65aa7f32606518a1ed6e497559f17113115cbe86
[openwrt/staging/mkresin.git] / target / linux / ramips / files-4.14 / drivers / net / ethernet / mediatek / mtk_eth_soc.c
1 /* This program is free software; you can redistribute it and/or modify
2 * it under the terms of the GNU General Public License as published by
3 * the Free Software Foundation; version 2 of the License
4 *
5 * This program is distributed in the hope that it will be useful,
6 * but WITHOUT ANY WARRANTY; without even the implied warranty of
7 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
8 * GNU General Public License for more details.
9 *
10 * Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
11 * Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
12 * Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/platform_device.h>
24 #include <linux/of_device.h>
25 #include <linux/clk.h>
26 #include <linux/of_net.h>
27 #include <linux/of_mdio.h>
28 #include <linux/if_vlan.h>
29 #include <linux/reset.h>
30 #include <linux/tcp.h>
31 #include <linux/io.h>
32 #include <linux/bug.h>
33 #include <linux/netfilter.h>
34 #include <net/netfilter/nf_flow_table.h>
35 #include <linux/of_gpio.h>
36 #include <linux/gpio.h>
37 #include <linux/gpio/consumer.h>
38
39 #include <asm/mach-ralink/ralink_regs.h>
40
41 #include "mtk_eth_soc.h"
42 #include "mdio.h"
43 #include "ethtool.h"
44
45 #define MAX_RX_LENGTH 1536
46 #define FE_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
47 #define FE_RX_HLEN (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
48 #define DMA_DUMMY_DESC 0xffffffff
49 #define FE_DEFAULT_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_TIMER | \
54 NETIF_MSG_IFDOWN | \
55 NETIF_MSG_IFUP | \
56 NETIF_MSG_RX_ERR | \
57 NETIF_MSG_TX_ERR)
58
59 #define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
60 #define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
61 #define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
62 #define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
63
64 #define SYSC_REG_RSTCTRL 0x34
65
66 static int fe_msg_level = -1;
67 module_param_named(msg_level, fe_msg_level, int, 0);
68 MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
69
70 static const u16 fe_reg_table_default[FE_REG_COUNT] = {
71 [FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
72 [FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
73 [FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
74 [FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
75 [FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
76 [FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
77 [FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
78 [FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
79 [FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
80 [FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
81 [FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
82 [FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
83 [FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
84 [FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
85 [FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
86 [FE_REG_FE_RST_GL] = FE_FE_RST_GL,
87 };
88
89 static const u16 *fe_reg_table = fe_reg_table_default;
90
91 struct fe_work_t {
92 int bitnr;
93 void (*action)(struct fe_priv *);
94 };
95
96 static void __iomem *fe_base;
97
98 void fe_w32(u32 val, unsigned reg)
99 {
100 __raw_writel(val, fe_base + reg);
101 }
102
103 u32 fe_r32(unsigned reg)
104 {
105 return __raw_readl(fe_base + reg);
106 }
107
108 void fe_reg_w32(u32 val, enum fe_reg reg)
109 {
110 fe_w32(val, fe_reg_table[reg]);
111 }
112
113 u32 fe_reg_r32(enum fe_reg reg)
114 {
115 return fe_r32(fe_reg_table[reg]);
116 }
117
118 void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
119 {
120 u32 val;
121
122 spin_lock(&eth->page_lock);
123 val = __raw_readl(fe_base + reg);
124 val &= ~clear;
125 val |= set;
126 __raw_writel(val, fe_base + reg);
127 spin_unlock(&eth->page_lock);
128 }
129
130 void fe_reset(u32 reset_bits)
131 {
132 u32 t;
133
134 t = rt_sysc_r32(SYSC_REG_RSTCTRL);
135 t |= reset_bits;
136 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
137 usleep_range(10, 20);
138
139 t &= ~reset_bits;
140 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
141 usleep_range(10, 20);
142 }
143
144 static inline void fe_int_disable(u32 mask)
145 {
146 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
147 FE_REG_FE_INT_ENABLE);
148 /* flush write */
149 fe_reg_r32(FE_REG_FE_INT_ENABLE);
150 }
151
152 static inline void fe_int_enable(u32 mask)
153 {
154 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
155 FE_REG_FE_INT_ENABLE);
156 /* flush write */
157 fe_reg_r32(FE_REG_FE_INT_ENABLE);
158 }
159
160 static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
161 {
162 unsigned long flags;
163
164 spin_lock_irqsave(&priv->page_lock, flags);
165 fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
166 fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
167 FE_GDMA1_MAC_ADRL);
168 spin_unlock_irqrestore(&priv->page_lock, flags);
169 }
170
171 static int fe_set_mac_address(struct net_device *dev, void *p)
172 {
173 int ret = eth_mac_addr(dev, p);
174
175 if (!ret) {
176 struct fe_priv *priv = netdev_priv(dev);
177
178 if (priv->soc->set_mac)
179 priv->soc->set_mac(priv, dev->dev_addr);
180 else
181 fe_hw_set_macaddr(priv, p);
182 }
183
184 return ret;
185 }
186
187 static inline int fe_max_frag_size(int mtu)
188 {
189 /* make sure buf_size will be at least MAX_RX_LENGTH */
190 if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
191 mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;
192
193 return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
194 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
195 }
196
197 static inline int fe_max_buf_size(int frag_size)
198 {
199 int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
200 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
201
