b2c3d32c5549b6fd8ea4c76dc224b9b4b41130d8
[openwrt/staging/mkresin.git] / target / linux / ramips / files-4.14 / drivers / net / ethernet / mediatek / mtk_eth_soc.c
1 /* This program is free software; you can redistribute it and/or modify
2 * it under the terms of the GNU General Public License as published by
3 * the Free Software Foundation; version 2 of the License
4 *
5 * This program is distributed in the hope that it will be useful,
6 * but WITHOUT ANY WARRANTY; without even the implied warranty of
7 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
8 * GNU General Public License for more details.
9 *
10 * Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
11 * Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
12 * Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/platform_device.h>
24 #include <linux/of_device.h>
25 #include <linux/clk.h>
26 #include <linux/of_net.h>
27 #include <linux/of_mdio.h>
28 #include <linux/if_vlan.h>
29 #include <linux/reset.h>
30 #include <linux/tcp.h>
31 #include <linux/io.h>
32 #include <linux/bug.h>
33 #include <linux/netfilter.h>
34 #include <net/netfilter/nf_flow_table.h>
35
36 #include <asm/mach-ralink/ralink_regs.h>
37
38 #include "mtk_eth_soc.h"
39 #include "mdio.h"
40 #include "ethtool.h"
41
42 #define MAX_RX_LENGTH 1536
43 #define FE_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
44 #define FE_RX_HLEN (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
45 #define DMA_DUMMY_DESC 0xffffffff
46 #define FE_DEFAULT_MSG_ENABLE \
47 (NETIF_MSG_DRV | \
48 NETIF_MSG_PROBE | \
49 NETIF_MSG_LINK | \
50 NETIF_MSG_TIMER | \
51 NETIF_MSG_IFDOWN | \
52 NETIF_MSG_IFUP | \
53 NETIF_MSG_RX_ERR | \
54 NETIF_MSG_TX_ERR)
55
56 #define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
57 #define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
58 #define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
59 #define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
60
61 #define SYSC_REG_RSTCTRL 0x34
62
63 static int fe_msg_level = -1;
64 module_param_named(msg_level, fe_msg_level, int, 0);
65 MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
66
67 static const u16 fe_reg_table_default[FE_REG_COUNT] = {
68 [FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
69 [FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
70 [FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
71 [FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
72 [FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
73 [FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
74 [FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
75 [FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
76 [FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
77 [FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
78 [FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
79 [FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
80 [FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
81 [FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
82 [FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
83 [FE_REG_FE_RST_GL] = FE_FE_RST_GL,
84 };
85
86 static const u16 *fe_reg_table = fe_reg_table_default;
87
88 struct fe_work_t {
89 int bitnr;
90 void (*action)(struct fe_priv *);
91 };
92
93 static void __iomem *fe_base;
94
95 void fe_w32(u32 val, unsigned reg)
96 {
97 __raw_writel(val, fe_base + reg);
98 }
99
100 u32 fe_r32(unsigned reg)
101 {
102 return __raw_readl(fe_base + reg);
103 }
104
105 void fe_reg_w32(u32 val, enum fe_reg reg)
106 {
107 fe_w32(val, fe_reg_table[reg]);
108 }
109
110 u32 fe_reg_r32(enum fe_reg reg)
111 {
112 return fe_r32(fe_reg_table[reg]);
113 }
114
115 void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
116 {
117 u32 val;
118
119 spin_lock(&eth->page_lock);
120 val = __raw_readl(fe_base + reg);
121 val &= ~clear;
122 val |= set;
123 __raw_writel(val, fe_base + reg);
124 spin_unlock(&eth->page_lock);
125 }
126
127 void fe_reset(u32 reset_bits)
128 {
129 u32 t;
130
131 t = rt_sysc_r32(SYSC_REG_RSTCTRL);
132 t |= reset_bits;
133 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
134 usleep_range(10, 20);
135
136 t &= ~reset_bits;
137 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
138 usleep_range(10, 20);
139 }
140
141 static inline void fe_int_disable(u32 mask)
142 {
143 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
144 FE_REG_FE_INT_ENABLE);
145 /* flush write */
146 fe_reg_r32(FE_REG_FE_INT_ENABLE);
147 }
148
149 static inline void fe_int_enable(u32 mask)
150 {
151 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
152 FE_REG_FE_INT_ENABLE);
153 /* flush write */
154 fe_reg_r32(FE_REG_FE_INT_ENABLE);
155 }
156
157 static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
158 {
159 unsigned long flags;
160
161 spin_lock_irqsave(&priv->page_lock, flags);
162 fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
163 fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
164 FE_GDMA1_MAC_ADRL);
165 spin_unlock_irqrestore(&priv->page_lock, flags);
166 }
167
168 static int fe_set_mac_address(struct net_device *dev, void *p)
169 {
170 int ret = eth_mac_addr(dev, p);
171
172 if (!ret) {
173 struct fe_priv *priv = netdev_priv(dev);
174
175 if (priv->soc->set_mac)
176 priv->soc->set_mac(priv, dev->dev_addr);
177 else
178 fe_hw_set_macaddr(priv, p);
179 }
180
181 return ret;
182 }
183
184 static inline int fe_max_frag_size(int mtu)
185 {
186 /* make sure buf_size will be at least MAX_RX_LENGTH */
187 if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
188 mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;
189
190 return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
191 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 }
193
194 static inline int fe_max_buf_size(int frag_size)
195 {
196 int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
197 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198
