushm or stm.
++ Unfortunately, since this insn does not reflect very well the actual
++ semantics of the operation, we need to annotate the insn for the benefit
++ of DWARF2 frame unwind information. */
++
++int avr32_convert_to_reglist16 (int reglist8_vect);
++
++static rtx
++emit_multi_reg_push (int reglist, int usePUSHM)
++ {
++ rtx insn;
++ rtx dwarf;
++ rtx tmp;
++ rtx reg;
++ int i;
++ int nr_regs;
++ int index = 0;
++
++ if (usePUSHM)
++ {
++ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist)));
++ reglist = avr32_convert_to_reglist16 (reglist);
++ }
++ else
++ {
++ insn = emit_insn (gen_stm (stack_pointer_rtx,
++ gen_rtx_CONST_INT (SImode, reglist),
++ gen_rtx_CONST_INT (SImode, 1)));
++ }
++
++ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
++
++ for (i = 15; i >= 0; i--)
++ {
++ if (reglist & (1 << i))
++ {
++ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i));
++ tmp = gen_rtx_SET (VOIDmode,
++ gen_rtx_MEM (SImode,
++ plus_constant (stack_pointer_rtx,
++ 4 * index)), reg);
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 1 + index++) = tmp;
++ }
++ }
++
++ tmp = gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ GEN_INT (-4 * nr_regs)));
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 0) = tmp;
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
++ REG_NOTES (insn));
++ return insn;
++ }
++
++
++static rtx
++emit_multi_fp_reg_push (int reglist)
++ {
++ rtx insn;
++ rtx dwarf;
++ rtx tmp;
++ rtx reg;
++ int i;
++ int nr_regs;
++ int index = 0;
++
++ insn = emit_insn (gen_stm_fp (stack_pointer_rtx,
++ gen_rtx_CONST_INT (SImode, reglist),
++ gen_rtx_CONST_INT (SImode, 1)));
++
++ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
++
++ for (i = 15; i >= 0; i--)
++ {
++ if (reglist & (1 << i))
++ {
++ reg = gen_rtx_REG (SImode, INTERNAL_FP_REGNUM (i));
++ tmp = gen_rtx_SET (VOIDmode,
++ gen_rtx_MEM (SImode,
++ plus_constant (stack_pointer_rtx,
++ 4 * index)), reg);
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 1 + index++) = tmp;
++ }
++ }
++
++ tmp = gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ GEN_INT (-4 * nr_regs)));
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 0) = tmp;
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
++ REG_NOTES (insn));
++ return insn;
++ }
++
++rtx
++avr32_gen_load_multiple (rtx * regs, int count, rtx from,
++ int write_back, int in_struct_p, int scalar_p)
++ {
++
++ rtx result;
++ int i = 0, j;
++
++ result =
++ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0)));
++
++ if (write_back)
++ {
++ XVECEXP (result, 0, 0)
++ = gen_rtx_SET (GET_MODE (from), from,
++ plus_constant (from, count * 4));
++ i = 1;
++ count++;
++ }
++
++
++ for (j = 0; i < count; i++, j++)
++ {
++ rtx unspec;
++ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4));
++ MEM_IN_STRUCT_P (mem) = in_struct_p;
++ MEM_SCALAR_P (mem) = scalar_p;
++ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM);
++ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec);
++ }
++
++ return result;
++ }
++
++
++rtx
++avr32_gen_store_multiple (rtx * regs, int count, rtx to,
++ int in_struct_p, int scalar_p)
++ {
++ rtx result;
++ int i = 0, j;
++
++ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
++
++ for (j = 0; i < count; i++, j++)
++ {
++ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4));
++ MEM_IN_STRUCT_P (mem) = in_struct_p;
++ MEM_SCALAR_P (mem) = scalar_p;
++ XVECEXP (result, 0, i)
++ = gen_rtx_SET (VOIDmode, mem,
++ gen_rtx_UNSPEC (VOIDmode,
++ gen_rtvec (1, regs[j]),
++ UNSPEC_STORE_MULTIPLE));
++ }
++
++ return result;
++ }
++
++
++/* Move a block of memory if it is word aligned or we support unaligned
++ word memory accesses. The size must be maximum 64 bytes. */
++
++int
++avr32_gen_movmemsi (rtx * operands)
++ {
++ HOST_WIDE_INT bytes_to_go;
++ rtx src, dst;
++ rtx st_src, st_dst;
++ int ptr_offset = 0;
++ int block_size;
++ int dst_in_struct_p, src_in_struct_p;
++ int dst_scalar_p, src_scalar_p;
++ int unaligned;
++
++ if (GET_CODE (operands[2]) != CONST_INT
++ || GET_CODE (operands[3]) != CONST_INT
++ || INTVAL (operands[2]) > 64
++ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD))
++ return 0;
++
++ unaligned = (INTVAL (operands[3]) & 3) != 0;
++
++ block_size = 4;
++
++ st_dst = XEXP (operands[0], 0);
++ st_src = XEXP (operands[1], 0);
++
++ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]);
++ dst_scalar_p = MEM_SCALAR_P (operands[0]);
++ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]);
++ src_scalar_p = MEM_SCALAR_P (operands[1]);
++
++ dst = copy_to_mode_reg (SImode, st_dst);
++ src = copy_to_mode_reg (SImode, st_src);
++
++ bytes_to_go = INTVAL (operands[2]);
++
++ while (bytes_to_go)
++ {
++ enum machine_mode move_mode;
++ /* (Seems to be a problem with reloads for the movti pattern so this is
++ disabled until that problem is resolved)
++ UPDATE: Problem seems to be solved now.... */
++ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned
++ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */
++ && avr32_arch->arch_type != ARCH_TYPE_AVR32_UC)
++ move_mode = TImode;
++ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned)
++ move_mode = DImode;
++ else if (bytes_to_go >= GET_MODE_SIZE (SImode))
++ move_mode = SImode;
++ else
++ move_mode = QImode;
++
++ {
++ rtx dst_mem = gen_rtx_MEM (move_mode,
++ gen_rtx_PLUS (SImode, dst,
++ GEN_INT (ptr_offset)));
++ rtx src_mem = gen_rtx_MEM (move_mode,
++ gen_rtx_PLUS (SImode, src,
++ GEN_INT (ptr_offset)));
++ ptr_offset += GET_MODE_SIZE (move_mode);
++ bytes_to_go -= GET_MODE_SIZE (move_mode);
++
++ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p;
++ MEM_SCALAR_P (dst_mem) = dst_scalar_p;
++
++ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p;
++ MEM_SCALAR_P (src_mem) = src_scalar_p;
++ emit_move_insn (dst_mem, src_mem);
++
++ }
++ }
++
++ return 1;
++ }
++
++
++
++/*Expand the prologue instruction*/
++void
++avr32_expand_prologue (void)
++ {
++ rtx insn, dwarf;
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ int reglist8 = 0;
++
++ /* Naked functions does not have a prologue */
++ if (IS_NAKED (avr32_current_func_type ()))
++ return;
++
++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
++
++ if (saved_reg_mask)
++ {
++ /* Must push used registers */
++
++ /* Should we use POPM or LDM? */
++ int usePUSHM = TRUE;
++ reglist8 = 0;
++ if (((saved_reg_mask & (1 << 0)) ||
++ (saved_reg_mask & (1 << 1)) ||
++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
++ {
++ /* One of R0-R3 should at least be pushed */
++ if (((saved_reg_mask & (1 << 0)) &&
++ (saved_reg_mask & (1 << 1)) &&
++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
++ {
++ /* All should be pushed */
++ reglist8 |= 0x01;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 4)) ||
++ (saved_reg_mask & (1 << 5)) ||
++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
++ {
++ /* One of R4-R7 should at least be pushed */
++ if (((saved_reg_mask & (1 << 4)) &&
++ (saved_reg_mask & (1 << 5)) &&
++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
++ {
++ if (usePUSHM)
++ /* All should be pushed */
++ reglist8 |= 0x02;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
++ {
++ /* One of R8-R9 should at least be pushed */
++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
++ {
++ if (usePUSHM)
++ /* All should be pushed */
++ reglist8 |= 0x04;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (saved_reg_mask & (1 << 10))
++ reglist8 |= 0x08;
++
++ if (saved_reg_mask & (1 << 11))
++ reglist8 |= 0x10;
++
++ if (saved_reg_mask & (1 << 12))
++ reglist8 |= 0x20;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
++ {
++ /* Push LR */
++ reglist8 |= 0x40;
++ }
++
++ if (usePUSHM)
++ {
++ insn = emit_multi_reg_push (reglist8, TRUE);
++ }
++ else
++ {
++ insn = emit_multi_reg_push (saved_reg_mask, FALSE);
++ }
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ /* Prevent this instruction from being scheduled after any other
++ instructions. */
++ emit_insn (gen_blockage ());
++ }
++
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++ if (saved_fp_reg_mask)
++ {
++ insn = emit_multi_fp_reg_push (saved_fp_reg_mask);
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ /* Prevent this instruction from being scheduled after any other
++ instructions. */
++ emit_insn (gen_blockage ());
++ }
++
++ /* Set frame pointer */
++ if (frame_pointer_needed)
++ {
++ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
++ RTX_FRAME_RELATED_P (insn) = 1;
++ }
++
++ if (get_frame_size () > 0)
++ {
++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21"))
++ {
++ insn = emit_insn (gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ gen_rtx_CONST_INT
++ (SImode,
++ -get_frame_size
++ ()))));
++ RTX_FRAME_RELATED_P (insn) = 1;
++ }
++ else
++ {
++ /* Immediate is larger than k21 We must either check if we can use
++ one of the pushed reegisters as temporary storage or we must
++ make us a temp register by pushing a register to the stack. */
++ rtx temp_reg, const_pool_entry, insn;
++ if (saved_reg_mask)
++ {
++ temp_reg =
++ gen_rtx_REG (SImode,
++ INTERNAL_REGNUM (avr32_get_saved_reg
++ (saved_reg_mask)));
++ }
++ else
++ {
++ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7));
++ emit_move_insn (gen_rtx_MEM
++ (SImode,
++ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)),
++ temp_reg);
++ }
++
++ const_pool_entry =
++ force_const_mem (SImode,
++ gen_rtx_CONST_INT (SImode, get_frame_size ()));
++ emit_move_insn (temp_reg, const_pool_entry);
++
++ insn = emit_insn (gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_MINUS (SImode,
++ stack_pointer_rtx,
++ temp_reg)));
++
++ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
++ gen_rtx_PLUS (SImode, stack_pointer_rtx,
++ GEN_INT (-get_frame_size ())));
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
++ dwarf, REG_NOTES (insn));
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ if (!saved_reg_mask)
++ {
++ insn =
++ emit_move_insn (temp_reg,
++ gen_rtx_MEM (SImode,
++ gen_rtx_POST_INC (SImode,
++ gen_rtx_REG
++ (SImode,
++ 13))));
++ }
++
++ /* Mark the temp register as dead */
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg,
++ REG_NOTES (insn));
++
++
++ }
++
++ /* Prevent the the stack adjustment to be scheduled after any
++ instructions using the frame pointer. */
++ emit_insn (gen_blockage ());
++ }
++
++ /* Load GOT */
++ if (flag_pic)
++ {
++ avr32_load_pic_register ();
++
++ /* gcc does not know that load or call instructions might use the pic
++ register so it might schedule these instructions before the loading
++ of the pic register. To avoid this emit a barrier for now. TODO!