202 BUG_ON(buf_size < MAX_RX_LENGTH);
203 return buf_size;
204 }
205
206 static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
207 {
208 rxd->rxd1 = dma_rxd->rxd1;
209 rxd->rxd2 = dma_rxd->rxd2;
210 rxd->rxd3 = dma_rxd->rxd3;
211 rxd->rxd4 = dma_rxd->rxd4;
212 }
213
214 static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
215 {
216 dma_txd->txd1 = txd->txd1;
217 dma_txd->txd3 = txd->txd3;
218 dma_txd->txd4 = txd->txd4;
219 /* clean dma done flag last */
220 dma_txd->txd2 = txd->txd2;
221 }
222
223 static void fe_clean_rx(struct fe_priv *priv)
224 {
225 struct fe_rx_ring *ring = &priv->rx_ring;
226 struct page *page;
227 int i;
228
229 if (ring->rx_data) {
230 for (i = 0; i < ring->rx_ring_size; i++)
231 if (ring->rx_data[i]) {
232 if (ring->rx_dma && ring->rx_dma[i].rxd1)
233 dma_unmap_single(&priv->netdev->dev,
234 ring->rx_dma[i].rxd1,
235 ring->rx_buf_size,
236 DMA_FROM_DEVICE);
237 skb_free_frag(ring->rx_data[i]);
238 }
239
240 kfree(ring->rx_data);
241 ring->rx_data = NULL;
242 }
243
244 if (ring->rx_dma) {
245 dma_free_coherent(&priv->netdev->dev,
246 ring->rx_ring_size * sizeof(*ring->rx_dma),
247 ring->rx_dma,
248 ring->rx_phys);
249 ring->rx_dma = NULL;
250 }
251
252 if (!ring->frag_cache.va)
253 return;
254
255 page = virt_to_page(ring->frag_cache.va);
256 __page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
257 memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
258 }
259
260 static int fe_alloc_rx(struct fe_priv *priv)
261 {
262 struct net_device *netdev = priv->netdev;
263 struct fe_rx_ring *ring = &priv->rx_ring;
264 int i, pad;
265
266 ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
267 GFP_KERNEL);
268 if (!ring->rx_data)
269 goto no_rx_mem;
270
271 for (i = 0; i < ring->rx_ring_size; i++) {
272 ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
273 ring->frag_size,
274 GFP_KERNEL);
275 if (!ring->rx_data[i])
276 goto no_rx_mem;
277 }
278
279 ring->rx_dma = dma_alloc_coherent(&netdev->dev,
280 ring->rx_ring_size * sizeof(*ring->rx_dma),
281 &ring->rx_phys,
282 GFP_ATOMIC | __GFP_ZERO);
283 if (!ring->rx_dma)
284 goto no_rx_mem;
285
286 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
287 pad = 0;
288 else
289 pad = NET_IP_ALIGN;
290 for (i = 0; i < ring->rx_ring_size; i++) {
291 dma_addr_t dma_addr = dma_map_single(&netdev->dev,
292 ring->rx_data[i] + NET_SKB_PAD + pad,
293 ring->rx_buf_size,
294 DMA_FROM_DEVICE);
295 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
296 goto no_rx_mem;
297 ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
298
299 if (priv->flags & FE_FLAG_RX_SG_DMA)
300 ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
301 else
302 ring->rx_dma[i].rxd2 = RX_DMA_LSO;
303 }
304 ring->rx_calc_idx = ring->rx_ring_size - 1;
305 /* make sure that all changes to the dma ring are flushed before we
306 * continue
307 */
308 wmb();
309
310 fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
311 fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
312 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
313 fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
314
315 return 0;
316
317 no_rx_mem:
318 return -ENOMEM;
319 }
320
321 static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
322 {
323 if (dma_unmap_len(tx_buf, dma_len0))
324 dma_unmap_page(dev,
325 dma_unmap_addr(tx_buf, dma_addr0),
326 dma_unmap_len(tx_buf, dma_len0),
327 DMA_TO_DEVICE);
328
329 if (dma_unmap_len(tx_buf, dma_len1))
330 dma_unmap_page(dev,
331 dma_unmap_addr(tx_buf, dma_addr1),
332 dma_unmap_len(tx_buf, dma_len1),
333 DMA_TO_DEVICE);
334
335 dma_unmap_len_set(tx_buf, dma_addr0, 0);
336 dma_unmap_len_set(tx_buf, dma_addr1, 0);
337 if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
338 dev_kfree_skb_any(tx_buf->skb);
339 tx_buf->skb = NULL;
340 }
341
342 static void fe_clean_tx(struct fe_priv *priv)
343 {
344 int i;
345 struct device *dev = &priv->netdev->dev;
346 struct fe_tx_ring *ring = &priv->tx_ring;
347
348 if (ring->tx_buf) {
349 for (i = 0; i < ring->tx_ring_size; i++)
350 fe_txd_unmap(dev, &ring->tx_buf[i]);
351 kfree(ring->tx_buf);
352 ring->tx_buf = NULL;
353 }
354
355 if (ring->tx_dma) {
356 dma_free_coherent(dev,
357 ring->tx_ring_size * sizeof(*ring->tx_dma),
358 ring->tx_dma,
359 ring->tx_phys);
360 ring->tx_dma = NULL;
361 }
362
363 netdev_reset_queue(priv->netdev);
364 }
365
366 static int fe_alloc_tx(struct fe_priv *priv)
367 {
368 int i;
369 struct fe_tx_ring *ring = &priv->tx_ring;
370
371 ring->tx_free_idx = 0;
372 ring->tx_next_idx = 0;
373 ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
374 MAX_SKB_FRAGS);
375
376 ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
377 GFP_KERNEL);
378 if (!ring->tx_buf)
379 goto no_tx_mem;
380
381 ring->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
382 ring->tx_ring_size * sizeof(*ring->tx_dma),
383 &ring->tx_phys,
384 GFP_ATOMIC | __GFP_ZERO);
385 if (!ring->tx_dma)
386 goto no_tx_mem;
387
388 for (i = 0; i < ring->tx_ring_size; i++) {
389 if (priv->soc->tx_dma)
390 priv->soc->tx_dma(&ring->tx_dma[i]);
391 ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
392 }
393 /* make sure that all changes to the dma ring are flushed before we
394 * continue
395 */
396 wmb();
397
398 fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
399 fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
400 fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
401 fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
402
403 return 0;
404
405 no_tx_mem:
406 return -ENOMEM;
407 }
408
409 static int fe_init_dma(struct fe_priv *priv)
410 {
411 int err;
412
413 err = fe_alloc_tx(priv);
414 if (err)
415 return err;
416
417 err = fe_alloc_rx(priv);
418 if (err)
419 return err;
420
421 return 0;
422 }
423
424 static void fe_free_dma(struct fe_priv *priv)
425 {
426 fe_clean_tx(priv);
427 fe_clean_rx(priv);
428 }
429
430 void fe_stats_update(struct fe_priv *priv)
431 {
432 struct fe_hw_stats *hwstats = priv->hw_stats;
433 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