199 BUG_ON(buf_size < MAX_RX_LENGTH);
200 return buf_size;
201 }
202
203 static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
204 {
205 rxd->rxd1 = dma_rxd->rxd1;
206 rxd->rxd2 = dma_rxd->rxd2;
207 rxd->rxd3 = dma_rxd->rxd3;
208 rxd->rxd4 = dma_rxd->rxd4;
209 }
210
211 static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
212 {
213 dma_txd->txd1 = txd->txd1;
214 dma_txd->txd3 = txd->txd3;
215 dma_txd->txd4 = txd->txd4;
216 /* clean dma done flag last */
217 dma_txd->txd2 = txd->txd2;
218 }
219
220 static void fe_clean_rx(struct fe_priv *priv)
221 {
222 struct fe_rx_ring *ring = &priv->rx_ring;
223 struct page *page;
224 int i;
225
226 if (ring->rx_data) {
227 for (i = 0; i < ring->rx_ring_size; i++)
228 if (ring->rx_data[i]) {
229 if (ring->rx_dma && ring->rx_dma[i].rxd1)
230 dma_unmap_single(&priv->netdev->dev,
231 ring->rx_dma[i].rxd1,
232 ring->rx_buf_size,
233 DMA_FROM_DEVICE);
234 skb_free_frag(ring->rx_data[i]);
235 }
236
237 kfree(ring->rx_data);
238 ring->rx_data = NULL;
239 }
240
241 if (ring->rx_dma) {
242 dma_free_coherent(&priv->netdev->dev,
243 ring->rx_ring_size * sizeof(*ring->rx_dma),
244 ring->rx_dma,
245 ring->rx_phys);
246 ring->rx_dma = NULL;
247 }
248
249 if (!ring->frag_cache.va)
250 return;
251
252 page = virt_to_page(ring->frag_cache.va);
253 __page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
254 memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
255 }
256
257 static int fe_alloc_rx(struct fe_priv *priv)
258 {
259 struct net_device *netdev = priv->netdev;
260 struct fe_rx_ring *ring = &priv->rx_ring;
261 int i, pad;
262
263 ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
264 GFP_KERNEL);
265 if (!ring->rx_data)
266 goto no_rx_mem;
267
268 for (i = 0; i < ring->rx_ring_size; i++) {
269 ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
270 ring->frag_size,
271 GFP_KERNEL);
272 if (!ring->rx_data[i])
273 goto no_rx_mem;
274 }
275
276 ring->rx_dma = dma_alloc_coherent(&netdev->dev,
277 ring->rx_ring_size * sizeof(*ring->rx_dma),
278 &ring->rx_phys,
279 GFP_ATOMIC | __GFP_ZERO);
280 if (!ring->rx_dma)
281 goto no_rx_mem;
282
283 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
284 pad = 0;
285 else
286 pad = NET_IP_ALIGN;
287 for (i = 0; i < ring->rx_ring_size; i++) {
288 dma_addr_t dma_addr = dma_map_single(&netdev->dev,
289 ring->rx_data[i] + NET_SKB_PAD + pad,
290 ring->rx_buf_size,
291 DMA_FROM_DEVICE);
292 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
293 goto no_rx_mem;
294 ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
295
296 if (priv->flags & FE_FLAG_RX_SG_DMA)
297 ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
298 else
299 ring->rx_dma[i].rxd2 = RX_DMA_LSO;
300 }
301 ring->rx_calc_idx = ring->rx_ring_size - 1;
302 /* make sure that all changes to the dma ring are flushed before we
303 * continue
304 */
305 wmb();
306
307 fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
308 fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
309 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
310 fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
311
312 return 0;
313
314 no_rx_mem:
315 return -ENOMEM;
316 }
317
318 static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
319 {
320 if (dma_unmap_len(tx_buf, dma_len0))
321 dma_unmap_page(dev,
322 dma_unmap_addr(tx_buf, dma_addr0),
323 dma_unmap_len(tx_buf, dma_len0),
324 DMA_TO_DEVICE);
325
326 if (dma_unmap_len(tx_buf, dma_len1))
327 dma_unmap_page(dev,
328 dma_unmap_addr(tx_buf, dma_addr1),
329 dma_unmap_len(tx_buf, dma_len1),
330 DMA_TO_DEVICE);
331
332 dma_unmap_len_set(tx_buf, dma_addr0, 0);
333 dma_unmap_len_set(tx_buf, dma_addr1, 0);
334 if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
335 dev_kfree_skb_any(tx_buf->skb);
336 tx_buf->skb = NULL;
337 }
338
339 static void fe_clean_tx(struct fe_priv *priv)
340 {
341 int i;
342 struct device *dev = &priv->netdev->dev;
343 struct fe_tx_ring *ring = &priv->tx_ring;
344
345 if (ring->tx_buf) {
346 for (i = 0; i < ring->tx_ring_size; i++)
347 fe_txd_unmap(dev, &ring->tx_buf[i]);
348 kfree(ring->tx_buf);
349 ring->tx_buf = NULL;
350 }
351
352 if (ring->tx_dma) {
353 dma_free_coherent(dev,
354 ring->tx_ring_size * sizeof(*ring->tx_dma),
355 ring->tx_dma,
356 ring->tx_phys);
357 ring->tx_dma = NULL;
358 }
359
360 netdev_reset_queue(priv->netdev);
361 }
362
363 static int fe_alloc_tx(struct fe_priv *priv)
364 {
365 int i;
366 struct fe_tx_ring *ring = &priv->tx_ring;
367
368 ring->tx_free_idx = 0;
369 ring->tx_next_idx = 0;
370 ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
371 MAX_SKB_FRAGS);
372
373 ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
374 GFP_KERNEL);
375 if (!ring->tx_buf)
376 goto no_tx_mem;
377
378 ring->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
379 ring->tx_ring_size * sizeof(*ring->tx_dma),
380 &ring->tx_phys,
381 GFP_ATOMIC | __GFP_ZERO);
382 if (!ring->tx_dma)
383 goto no_tx_mem;
384
385 for (i = 0; i < ring->tx_ring_size; i++) {
386 if (priv->soc->tx_dma)
387 priv->soc->tx_dma(&ring->tx_dma[i]);
388 ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
389 }
390 /* make sure that all changes to the dma ring are flushed before we
391 * continue
392 */
393 wmb();
394
395 fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
396 fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
397 fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
398 fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
399
400 return 0;
401
402 no_tx_mem:
403 return -ENOMEM;
404 }
405
406 static int fe_init_dma(struct fe_priv *priv)
407 {
408 int err;
409
410 err = fe_alloc_tx(priv);
411 if (err)
412 return err;
413
414 err = fe_alloc_rx(priv);
415 if (err)
416 return err;
417
418 return 0;
419 }
420
421 static void fe_free_dma(struct fe_priv *priv)
422 {
423 fe_clean_tx(priv);
424 fe_clean_rx(priv);
425 }
426