++ Find out a better way to let gcc know which instructions might use
++ the pic register. */
++ emit_insn (gen_blockage ());
++ }
++ return;
++ }
++
++void
++avr32_set_return_address (rtx source, rtx scratch)
++ {
++ rtx addr;
++ unsigned long saved_regs;
++
++ saved_regs = avr32_compute_save_reg_mask (TRUE);
++
++ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM))))
++ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
++ else
++ {
++ if (frame_pointer_needed)
++ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM);
++ else
++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16"))
++ {
++ addr = plus_constant (stack_pointer_rtx, get_frame_size ());
++ }
++ else
++ {
++ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ())));
++ addr = scratch;
++ }
++ emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
++ }
++ }
++
++
++
++/* Return the length of INSN. LENGTH is the initial length computed by
++ attributes in the machine-description file. */
++
++int
++avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED,
++ int length ATTRIBUTE_UNUSED)
++ {
++ return length;
++ }
++
++void
++avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED,
++ int iscond ATTRIBUTE_UNUSED,
++ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm)
++ {
++
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ int insert_ret = TRUE;
++ int reglist8 = 0;
++ int stack_adjustment = get_frame_size ();
++ unsigned int func_type = avr32_current_func_type ();
++ FILE *f = asm_out_file;
++
++ /* Naked functions does not have an epilogue */
++ if (IS_NAKED (func_type))
++ return;
++
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++
++ saved_reg_mask = avr32_compute_save_reg_mask (FALSE);
++
++ /* Reset frame pointer */
++ if (stack_adjustment > 0)
++ {
++ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21"))
++ {
++ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n",
++ -stack_adjustment);
++ }
++ else
++ {
++ /* TODO! Is it safe to use r8 as scratch?? */
++ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n",
++ -stack_adjustment);
++ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n",
++ -stack_adjustment);
++ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n");
++ }
++ }
++
++ if (saved_fp_reg_mask)
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_fp_reglist_w (saved_fp_reg_mask, (char *) reglist);
++ fprintf (f, "\tldcm.w\tcp0, sp++, %s\n", reglist);
++ if (saved_fp_reg_mask & ~0xff)
++ {
++ saved_fp_reg_mask &= ~0xff;
++ avr32_make_fp_reglist_d (saved_fp_reg_mask, (char *) reglist);
++ fprintf (f, "\tldcm.d\tcp0, sp++, %s\n", reglist);
++ }
++ }
++
++ if (saved_reg_mask)
++ {
++ /* Must pop used registers */
++
++ /* Should we use POPM or LDM? */
++ int usePOPM = TRUE;
++ if (((saved_reg_mask & (1 << 0)) ||
++ (saved_reg_mask & (1 << 1)) ||
++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
++ {
++ /* One of R0-R3 should at least be popped */
++ if (((saved_reg_mask & (1 << 0)) &&
++ (saved_reg_mask & (1 << 1)) &&
++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
++ {
++ /* All should be popped */
++ reglist8 |= 0x01;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 4)) ||
++ (saved_reg_mask & (1 << 5)) ||
++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
++ {
++ /* One of R0-R3 should at least be popped */
++ if (((saved_reg_mask & (1 << 4)) &&
++ (saved_reg_mask & (1 << 5)) &&
++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
++ {
++ if (usePOPM)
++ /* All should be popped */
++ reglist8 |= 0x02;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
++ {
++ /* One of R8-R9 should at least be pushed */
++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
++ {
++ if (usePOPM)
++ /* All should be pushed */
++ reglist8 |= 0x04;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (saved_reg_mask & (1 << 10))
++ reglist8 |= 0x08;
++
++ if (saved_reg_mask & (1 << 11))
++ reglist8 |= 0x10;
++
++ if (saved_reg_mask & (1 << 12))
++ reglist8 |= 0x20;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
++ /* Pop LR */
++ reglist8 |= 0x40;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
++ /* Pop LR into PC. */
++ reglist8 |= 0x80;
++
++ if (usePOPM)
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_reglist8 (reglist8, (char *) reglist);
++
++ if (reglist8 & 0x80)
++ /* This instruction is also a return */
++ insert_ret = FALSE;
++
++ if (r12_imm && !insert_ret)
++ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm));
++ else
++ fprintf (f, "\tpopm\t%s\n", reglist);
++
++ }
++ else
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_reglist16 (saved_reg_mask, (char *) reglist);
++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
++ /* This instruction is also a return */
++ insert_ret = FALSE;
++
++ if (r12_imm && !insert_ret)
++ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist,
++ INTVAL (r12_imm));
++ else
++ fprintf (f, "\tldm\tsp++, %s\n", reglist);
++
++ }
++
++ }
++
++ /* Stack adjustment for exception handler. */
++ if (current_function_calls_eh_return)
++ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO));
++
++
++ if (IS_INTERRUPT (func_type))
++ {
++ fprintf (f, "\trete\n");
++ }
++ else if (insert_ret)
++ {
++ if (r12_imm)
++ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm));
++ else
++ fprintf (f, "\tretal\tr12\n");
++ }
++ }
++
++/* Function for converting a fp-register mask to a
++ reglistCPD8 register list string. */
++void
++avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string)
++ {
++ int i;
++
++ /* Make sure reglist_string is empty */
++ reglist_string[0] = '\0';
++
++ for (i = 0; i < NUM_FP_REGS; i += 2)
++ {
++ if (reglist_mask & (1 << i))
++ {
++ strlen (reglist_string) ?
++ sprintf (reglist_string, "%s, %s-%s", reglist_string,
++ reg_names[INTERNAL_FP_REGNUM (i)],
++ reg_names[INTERNAL_FP_REGNUM (i + 1)]) :
++ sprintf (reglist_string, "%s-%s",
++ reg_names[INTERNAL_FP_REGNUM (i)],
++ reg_names[INTERNAL_FP_REGNUM (i + 1)]);
++ }
++ }
++ }
++
++/* Function for converting a fp-register mask to a
++ reglistCP8 register list string. */
++void
++avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string)
++ {
++ int i;
++
++ /* Make sure reglist_string is empty */
++ reglist_string[0] = '\0';
++
++ for (i = 0; i < NUM_FP_REGS; ++i)
++ {
++ if (reglist_mask & (1 << i))
++ {
++ strlen (reglist_string) ?
++ sprintf (reglist_string, "%s, %s", reglist_string,
++ reg_names[INTERNAL_FP_REGNUM (i)]) :
++ sprintf (reglist_string, "%s", reg_names[INTERNAL_FP_REGNUM (i)]);
++ }
++ }
++ }
++
++void
++avr32_make_reglist16 (int reglist16_vect, char *reglist16_string)
++ {
++ int i;
++
++ /* Make sure reglist16_string is empty */
++ reglist16_string[0] = '\0';
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (reglist16_vect & (1 << i))
++ {
++ strlen (reglist16_string) ?