434 u64 stats;
435
436 u64_stats_update_begin(&hwstats->syncp);
437
438 if (IS_ENABLED(CONFIG_SOC_MT7621)) {
439 hwstats->rx_bytes += fe_r32(base);
440 stats = fe_r32(base + 0x04);
441 if (stats)
442 hwstats->rx_bytes += (stats << 32);
443 hwstats->rx_packets += fe_r32(base + 0x08);
444 hwstats->rx_overflow += fe_r32(base + 0x10);
445 hwstats->rx_fcs_errors += fe_r32(base + 0x14);
446 hwstats->rx_short_errors += fe_r32(base + 0x18);
447 hwstats->rx_long_errors += fe_r32(base + 0x1c);
448 hwstats->rx_checksum_errors += fe_r32(base + 0x20);
449 hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
450 hwstats->tx_skip += fe_r32(base + 0x28);
451 hwstats->tx_collisions += fe_r32(base + 0x2c);
452 hwstats->tx_bytes += fe_r32(base + 0x30);
453 stats = fe_r32(base + 0x34);
454 if (stats)
455 hwstats->tx_bytes += (stats << 32);
456 hwstats->tx_packets += fe_r32(base + 0x38);
457 } else {
458 hwstats->tx_bytes += fe_r32(base);
459 hwstats->tx_packets += fe_r32(base + 0x04);
460 hwstats->tx_skip += fe_r32(base + 0x08);
461 hwstats->tx_collisions += fe_r32(base + 0x0c);
462 hwstats->rx_bytes += fe_r32(base + 0x20);
463 hwstats->rx_packets += fe_r32(base + 0x24);
464 hwstats->rx_overflow += fe_r32(base + 0x28);
465 hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
466 hwstats->rx_short_errors += fe_r32(base + 0x30);
467 hwstats->rx_long_errors += fe_r32(base + 0x34);
468 hwstats->rx_checksum_errors += fe_r32(base + 0x38);
469 hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
470 }
471
472 u64_stats_update_end(&hwstats->syncp);
473 }
474
475 static void fe_get_stats64(struct net_device *dev,
476 struct rtnl_link_stats64 *storage)
477 {
478 struct fe_priv *priv = netdev_priv(dev);
479 struct fe_hw_stats *hwstats = priv->hw_stats;
480 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
481 unsigned int start;
482
483 if (!base) {
484 netdev_stats_to_stats64(storage, &dev->stats);
485 return;
486 }
487
488 if (netif_running(dev) && netif_device_present(dev)) {
489 if (spin_trylock_bh(&hwstats->stats_lock)) {
490 fe_stats_update(priv);
491 spin_unlock_bh(&hwstats->stats_lock);
492 }
493 }
494
495 do {
496 start = u64_stats_fetch_begin_irq(&hwstats->syncp);
497 storage->rx_packets = hwstats->rx_packets;
498 storage->tx_packets = hwstats->tx_packets;
499 storage->rx_bytes = hwstats->rx_bytes;
500 storage->tx_bytes = hwstats->tx_bytes;
501 storage->collisions = hwstats->tx_collisions;
502 storage->rx_length_errors = hwstats->rx_short_errors +
503 hwstats->rx_long_errors;
504 storage->rx_over_errors = hwstats->rx_overflow;
505 storage->rx_crc_errors = hwstats->rx_fcs_errors;
506 storage->rx_errors = hwstats->rx_checksum_errors;
507 storage->tx_aborted_errors = hwstats->tx_skip;
508 } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
509
510 storage->tx_errors = priv->netdev->stats.tx_errors;
511 storage->rx_dropped = priv->netdev->stats.rx_dropped;
512 storage->tx_dropped = priv->netdev->stats.tx_dropped;
513 }
514
515 static int fe_vlan_rx_add_vid(struct net_device *dev,
516 __be16 proto, u16 vid)
517 {
518 struct fe_priv *priv = netdev_priv(dev);
519 u32 idx = (vid & 0xf);
520 u32 vlan_cfg;
521
522 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
523 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
524 return 0;
525
526 if (test_bit(idx, &priv->vlan_map)) {
527 netdev_warn(dev, "disable tx vlan offload\n");
528 dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
529 netdev_update_features(dev);
530 } else {
531 vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
532 ((idx >> 1) << 2));
533 if (idx & 0x1) {
534 vlan_cfg &= 0xffff;
535 vlan_cfg |= (vid << 16);
536 } else {
537 vlan_cfg &= 0xffff0000;
538 vlan_cfg |= vid;
539 }
540 fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
541 ((idx >> 1) << 2));
542 set_bit(idx, &priv->vlan_map);
543 }
544
545 return 0;
546 }
547
548 static int fe_vlan_rx_kill_vid(struct net_device *dev,
549 __be16 proto, u16 vid)
550 {
551 struct fe_priv *priv = netdev_priv(dev);
552 u32 idx = (vid & 0xf);
553
554 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
555 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
556 return 0;
557
558 clear_bit(idx, &priv->vlan_map);
559
560 return 0;
561 }
562
563 static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
564 {
565 barrier();
566 return (u32)(ring->tx_ring_size -
567 ((ring->tx_next_idx - ring->tx_free_idx) &
568 (ring->tx_ring_size - 1)));
569 }
570
571 struct fe_map_state {
572 struct device *dev;
573 struct fe_tx_dma txd;
574 u32 def_txd4;
575 int ring_idx;
576 int i;
577 };
578
579 static void fe_tx_dma_write_desc(struct fe_tx_ring *ring, struct fe_map_state *st)
580 {
581 fe_set_txd(&st->txd, &ring->tx_dma[st->ring_idx]);
582 memset(&st->txd, 0, sizeof(st->txd));
583 st->txd.txd4 = st->def_txd4;
584 st->ring_idx = NEXT_TX_DESP_IDX(st->ring_idx);
585 }
586
587 static int __fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
588 struct page *page, size_t offset, size_t size)
589 {
590 struct device *dev = st->dev;
591 struct fe_tx_buf *tx_buf;
592 dma_addr_t mapped_addr;
593
594 mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
595 if (unlikely(dma_mapping_error(dev, mapped_addr)))
596 return -EIO;
597
598 if (st->i && !(st->i & 1))
599 fe_tx_dma_write_desc(ring, st);
600
601 tx_buf = &ring->tx_buf[st->ring_idx];
602 if (st->i & 1) {
603 st->txd.txd3 = mapped_addr;
604 st->txd.txd2 |= TX_DMA_PLEN1(size);
605 dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
606 dma_unmap_len_set(tx_buf, dma_len1, size);
607 } else {
608 tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
609 st->txd.txd1 = mapped_addr;
610 st->txd.txd2 = TX_DMA_PLEN0(size);
611 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
612 dma_unmap_len_set(tx_buf, dma_len0, size);
613 }
614 st->i++;
615
616 return 0;
617 }
618
619 static int fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
620 struct page *page, size_t offset, size_t size)
621 {
622 int cur_size;