427 void fe_stats_update(struct fe_priv *priv)
428 {
429 struct fe_hw_stats *hwstats = priv->hw_stats;
430 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
431 u64 stats;
432
433 u64_stats_update_begin(&hwstats->syncp);
434
435 if (IS_ENABLED(CONFIG_SOC_MT7621)) {
436 hwstats->rx_bytes += fe_r32(base);
437 stats = fe_r32(base + 0x04);
438 if (stats)
439 hwstats->rx_bytes += (stats << 32);
440 hwstats->rx_packets += fe_r32(base + 0x08);
441 hwstats->rx_overflow += fe_r32(base + 0x10);
442 hwstats->rx_fcs_errors += fe_r32(base + 0x14);
443 hwstats->rx_short_errors += fe_r32(base + 0x18);
444 hwstats->rx_long_errors += fe_r32(base + 0x1c);
445 hwstats->rx_checksum_errors += fe_r32(base + 0x20);
446 hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
447 hwstats->tx_skip += fe_r32(base + 0x28);
448 hwstats->tx_collisions += fe_r32(base + 0x2c);
449 hwstats->tx_bytes += fe_r32(base + 0x30);
450 stats = fe_r32(base + 0x34);
451 if (stats)
452 hwstats->tx_bytes += (stats << 32);
453 hwstats->tx_packets += fe_r32(base + 0x38);
454 } else {
455 hwstats->tx_bytes += fe_r32(base);
456 hwstats->tx_packets += fe_r32(base + 0x04);
457 hwstats->tx_skip += fe_r32(base + 0x08);
458 hwstats->tx_collisions += fe_r32(base + 0x0c);
459 hwstats->rx_bytes += fe_r32(base + 0x20);
460 hwstats->rx_packets += fe_r32(base + 0x24);
461 hwstats->rx_overflow += fe_r32(base + 0x28);
462 hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
463 hwstats->rx_short_errors += fe_r32(base + 0x30);
464 hwstats->rx_long_errors += fe_r32(base + 0x34);
465 hwstats->rx_checksum_errors += fe_r32(base + 0x38);
466 hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
467 }
468
469 u64_stats_update_end(&hwstats->syncp);
470 }
471
472 static void fe_get_stats64(struct net_device *dev,
473 struct rtnl_link_stats64 *storage)
474 {
475 struct fe_priv *priv = netdev_priv(dev);
476 struct fe_hw_stats *hwstats = priv->hw_stats;
477 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
478 unsigned int start;
479
480 if (!base) {
481 netdev_stats_to_stats64(storage, &dev->stats);
482 return;
483 }
484
485 if (netif_running(dev) && netif_device_present(dev)) {
486 if (spin_trylock_bh(&hwstats->stats_lock)) {
487 fe_stats_update(priv);
488 spin_unlock_bh(&hwstats->stats_lock);
489 }
490 }
491
492 do {
493 start = u64_stats_fetch_begin_irq(&hwstats->syncp);
494 storage->rx_packets = hwstats->rx_packets;
495 storage->tx_packets = hwstats->tx_packets;
496 storage->rx_bytes = hwstats->rx_bytes;
497 storage->tx_bytes = hwstats->tx_bytes;
498 storage->collisions = hwstats->tx_collisions;
499 storage->rx_length_errors = hwstats->rx_short_errors +
500 hwstats->rx_long_errors;
501 storage->rx_over_errors = hwstats->rx_overflow;
502 storage->rx_crc_errors = hwstats->rx_fcs_errors;
503 storage->rx_errors = hwstats->rx_checksum_errors;
504 storage->tx_aborted_errors = hwstats->tx_skip;
505 } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
506
507 storage->tx_errors = priv->netdev->stats.tx_errors;
508 storage->rx_dropped = priv->netdev->stats.rx_dropped;
509 storage->tx_dropped = priv->netdev->stats.tx_dropped;
510 }
511
512 static int fe_vlan_rx_add_vid(struct net_device *dev,
513 __be16 proto, u16 vid)
514 {
515 struct fe_priv *priv = netdev_priv(dev);
516 u32 idx = (vid & 0xf);
517 u32 vlan_cfg;
518
519 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
520 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
521 return 0;
522
523 if (test_bit(idx, &priv->vlan_map)) {
524 netdev_warn(dev, "disable tx vlan offload\n");
525 dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
526 netdev_update_features(dev);
527 } else {
528 vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
529 ((idx >> 1) << 2));
530 if (idx & 0x1) {
531 vlan_cfg &= 0xffff;
532 vlan_cfg |= (vid << 16);
533 } else {
534 vlan_cfg &= 0xffff0000;
535 vlan_cfg |= vid;
536 }
537 fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
538 ((idx >> 1) << 2));
539 set_bit(idx, &priv->vlan_map);
540 }
541
542 return 0;
543 }
544
545 static int fe_vlan_rx_kill_vid(struct net_device *dev,
546 __be16 proto, u16 vid)
547 {
548 struct fe_priv *priv = netdev_priv(dev);
549 u32 idx = (vid & 0xf);
550
551 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
552 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
553 return 0;
554
555 clear_bit(idx, &priv->vlan_map);
556
557 return 0;
558 }
559
560 static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
561 {
562 barrier();
563 return (u32)(ring->tx_ring_size -
564 ((ring->tx_next_idx - ring->tx_free_idx) &
565 (ring->tx_ring_size - 1)));
566 }
567
568 struct fe_map_state {
569 struct device *dev;
570 struct fe_tx_dma txd;
571 u32 def_txd4;
572 int ring_idx;
573 int i;
574 };
575
576 static void fe_tx_dma_write_desc(struct fe_tx_ring *ring, struct fe_map_state *st)
577 {
578 fe_set_txd(&st->txd, &ring->tx_dma[st->ring_idx]);
579 memset(&st->txd, 0, sizeof(st->txd));
580 st->txd.txd4 = st->def_txd4;
581 st->ring_idx = NEXT_TX_DESP_IDX(st->ring_idx);
582 }
583
584 static int __fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
585 struct page *page, size_t offset, size_t size)
586 {
587 struct device *dev = st->dev;
588 struct fe_tx_buf *tx_buf;
589 dma_addr_t mapped_addr;
590
591 mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
592 if (unlikely(dma_mapping_error(dev, mapped_addr)))
593 return -EIO;
594
595 if (st->i && !(st->i & 1))
596 fe_tx_dma_write_desc(ring, st);
597
598 tx_buf = &ring->tx_buf[st->ring_idx];
599 if (st->i & 1) {
600 st->txd.txd3 = mapped_addr;
601 st->txd.txd2 |= TX_DMA_PLEN1(size);
602 dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
603 dma_unmap_len_set(tx_buf, dma_len1, size);
604 } else {
605 tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
606 st->txd.txd1 = mapped_addr;
607 st->txd.txd2 = TX_DMA_PLEN0(size);
608 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