++ sprintf (reglist16_string, "%s, %s", reglist16_string,
++ reg_names[INTERNAL_REGNUM (i)]) :
++ sprintf (reglist16_string, "%s", reg_names[INTERNAL_REGNUM (i)]);
++ }
++ }
++ }
++
++int
++avr32_convert_to_reglist16 (int reglist8_vect)
++ {
++ int reglist16_vect = 0;
++ if (reglist8_vect & 0x1)
++ reglist16_vect |= 0xF;
++ if (reglist8_vect & 0x2)
++ reglist16_vect |= 0xF0;
++ if (reglist8_vect & 0x4)
++ reglist16_vect |= 0x300;
++ if (reglist8_vect & 0x8)
++ reglist16_vect |= 0x400;
++ if (reglist8_vect & 0x10)
++ reglist16_vect |= 0x800;
++ if (reglist8_vect & 0x20)
++ reglist16_vect |= 0x1000;
++ if (reglist8_vect & 0x40)
++ reglist16_vect |= 0x4000;
++ if (reglist8_vect & 0x80)
++ reglist16_vect |= 0x8000;
++
++ return reglist16_vect;
++ }
++
++void
++avr32_make_reglist8 (int reglist8_vect, char *reglist8_string)
++ {
++ /* Make sure reglist8_string is empty */
++ reglist8_string[0] = '\0';
++
++ if (reglist8_vect & 0x1)
++ sprintf (reglist8_string, "r0-r3");
++ if (reglist8_vect & 0x2)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r4-r7",
++ reglist8_string) :
++ sprintf (reglist8_string, "r4-r7");
++ if (reglist8_vect & 0x4)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r8-r9",
++ reglist8_string) :
++ sprintf (reglist8_string, "r8-r9");
++ if (reglist8_vect & 0x8)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r10",
++ reglist8_string) :
++ sprintf (reglist8_string, "r10");
++ if (reglist8_vect & 0x10)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r11",
++ reglist8_string) :
++ sprintf (reglist8_string, "r11");
++ if (reglist8_vect & 0x20)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r12",
++ reglist8_string) :
++ sprintf (reglist8_string, "r12");
++ if (reglist8_vect & 0x40)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, lr",
++ reglist8_string) :
++ sprintf (reglist8_string, "lr");
++ if (reglist8_vect & 0x80)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, pc",
++ reglist8_string) :
++ sprintf (reglist8_string, "pc");
++ }
++
++int
++avr32_eh_return_data_regno (int n)
++ {
++ if (n >= 0 && n <= 3)
++ return 8 + n;
++ else
++ return INVALID_REGNUM;
++ }
++
++/* Compute the distance from register FROM to register TO.
++ These can be the arg pointer, the frame pointer or
++ the stack pointer.
++ Typical stack layout looks like this:
++
++ old stack pointer -> | |
++ ----
++ | | \
++ | | saved arguments for
++ | | vararg functions
++ arg_pointer -> | | /
++ --
++ | | \
++ | | call saved
++ | | registers
++ | | /
++ frame ptr -> --
++ | | \
++ | | local
++ | | variables
++ stack ptr --> | | /
++ --
++ | | \
++ | | outgoing
++ | | arguments
++ | | /
++ --
++
++ For a given funciton some or all of these stack compomnents
++ may not be needed, giving rise to the possibility of
++ eliminating some of the registers.
++
++ The values returned by this function must reflect the behaviour
++ of avr32_expand_prologue() and avr32_compute_save_reg_mask().
++
++ The sign of the number returned reflects the direction of stack
++ growth, so the values are positive for all eliminations except
++ from the soft frame pointer to the hard frame pointer. */
++
++
++int
++avr32_initial_elimination_offset (int from, int to)
++ {
++ int i;
++ int call_saved_regs = 0;
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ unsigned int local_vars = get_frame_size ();
++
++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (saved_reg_mask & (1 << i))
++ call_saved_regs += 4;
++ }
++
++ for (i = 0; i < NUM_FP_REGS; ++i)
++ {
++ if (saved_fp_reg_mask & (1 << i))
++ call_saved_regs += 4;
++ }
++
++ switch (from)
++ {
++ case ARG_POINTER_REGNUM:
++ switch (to)
++ {
++ case STACK_POINTER_REGNUM:
++ return call_saved_regs + local_vars;
++ case FRAME_POINTER_REGNUM:
++ return call_saved_regs;
++ default:
++ abort ();
++ }
++ case FRAME_POINTER_REGNUM:
++ switch (to)
++ {
++ case STACK_POINTER_REGNUM:
++ return local_vars;
++ default:
++ abort ();
++ }
++ default:
++ abort ();
++ }
++ }
++
++
++/*
++ Returns a rtx used when passing the next argument to a function.
++ avr32_init_cumulative_args() and avr32_function_arg_advance() sets witch
++ register to use.
++ */
++rtx
++avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
++ tree type, int named)
++ {
++ int index = -1;
++
++ HOST_WIDE_INT arg_size, arg_rsize;
++ if (type)
++ {
++ arg_size = int_size_in_bytes (type);
++ }
++ else
++ {
++ arg_size = GET_MODE_SIZE (mode);
++ }
++ arg_rsize = PUSH_ROUNDING (arg_size);
++
++ /*
++ The last time this macro is called, it is called with mode == VOIDmode,
++ and its result is passed to the call or call_value pattern as operands 2
++ and 3 respectively. */
++ if (mode == VOIDmode)
++ {
++ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */
++ }
++
++ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named)
++ {
++ return NULL_RTX;
++ }
++
++ if (arg_rsize == 8)
++ {
++ /* use r11:r10 or r9:r8. */
++ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2)))
++ index = 1;
++ else if (!(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4)))
++ index = 3;
++ else
++ index = -1;
++ }
++ else if (arg_rsize == 4)
++ { /* Use first available register */
++ index = 0;
++ while (index <= LAST_CUM_REG_INDEX && GET_USED_INDEX (cum, index))
++ index++;
++ if (index > LAST_CUM_REG_INDEX)
++ index = -1;
++ }
++
++ SET_REG_INDEX (cum, index);
++
++ if (GET_REG_INDEX (cum) >= 0)
++ return gen_rtx_REG (mode,
++ avr32_function_arg_reglist[GET_REG_INDEX (cum)]);
++
++ return NULL_RTX;
++ }
++
++/*
++ Set the register used for passing the first argument to a function.
++ */
++void
++avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
++ rtx libname ATTRIBUTE_UNUSED,
++ tree fndecl ATTRIBUTE_UNUSED)
++ {
++ /* Set all registers as unused. */
++ SET_INDEXES_UNUSED (cum);
++
++ /* Reset uses_anonymous_args */
++ cum->uses_anonymous_args = 0;
++
++ /* Reset size of stack pushed arguments */
++ cum->stack_pushed_args_size = 0;
++ }
++
++/*
++ Set register used for passing the next argument to a function. Only the
++ Scratch Registers are used.
++
++ number name
++ 15 r15 PC
++ 14 r14 LR
++ 13 r13 _SP_________
++ FIRST_CUM_REG 12 r12 _||_
++ 10 r11 ||
++ 11 r10 _||_ Scratch Registers
++ 8 r9 ||
++ LAST_SCRATCH_REG 9 r8 _\/_________
++ 6 r7 /\
++ 7 r6 ||
++ 4 r5 ||
++ 5 r4 ||
++ 2 r3 ||
++ 3 r2 ||
++ 0 r1 ||
++ 1 r0 _||_________
++
++ */
++void
++avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
++ tree type, int named ATTRIBUTE_UNUSED)
++ {
++ HOST_WIDE_INT arg_size, arg_rsize;
++
++ if (type)
++ {
++ arg_size = int_size_in_bytes (type);
++ }
++ else
++ {
++ arg_size = GET_MODE_SIZE (mode);
++ }
++ arg_rsize = PUSH_ROUNDING (arg_size);
++
++ /* It the argument had to be passed in stack, no register is used. */
++ if ((*targetm.calls.must_pass_in_stack) (mode, type))
++ {
++ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type));
++ return;
++ }
++
++ /* Mark the used registers as "used". */
++ if (GET_REG_INDEX (cum) >= 0)
++ {
++ SET_USED_INDEX (cum, GET_REG_INDEX (cum));
++ if (arg_rsize == 8)
++ {
++ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1));
++ }
++ }
++ else
++ {
++ /* Had to use stack */
++ cum->stack_pushed_args_size += arg_rsize;
++ }
++ }
++
++/*
++ Defines witch direction to go to find the next register to use if the
++ argument is larger then one register or for arguments shorter than an
++ int which is not promoted, such as the last part of structures with
++ size not a multiple of 4. */
++enum direction
++avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type)
++ {
++ /* Pad upward for all aggregates except byte and halfword sized aggregates
++ which can be passed in registers. */
++ if (type
++ && AGGREGATE_TYPE_P (type)
++ && (int_size_in_bytes (type) != 1)
++ && !((int_size_in_bytes (type) == 2)
++ && TYPE_ALIGN_UNIT (type) >= 2)
++ && (int_size_in_bytes (type) & 0x3))
++ {
++ return upward;
++ }
++
++ return downward;
++ }
++
++/*
++ Return a rtx used for the return value from a function call.
++ */
++rtx
++avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED)
++ {
++ if (avr32_return_in_memory (type, func))
++ return NULL_RTX;
++
++ if (int_size_in_bytes (type) <= 4)
++ if (avr32_return_in_msb (type))
++ /* Aggregates of size less than a word which does align the data in the
++ MSB must use SImode for r12. */
++ return gen_rtx_REG (SImode, RET_REGISTER);
++ else
++ return gen_rtx_REG (TYPE_MODE (type), RET_REGISTER);
++ else if (int_size_in_bytes (type) <= 8)
++ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11));
++
++ return NULL_RTX;
++ }
++
++/*
++ Return a rtx used for the return value from a library function call.