623 int ret;
624
625 while (size > 0) {
626 cur_size = min_t(size_t, size, TX_DMA_BUF_LEN);
627
628 ret = __fe_tx_dma_map_page(ring, st, page, offset, cur_size);
629 if (ret)
630 return ret;
631
632 size -= cur_size;
633 offset += cur_size;
634 }
635
636 return 0;
637 }
638
639 static int fe_tx_dma_map_skb(struct fe_tx_ring *ring, struct fe_map_state *st,
640 struct sk_buff *skb)
641 {
642 struct page *page = virt_to_page(skb->data);
643 size_t offset = offset_in_page(skb->data);
644 size_t size = skb_headlen(skb);
645
646 return fe_tx_dma_map_page(ring, st, page, offset, size);
647 }
648
649 static inline struct sk_buff *
650 fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
651 {
652 if (skb != head)
653 return skb->next;
654
655 if (skb_has_frag_list(skb))
656 return skb_shinfo(skb)->frag_list;
657
658 return NULL;
659 }
660
661
662 static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
663 int tx_num, struct fe_tx_ring *ring)
664 {
665 struct fe_priv *priv = netdev_priv(dev);
666 struct fe_map_state st = {
667 .dev = &dev->dev,
668 .ring_idx = ring->tx_next_idx,
669 };
670 struct sk_buff *head = skb;
671 struct fe_tx_buf *tx_buf;
672 unsigned int nr_frags;
673 int i, j;
674
675 /* init tx descriptor */
676 if (priv->soc->tx_dma)
677 priv->soc->tx_dma(&st.txd);
678 else
679 st.txd.txd4 = TX_DMA_DESP4_DEF;
680 st.def_txd4 = st.txd.txd4;
681
682 /* TX Checksum offload */
683 if (skb->ip_summed == CHECKSUM_PARTIAL)
684 st.txd.txd4 |= TX_DMA_CHKSUM;
685
686 /* VLAN header offload */
687 if (skb_vlan_tag_present(skb)) {
688 u16 tag = skb_vlan_tag_get(skb);
689
690 if (IS_ENABLED(CONFIG_SOC_MT7621))
691 st.txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
692 else
693 st.txd.txd4 |= TX_DMA_INS_VLAN |
694 ((tag >> VLAN_PRIO_SHIFT) << 4) |
695 (tag & 0xF);
696 }
697
698 /* TSO: fill MSS info in tcp checksum field */
699 if (skb_is_gso(skb)) {
700 if (skb_cow_head(skb, 0)) {
701 netif_warn(priv, tx_err, dev,
702 "GSO expand head fail.\n");
703 goto err_out;
704 }
705 if (skb_shinfo(skb)->gso_type &
706 (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
707 st.txd.txd4 |= TX_DMA_TSO;
708 tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
709 }
710 }
711
712 next_frag:
713 if (skb_headlen(skb) && fe_tx_dma_map_skb(ring, &st, skb))
714 goto err_dma;
715
716 /* TX SG offload */
717 nr_frags = skb_shinfo(skb)->nr_frags;
718 for (i = 0; i < nr_frags; i++) {
719 struct skb_frag_struct *frag;
720
721 frag = &skb_shinfo(skb)->frags[i];
722 if (fe_tx_dma_map_page(ring, &st, skb_frag_page(frag),
723 frag->page_offset, skb_frag_size(frag)))
724 goto err_dma;
725 }
726
727 skb = fe_next_frag(head, skb);
728 if (skb)
729 goto next_frag;
730
731 /* set last segment */
732 if (st.i & 0x1)
733 st.txd.txd2 |= TX_DMA_LS0;
734 else
735 st.txd.txd2 |= TX_DMA_LS1;
736
737 /* store skb to cleanup */
738 tx_buf = &ring->tx_buf[st.ring_idx];
739 tx_buf->skb = head;
740
741 netdev_sent_queue(dev, head->len);
742 skb_tx_timestamp(head);
743
744 fe_tx_dma_write_desc(ring, &st);
745 ring->tx_next_idx = st.ring_idx;
746
747 /* make sure that all changes to the dma ring are flushed before we
748 * continue
749 */
750 wmb();
751 if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
752 netif_stop_queue(dev);
753 smp_mb();
754 if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
755 netif_wake_queue(dev);
756 }
757
758 if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !head->xmit_more)
759 fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
760
761 return 0;
762
763 err_dma:
764 j = ring->tx_next_idx;
765 for (i = 0; i < tx_num; i++) {
766 /* unmap dma */
767 fe_txd_unmap(&dev->dev, &ring->tx_buf[j]);
768 ring->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
769
770 j = NEXT_TX_DESP_IDX(j);
771 }
772 /* make sure that all changes to the dma ring are flushed before we
773 * continue
774 */
775 wmb();
776
777 err_out:
778 return -1;
779 }
780
781 static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
782 {
783 unsigned int len;
784 int ret;
785
786 ret = 0;
787 if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
788 if ((priv->flags & FE_FLAG_PADDING_64B) &&
789 !(priv->flags & FE_FLAG_PADDING_BUG))
790 return ret;
791
792 if (skb_vlan_tag_present(skb))
793 len = ETH_ZLEN;
794 else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
795 len = VLAN_ETH_ZLEN;
796 else if (!(priv->flags & FE_FLAG_PADDING_64B))
797 len = ETH_ZLEN;
798 else
799 return ret;
800
801 if (skb->len < len) {
802 ret = skb_pad(skb, len - skb->len);
803 if (ret < 0)
804 return ret;
805 skb->len = len;
806 skb_set_tail_pointer(skb, len);
807 }
808 }
809
810 return ret;
811 }
812
813 static inline int fe_cal_txd_req(struct sk_buff *skb)
814 {
815 struct sk_buff *head = skb;
816 int i, nfrags = 0;
817 struct skb_frag_struct *frag;
818
819 next_frag:
820 nfrags++;
821 if (skb_is_gso(skb)) {
822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
823 frag = &skb_shinfo(skb)->frags[i];
824 nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
825 }
826 } else {
827 nfrags += skb_shinfo(skb)->nr_frags;
828 }
829
830 skb = fe_next_frag(head, skb);
831 if (skb)
832 goto next_frag;
833
834 return DIV_ROUND_UP(nfrags, 2);
835 }
836
837 static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
838 {
839 struct fe_priv *priv = netdev_priv(dev);
840 struct fe_tx_ring *ring = &priv->tx_ring;
841 struct net_device_stats *stats = &dev->stats;
842 int tx_num;
843 int len = skb->len;
844
845 if (fe_skb_padto(skb, priv)) {
846 netif_warn(priv, tx_err, dev, "tx padding failed!\n");
847 return NETDEV_TX_OK;
848 }
849
850 tx_num = fe_cal_txd_req(skb);
851 if (unlikely(fe_empty_txd(ring) <= tx_num)) {
852 netif_stop_queue(dev);
853 netif_err(priv, tx_queued, dev,
854 "Tx Ring full when queue awake!\n");
855 return NETDEV_TX_BUSY;
856 }
857
858 if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
859 stats->tx_dropped++;
860 } else {
861 stats->tx_packets++;
862 stats->tx_bytes += len;
863 }
864