609 dma_unmap_len_set(tx_buf, dma_len0, size);
610 }
611 st->i++;
612
613 return 0;
614 }
615
616 static int fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
617 struct page *page, size_t offset, size_t size)
618 {
619 int cur_size;
620 int ret;
621
622 while (size > 0) {
623 cur_size = min_t(size_t, size, TX_DMA_BUF_LEN);
624
625 ret = __fe_tx_dma_map_page(ring, st, page, offset, cur_size);
626 if (ret)
627 return ret;
628
629 size -= cur_size;
630 offset += cur_size;
631 }
632
633 return 0;
634 }
635
636 static int fe_tx_dma_map_skb(struct fe_tx_ring *ring, struct fe_map_state *st,
637 struct sk_buff *skb)
638 {
639 struct page *page = virt_to_page(skb->data);
640 size_t offset = offset_in_page(skb->data);
641 size_t size = skb_headlen(skb);
642
643 return fe_tx_dma_map_page(ring, st, page, offset, size);
644 }
645
646 static inline struct sk_buff *
647 fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
648 {
649 if (skb != head)
650 return skb->next;
651
652 if (skb_has_frag_list(skb))
653 return skb_shinfo(skb)->frag_list;
654
655 return NULL;
656 }
657
658
659 static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
660 int tx_num, struct fe_tx_ring *ring)
661 {
662 struct fe_priv *priv = netdev_priv(dev);
663 struct fe_map_state st = {
664 .dev = &dev->dev,
665 .ring_idx = ring->tx_next_idx,
666 };
667 struct sk_buff *head = skb;
668 struct fe_tx_buf *tx_buf;
669 unsigned int nr_frags;
670 int i, j;
671
672 /* init tx descriptor */
673 if (priv->soc->tx_dma)
674 priv->soc->tx_dma(&st.txd);
675 else
676 st.txd.txd4 = TX_DMA_DESP4_DEF;
677 st.def_txd4 = st.txd.txd4;
678
679 /* TX Checksum offload */
680 if (skb->ip_summed == CHECKSUM_PARTIAL)
681 st.txd.txd4 |= TX_DMA_CHKSUM;
682
683 /* VLAN header offload */
684 if (skb_vlan_tag_present(skb)) {
685 u16 tag = skb_vlan_tag_get(skb);
686
687 if (IS_ENABLED(CONFIG_SOC_MT7621))
688 st.txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
689 else
690 st.txd.txd4 |= TX_DMA_INS_VLAN |
691 ((tag >> VLAN_PRIO_SHIFT) << 4) |
692 (tag & 0xF);
693 }
694
695 /* TSO: fill MSS info in tcp checksum field */
696 if (skb_is_gso(skb)) {
697 if (skb_cow_head(skb, 0)) {
698 netif_warn(priv, tx_err, dev,
699 "GSO expand head fail.\n");
700 goto err_out;
701 }
702 if (skb_shinfo(skb)->gso_type &
703 (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
704 st.txd.txd4 |= TX_DMA_TSO;
705 tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
706 }
707 }
708
709 next_frag:
710 if (skb_headlen(skb) && fe_tx_dma_map_skb(ring, &st, skb))
711 goto err_dma;
712
713 /* TX SG offload */
714 nr_frags = skb_shinfo(skb)->nr_frags;
715 for (i = 0; i < nr_frags; i++) {
716 struct skb_frag_struct *frag;
717
718 frag = &skb_shinfo(skb)->frags[i];
719 if (fe_tx_dma_map_page(ring, &st, skb_frag_page(frag),
720 frag->page_offset, skb_frag_size(frag)))
721 goto err_dma;
722 }
723
724 skb = fe_next_frag(head, skb);
725 if (skb)
726 goto next_frag;
727
728 /* set last segment */
729 if (st.i & 0x1)
730 st.txd.txd2 |= TX_DMA_LS0;
731 else
732 st.txd.txd2 |= TX_DMA_LS1;
733
734 /* store skb to cleanup */
735 tx_buf = &ring->tx_buf[st.ring_idx];
736 tx_buf->skb = head;
737
738 netdev_sent_queue(dev, head->len);
739 skb_tx_timestamp(head);
740
741 fe_tx_dma_write_desc(ring, &st);
742 ring->tx_next_idx = st.ring_idx;
743
744 /* make sure that all changes to the dma ring are flushed before we
745 * continue
746 */
747 wmb();
748 if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
749 netif_stop_queue(dev);
750 smp_mb();
751 if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
752 netif_wake_queue(dev);
753 }
754
755 if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !head->xmit_more)
756 fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
757
758 return 0;
759
760 err_dma:
761 j = ring->tx_next_idx;
762 for (i = 0; i < tx_num; i++) {
763 /* unmap dma */
764 fe_txd_unmap(&dev->dev, &ring->tx_buf[j]);
765 ring->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
766
767 j = NEXT_TX_DESP_IDX(j);
768 }
769 /* make sure that all changes to the dma ring are flushed before we
770 * continue
771 */
772 wmb();
773
774 err_out:
775 return -1;
776 }
777
778 static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
779 {
780 unsigned int len;
781 int ret;
782
783 ret = 0;
784 if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
785 if ((priv->flags & FE_FLAG_PADDING_64B) &&
786 !(priv->flags & FE_FLAG_PADDING_BUG))
787 return ret;
788
789 if (skb_vlan_tag_present(skb))
790 len = ETH_ZLEN;
791 else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
792 len = VLAN_ETH_ZLEN;
793 else if (!(priv->flags & FE_FLAG_PADDING_64B))
794 len = ETH_ZLEN;
795 else
796 return ret;
797
798 if (skb->len < len) {
799 ret = skb_pad(skb, len - skb->len);
800 if (ret < 0)
801 return ret;
802 skb->len = len;
803 skb_set_tail_pointer(skb, len);
804 }
805 }
806
807 return ret;
808 }
809
810 static inline int fe_cal_txd_req(struct sk_buff *skb)
811 {
812 struct sk_buff *head = skb;
813 int i, nfrags = 0;
814 struct skb_frag_struct *frag;
815
816 next_frag:
817 nfrags++;
818 if (skb_is_gso(skb)) {
819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
820 frag = &skb_shinfo(skb)->frags[i];
821 nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
822 }
823 } else {
824 nfrags += skb_shinfo(skb)->nr_frags;
825 }
826
827 skb = fe_next_frag(head, skb);
828 if (skb)
829 goto next_frag;
830
831 return DIV_ROUND_UP(nfrags, 2);
832 }
833
834 static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
835 {
836 struct fe_priv *priv = netdev_priv(dev);
837 struct fe_tx_ring *ring = &priv->tx_ring;
838 struct net_device_stats *stats = &dev->stats;
839 int tx_num;
840 int len = skb->len;
841
842 if (fe_skb_padto(skb, priv)) {
843 netif_warn(priv, tx_err, dev, "tx padding failed!\n");
844 return NETDEV_TX_OK;
845 }
846
847 tx_num = fe_cal_txd_req(skb);