++ */
++rtx
++avr32_libcall_value (enum machine_mode mode)
++ {
++
++ if (GET_MODE_SIZE (mode) <= 4)
++ return gen_rtx_REG (mode, RET_REGISTER);
++ else if (GET_MODE_SIZE (mode) <= 8)
++ return gen_rtx_REG (mode, INTERNAL_REGNUM (11));
++ else
++ return NULL_RTX;
++ }
++
++/* Return TRUE if X references a SYMBOL_REF. */
++int
++symbol_mentioned_p (rtx x)
++ {
++ const char *fmt;
++ int i;
++
++ if (GET_CODE (x) == SYMBOL_REF)
++ return 1;
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'E')
++ {
++ int j;
++
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ if (symbol_mentioned_p (XVECEXP (x, i, j)))
++ return 1;
++ }
++ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
++ return 1;
++ }
++
++ return 0;
++ }
++
++/* Return TRUE if X references a LABEL_REF. */
++int
++label_mentioned_p (rtx x)
++ {
++ const char *fmt;
++ int i;
++
++ if (GET_CODE (x) == LABEL_REF)
++ return 1;
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'E')
++ {
++ int j;
++
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ if (label_mentioned_p (XVECEXP (x, i, j)))
++ return 1;
++ }
++ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
++ return 1;
++ }
++
++ return 0;
++ }
++
++
++int
++avr32_legitimate_pic_operand_p (rtx x)
++ {
++
++ /* We can't have const, this must be broken down to a symbol. */
++ if (GET_CODE (x) == CONST)
++ return FALSE;
++
++ /* Can't access symbols or labels via the constant pool either */
++ if ((GET_CODE (x) == SYMBOL_REF
++ && CONSTANT_POOL_ADDRESS_P (x)
++ && (symbol_mentioned_p (get_pool_constant (x))
++ || label_mentioned_p (get_pool_constant (x)))))
++ return FALSE;
++
++ return TRUE;
++ }
++
++
++rtx
++legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
++ rtx reg)
++ {
++
++ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
++ {
++ int subregs = 0;
++
++ if (reg == 0)
++ {
++ if (no_new_pseudos)
++ abort ();
++ else
++ reg = gen_reg_rtx (Pmode);
++
++ subregs = 1;
++ }
++
++ emit_move_insn (reg, orig);
++
++ /* Only set current function as using pic offset table if flag_pic is
++ set. This is because this function is also used if
++ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */
++ if (flag_pic)
++ current_function_uses_pic_offset_table = 1;
++
++ /* Put a REG_EQUAL note on this insn, so that it can be optimized by
++ loop. */
++ return reg;
++ }
++ else if (GET_CODE (orig) == CONST)
++ {
++ rtx base, offset;
++
++ if (flag_pic
++ && GET_CODE (XEXP (orig, 0)) == PLUS
++ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
++ return orig;
++
++ if (reg == 0)
++ {
++ if (no_new_pseudos)
++ abort ();
++ else
++ reg = gen_reg_rtx (Pmode);
++ }
++
++ if (GET_CODE (XEXP (orig, 0)) == PLUS)
++ {
++ base =
++ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
++ offset =
++ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
++ base == reg ? 0 : reg);
++ }
++ else
++ abort ();
++
++ if (GET_CODE (offset) == CONST_INT)
++ {
++ /* The base register doesn't really matter, we only want to test
++ the index for the appropriate mode. */
++ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21"))
++ {
++ if (!no_new_pseudos)
++ offset = force_reg (Pmode, offset);
++ else
++ abort ();
++ }
++
++ if (GET_CODE (offset) == CONST_INT)
++ return plus_constant (base, INTVAL (offset));
++ }
++
++ return gen_rtx_PLUS (Pmode, base, offset);
++ }
++
++ return orig;
++ }
++
++/* Generate code to load the PIC register. */
++void
++avr32_load_pic_register (void)
++ {
++ rtx l1, pic_tmp;
++ rtx global_offset_table;
++
++ if ((current_function_uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT)
++ return;
++
++ if (!flag_pic)
++ abort ();
++
++ l1 = gen_label_rtx ();
++
++ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
++ pic_tmp =
++ gen_rtx_CONST (Pmode,
++ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1),
++ global_offset_table));
++ emit_insn (gen_pic_load_addr
++ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp)));
++ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1));
++
++ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp
++ can cause life info to screw up. */
++ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
++ }
++
++
++
++/* This hook should return true if values of type type are returned at the most
++ significant end of a register (in other words, if they are padded at the
++ least significant end). You can assume that type is returned in a register;
++ the caller is required to check this. Note that the register provided by
++ FUNCTION_VALUE must be able to hold the complete return value. For example,
++ if a 1-, 2- or 3-byte structure is returned at the most significant end of a
++ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */
++bool
++avr32_return_in_msb (tree type ATTRIBUTE_UNUSED)
++ {
++ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) ||
++ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return
++ false; else return true; */
++
++ return false;
++ }
++
++
++/*
++ Returns one if a certain function value is going to be returned in memory
++ and zero if it is going to be returned in a register.
++
++ BLKmode and all other modes that is larger than 64 bits are returned in
++ memory.
++ */
++bool
++avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
++ {
++ if (TYPE_MODE (type) == VOIDmode)
++ return false;
++
++ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD)
++ || int_size_in_bytes (type) == -1)
++ {
++ return true;
++ }
++
++ /* If we have an aggregate then use the same mechanism as when checking if
++ it should be passed on the stack. */
++ if (type
++ && AGGREGATE_TYPE_P (type)
++ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type))
++ return true;
++
++ return false;
++ }
++
++
++/* Output the constant part of the trampoline.
++ lddpc r0, pc[0x8:e] ; load static chain register
++ lddpc pc, pc[0x8:e] ; jump to subrutine
++ .long 0 ; Address to static chain,
++ ; filled in by avr32_initialize_trampoline()
++ .long 0 ; Address to subrutine,
++ ; filled in by avr32_initialize_trampoline()
++ */
++void
++avr32_trampoline_template (FILE * file)
++ {
++ fprintf (file, "\tlddpc r0, pc[8]\n");
++ fprintf (file, "\tlddpc pc, pc[8]\n");
++ /* make room for the address of the static chain. */
++ fprintf (file, "\t.long\t0\n");
++ /* make room for the address to the subrutine. */
++ fprintf (file, "\t.long\t0\n");
++ }
++
++
++/*
++ Initialize the variable parts of a trampoline.
++ */
++void
++avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
++ {
++ /* Store the address to the static chain. */
++ emit_move_insn (gen_rtx_MEM
++ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)),
++ static_chain);
++
++ /* Store the address to the function. */
++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)),
++ fnaddr);
++
++ emit_insn (gen_cache (gen_rtx_REG (SImode, 13),
++ gen_rtx_CONST_INT (SImode,
++ AVR32_CACHE_INVALIDATE_ICACHE)));
++ }
++
++/* Return nonzero if X is valid as an addressing register. */
++int
++avr32_address_register_rtx_p (rtx x, int strict_p)
++ {
++ int regno;
++
++ if (!register_operand(x, GET_MODE(x)))
++ return 0;
++
++ /* If strict we require the register to be a hard register. */
++ if (strict_p
++ && !REG_P(x))
++ return 0;
++
++ regno = REGNO (x);
++
++ if (strict_p)
++ return REGNO_OK_FOR_BASE_P (regno);
++
++ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER);
++ }
++
++/* Return nonzero if INDEX is valid for an address index operand. */
++int
++avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
++ {
++ enum rtx_code code = GET_CODE (index);
++
++ if (GET_MODE_SIZE (mode) > 8)
++ return 0;
++
++ /* Standard coprocessor addressing modes. */
++ if (code == CONST_INT)
++ {
++ if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
++ /* Coprocessor mem insns has a smaller reach than ordinary mem insns */
++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ku14");
++ else
++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16");
++ }
++
++ if (avr32_address_register_rtx_p (index, strict_p))
++ return 1;
++
++ if (code == MULT)
++ {
++ rtx xiop0 = XEXP (index, 0);
++ rtx xiop1 = XEXP (index, 1);
++ return ((avr32_address_register_rtx_p (xiop0, strict_p)
++ && power_of_two_operand (xiop1, SImode)
++ && (INTVAL (xiop1) <= 8))
++ || (avr32_address_register_rtx_p (xiop1, strict_p)
++ && power_of_two_operand (xiop0, SImode)
++ && (INTVAL (xiop0) <= 8)));
++ }
++ else if (code == ASHIFT)
++ {
++ rtx op = XEXP (index, 1);
++
++ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p)
++ && GET_CODE (op) == CONST_INT
++ && INTVAL (op) > 0 && INTVAL (op) <= 3);
++ }
++
++ return 0;
++ }
++
++/*
++ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if
++ the RTX x is a legitimate memory address.
++
++ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS
++ if it is.