865 return NETDEV_TX_OK;
866 }
867
868 static int fe_poll_rx(struct napi_struct *napi, int budget,
869 struct fe_priv *priv, u32 rx_intr)
870 {
871 struct net_device *netdev = priv->netdev;
872 struct net_device_stats *stats = &netdev->stats;
873 struct fe_soc_data *soc = priv->soc;
874 struct fe_rx_ring *ring = &priv->rx_ring;
875 int idx = ring->rx_calc_idx;
876 u32 checksum_bit;
877 struct sk_buff *skb;
878 u8 *data, *new_data;
879 struct fe_rx_dma *rxd, trxd;
880 int done = 0, pad;
881
882 if (netdev->features & NETIF_F_RXCSUM)
883 checksum_bit = soc->checksum_bit;
884 else
885 checksum_bit = 0;
886
887 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
888 pad = 0;
889 else
890 pad = NET_IP_ALIGN;
891
892 while (done < budget) {
893 unsigned int pktlen;
894 dma_addr_t dma_addr;
895
896 idx = NEXT_RX_DESP_IDX(idx);
897 rxd = &ring->rx_dma[idx];
898 data = ring->rx_data[idx];
899
900 fe_get_rxd(&trxd, rxd);
901 if (!(trxd.rxd2 & RX_DMA_DONE))
902 break;
903
904 /* alloc new buffer */
905 new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
906 GFP_ATOMIC);
907 if (unlikely(!new_data)) {
908 stats->rx_dropped++;
909 goto release_desc;
910 }
911 dma_addr = dma_map_single(&netdev->dev,
912 new_data + NET_SKB_PAD + pad,
913 ring->rx_buf_size,
914 DMA_FROM_DEVICE);
915 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
916 skb_free_frag(new_data);
917 goto release_desc;
918 }
919
920 /* receive data */
921 skb = build_skb(data, ring->frag_size);
922 if (unlikely(!skb)) {
923 skb_free_frag(new_data);
924 goto release_desc;
925 }
926 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
927
928 dma_unmap_single(&netdev->dev, trxd.rxd1,
929 ring->rx_buf_size, DMA_FROM_DEVICE);
930 pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
931 skb->dev = netdev;
932 skb_put(skb, pktlen);
933 if (trxd.rxd4 & checksum_bit)
934 skb->ip_summed = CHECKSUM_UNNECESSARY;
935 else
936 skb_checksum_none_assert(skb);
937 skb->protocol = eth_type_trans(skb, netdev);
938
939 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
940 RX_DMA_VID(trxd.rxd3))
941 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
942 RX_DMA_VID(trxd.rxd3));
943
944 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
945 if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
946 #endif
947 stats->rx_packets++;
948 stats->rx_bytes += pktlen;
949
950 napi_gro_receive(napi, skb);
951 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
952 } else {
953 dev_kfree_skb(skb);
954 }
955 #endif
956 ring->rx_data[idx] = new_data;
957 rxd->rxd1 = (unsigned int)dma_addr;
958
959 release_desc:
960 if (priv->flags & FE_FLAG_RX_SG_DMA)
961 rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
962 else
963 rxd->rxd2 = RX_DMA_LSO;
964
965 ring->rx_calc_idx = idx;
966 /* make sure that all changes to the dma ring are flushed before
967 * we continue
968 */
969 wmb();
970 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
971 done++;
972 }
973
974 if (done < budget)
975 fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
976
977 return done;
978 }
979
980 static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
981 int *tx_again)
982 {
983 struct net_device *netdev = priv->netdev;
984 struct device *dev = &netdev->dev;
985 unsigned int bytes_compl = 0;
986 struct sk_buff *skb;
987 struct fe_tx_buf *tx_buf;
988 int done = 0;
989 u32 idx, hwidx;
990 struct fe_tx_ring *ring = &priv->tx_ring;
991
992 idx = ring->tx_free_idx;
993 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
994
995 while ((idx != hwidx) && budget) {
996 tx_buf = &ring->tx_buf[idx];
997 skb = tx_buf->skb;
998
999 if (!skb)
1000 break;
1001
1002 if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
1003 bytes_compl += skb->len;
1004 done++;
1005 budget--;
1006 }
1007 fe_txd_unmap(dev, tx_buf);
1008 idx = NEXT_TX_DESP_IDX(idx);
1009 }
1010 ring->tx_free_idx = idx;
1011
1012 if (idx == hwidx) {
1013 /* read hw index again make sure no new tx packet */
1014 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
1015 if (idx == hwidx)
1016 fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
1017 else
1018 *tx_again = 1;
1019 } else {
1020 *tx_again = 1;
1021 }
1022
1023 if (done) {
1024 netdev_completed_queue(netdev, done, bytes_compl);
1025 smp_mb();
1026 if (unlikely(netif_queue_stopped(netdev) &&
1027 (fe_empty_txd(ring) > ring->tx_thresh)))
1028 netif_wake_queue(netdev);
1029 }
1030
1031 return done;
1032 }
1033
1034 static int fe_poll(struct napi_struct *napi, int budget)
1035 {
1036 struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
1037 struct fe_hw_stats *hwstat = priv->hw_stats;
1038 int tx_done, rx_done, tx_again;
1039 u32 status, fe_status, status_reg, mask;
1040 u32 tx_intr, rx_intr, status_intr;
1041
1042 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1043 fe_status = status;
1044 tx_intr = priv->soc->tx_int;
1045 rx_intr = priv->soc->rx_int;
1046 status_intr = priv->soc->status_int;
1047 tx_done = 0;
1048 rx_done = 0;
1049 tx_again = 0;
1050
1051 if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
1052 fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
1053 status_reg = FE_REG_FE_INT_STATUS2;
1054 } else {
1055 status_reg = FE_REG_FE_INT_STATUS;
1056 }
1057
1058 if (status & tx_intr)
1059 tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);
1060
1061 if (status & rx_intr)
1062 rx_done = fe_poll_rx(napi, budget, priv, rx_intr);
1063
1064 if (unlikely(fe_status & status_intr)) {
1065 if (hwstat && spin_trylock(&hwstat->stats_lock)) {
1066 fe_stats_update(priv);
1067 spin_unlock(&hwstat->stats_lock);
1068 }
1069 fe_reg_w32(status_intr, status_reg);
1070 }
1071
1072 if (unlikely(netif_msg_intr(priv))) {
1073 mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
1074 netdev_info(priv->netdev,
1075 "done tx %d, rx %d, intr 0x%08x/0x%x\n",
1076 tx_done, rx_done, status, mask);
1077 }
1078
1079 if (!tx_again && (rx_done < budget)) {
1080 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1081 if (status & (tx_intr | rx_intr)) {