848 if (unlikely(fe_empty_txd(ring) <= tx_num)) {
849 netif_stop_queue(dev);
850 netif_err(priv, tx_queued, dev,
851 "Tx Ring full when queue awake!\n");
852 return NETDEV_TX_BUSY;
853 }
854
855 if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
856 stats->tx_dropped++;
857 } else {
858 stats->tx_packets++;
859 stats->tx_bytes += len;
860 }
861
862 return NETDEV_TX_OK;
863 }
864
865 static int fe_poll_rx(struct napi_struct *napi, int budget,
866 struct fe_priv *priv, u32 rx_intr)
867 {
868 struct net_device *netdev = priv->netdev;
869 struct net_device_stats *stats = &netdev->stats;
870 struct fe_soc_data *soc = priv->soc;
871 struct fe_rx_ring *ring = &priv->rx_ring;
872 int idx = ring->rx_calc_idx;
873 u32 checksum_bit;
874 struct sk_buff *skb;
875 u8 *data, *new_data;
876 struct fe_rx_dma *rxd, trxd;
877 int done = 0, pad;
878
879 if (netdev->features & NETIF_F_RXCSUM)
880 checksum_bit = soc->checksum_bit;
881 else
882 checksum_bit = 0;
883
884 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
885 pad = 0;
886 else
887 pad = NET_IP_ALIGN;
888
889 while (done < budget) {
890 unsigned int pktlen;
891 dma_addr_t dma_addr;
892
893 idx = NEXT_RX_DESP_IDX(idx);
894 rxd = &ring->rx_dma[idx];
895 data = ring->rx_data[idx];
896
897 fe_get_rxd(&trxd, rxd);
898 if (!(trxd.rxd2 & RX_DMA_DONE))
899 break;
900
901 /* alloc new buffer */
902 new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
903 GFP_ATOMIC);
904 if (unlikely(!new_data)) {
905 stats->rx_dropped++;
906 goto release_desc;
907 }
908 dma_addr = dma_map_single(&netdev->dev,
909 new_data + NET_SKB_PAD + pad,
910 ring->rx_buf_size,
911 DMA_FROM_DEVICE);
912 if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
913 skb_free_frag(new_data);
914 goto release_desc;
915 }
916
917 /* receive data */
918 skb = build_skb(data, ring->frag_size);
919 if (unlikely(!skb)) {
920 skb_free_frag(new_data);
921 goto release_desc;
922 }
923 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
924
925 dma_unmap_single(&netdev->dev, trxd.rxd1,
926 ring->rx_buf_size, DMA_FROM_DEVICE);
927 pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
928 skb->dev = netdev;
929 skb_put(skb, pktlen);
930 if (trxd.rxd4 & checksum_bit)
931 skb->ip_summed = CHECKSUM_UNNECESSARY;
932 else
933 skb_checksum_none_assert(skb);
934 skb->protocol = eth_type_trans(skb, netdev);
935
936 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
937 RX_DMA_VID(trxd.rxd3))
938 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
939 RX_DMA_VID(trxd.rxd3));
940
941 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
942 if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
943 #endif
944 stats->rx_packets++;
945 stats->rx_bytes += pktlen;
946
947 napi_gro_receive(napi, skb);
948 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
949 } else {
950 dev_kfree_skb(skb);
951 }
952 #endif
953 ring->rx_data[idx] = new_data;
954 rxd->rxd1 = (unsigned int)dma_addr;
955
956 release_desc:
957 if (priv->flags & FE_FLAG_RX_SG_DMA)
958 rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
959 else
960 rxd->rxd2 = RX_DMA_LSO;
961
962 ring->rx_calc_idx = idx;
963 /* make sure that all changes to the dma ring are flushed before
964 * we continue
965 */
966 wmb();
967 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
968 done++;
969 }
970
971 if (done < budget)
972 fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
973
974 return done;
975 }
976
977 static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
978 int *tx_again)
979 {
980 struct net_device *netdev = priv->netdev;
981 struct device *dev = &netdev->dev;
982 unsigned int bytes_compl = 0;
983 struct sk_buff *skb;
984 struct fe_tx_buf *tx_buf;
985 int done = 0;
986 u32 idx, hwidx;
987 struct fe_tx_ring *ring = &priv->tx_ring;
988
989 idx = ring->tx_free_idx;
990 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
991
992 while ((idx != hwidx) && budget) {
993 tx_buf = &ring->tx_buf[idx];
994 skb = tx_buf->skb;
995
996 if (!skb)
997 break;
998
999 if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
1000 bytes_compl += skb->len;
1001 done++;
1002 budget--;
1003 }
1004 fe_txd_unmap(dev, tx_buf);
1005 idx = NEXT_TX_DESP_IDX(idx);
1006 }
1007 ring->tx_free_idx = idx;
1008
1009 if (idx == hwidx) {
1010 /* read hw index again make sure no new tx packet */
1011 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
1012 if (idx == hwidx)
1013 fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
1014 else
1015 *tx_again = 1;
1016 } else {
1017 *tx_again = 1;
1018 }
1019
1020 if (done) {
1021 netdev_completed_queue(netdev, done, bytes_compl);
1022 smp_mb();
1023 if (unlikely(netif_queue_stopped(netdev) &&
1024 (fe_empty_txd(ring) > ring->tx_thresh)))
1025 netif_wake_queue(netdev);
1026 }
1027
1028 return done;
1029 }
1030
1031 static int fe_poll(struct napi_struct *napi, int budget)
1032 {
1033 struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
1034 struct fe_hw_stats *hwstat = priv->hw_stats;
1035 int tx_done, rx_done, tx_again;
1036 u32 status, fe_status, status_reg, mask;
1037 u32 tx_intr, rx_intr, status_intr;
1038
1039 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1040 fe_status = status;
1041 tx_intr = priv->soc->tx_int;
1042 rx_intr = priv->soc->rx_int;
1043 status_intr = priv->soc->status_int;
1044 tx_done = 0;
1045 rx_done = 0;
1046 tx_again = 0;
1047
1048 if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
1049 fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
1050 status_reg = FE_REG_FE_INT_STATUS2;
1051 } else {
1052 status_reg = FE_REG_FE_INT_STATUS;
1053 }
1054
1055 if (status & tx_intr)
1056 tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);
1057
1058 if (status & rx_intr)
1059 rx_done = fe_poll_rx(napi, budget, priv, rx_intr);
1060
1061 if (unlikely(fe_status & status_intr)) {
1062 if (hwstat && spin_trylock(&hwstat->stats_lock)) {
1063 fe_stats_update(priv);