++ */
++
++/* Forward declaration*/
++int is_minipool_label (rtx label);
++
++int
++avr32_legitimate_address (enum machine_mode mode, rtx x, int strict)
++ {
++
++ switch (GET_CODE (x))
++ {
++ case REG:
++ return avr32_address_register_rtx_p (x, strict);
++ case CONST:
++ {
++ rtx label = avr32_find_symbol (x);
++ if (label
++ &&
++ ((CONSTANT_POOL_ADDRESS_P (label)
++ && !(flag_pic
++ && (symbol_mentioned_p (get_pool_constant (label))
++ || label_mentioned_p (get_pool_constant (label)))))
++ /* TODO! Can this ever happen??? */
++ || ((GET_CODE (label) == LABEL_REF)
++ && GET_CODE (XEXP (label, 0)) == CODE_LABEL
++ && is_minipool_label (XEXP (label, 0)))))
++ {
++ return TRUE;
++ }
++ }
++ break;
++ case LABEL_REF:
++ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL
++ && is_minipool_label (XEXP (x, 0)))
++ {
++ return TRUE;
++ }
++ break;
++ case SYMBOL_REF:
++ {
++ if (CONSTANT_POOL_ADDRESS_P (x)
++ && !(flag_pic
++ && (symbol_mentioned_p (get_pool_constant (x))
++ || label_mentioned_p (get_pool_constant (x)))))
++ return TRUE;
++ /*
++ A symbol_ref is only legal if it is a function. If all of them are
++ legal, a pseudo reg that is a constant will be replaced by a
++ symbol_ref and make illegale code. SYMBOL_REF_FLAG is set by
++ ENCODE_SECTION_INFO. */
++ else if (SYMBOL_REF_RCALL_FUNCTION_P (x))
++ return TRUE;
++ break;
++ }
++ case PRE_DEC: /* (pre_dec (...)) */
++ case POST_INC: /* (post_inc (...)) */
++ return avr32_address_register_rtx_p (XEXP (x, 0), strict);
++ case PLUS: /* (plus (...) (...)) */
++ {
++ rtx xop0 = XEXP (x, 0);
++ rtx xop1 = XEXP (x, 1);
++
++ return ((avr32_address_register_rtx_p (xop0, strict)
++ && avr32_legitimate_index_p (mode, xop1, strict))
++ || (avr32_address_register_rtx_p (xop1, strict)
++ && avr32_legitimate_index_p (mode, xop0, strict)));
++ }
++ default:
++ break;
++ }
++
++ return FALSE;
++ }
++
++
++int
++avr32_const_double_immediate (rtx value)
++ {
++ HOST_WIDE_INT hi, lo;
++
++ if (GET_CODE (value) != CONST_DOUBLE)
++ return FALSE;
++
++ if (SCALAR_FLOAT_MODE_P (GET_MODE (value)))
++ {
++ HOST_WIDE_INT target_float[2];
++ hi = lo = 0;
++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value),
++ GET_MODE (value));
++ lo = target_float[0];
++ hi = target_float[1];
++ }
++ else
++ {
++ hi = CONST_DOUBLE_HIGH (value);
++ lo = CONST_DOUBLE_LOW (value);
++ }
++
++ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21")
++ && (GET_MODE (value) == SFmode
++ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21")))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++ }
++
++
++int
++avr32_legitimate_constant_p (rtx x)
++ {
++ switch (GET_CODE (x))
++ {
++ case CONST_INT:
++ /* Check if we should put large immediate into constant pool
++ or load them directly with mov/orh.*/
++ if (!avr32_imm_in_const_pool)
++ return 1;
++
++ return avr32_const_ok_for_constraint_p (INTVAL (x), 'K', "Ks21");
++ case CONST_DOUBLE:
++ /* Check if we should put large immediate into constant pool
++ or load them directly with mov/orh.*/
++ if (!avr32_imm_in_const_pool)
++ return 1;
++
++ if (GET_MODE (x) == SFmode
++ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode)
++ return avr32_const_double_immediate (x);
++ else
++ return 0;
++ case LABEL_REF:
++ return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
++ case SYMBOL_REF:
++ return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
++ case CONST:
++ case HIGH:
++ case CONST_VECTOR:
++ return 0;
++ default:
++ printf ("%s():\n", __FUNCTION__);
++ debug_rtx (x);
++ return 1;
++ }
++ }
++
++
++/* Strip any special encoding from labels */
++const char *
++avr32_strip_name_encoding (const char *name)
++{
++ const char *stripped = name;
++
++ while (1)
++ {
++ switch (stripped[0])
++ {
++ case '#':
++ stripped = strchr (name + 1, '#') + 1;
++ break;
++ case '*':
++ stripped = &stripped[1];
++ break;
++ default:
++ return stripped;
++ }
++ }
++}
++
++
++
++/* Do anything needed before RTL is emitted for each function. */
++static struct machine_function *
++avr32_init_machine_status (void)
++{
++ struct machine_function *machine;
++ machine =
++ (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
++
++#if AVR32_FT_UNKNOWN != 0
++ machine->func_type = AVR32_FT_UNKNOWN;
++#endif
++
++ machine->minipool_label_head = 0;
++ machine->minipool_label_tail = 0;
++ return machine;
++}
++
++void
++avr32_init_expanders (void)
++ {
++ /* Arrange to initialize and mark the machine per-function status. */
++ init_machine_status = avr32_init_machine_status;
++ }
++
++
++/* Return an RTX indicating where the return address to the
++ calling function can be found. */
++
++rtx
++avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
++ {
++ if (count != 0)
++ return NULL_RTX;
++
++ return get_hard_reg_initial_val (Pmode, LR_REGNUM);
++ }
++
++
++void
++avr32_encode_section_info (tree decl, rtx rtl, int first)
++ {
++
++ if (first && DECL_P (decl))
++ {
++ /* Set SYMBOL_REG_FLAG for local functions */
++ if (!TREE_PUBLIC (decl) && TREE_CODE (decl) == FUNCTION_DECL)
++ {
++ if ((*targetm.binds_local_p) (decl))
++ {
++ SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
++ }
++ }
++ }
++ }
++
++
++void
++avr32_asm_output_ascii (FILE * stream, char *ptr, int len)
++ {
++ int i, i_new = 0;
++ char *new_ptr = xmalloc (4 * len);
++ if (new_ptr == NULL)
++ internal_error ("Out of memory.");
++
++ for (i = 0; i < len; i++)
++ {
++ if (ptr[i] == '\n')
++ {
++ new_ptr[i_new++] = '\\';
++ new_ptr[i_new++] = '0';
++ new_ptr[i_new++] = '1';
++ new_ptr[i_new++] = '2';
++ }
++ else if (ptr[i] == '\"')
++ {
++ new_ptr[i_new++] = '\\';
++ new_ptr[i_new++] = '\"';
++ }
++ else if (ptr[i] == '\\')
++ {
++ new_ptr[i_new++] = '\\';
++ new_ptr[i_new++] = '\\';
++ }
++ else if (ptr[i] == '\0' && i + 1 < len)
++ {
++ new_ptr[i_new++] = '\\';
++ new_ptr[i_new++] = '0';
++ }
++ else
++ {
++ new_ptr[i_new++] = ptr[i];
++ }
++ }
++
++ /* Terminate new_ptr. */
++ new_ptr[i_new] = '\0';
++ fprintf (stream, "\t.ascii\t\"%s\"\n", new_ptr);
++ free (new_ptr);
++ }
++
++
++void
++avr32_asm_output_label (FILE * stream, const char *name)
++ {
++ name = avr32_strip_name_encoding (name);
++
++ /* Print the label. */
++ assemble_name (stream, name);
++ fprintf (stream, ":\n");
++ }
++
++
++
++void
++avr32_asm_weaken_label (FILE * stream, const char *name)
++ {
++ fprintf (stream, "\t.weak ");
++ assemble_name (stream, name);
++ fprintf (stream, "\n");
++ }
++
++/*
++ Checks if a labelref is equal to a reserved word in the assembler. If it is,
++ insert a '_' before the label name.
++ */
++void
++avr32_asm_output_labelref (FILE * stream, const char *name)
++ {
++ int verbatim = FALSE;
++ const char *stripped = name;
++ int strip_finished = FALSE;
++
++ while (!strip_finished)
++ {
++ switch (stripped[0])
++ {
++ case '#':
++ stripped = strchr (name + 1, '#') + 1;
++ break;
++ case '*':
++ stripped = &stripped[1];
++ verbatim = TRUE;
++ break;
++ default:
++ strip_finished = TRUE;
++ break;
++ }
++ }
++
++ if (verbatim)
++ fputs (stripped, stream);
++ else
++ asm_fprintf (stream, "%U%s", stripped);
++ }
++
++
++
++/*
++ Check if the comparison in compare_exp is redundant
++ for the condition given in next_cond given that the
++ needed flags are already set by an earlier instruction.
++ Uses cc_prev_status to check this.
++
++ Returns NULL_RTX if the compare is not redundant
++ or the new condition to use in the conditional
++ instruction if the compare is redundant.