1082 /* let napi poll again */
1083 rx_done = budget;
1084 goto poll_again;
1085 }
1086
1087 napi_complete_done(napi, rx_done);
1088 fe_int_enable(tx_intr | rx_intr);
1089 } else {
1090 rx_done = budget;
1091 }
1092
1093 poll_again:
1094 return rx_done;
1095 }
1096
1097 static void fe_tx_timeout(struct net_device *dev)
1098 {
1099 struct fe_priv *priv = netdev_priv(dev);
1100 struct fe_tx_ring *ring = &priv->tx_ring;
1101
1102 priv->netdev->stats.tx_errors++;
1103 netif_err(priv, tx_err, dev,
1104 "transmit timed out\n");
1105 netif_info(priv, drv, dev, "dma_cfg:%08x\n",
1106 fe_reg_r32(FE_REG_PDMA_GLO_CFG));
1107 netif_info(priv, drv, dev, "tx_ring=%d, "
1108 "base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
1109 0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
1110 fe_reg_r32(FE_REG_TX_MAX_CNT0),
1111 fe_reg_r32(FE_REG_TX_CTX_IDX0),
1112 fe_reg_r32(FE_REG_TX_DTX_IDX0),
1113 ring->tx_free_idx,
1114 ring->tx_next_idx);
1115 netif_info(priv, drv, dev,
1116 "rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
1117 0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
1118 fe_reg_r32(FE_REG_RX_MAX_CNT0),
1119 fe_reg_r32(FE_REG_RX_CALC_IDX0),
1120 fe_reg_r32(FE_REG_RX_DRX_IDX0));
1121
1122 if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
1123 schedule_work(&priv->pending_work);
1124 }
1125
1126 static irqreturn_t fe_handle_irq(int irq, void *dev)
1127 {
1128 struct fe_priv *priv = netdev_priv(dev);
1129 u32 status, int_mask;
1130
1131 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1132
1133 if (unlikely(!status))
1134 return IRQ_NONE;
1135
1136 int_mask = (priv->soc->rx_int | priv->soc->tx_int);
1137 if (likely(status & int_mask)) {
1138 if (likely(napi_schedule_prep(&priv->rx_napi))) {
1139 fe_int_disable(int_mask);
1140 __napi_schedule(&priv->rx_napi);
1141 }
1142 } else {
1143 fe_reg_w32(status, FE_REG_FE_INT_STATUS);
1144 }
1145
1146 return IRQ_HANDLED;
1147 }
1148
1149 #ifdef CONFIG_NET_POLL_CONTROLLER
1150 static void fe_poll_controller(struct net_device *dev)
1151 {
1152 struct fe_priv *priv = netdev_priv(dev);
1153 u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
1154
1155 fe_int_disable(int_mask);
1156 fe_handle_irq(dev->irq, dev);
1157 fe_int_enable(int_mask);
1158 }
1159 #endif
1160
1161 int fe_set_clock_cycle(struct fe_priv *priv)
1162 {
1163 unsigned long sysclk = priv->sysclk;
1164
1165 sysclk /= FE_US_CYC_CNT_DIVISOR;
1166 sysclk <<= FE_US_CYC_CNT_SHIFT;
1167
1168 fe_w32((fe_r32(FE_FE_GLO_CFG) &
1169 ~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
1170 sysclk,
1171 FE_FE_GLO_CFG);
1172 return 0;
1173 }
1174
1175 void fe_fwd_config(struct fe_priv *priv)
1176 {
1177 u32 fwd_cfg;
1178
1179 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1180
1181 /* disable jumbo frame */
1182 if (priv->flags & FE_FLAG_JUMBO_FRAME)
1183 fwd_cfg &= ~FE_GDM1_JMB_EN;
1184
1185 /* set unicast/multicast/broadcast frame to cpu */
1186 fwd_cfg &= ~0xffff;
1187
1188 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1189 }
1190
1191 static void fe_rxcsum_config(bool enable)
1192 {
1193 if (enable)
1194 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
1195 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1196 FE_GDMA1_FWD_CFG);
1197 else
1198 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
1199 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1200 FE_GDMA1_FWD_CFG);
1201 }
1202
1203 static void fe_txcsum_config(bool enable)
1204 {
1205 if (enable)
1206 fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
1207 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1208 FE_CDMA_CSG_CFG);
1209 else
1210 fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
1211 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1212 FE_CDMA_CSG_CFG);
1213 }
1214
1215 void fe_csum_config(struct fe_priv *priv)
1216 {
1217 struct net_device *dev = priv_netdev(priv);
1218
1219 fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
1220 fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
1221 }
1222
1223 static int fe_hw_init(struct net_device *dev)
1224 {
1225 struct fe_priv *priv = netdev_priv(dev);
1226 int i, err;
1227
1228 err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
1229 dev_name(priv->dev), dev);
1230 if (err)
1231 return err;
1232
1233 if (priv->soc->set_mac)
1234 priv->soc->set_mac(priv, dev->dev_addr);
1235 else
1236 fe_hw_set_macaddr(priv, dev->dev_addr);
1237
1238 /* disable delay interrupt */
1239 fe_reg_w32(0, FE_REG_DLY_INT_CFG);
1240
1241 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1242
1243 /* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
1244 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1245 for (i = 0; i < 16; i += 2)
1246 fe_w32(((i + 1) << 16) + i,
1247 fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
1248 (i * 2));
1249
1250 if (priv->soc->fwd_config(priv))
1251 netdev_err(dev, "unable to get clock\n");
1252
1253 if (fe_reg_table[FE_REG_FE_RST_GL]) {
1254 fe_reg_w32(1, FE_REG_FE_RST_GL);
1255 fe_reg_w32(0, FE_REG_FE_RST_GL);
1256 }
1257
1258 return 0;
1259 }
1260
1261 static int fe_open(struct net_device *dev)
1262 {
1263 struct fe_priv *priv = netdev_priv(dev);
1264 unsigned long flags;
1265 u32 val;
1266 int err;
1267
1268 err = fe_init_dma(priv);
1269 if (err) {
1270 fe_free_dma(priv);
1271 return err;
1272 }
1273
1274 spin_lock_irqsave(&priv->page_lock, flags);
1275
1276 val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
1277 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
1278 val |= FE_RX_2B_OFFSET;
1279 val |= priv->soc->pdma_glo_cfg;
1280 fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
1281
1282 spin_unlock_irqrestore(&priv->page_lock, flags);
1283
1284 if (priv->phy)
1285 priv->phy->start(priv);
1286
1287 if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
1288 netif_carrier_on(dev);
1289
1290 napi_enable(&priv->rx_napi);
1291 fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
1292 netif_start_queue(dev);