1064 spin_unlock(&hwstat->stats_lock);
1065 }
1066 fe_reg_w32(status_intr, status_reg);
1067 }
1068
1069 if (unlikely(netif_msg_intr(priv))) {
1070 mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
1071 netdev_info(priv->netdev,
1072 "done tx %d, rx %d, intr 0x%08x/0x%x\n",
1073 tx_done, rx_done, status, mask);
1074 }
1075
1076 if (!tx_again && (rx_done < budget)) {
1077 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1078 if (status & (tx_intr | rx_intr)) {
1079 /* let napi poll again */
1080 rx_done = budget;
1081 goto poll_again;
1082 }
1083
1084 napi_complete_done(napi, rx_done);
1085 fe_int_enable(tx_intr | rx_intr);
1086 } else {
1087 rx_done = budget;
1088 }
1089
1090 poll_again:
1091 return rx_done;
1092 }
1093
1094 static void fe_tx_timeout(struct net_device *dev)
1095 {
1096 struct fe_priv *priv = netdev_priv(dev);
1097 struct fe_tx_ring *ring = &priv->tx_ring;
1098
1099 priv->netdev->stats.tx_errors++;
1100 netif_err(priv, tx_err, dev,
1101 "transmit timed out\n");
1102 netif_info(priv, drv, dev, "dma_cfg:%08x\n",
1103 fe_reg_r32(FE_REG_PDMA_GLO_CFG));
1104 netif_info(priv, drv, dev, "tx_ring=%d, "
1105 "base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
1106 0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
1107 fe_reg_r32(FE_REG_TX_MAX_CNT0),
1108 fe_reg_r32(FE_REG_TX_CTX_IDX0),
1109 fe_reg_r32(FE_REG_TX_DTX_IDX0),
1110 ring->tx_free_idx,
1111 ring->tx_next_idx);
1112 netif_info(priv, drv, dev,
1113 "rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
1114 0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
1115 fe_reg_r32(FE_REG_RX_MAX_CNT0),
1116 fe_reg_r32(FE_REG_RX_CALC_IDX0),
1117 fe_reg_r32(FE_REG_RX_DRX_IDX0));
1118
1119 if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
1120 schedule_work(&priv->pending_work);
1121 }
1122
1123 static irqreturn_t fe_handle_irq(int irq, void *dev)
1124 {
1125 struct fe_priv *priv = netdev_priv(dev);
1126 u32 status, int_mask;
1127
1128 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1129
1130 if (unlikely(!status))
1131 return IRQ_NONE;
1132
1133 int_mask = (priv->soc->rx_int | priv->soc->tx_int);
1134 if (likely(status & int_mask)) {
1135 if (likely(napi_schedule_prep(&priv->rx_napi))) {
1136 fe_int_disable(int_mask);
1137 __napi_schedule(&priv->rx_napi);
1138 }
1139 } else {
1140 fe_reg_w32(status, FE_REG_FE_INT_STATUS);
1141 }
1142
1143 return IRQ_HANDLED;
1144 }
1145
1146 #ifdef CONFIG_NET_POLL_CONTROLLER
1147 static void fe_poll_controller(struct net_device *dev)
1148 {
1149 struct fe_priv *priv = netdev_priv(dev);
1150 u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
1151
1152 fe_int_disable(int_mask);
1153 fe_handle_irq(dev->irq, dev);
1154 fe_int_enable(int_mask);
1155 }
1156 #endif
1157
1158 int fe_set_clock_cycle(struct fe_priv *priv)
1159 {
1160 unsigned long sysclk = priv->sysclk;
1161
1162 sysclk /= FE_US_CYC_CNT_DIVISOR;
1163 sysclk <<= FE_US_CYC_CNT_SHIFT;
1164
1165 fe_w32((fe_r32(FE_FE_GLO_CFG) &
1166 ~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
1167 sysclk,
1168 FE_FE_GLO_CFG);
1169 return 0;
1170 }
1171
1172 void fe_fwd_config(struct fe_priv *priv)
1173 {
1174 u32 fwd_cfg;
1175
1176 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1177
1178 /* disable jumbo frame */
1179 if (priv->flags & FE_FLAG_JUMBO_FRAME)
1180 fwd_cfg &= ~FE_GDM1_JMB_EN;
1181
1182 /* set unicast/multicast/broadcast frame to cpu */
1183 fwd_cfg &= ~0xffff;
1184
1185 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1186 }
1187
1188 static void fe_rxcsum_config(bool enable)
1189 {
1190 if (enable)
1191 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
1192 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1193 FE_GDMA1_FWD_CFG);
1194 else
1195 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
1196 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1197 FE_GDMA1_FWD_CFG);
1198 }
1199
1200 static void fe_txcsum_config(bool enable)
1201 {
1202 if (enable)
1203 fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
1204 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1205 FE_CDMA_CSG_CFG);
1206 else
1207 fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
1208 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1209 FE_CDMA_CSG_CFG);
1210 }
1211
1212 void fe_csum_config(struct fe_priv *priv)
1213 {
1214 struct net_device *dev = priv_netdev(priv);
1215
1216 fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
1217 fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
1218 }
1219
1220 static int fe_hw_init(struct net_device *dev)
1221 {
1222 struct fe_priv *priv = netdev_priv(dev);
1223 int i, err;
1224
1225 err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
1226 dev_name(priv->dev), dev);
1227 if (err)
1228 return err;
1229
1230 if (priv->soc->set_mac)
1231 priv->soc->set_mac(priv, dev->dev_addr);
1232 else
1233 fe_hw_set_macaddr(priv, dev->dev_addr);
1234
1235 /* disable delay interrupt */
1236 fe_reg_w32(0, FE_REG_DLY_INT_CFG);
1237
1238 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1239
1240 /* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
1241 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1242 for (i = 0; i < 16; i += 2)
1243 fe_w32(((i + 1) << 16) + i,
1244 fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
1245 (i * 2));
1246
1247 if (priv->soc->fwd_config(priv))
1248 netdev_err(dev, "unable to get clock\n");
1249
1250 if (fe_reg_table[FE_REG_FE_RST_GL]) {
1251 fe_reg_w32(1, FE_REG_FE_RST_GL);
1252 fe_reg_w32(0, FE_REG_FE_RST_GL);
1253 }
1254
1255 return 0;
1256 }
1257
1258 static int fe_open(struct net_device *dev)
1259 {
1260 struct fe_priv *priv = netdev_priv(dev);
1261 unsigned long flags;
1262 u32 val;
1263 int err;
1264
1265 err = fe_init_dma(priv);
1266 if (err) {
1267 fe_free_dma(priv);
1268 return err;
1269 }
1270
1271 spin_lock_irqsave(&priv->page_lock, flags);
1272
1273 val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