++ */
++static rtx
++is_compare_redundant (rtx compare_exp, rtx next_cond)
++ {
++ int z_flag_valid = FALSE;
++ int n_flag_valid = FALSE;
++ rtx new_cond;
++
++ if (GET_CODE (compare_exp) != COMPARE)
++ return NULL_RTX;
++
++
++ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp))
++ {
++ /* cc0 already contains the correct comparison -> delete cmp insn */
++ return next_cond;
++ }
++
++ if (GET_MODE (compare_exp) != SImode)
++ return NULL_RTX;
++
++ switch (cc_prev_status.mdep.flags)
++ {
++ case CC_SET_VNCZ:
++ case CC_SET_NCZ:
++ n_flag_valid = TRUE;
++ case CC_SET_CZ:
++ case CC_SET_Z:
++ z_flag_valid = TRUE;
++ }
++
++ if (cc_prev_status.mdep.value
++ && REG_P (XEXP (compare_exp, 0))
++ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value)
++ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT
++ && next_cond != NULL_RTX)
++ {
++ if (INTVAL (XEXP (compare_exp, 1)) == 0
++ && z_flag_valid
++ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE))
++ /* We can skip comparison Z flag is already reflecting ops[0] */
++ return next_cond;
++ else if (n_flag_valid
++ && ((INTVAL (XEXP (compare_exp, 1)) == 0
++ && (GET_CODE (next_cond) == GE
++ || GET_CODE (next_cond) == LT))
++ || (INTVAL (XEXP (compare_exp, 1)) == -1
++ && (GET_CODE (next_cond) == GT
++ || GET_CODE (next_cond) == LE))))
++ {
++ /* We can skip comparison N flag is already reflecting ops[0],
++ which means that we can use the mi/pl conditions to check if
++ ops[0] is GE or LT 0. */
++ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT))
++ new_cond =
++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
++ UNSPEC_COND_PL);
++ else
++ new_cond =
++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
++ UNSPEC_COND_MI);
++ return new_cond;
++ }
++ }
++ return NULL_RTX;
++ }
++
++/* Updates cc_status. */
++void
++avr32_notice_update_cc (rtx exp, rtx insn)
++ {
++ switch (get_attr_cc (insn))
++ {
++ case CC_CALL_SET:
++ CC_STATUS_INIT;
++ FPCC_STATUS_INIT;
++ /* Check if the function call returns a value in r12 */
++ if (REG_P (recog_data.operand[0])
++ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM)
++ {
++ cc_status.flags = 0;
++ cc_status.mdep.value =
++ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx);
++ cc_status.mdep.flags = CC_SET_VNCZ;
++
++ }
++ break;
++ case CC_COMPARE:
++ /* Check that compare will not be optimized away if so nothing should
++ be done */
++ if (is_compare_redundant (SET_SRC (exp), get_next_insn_cond (insn)) ==
++ NULL_RTX)
++ {
++
++ /* Reset the nonstandard flag */
++ CC_STATUS_INIT;
++ cc_status.flags = 0;
++ cc_status.mdep.value = SET_SRC (exp);
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ }
++ break;
++ case CC_CMP_COND_INSN:
++ {
++ /* Conditional insn that emit the compare itself. */
++ rtx cmp = gen_rtx_COMPARE (GET_MODE (recog_data.operand[4]),
++ recog_data.operand[4],
++ recog_data.operand[5]);
++
++ if (is_compare_redundant (cmp, recog_data.operand[1]) == NULL_RTX)
++ {
++
++ /* Reset the nonstandard flag */
++ CC_STATUS_INIT;
++ cc_status.flags = 0;
++ cc_status.mdep.value = cmp;
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ }
++ }
++ break;
++ case CC_FPCOMPARE:
++ /* Check that floating-point compare will not be optimized away if so
++ nothing should be done */
++ if (!rtx_equal_p (cc_prev_status.mdep.fpvalue, SET_SRC (exp)))
++ {
++ /* cc0 already contains the correct comparison -> delete cmp insn */
++ /* Reset the nonstandard flag */
++ cc_status.mdep.fpvalue = SET_SRC (exp);
++ cc_status.mdep.fpflags = CC_SET_CZ;
++ }
++ break;
++ case CC_FROM_FPCC:
++ /* Flags are updated with flags from Floating-point coprocessor, set
++ CC_NOT_SIGNED flag since the flags are set so that unsigned
++ condidion codes can be used directly. */
++ CC_STATUS_INIT;
++ cc_status.flags = CC_NOT_SIGNED;
++ cc_status.mdep.value = cc_status.mdep.fpvalue;
++ cc_status.mdep.flags = cc_status.mdep.fpflags;
++ break;
++ case CC_BLD:
++ /* Bit load is kind of like an inverted testsi, because the Z flag is
++ inverted */
++ CC_STATUS_INIT;
++ cc_status.flags = CC_INVERTED;
++ cc_status.mdep.value = SET_SRC (exp);
++ cc_status.mdep.flags = CC_SET_Z;
++ break;
++ case CC_NONE:
++ /* Insn does not affect CC at all. Check if the instruction updates
++ some of the register currently reflected in cc0 */
++
++ if ((GET_CODE (exp) == SET)
++ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value)
++ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1)
++ || reg_mentioned_p (SET_DEST (exp), cc_status.value2)
++ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value)))
++ {
++ CC_STATUS_INIT;
++ }
++
++ /* If this is a parallel we must step through each of the parallel
++ expressions */
++ if (GET_CODE (exp) == PARALLEL)
++ {
++ int i;
++ for (i = 0; i < XVECLEN (exp, 0); ++i)
++ {
++ rtx vec_exp = XVECEXP (exp, 0, i);
++ if ((GET_CODE (vec_exp) == SET)
++ && (cc_status.value1 || cc_status.value2
++ || cc_status.mdep.value)
++ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1)
++ || reg_mentioned_p (SET_DEST (vec_exp),
++ cc_status.value2)
++ || reg_mentioned_p (SET_DEST (vec_exp),
++ cc_status.mdep.value)))
++ {
++ CC_STATUS_INIT;
++ }
++ }
++ }
++
++ /* Check if we have memory opartions with post_inc or pre_dec on the
++ register currently reflected in cc0 */
++ if (GET_CODE (exp) == SET
++ && GET_CODE (SET_SRC (exp)) == MEM
++ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC
++ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC)
++ &&
++ (reg_mentioned_p
++ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1)
++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
++ cc_status.value2)
++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
++ cc_status.mdep.value)))
++ CC_STATUS_INIT;
++
++ if (GET_CODE (exp) == SET
++ && GET_CODE (SET_DEST (exp)) == MEM
++ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC
++ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC)
++ &&
++ (reg_mentioned_p
++ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1)
++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
++ cc_status.value2)
++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
++ cc_status.mdep.value)))
++ CC_STATUS_INIT;
++ break;
++
++ case CC_SET_VNCZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ break;
++
++ case CC_SET_NCZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_NCZ;
++ break;
++
++ case CC_SET_CZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_CZ;
++ break;
++
++ case CC_SET_Z:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_Z;
++ break;
++
++ case CC_CLOBBER:
++ CC_STATUS_INIT;
++ break;
++
++ default:
++ CC_STATUS_INIT;
++ }
++ }
++
++
++/*
++ Outputs to stdio stream stream the assembler syntax for an instruction
++ operand x. x is an RTL expression.
++ */
++void
++avr32_print_operand (FILE * stream, rtx x, int code)
++ {
++ int error = 0;
++
++ switch (GET_CODE (x))
++ {
++ case UNSPEC:
++ switch (XINT (x, 1))
++ {
++ case UNSPEC_COND_PL:
++ if (code == 'i')
++ fputs ("mi", stream);
++ else
++ fputs ("pl", stream);
++ break;
++ case UNSPEC_COND_MI:
++ if (code == 'i')
++ fputs ("pl", stream);
++ else
++ fputs ("mi", stream);
++ break;
++ default:
++ error = 1;
++ }
++ break;
++ case EQ:
++ if (code == 'i')
++ fputs ("ne", stream);
++ else
++ fputs ("eq", stream);
++ break;
++ case NE:
++ if (code == 'i')
++ fputs ("eq", stream);
++ else
++ fputs ("ne", stream);
++ break;
++ case GT:
++ if (code == 'i')
++ fputs ("le", stream);
++ else
++ fputs ("gt", stream);
++ break;
++ case GTU:
++ if (code == 'i')
++ fputs ("ls", stream);
++ else
++ fputs ("hi", stream);
++ break;
++ case LT:
++ if (code == 'i')
++ fputs ("ge", stream);
++ else
++ fputs ("lt", stream);
++ break;
++ case LTU:
++ if (code == 'i')
++ fputs ("hs", stream);
++ else
++ fputs ("lo", stream);
++ break;
++ case GE:
++ if (code == 'i')
++ fputs ("lt", stream);
++ else
++ fputs ("ge", stream);
++ break;
++ case GEU:
++ if (code == 'i')
++ fputs ("lo", stream);
++ else
++ fputs ("hs", stream);
++ break;
++ case LE:
++ if (code == 'i')
++ fputs ("gt", stream);
++ else
++ fputs ("le", stream);
++ break;
++ case LEU:
++ if (code == 'i')
++ fputs ("hi", stream);
++ else
++ fputs ("ls", stream);
++ break;
++ case CONST_INT:
++ {
++ HOST_WIDE_INT value = INTVAL (x);
++
++ switch (code)
++ {
++ case 'm':
++ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD )
++ {
++ /* A const_int can be used to represent DImode constants. */
++ value >>= BITS_PER_WORD;
++ }
++ /* We might get a const_int immediate for setting a DI register,
++ we then must then return the correct sign extended DI. The most
++ significant word is just a sign extension. */
++ else if (value < 0)
++ value = -1;
++ else
++ value = 0;
++ break;
++ case 'i':
++ value++;
++ break;
++ case 'p':
++ {
++ /* Set to bit position of first bit set in immediate */
++ int i, bitpos = 32;
++ for (i = 0; i < 32; i++)
++ if (value & (1 << i))
++ {
++ bitpos = i;
++ break;
++ }
++ value = bitpos;
++ }
++ break;
++ case 'r':
++ {
++ /* Reglist 8 */
++ char op[50];
++ op[0] = '\0';
++
++ if (value & 0x01)
++ sprintf (op, "r0-r3");
++ if (value & 0x02)
++ strlen (op) ? sprintf (op, "%s, r4-r7", op) : sprintf (op,
++ "r4-r7");
++ if (value & 0x04)
++ strlen (op) ? sprintf (op, "%s, r8-r9", op) : sprintf (op,
++ "r8-r9");
++ if (value & 0x08)
++ strlen (op) ? sprintf (op, "%s, r10", op) : sprintf (op,
++ "r10");
++ if (value & 0x10)
++ strlen (op) ? sprintf (op, "%s, r11", op) : sprintf (op,
++ "r11");
++ if (value & 0x20)
++ strlen (op) ? sprintf (op, "%s, r12", op) : sprintf (op,
++ "r12");
++ if (value & 0x40)
++ strlen (op) ? sprintf (op, "%s, lr", op) : sprintf (op, "lr");