1293 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1294 mtk_ppe_probe(priv);
1295 #endif
1296
1297 return 0;
1298 }
1299
1300 static int fe_stop(struct net_device *dev)
1301 {
1302 struct fe_priv *priv = netdev_priv(dev);
1303 unsigned long flags;
1304 int i;
1305
1306 netif_tx_disable(dev);
1307 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1308 napi_disable(&priv->rx_napi);
1309
1310 if (priv->phy)
1311 priv->phy->stop(priv);
1312
1313 spin_lock_irqsave(&priv->page_lock, flags);
1314
1315 fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1316 ~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
1317 FE_REG_PDMA_GLO_CFG);
1318 spin_unlock_irqrestore(&priv->page_lock, flags);
1319
1320 /* wait dma stop */
1321 for (i = 0; i < 10; i++) {
1322 if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1323 (FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
1324 msleep(20);
1325 continue;
1326 }
1327 break;
1328 }
1329
1330 fe_free_dma(priv);
1331
1332 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1333 mtk_ppe_remove(priv);
1334 #endif
1335
1336 return 0;
1337 }
1338
1339 static void fe_reset_phy(struct fe_priv *priv)
1340 {
1341 int err, msec = 30;
1342 struct gpio_desc *phy_reset;
1343
1344 phy_reset = devm_gpiod_get_optional(priv->dev, "phy-reset",
1345 GPIOD_OUT_HIGH);
1346 if (!phy_reset)
1347 return;
1348
1349 if (IS_ERR(phy_reset)) {
1350 dev_err(priv->dev, "Error acquiring reset gpio pins: %ld\n",
1351 PTR_ERR(phy_reset));
1352 return;
1353 }
1354
1355 err = of_property_read_u32(priv->dev->of_node, "phy-reset-duration",
1356 &msec);
1357 if (!err && msec > 1000)
1358 msec = 30;
1359
1360 if (msec > 20)
1361 msleep(msec);
1362 else
1363 usleep_range(msec * 1000, msec * 1000 + 1000);
1364
1365 gpiod_set_value(phy_reset, 0);
1366 }
1367
1368 static int __init fe_init(struct net_device *dev)
1369 {
1370 struct fe_priv *priv = netdev_priv(dev);
1371 struct device_node *port;
1372 const char *mac_addr;
1373 int err;
1374
1375 priv->soc->reset_fe();
1376
1377 if (priv->soc->switch_init)
1378 if (priv->soc->switch_init(priv)) {
1379 netdev_err(dev, "failed to initialize switch core\n");
1380 return -ENODEV;
1381 }
1382
1383 fe_reset_phy(priv);
1384
1385 mac_addr = of_get_mac_address(priv->dev->of_node);
1386 if (mac_addr)
1387 ether_addr_copy(dev->dev_addr, mac_addr);
1388
1389 /* If the mac address is invalid, use random mac address */
1390 if (!is_valid_ether_addr(dev->dev_addr)) {
1391 random_ether_addr(dev->dev_addr);
1392 dev_err(priv->dev, "generated random MAC address %pM\n",
1393 dev->dev_addr);
1394 }
1395
1396 err = fe_mdio_init(priv);
1397 if (err)
1398 return err;
1399
1400 if (priv->soc->port_init)
1401 for_each_child_of_node(priv->dev->of_node, port)
1402 if (of_device_is_compatible(port, "mediatek,eth-port") &&
1403 of_device_is_available(port))
1404 priv->soc->port_init(priv, port);
1405
1406 if (priv->phy) {
1407 err = priv->phy->connect(priv);
1408 if (err)
1409 goto err_phy_disconnect;
1410 }
1411
1412 err = fe_hw_init(dev);
1413 if (err)
1414 goto err_phy_disconnect;
1415
1416 if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
1417 priv->soc->switch_config(priv);
1418
1419 return 0;
1420
1421 err_phy_disconnect:
1422 if (priv->phy)
1423 priv->phy->disconnect(priv);
1424 fe_mdio_cleanup(priv);
1425
1426 return err;
1427 }
1428
1429 static void fe_uninit(struct net_device *dev)
1430 {
1431 struct fe_priv *priv = netdev_priv(dev);
1432
1433 if (priv->phy)
1434 priv->phy->disconnect(priv);
1435 fe_mdio_cleanup(priv);
1436
1437 fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
1438 free_irq(dev->irq, dev);
1439 }
1440
1441 static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1442 {
1443 struct fe_priv *priv = netdev_priv(dev);
1444
1445 if (!priv->phy_dev)
1446 return -ENODEV;
1447
1448
1449 return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
1450 }
1451
1452 static int fe_change_mtu(struct net_device *dev, int new_mtu)
1453 {
1454 struct fe_priv *priv = netdev_priv(dev);
1455 int frag_size, old_mtu;
1456 u32 fwd_cfg;
1457
1458 old_mtu = dev->mtu;
1459 dev->mtu = new_mtu;
1460
1461 if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
1462 return 0;
1463
1464 /* return early if the buffer sizes will not change */
1465 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1466 return 0;
1467 if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
1468 return 0;
1469
1470 if (new_mtu <= ETH_DATA_LEN)
1471 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1472 else
1473 priv->rx_ring.frag_size = PAGE_SIZE;
1474 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1475
1476 if (!netif_running(dev))
1477 return 0;
1478
1479 fe_stop(dev);
1480 if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
1481 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1482 if (new_mtu <= ETH_DATA_LEN) {
1483 fwd_cfg &= ~FE_GDM1_JMB_EN;
1484 } else {
1485 frag_size = fe_max_frag_size(new_mtu);
1486 fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
1487 fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
1488 FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
1489 }
1490 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1491 }
1492
1493 return fe_open(dev);
1494 }
1495
1496 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1497 static int
1498 fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
1499 struct flow_offload_hw_path *src,
1500 struct flow_offload_hw_path *dest)
1501 {
1502 struct fe_priv *priv;
1503
1504 if (src->dev != dest->dev)
1505 return -EINVAL;
1506
1507 priv = netdev_priv(src->dev);
1508
1509 return mtk_flow_offload(priv, type, flow, src, dest);
1510 }
1511 #endif
1512
1513 static const struct net_device_ops fe_netdev_ops = {
1514 .ndo_init = fe_init,
1515 .ndo_uninit = fe_uninit,
1516 .ndo_open = fe_open,
1517 .ndo_stop = fe_stop,
1518 .ndo_start_xmit = fe_start_xmit,
1519 .ndo_set_mac_address = fe_set_mac_address,
1520 .ndo_validate_addr = eth_validate_addr,
1521 .ndo_do_ioctl = fe_do_ioctl,