1274 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
1275 val |= FE_RX_2B_OFFSET;
1276 val |= priv->soc->pdma_glo_cfg;
1277 fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
1278
1279 spin_unlock_irqrestore(&priv->page_lock, flags);
1280
1281 if (priv->phy)
1282 priv->phy->start(priv);
1283
1284 if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
1285 netif_carrier_on(dev);
1286
1287 napi_enable(&priv->rx_napi);
1288 fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
1289 netif_start_queue(dev);
1290 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1291 mtk_ppe_probe(priv);
1292 #endif
1293
1294 return 0;
1295 }
1296
1297 static int fe_stop(struct net_device *dev)
1298 {
1299 struct fe_priv *priv = netdev_priv(dev);
1300 unsigned long flags;
1301 int i;
1302
1303 netif_tx_disable(dev);
1304 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1305 napi_disable(&priv->rx_napi);
1306
1307 if (priv->phy)
1308 priv->phy->stop(priv);
1309
1310 spin_lock_irqsave(&priv->page_lock, flags);
1311
1312 fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1313 ~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
1314 FE_REG_PDMA_GLO_CFG);
1315 spin_unlock_irqrestore(&priv->page_lock, flags);
1316
1317 /* wait dma stop */
1318 for (i = 0; i < 10; i++) {
1319 if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1320 (FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
1321 msleep(20);
1322 continue;
1323 }
1324 break;
1325 }
1326
1327 fe_free_dma(priv);
1328
1329 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1330 mtk_ppe_remove(priv);
1331 #endif
1332
1333 return 0;
1334 }
1335
1336 static int __init fe_init(struct net_device *dev)
1337 {
1338 struct fe_priv *priv = netdev_priv(dev);
1339 struct device_node *port;
1340 const char *mac_addr;
1341 int err;
1342
1343 priv->soc->reset_fe();
1344
1345 if (priv->soc->switch_init)
1346 if (priv->soc->switch_init(priv)) {
1347 netdev_err(dev, "failed to initialize switch core\n");
1348 return -ENODEV;
1349 }
1350
1351 mac_addr = of_get_mac_address(priv->dev->of_node);
1352 if (mac_addr)
1353 ether_addr_copy(dev->dev_addr, mac_addr);
1354
1355 /* If the mac address is invalid, use random mac address */
1356 if (!is_valid_ether_addr(dev->dev_addr)) {
1357 random_ether_addr(dev->dev_addr);
1358 dev_err(priv->dev, "generated random MAC address %pM\n",
1359 dev->dev_addr);
1360 }
1361
1362 err = fe_mdio_init(priv);
1363 if (err)
1364 return err;
1365
1366 if (priv->soc->port_init)
1367 for_each_child_of_node(priv->dev->of_node, port)
1368 if (of_device_is_compatible(port, "mediatek,eth-port") &&
1369 of_device_is_available(port))
1370 priv->soc->port_init(priv, port);
1371
1372 if (priv->phy) {
1373 err = priv->phy->connect(priv);
1374 if (err)
1375 goto err_phy_disconnect;
1376 }
1377
1378 err = fe_hw_init(dev);
1379 if (err)
1380 goto err_phy_disconnect;
1381
1382 if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
1383 priv->soc->switch_config(priv);
1384
1385 return 0;
1386
1387 err_phy_disconnect:
1388 if (priv->phy)
1389 priv->phy->disconnect(priv);
1390 fe_mdio_cleanup(priv);
1391
1392 return err;
1393 }
1394
1395 static void fe_uninit(struct net_device *dev)
1396 {
1397 struct fe_priv *priv = netdev_priv(dev);
1398
1399 if (priv->phy)
1400 priv->phy->disconnect(priv);
1401 fe_mdio_cleanup(priv);
1402
1403 fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
1404 free_irq(dev->irq, dev);
1405 }
1406
1407 static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1408 {
1409 struct fe_priv *priv = netdev_priv(dev);
1410
1411 if (!priv->phy_dev)
1412 return -ENODEV;
1413
1414
1415 return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
1416 }
1417
1418 static int fe_change_mtu(struct net_device *dev, int new_mtu)
1419 {
1420 struct fe_priv *priv = netdev_priv(dev);
1421 int frag_size, old_mtu;
1422 u32 fwd_cfg;
1423
1424 old_mtu = dev->mtu;
1425 dev->mtu = new_mtu;
1426
1427 if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
1428 return 0;
1429
1430 /* return early if the buffer sizes will not change */
1431 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1432 return 0;
1433 if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
1434 return 0;
1435
1436 if (new_mtu <= ETH_DATA_LEN)
1437 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1438 else
1439 priv->rx_ring.frag_size = PAGE_SIZE;
1440 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1441
1442 if (!netif_running(dev))
1443 return 0;
1444
1445 fe_stop(dev);
1446 if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
1447 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1448 if (new_mtu <= ETH_DATA_LEN) {
1449 fwd_cfg &= ~FE_GDM1_JMB_EN;
1450 } else {
1451 frag_size = fe_max_frag_size(new_mtu);
1452 fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
1453 fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
1454 FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
1455 }
1456 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1457 }
1458
1459 return fe_open(dev);
1460 }
1461
1462 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1463 static int
1464 fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
1465 struct flow_offload_hw_path *src,
1466 struct flow_offload_hw_path *dest)
1467 {
1468 struct fe_priv *priv;
1469
1470 if (src->dev != dest->dev)
1471 return -EINVAL;
1472
1473 priv = netdev_priv(src->dev);
1474
1475 return mtk_flow_offload(priv, type, flow, src, dest);
1476 }
1477 #endif
1478
1479 static const struct net_device_ops fe_netdev_ops = {
1480 .ndo_init = fe_init,
1481 .ndo_uninit = fe_uninit,
1482 .ndo_open = fe_open,
1483 .ndo_stop = fe_stop,
1484 .ndo_start_xmit = fe_start_xmit,
1485 .ndo_set_mac_address = fe_set_mac_address,
1486 .ndo_validate_addr = eth_validate_addr,
1487 .ndo_do_ioctl = fe_do_ioctl,
1488 .ndo_change_mtu = fe_change_mtu,
1489 .ndo_tx_timeout = fe_tx_timeout,