++ if (value & 0x80)
++ strlen (op) ? sprintf (op, "%s, pc", op) : sprintf (op, "pc");
++
++ fputs (op, stream);
++ return;
++ }
++ case 's':
++ {
++ /* Reglist 16 */
++ char reglist16_string[100];
++ int i;
++ reglist16_string[0] = '\0';
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (value & (1 << i))
++ {
++ strlen (reglist16_string) ? sprintf (reglist16_string,
++ "%s, %s",
++ reglist16_string,
++ reg_names
++ [INTERNAL_REGNUM
++ (i)]) :
++ sprintf (reglist16_string, "%s",
++ reg_names[INTERNAL_REGNUM (i)]);
++ }
++ }
++ fputs (reglist16_string, stream);
++ return;
++ }
++ case 'C':
++ {
++ /* RegListCP8 */
++ char reglist_string[100];
++ avr32_make_fp_reglist_w (value, (char *) reglist_string);
++ fputs (reglist_string, stream);
++ return;
++ }
++ case 'D':
++ {
++ /* RegListCPD8 */
++ char reglist_string[100];
++ avr32_make_fp_reglist_d (value, (char *) reglist_string);
++ fputs (reglist_string, stream);
++ return;
++ }
++ case 'h':
++ /* Print halfword part of word */
++ fputs (value ? "b" : "t", stream);
++ return;
++ }
++
++ /* Print Value */
++ fprintf (stream, "%d", value);
++ break;
++ }
++ case CONST_DOUBLE:
++ {
++ HOST_WIDE_INT hi, lo;
++ if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
++ {
++ HOST_WIDE_INT target_float[2];
++ hi = lo = 0;
++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x),
++ GET_MODE (x));
++ /* For doubles the most significant part starts at index 0. */
++ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
++ {
++ hi = target_float[0];
++ lo = target_float[1];
++ }
++ else
++ {
++ lo = target_float[0];
++ }
++ }
++ else
++ {
++ hi = CONST_DOUBLE_HIGH (x);
++ lo = CONST_DOUBLE_LOW (x);
++ }
++
++ if (code == 'm')
++ fprintf (stream, "%ld", hi);
++ else
++ fprintf (stream, "%ld", lo);
++
++ break;
++ }
++ case CONST:
++ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
++ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1)));
++ break;
++ case REG:
++ /* Swap register name if the register is DImode or DFmode. */
++ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
++ {
++ /* Double register must have an even numbered address */
++ gcc_assert (!(REGNO (x) % 2));
++ if (code == 'm')
++ fputs (reg_names[true_regnum (x)], stream);
++ else
++ fputs (reg_names[true_regnum (x) + 1], stream);
++ }
++ else if (GET_MODE (x) == TImode)
++ {
++ switch (code)
++ {
++ case 'T':
++ fputs (reg_names[true_regnum (x)], stream);
++ break;
++ case 'U':
++ fputs (reg_names[true_regnum (x) + 1], stream);
++ break;
++ case 'L':
++ fputs (reg_names[true_regnum (x) + 2], stream);
++ break;
++ case 'B':
++ fputs (reg_names[true_regnum (x) + 3], stream);
++ break;
++ default:
++ fprintf (stream, "%s, %s, %s, %s",
++ reg_names[true_regnum (x) + 3],
++ reg_names[true_regnum (x) + 2],
++ reg_names[true_regnum (x) + 1],
++ reg_names[true_regnum (x)]);
++ break;
++ }
++ }
++ else
++ {
++ fputs (reg_names[true_regnum (x)], stream);
++ }
++ break;
++ case CODE_LABEL:
++ case LABEL_REF:
++ case SYMBOL_REF:
++ output_addr_const (stream, x);
++ break;
++ case MEM:
++ switch (GET_CODE (XEXP (x, 0)))
++ {
++ case LABEL_REF:
++ case SYMBOL_REF:
++ output_addr_const (stream, XEXP (x, 0));
++ break;
++ case MEM:
++ switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
++ {
++ case SYMBOL_REF:
++ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
++ break;
++ default:
++ error = 1;
++ break;
++ }
++ break;
++ case REG:
++ avr32_print_operand (stream, XEXP (x, 0), 0);
++ if (code != 'p')
++ fputs ("[0]", stream);
++ break;
++ case PRE_DEC:
++ fputs ("--", stream);
++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
++ break;
++ case POST_INC:
++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
++ fputs ("++", stream);
++ break;
++ case PLUS:
++ {
++ rtx op0 = XEXP (XEXP (x, 0), 0);
++ rtx op1 = XEXP (XEXP (x, 0), 1);
++ rtx base = NULL_RTX, offset = NULL_RTX;
++
++ if (avr32_address_register_rtx_p (op0, 1))
++ {
++ base = op0;
++ offset = op1;
++ }
++ else if (avr32_address_register_rtx_p (op1, 1))
++ {
++ /* Operands are switched. */
++ base = op1;
++ offset = op0;
++ }
++
++ gcc_assert (base && offset
++ && avr32_address_register_rtx_p (base, 1)
++ && avr32_legitimate_index_p (GET_MODE (x), offset,
++ 1));
++
++ avr32_print_operand (stream, base, 0);
++ fputs ("[", stream);
++ avr32_print_operand (stream, offset, 0);
++ fputs ("]", stream);
++ break;
++ }
++ case CONST:
++ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0));
++ fprintf (stream, " + %ld",
++ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)));
++ break;
++ default:
++ error = 1;
++ }
++ break;
++ case MULT:
++ {
++ int value = INTVAL (XEXP (x, 1));
++
++ /* Convert immediate in multiplication into a shift immediate */
++ switch (value)
++ {
++ case 2:
++ value = 1;
++ break;
++ case 4:
++ value = 2;
++ break;
++ case 8:
++ value = 3;
++ break;
++ default:
++ value = 0;
++ }
++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
++ value);
++ break;
++ }
++ case ASHIFT:
++ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
++ (int) INTVAL (XEXP (x, 1)));
++ else if (REG_P (XEXP (x, 1)))
++ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))],
++ reg_names[true_regnum (XEXP (x, 1))]);
++ else
++ {
++ error = 1;
++ }
++ break;
++ case LSHIFTRT:
++ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
++ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))],
++ (int) INTVAL (XEXP (x, 1)));
++ else if (REG_P (XEXP (x, 1)))
++ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))],
++ reg_names[true_regnum (XEXP (x, 1))]);
++ else
++ {
++ error = 1;
++ }
++ fprintf (stream, ">>");
++ break;
++ case PARALLEL:
++ {
++ /* Load store multiple */
++ int i;
++ int count = XVECLEN (x, 0);
++ int reglist16 = 0;
++ char reglist16_string[100];
++
++ for (i = 0; i < count; ++i)
++ {
++ rtx vec_elm = XVECEXP (x, 0, i);
++ if (GET_MODE (vec_elm) != SET)
++ {
++ debug_rtx (vec_elm);
++ internal_error ("Unknown element in parallel expression!");
++ }
++ if (GET_MODE (XEXP (vec_elm, 0)) == REG)
++ {
++ /* Load multiple */
++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0)));
++ }
++ else
++ {
++ /* Store multiple */
++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1)));
++ }
++ }
++
++ avr32_make_reglist16 (reglist16, reglist16_string);
++ fputs (reglist16_string, stream);
++
++ break;
++ }
++
++ default:
++ error = 1;
++ }
++
++ if (error)
++ {
++ debug_rtx (x);
++ internal_error ("Illegal expression for avr32_print_operand");
++ }
++ }
++
++rtx
++avr32_get_note_reg_equiv (rtx insn)
++ {
++ rtx note;
++
++ note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
++
++ if (note != NULL_RTX)
++ return XEXP (note, 0);
++ else
++ return NULL_RTX;
++ }
++
++/*
++ Outputs to stdio stream stream the assembler syntax for an instruction
++ operand that is a memory reference whose address is x. x is an RTL
++ expression.
++
++ ToDo: fixme.
++ */
++void
++avr32_print_operand_address (FILE * stream, rtx x)
++ {
++ fprintf (stream, "(%d) /* address */", REGNO (x));
++ }
++
++/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */
++bool
++avr32_got_mentioned_p (rtx addr)
++ {
++ if (GET_CODE (addr) == MEM)
++ addr = XEXP (addr, 0);
++ while (GET_CODE (addr) == CONST)
++ addr = XEXP (addr, 0);
++ if (GET_CODE (addr) == SYMBOL_REF)
++ {
++ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_");
++ }
++ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
++ {
++ bool l1, l2;
++
++ l1 = avr32_got_mentioned_p (XEXP (addr, 0));
++ l2 = avr32_got_mentioned_p (XEXP (addr, 1));
++ return l1 || l2;
++ }
++ return false;
++ }
++
++
++/* Find the symbol in an address expression. */
++
++rtx
++avr32_find_symbol (rtx addr)
++ {
++ if (GET_CODE (addr) == MEM)
++ addr = XEXP (addr, 0);
++
++ while (GET_CODE (addr) == CONST)
++ addr = XEXP (addr, 0);
++
++ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
++ return addr;
++ if (GET_CODE (addr) == PLUS)
++ {
++ rtx l1, l2;
++
++ l1 = avr32_find_symbol (XEXP (addr, 0));
++ l2 = avr32_find_symbol (XEXP (addr, 1));
++ if (l1 != NULL_RTX && l2 == NULL_RTX)
++ return l1;
++ else if (l1 == NULL_RTX && l2 != NULL_RTX)
++ return l2;
++ }
++
++ return NULL_RTX;
++ }
++
++
++/* Routines for manipulation of the constant pool. */
++
++/* AVR32 instructions cannot load a large constant directly into a
++ register; they have to come from a pc relative load. The constant
++ must therefore be placed in the addressable range of the pc
++ relative load. Depending on the precise pc relative load
++ instruction the range is somewhere between 256 bytes and 4k. This
++ means that we often have to dump a constant inside a function, and
++ generate code to branch around it.
++
++ It is important to minimize this, since the branches will slow
++ things down and make the code larger.
++
++ Normally we can hide the table after an existing unconditional
++ branch so that there is no interruption of the flow, but in the
++ worst case the code looks like this:
++
++ lddpc rn, L1
++ ...
++ rjmp L2
++ align
++ L1: .long value
++ L2:
++ ...
++
++ lddpc rn, L3
++ ...
++ rjmp L4
++ align
++ L3: .long value
++ L4:
++ ...
++
++ We fix this by performing a scan after scheduling, which notices
++ which instructions need to have their operands fetched from the
++ constant table and builds the table.
++
++ The algorithm starts by building a table of all the constants that
++ need fixing up and all the natural barriers in the function (places
++ where a constant table can be dropped without breaking the flow).
++ For each fixup we note how far the pc-relative replacement will be
++ able to reach and the offset of the instruction into the function.