1522 .ndo_change_mtu = fe_change_mtu,
1523 .ndo_tx_timeout = fe_tx_timeout,
1524 .ndo_get_stats64 = fe_get_stats64,
1525 .ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
1526 .ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
1527 #ifdef CONFIG_NET_POLL_CONTROLLER
1528 .ndo_poll_controller = fe_poll_controller,
1529 #endif
1530 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1531 .ndo_flow_offload = fe_flow_offload,
1532 #endif
1533 };
1534
1535 static void fe_reset_pending(struct fe_priv *priv)
1536 {
1537 struct net_device *dev = priv->netdev;
1538 int err;
1539
1540 rtnl_lock();
1541 fe_stop(dev);
1542
1543 err = fe_open(dev);
1544 if (err) {
1545 netif_alert(priv, ifup, dev,
1546 "Driver up/down cycle failed, closing device.\n");
1547 dev_close(dev);
1548 }
1549 rtnl_unlock();
1550 }
1551
1552 static const struct fe_work_t fe_work[] = {
1553 {FE_FLAG_RESET_PENDING, fe_reset_pending},
1554 };
1555
1556 static void fe_pending_work(struct work_struct *work)
1557 {
1558 struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
1559 int i;
1560 bool pending;
1561
1562 for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
1563 pending = test_and_clear_bit(fe_work[i].bitnr,
1564 priv->pending_flags);
1565 if (pending)
1566 fe_work[i].action(priv);
1567 }
1568 }
1569
1570 static int fe_probe(struct platform_device *pdev)
1571 {
1572 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1573 const struct of_device_id *match;
1574 struct fe_soc_data *soc;
1575 struct net_device *netdev;
1576 struct fe_priv *priv;
1577 struct clk *sysclk;
1578 int err, napi_weight;
1579
1580 device_reset(&pdev->dev);
1581
1582 match = of_match_device(of_fe_match, &pdev->dev);
1583 soc = (struct fe_soc_data *)match->data;
1584
1585 if (soc->reg_table)
1586 fe_reg_table = soc->reg_table;
1587 else
1588 soc->reg_table = fe_reg_table;
1589
1590 fe_base = devm_ioremap_resource(&pdev->dev, res);
1591 if (IS_ERR(fe_base)) {
1592 err = -EADDRNOTAVAIL;
1593 goto err_out;
1594 }
1595
1596 netdev = alloc_etherdev(sizeof(*priv));
1597 if (!netdev) {
1598 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1599 err = -ENOMEM;
1600 goto err_iounmap;
1601 }
1602
1603 SET_NETDEV_DEV(netdev, &pdev->dev);
1604 netdev->netdev_ops = &fe_netdev_ops;
1605 netdev->base_addr = (unsigned long)fe_base;
1606
1607 netdev->irq = platform_get_irq(pdev, 0);
1608 if (netdev->irq < 0) {
1609 dev_err(&pdev->dev, "no IRQ resource found\n");
1610 err = -ENXIO;
1611 goto err_free_dev;
1612 }
1613
1614 if (soc->init_data)
1615 soc->init_data(soc, netdev);
1616 netdev->vlan_features = netdev->hw_features &
1617 ~(NETIF_F_HW_VLAN_CTAG_TX |
1618 NETIF_F_HW_VLAN_CTAG_RX);
1619 netdev->features |= netdev->hw_features;
1620
1621 if (IS_ENABLED(CONFIG_SOC_MT7621))
1622 netdev->max_mtu = 2048;
1623
1624 /* fake rx vlan filter func. to support tx vlan offload func */
1625 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1626 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1627
1628 priv = netdev_priv(netdev);
1629 spin_lock_init(&priv->page_lock);
1630 if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
1631 priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
1632 if (!priv->hw_stats) {
1633 err = -ENOMEM;
1634 goto err_free_dev;
1635 }
1636 spin_lock_init(&priv->hw_stats->stats_lock);
1637 }
1638
1639 sysclk = devm_clk_get(&pdev->dev, NULL);
1640 if (!IS_ERR(sysclk)) {
1641 priv->sysclk = clk_get_rate(sysclk);
1642 } else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
1643 dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
1644 err = -ENXIO;
1645 goto err_free_dev;
1646 }
1647
1648 priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
1649 if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
1650 dev_err(&pdev->dev, "failed to read switch phandle\n");
1651 err = -ENODEV;
1652 goto err_free_dev;
1653 }
1654
1655 priv->netdev = netdev;
1656 priv->dev = &pdev->dev;
1657 priv->soc = soc;
1658 priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
1659 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1660 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1661 priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
1662 priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
1663 INIT_WORK(&priv->pending_work, fe_pending_work);
1664 u64_stats_init(&priv->hw_stats->syncp);
1665
1666 napi_weight = 16;
1667 if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
1668 napi_weight *= 4;
1669 priv->tx_ring.tx_ring_size *= 4;
1670 priv->rx_ring.rx_ring_size *= 4;
1671 }
1672 netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
1673 fe_set_ethtool_ops(netdev);
1674
1675 err = register_netdev(netdev);
1676 if (err) {
1677 dev_err(&pdev->dev, "error bringing up device\n");
1678 goto err_free_dev;
1679 }
1680
1681 platform_set_drvdata(pdev, netdev);
1682
1683 netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
1684 netdev->base_addr, netdev->irq);
1685
1686 return 0;
1687
1688 err_free_dev:
1689 free_netdev(netdev);
1690 err_iounmap:
1691 devm_iounmap(&pdev->dev, fe_base);
1692 err_out:
1693 return err;
1694 }
1695
1696 static int fe_remove(struct platform_device *pdev)
1697 {
1698 struct net_device *dev = platform_get_drvdata(pdev);
1699 struct fe_priv *priv = netdev_priv(dev);
1700
1701 netif_napi_del(&priv->rx_napi);
1702 kfree(priv->hw_stats);
1703
1704 cancel_work_sync(&priv->pending_work);
1705
1706 unregister_netdev(dev);
1707 free_netdev(dev);
1708 platform_set_drvdata(pdev, NULL);
1709
1710 return 0;
1711 }
1712
1713 static struct platform_driver fe_driver = {
1714 .probe = fe_probe,
1715 .remove = fe_remove,
1716 .driver = {
1717 .name = "mtk_soc_eth",
1718 .owner = THIS_MODULE,
1719 .of_match_table = of_fe_match,
1720 },
1721 };
1722
1723 module_platform_driver(fe_driver);
1724
1725 MODULE_LICENSE("GPL");
1726 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
1727 MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
1728 MODULE_VERSION(MTK_FE_DRV_VERSION);