1490 .ndo_get_stats64 = fe_get_stats64,
1491 .ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
1492 .ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
1493 #ifdef CONFIG_NET_POLL_CONTROLLER
1494 .ndo_poll_controller = fe_poll_controller,
1495 #endif
1496 #ifdef CONFIG_NET_MEDIATEK_OFFLOAD
1497 .ndo_flow_offload = fe_flow_offload,
1498 #endif
1499 };
1500
1501 static void fe_reset_pending(struct fe_priv *priv)
1502 {
1503 struct net_device *dev = priv->netdev;
1504 int err;
1505
1506 rtnl_lock();
1507 fe_stop(dev);
1508
1509 err = fe_open(dev);
1510 if (err) {
1511 netif_alert(priv, ifup, dev,
1512 "Driver up/down cycle failed, closing device.\n");
1513 dev_close(dev);
1514 }
1515 rtnl_unlock();
1516 }
1517
1518 static const struct fe_work_t fe_work[] = {
1519 {FE_FLAG_RESET_PENDING, fe_reset_pending},
1520 };
1521
1522 static void fe_pending_work(struct work_struct *work)
1523 {
1524 struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
1525 int i;
1526 bool pending;
1527
1528 for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
1529 pending = test_and_clear_bit(fe_work[i].bitnr,
1530 priv->pending_flags);
1531 if (pending)
1532 fe_work[i].action(priv);
1533 }
1534 }
1535
1536 static int fe_probe(struct platform_device *pdev)
1537 {
1538 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1539 const struct of_device_id *match;
1540 struct fe_soc_data *soc;
1541 struct net_device *netdev;
1542 struct fe_priv *priv;
1543 struct clk *sysclk;
1544 int err, napi_weight;
1545
1546 device_reset(&pdev->dev);
1547
1548 match = of_match_device(of_fe_match, &pdev->dev);
1549 soc = (struct fe_soc_data *)match->data;
1550
1551 if (soc->reg_table)
1552 fe_reg_table = soc->reg_table;
1553 else
1554 soc->reg_table = fe_reg_table;
1555
1556 fe_base = devm_ioremap_resource(&pdev->dev, res);
1557 if (IS_ERR(fe_base)) {
1558 err = -EADDRNOTAVAIL;
1559 goto err_out;
1560 }
1561
1562 netdev = alloc_etherdev(sizeof(*priv));
1563 if (!netdev) {
1564 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1565 err = -ENOMEM;
1566 goto err_iounmap;
1567 }
1568
1569 SET_NETDEV_DEV(netdev, &pdev->dev);
1570 netdev->netdev_ops = &fe_netdev_ops;
1571 netdev->base_addr = (unsigned long)fe_base;
1572
1573 netdev->irq = platform_get_irq(pdev, 0);
1574 if (netdev->irq < 0) {
1575 dev_err(&pdev->dev, "no IRQ resource found\n");
1576 err = -ENXIO;
1577 goto err_free_dev;
1578 }
1579
1580 if (soc->init_data)
1581 soc->init_data(soc, netdev);
1582 netdev->vlan_features = netdev->hw_features &
1583 ~(NETIF_F_HW_VLAN_CTAG_TX |
1584 NETIF_F_HW_VLAN_CTAG_RX);
1585 netdev->features |= netdev->hw_features;
1586
1587 if (IS_ENABLED(CONFIG_SOC_MT7621))
1588 netdev->max_mtu = 2048;
1589
1590 /* fake rx vlan filter func. to support tx vlan offload func */
1591 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1592 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1593
1594 priv = netdev_priv(netdev);
1595 spin_lock_init(&priv->page_lock);
1596 if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
1597 priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
1598 if (!priv->hw_stats) {
1599 err = -ENOMEM;
1600 goto err_free_dev;
1601 }
1602 spin_lock_init(&priv->hw_stats->stats_lock);
1603 }
1604
1605 sysclk = devm_clk_get(&pdev->dev, NULL);
1606 if (!IS_ERR(sysclk)) {
1607 priv->sysclk = clk_get_rate(sysclk);
1608 } else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
1609 dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
1610 err = -ENXIO;
1611 goto err_free_dev;
1612 }
1613
1614 priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
1615 if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
1616 dev_err(&pdev->dev, "failed to read switch phandle\n");
1617 err = -ENODEV;
1618 goto err_free_dev;
1619 }
1620
1621 priv->netdev = netdev;
1622 priv->dev = &pdev->dev;
1623 priv->soc = soc;
1624 priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
1625 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1626 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1627 priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
1628 priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
1629 INIT_WORK(&priv->pending_work, fe_pending_work);
1630 u64_stats_init(&priv->hw_stats->syncp);
1631
1632 napi_weight = 16;
1633 if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
1634 napi_weight *= 4;
1635 priv->tx_ring.tx_ring_size *= 4;
1636 priv->rx_ring.rx_ring_size *= 4;
1637 }
1638 netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
1639 fe_set_ethtool_ops(netdev);
1640
1641 err = register_netdev(netdev);
1642 if (err) {
1643 dev_err(&pdev->dev, "error bringing up device\n");
1644 goto err_free_dev;
1645 }
1646
1647 platform_set_drvdata(pdev, netdev);
1648
1649 netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
1650 netdev->base_addr, netdev->irq);
1651
1652 return 0;
1653
1654 err_free_dev:
1655 free_netdev(netdev);
1656 err_iounmap:
1657 devm_iounmap(&pdev->dev, fe_base);
1658 err_out:
1659 return err;
1660 }
1661
1662 static int fe_remove(struct platform_device *pdev)
1663 {
1664 struct net_device *dev = platform_get_drvdata(pdev);
1665 struct fe_priv *priv = netdev_priv(dev);
1666
1667 netif_napi_del(&priv->rx_napi);
1668 kfree(priv->hw_stats);
1669
1670 cancel_work_sync(&priv->pending_work);
1671
1672 unregister_netdev(dev);
1673 free_netdev(dev);
1674 platform_set_drvdata(pdev, NULL);
1675
1676 return 0;
1677 }
1678
1679 static struct platform_driver fe_driver = {
1680 .probe = fe_probe,
1681 .remove = fe_remove,
1682 .driver = {
1683 .name = "mtk_soc_eth",
1684 .owner = THIS_MODULE,
1685 .of_match_table = of_fe_match,
1686 },
1687 };
1688
1689 module_platform_driver(fe_driver);
1690
1691 MODULE_LICENSE("GPL");
1692 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
1693 MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
1694 MODULE_VERSION(MTK_FE_DRV_VERSION);