++
++ Having built the table we then group the fixes together to form
++ tables that are as large as possible (subject to addressing
++ constraints) and emit each table of constants after the last
++ barrier that is within range of all the instructions in the group.
++ If a group does not contain a barrier, then we forcibly create one
++ by inserting a jump instruction into the flow. Once the table has
++ been inserted, the insns are then modified to reference the
++ relevant entry in the pool.
++
++ Possible enhancements to the algorithm (not implemented) are:
++
++ 1) For some processors and object formats, there may be benefit in
++ aligning the pools to the start of cache lines; this alignment
++ would need to be taken into account when calculating addressability
++ of a pool. */
++
++/* These typedefs are located at the start of this file, so that
++ they can be used in the prototypes there. This comment is to
++ remind readers of that fact so that the following structures
++ can be understood more easily.
++
++ typedef struct minipool_node Mnode;
++ typedef struct minipool_fixup Mfix; */
++
++struct minipool_node
++{
++ /* Doubly linked chain of entries. */
++ Mnode *next;
++ Mnode *prev;
++ /* The maximum offset into the code that this entry can be placed. While
++ pushing fixes for forward references, all entries are sorted in order of
++ increasing max_address. */
++ HOST_WIDE_INT max_address;
++ /* Similarly for an entry inserted for a backwards ref. */
++ HOST_WIDE_INT min_address;
++ /* The number of fixes referencing this entry. This can become zero if we
++ "unpush" an entry. In this case we ignore the entry when we come to
++ emit the code. */
++ int refcount;
++ /* The offset from the start of the minipool. */
++ HOST_WIDE_INT offset;
++ /* The value in table. */
++ rtx value;
++ /* The mode of value. */
++ enum machine_mode mode;
++ /* The size of the value. */
++ int fix_size;
++};
++
++struct minipool_fixup
++{
++ Mfix *next;
++ rtx insn;
++ HOST_WIDE_INT address;
++ rtx *loc;
++ enum machine_mode mode;
++ int fix_size;
++ rtx value;
++ Mnode *minipool;
++ HOST_WIDE_INT forwards;
++ HOST_WIDE_INT backwards;
++};
++
++
++/* Fixes less than a word need padding out to a word boundary. */
++#define MINIPOOL_FIX_SIZE(mode, value) \
++ (IS_FORCE_MINIPOOL(value) ? 0 : \
++ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4))
++
++#define IS_FORCE_MINIPOOL(x) \
++ (GET_CODE(x) == UNSPEC && \
++ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL)
++
++static Mnode *minipool_vector_head;
++static Mnode *minipool_vector_tail;
++
++/* The linked list of all minipool fixes required for this function. */
++Mfix *minipool_fix_head;
++Mfix *minipool_fix_tail;
++/* The fix entry for the current minipool, once it has been placed. */
++Mfix *minipool_barrier;
++
++/* Determines if INSN is the start of a jump table. Returns the end
++ of the TABLE or NULL_RTX. */
++static rtx
++is_jump_table (rtx insn)
++ {
++ rtx table;
++
++ if (GET_CODE (insn) == JUMP_INSN
++ && JUMP_LABEL (insn) != NULL
++ && ((table = next_real_insn (JUMP_LABEL (insn)))
++ == next_real_insn (insn))
++ && table != NULL
++ && GET_CODE (table) == JUMP_INSN
++ && (GET_CODE (PATTERN (table)) == ADDR_VEC
++ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
++ return table;
++
++ return NULL_RTX;
++ }
++
++static HOST_WIDE_INT
++get_jump_table_size (rtx insn)
++ {
++ /* ADDR_VECs only take room if read-only data does into the text section. */
++ if (JUMP_TABLES_IN_TEXT_SECTION
++#if !defined(READONLY_DATA_SECTION_ASM_OP)
++ || 1
++#endif
++ )
++ {
++ rtx body = PATTERN (insn);
++ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
++
++ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
++ }
++
++ return 0;
++ }
++
++/* Move a minipool fix MP from its current location to before MAX_MP.
++ If MAX_MP is NULL, then MP doesn't need moving, but the addressing
++ constraints may need updating. */
++static Mnode *
++move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp,
++ HOST_WIDE_INT max_address)
++ {
++ /* This should never be true and the code below assumes these are
++ different. */
++ if (mp == max_mp)
++ abort ();
++
++ if (max_mp == NULL)
++ {
++ if (max_address < mp->max_address)
++ mp->max_address = max_address;
++ }
++ else
++ {
++ if (max_address > max_mp->max_address - mp->fix_size)
++ mp->max_address = max_mp->max_address - mp->fix_size;
++ else
++ mp->max_address = max_address;
++
++ /* Unlink MP from its current position. Since max_mp is non-null,
++ mp->prev must be non-null. */
++ mp->prev->next = mp->next;
++ if (mp->next != NULL)
++ mp->next->prev = mp->prev;
++ else
++ minipool_vector_tail = mp->prev;
++
++ /* Re-insert it before MAX_MP. */
++ mp->next = max_mp;
++ mp->prev = max_mp->prev;
++ max_mp->prev = mp;
++
++ if (mp->prev != NULL)
++ mp->prev->next = mp;
++ else
++ minipool_vector_head = mp;
++ }
++
++ /* Save the new entry. */
++ max_mp = mp;
++
++ /* Scan over the preceding entries and adjust their addresses as required.
++ */
++ while (mp->prev != NULL
++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
++ {
++ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
++ mp = mp->prev;
++ }
++
++ return max_mp;
++ }
++
++/* Add a constant to the minipool for a forward reference. Returns the
++ node added or NULL if the constant will not fit in this pool. */
++static Mnode *
++add_minipool_forward_ref (Mfix * fix)
++{
++ /* If set, max_mp is the first pool_entry that has a lower constraint than
++ the one we are trying to add. */
++ Mnode *max_mp = NULL;
++ HOST_WIDE_INT max_address = fix->address + fix->forwards;
++ Mnode *mp;
++
++ /* If this fix's address is greater than the address of the first entry,
++ then we can't put the fix in this pool. We subtract the size of the
++ current fix to ensure that if the table is fully packed we still have
++ enough room to insert this value by suffling the other fixes forwards. */
++ if (minipool_vector_head &&
++ fix->address >= minipool_vector_head->max_address - fix->fix_size)
++ return NULL;
++
++ /* Scan the pool to see if a constant with the same value has already been
++ added. While we are doing this, also note the location where we must
++ insert the constant if it doesn't already exist. */
++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
++ {
++ if (GET_CODE (fix->value) == GET_CODE (mp->value)
++ && fix->mode == mp->mode
++ && (GET_CODE (fix->value) != CODE_LABEL
++ || (CODE_LABEL_NUMBER (fix->value)
++ == CODE_LABEL_NUMBER (mp->value)))
++ && rtx_equal_p (fix->value, mp->value))
++ {
++ /* More than one fix references this entry. */
++ mp->refcount++;
++ return move_minipool_fix_forward_ref (mp, max_mp, max_address);
++ }
++
++ /* Note the insertion point if necessary. */
++ if (max_mp == NULL && mp->max_address > max_address)
++ max_mp = mp;
++
++ }
++
++ /* The value is not currently in the minipool, so we need to create a new
++ entry for it. If MAX_MP is NULL, the entry will be put on the end of
++ the list since the placement is less constrained than any existing
++ entry. Otherwise, we insert the new fix before MAX_MP and, if
++ necessary, adjust the constraints on the other entries. */
++ mp = xmalloc (sizeof (*mp));
++ mp->fix_size = fix->fix_size;
++ mp->mode = fix->mode;
++ mp->value = fix->value;
++ mp->refcount = 1;
++ /* Not yet required for a backwards ref. */
++ mp->min_address = -65536;
++
++ if (max_mp == NULL)
++ {
++ mp->max_address = max_address;
++ mp->next = NULL;
++ mp->prev = minipool_vector_tail;
++
++ if (mp->prev == NULL)
++ {
++ minipool_vector_head = mp;
++ minipool_vector_label = gen_label_rtx ();
++ }
++ else
++ mp->prev->next = mp;
++
++ minipool_vector_tail = mp;
++ }
++ else
++ {
++ if (max_address > max_mp->max_address - mp->fix_size)
++ mp->max_address = max_mp->max_address - mp->fix_size;
++ else
++ mp->max_address = max_address;
++
++ mp->next = max_mp;
++ mp->prev = max_mp->prev;
++ max_mp->prev = mp;
++ if (mp->prev != NULL)
++ mp->prev->next = mp;
++ else
++ minipool_vector_head = mp;
++ }
++
++ /* Save the new entry. */
++ max_mp = mp;
++
++ /* Scan over the preceding entries and adjust their addresses as required.
++ */
++ while (mp->prev != NULL
++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
++ {
++ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
++ mp = mp->prev;
++ }
++
++ return max_mp;
++}
++
++static Mnode *
++move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp,
++ HOST_WIDE_INT min_address)
++ {
++ HOST_WIDE_INT offset;
++
++ /* This should never be true, and the code below assumes these are
++ different. */
++ if (mp == min_mp)
++ abort ();
++
++ if (min_mp == NULL)
++ {
++ if (min_address > mp->min_address)
++ mp->min_address = min_address;
++ }
++ else
++ {
++ /* We will adjust this below if it is too loose. */
++ mp->min_address = min_address;
++
++ /* Unlink MP from its current position. Since min_mp is non-null,
++ mp->next must be non-null. */
++ mp->next->prev = mp->prev;
++ if (mp->prev != NULL)
++ mp->prev->next = mp->next;
++ else
++ minipool_vector_head = mp->next;
++
++ /* Reinsert it after MIN_MP. */
++