90533ab961079a85d3f2d3803ee0b6a721ac630b
[openwrt/svn-archive/archive.git] / target / linux / s3c24xx / files-2.6.30 / drivers / ar6000 / ar6000 / ar6000_drv.c
1 /*
2 *
3 * Copyright (c) 2004-2007 Atheros Communications Inc.
4 * All rights reserved.
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation;
10 *
11 * Software distributed under the License is distributed on an "AS
12 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
13 * implied. See the License for the specific language governing
14 * rights and limitations under the License.
15 *
16 *
17 *
18 */
19
20 /*
21 * This driver is a pseudo ethernet driver to access the Atheros AR6000
22 * WLAN Device
23 */
24 static const char athId[] __attribute__ ((unused)) = "$Id: //depot/sw/releases/olca2.0-GPL/host/os/linux/ar6000_drv.c#2 $";
25
26 #include "ar6000_drv.h"
27 #include "htc.h"
28
29 MODULE_LICENSE("GPL and additional rights");
30
31 #ifndef REORG_APTC_HEURISTICS
32 #undef ADAPTIVE_POWER_THROUGHPUT_CONTROL
33 #endif /* REORG_APTC_HEURISTICS */
34
35 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
36 #define APTC_TRAFFIC_SAMPLING_INTERVAL 100 /* msec */
37 #define APTC_UPPER_THROUGHPUT_THRESHOLD 3000 /* Kbps */
38 #define APTC_LOWER_THROUGHPUT_THRESHOLD 2000 /* Kbps */
39
40 typedef struct aptc_traffic_record {
41 A_BOOL timerScheduled;
42 struct timeval samplingTS;
43 unsigned long bytesReceived;
44 unsigned long bytesTransmitted;
45 } APTC_TRAFFIC_RECORD;
46
47 A_TIMER aptcTimer;
48 APTC_TRAFFIC_RECORD aptcTR;
49 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
50
51 unsigned int bypasswmi = 0;
52 unsigned int debuglevel = 0;
53 int tspecCompliance = 1;
54 unsigned int busspeedlow = 0;
55 unsigned int onebitmode = 0;
56 unsigned int skipflash = 0;
57 unsigned int wmitimeout = 2;
58 unsigned int wlanNodeCaching = 1;
59 unsigned int enableuartprint = 0;
60 unsigned int logWmiRawMsgs = 0;
61 unsigned int enabletimerwar = 0;
62 unsigned int mbox_yield_limit = 99;
63 int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF;
64 int allow_trace_signal = 0;
65 #ifdef CONFIG_HOST_TCMD_SUPPORT
66 unsigned int testmode =0;
67 #endif
68
69 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
70 module_param(bypasswmi, int, 0644);
71 module_param(debuglevel, int, 0644);
72 module_param(tspecCompliance, int, 0644);
73 module_param(onebitmode, int, 0644);
74 module_param(busspeedlow, int, 0644);
75 module_param(skipflash, int, 0644);
76 module_param(wmitimeout, int, 0644);
77 module_param(wlanNodeCaching, int, 0644);
78 module_param(logWmiRawMsgs, int, 0644);
79 module_param(enableuartprint, int, 0644);
80 module_param(enabletimerwar, int, 0644);
81 module_param(mbox_yield_limit, int, 0644);
82 module_param(reduce_credit_dribble, int, 0644);
83 module_param(allow_trace_signal, int, 0644);
84 #ifdef CONFIG_HOST_TCMD_SUPPORT
85 module_param(testmode, int, 0644);
86 #endif
87 #else
88
89 #define __user
90 /* for linux 2.4 and lower */
91 MODULE_PARM(bypasswmi,"i");
92 MODULE_PARM(debuglevel, "i");
93 MODULE_PARM(onebitmode,"i");
94 MODULE_PARM(busspeedlow, "i");
95 MODULE_PARM(skipflash, "i");
96 MODULE_PARM(wmitimeout, "i");
97 MODULE_PARM(wlanNodeCaching, "i");
98 MODULE_PARM(enableuartprint,"i");
99 MODULE_PARM(logWmiRawMsgs, "i");
100 MODULE_PARM(enabletimerwar,"i");
101 MODULE_PARM(mbox_yield_limit,"i");
102 MODULE_PARM(reduce_credit_dribble,"i");
103 MODULE_PARM(allow_trace_signal,"i");
104 #ifdef CONFIG_HOST_TCMD_SUPPORT
105 MODULE_PARM(testmode, "i");
106 #endif
107 #endif
108
109 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10)
110 /* in 2.6.10 and later this is now a pointer to a uint */
111 unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX;
112 #define mboxnum &_mboxnum
113 #else
114 unsigned int mboxnum = HTC_MAILBOX_NUM_MAX;
115 #endif
116
117 #ifdef CONFIG_AR6000_WLAN_RESET
118 unsigned int resetok = 1;
119 #else
120 unsigned int resetok = 0;
121 #endif
122
123 #ifdef DEBUG
124 A_UINT32 g_dbg_flags = DBG_DEFAULTS;
125 unsigned int debugflags = 0;
126 int debugdriver = 1;
127 unsigned int debughtc = 128;
128 unsigned int debugbmi = 1;
129 unsigned int debughif = 2;
130 unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0};
131 unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0};
132 unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0};
133 unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0};
134
135 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
136 module_param(debugflags, int, 0644);
137 module_param(debugdriver, int, 0644);
138 module_param(debughtc, int, 0644);
139 module_param(debugbmi, int, 0644);
140 module_param(debughif, int, 0644);
141 module_param(resetok, int, 0644);
142 module_param_array(txcreditsavailable, int, mboxnum, 0644);
143 module_param_array(txcreditsconsumed, int, mboxnum, 0644);
144 module_param_array(txcreditintrenable, int, mboxnum, 0644);
145 module_param_array(txcreditintrenableaggregate, int, mboxnum, 0644);
146 #else
147 /* linux 2.4 and lower */
148 MODULE_PARM(debugflags,"i");
149 MODULE_PARM(debugdriver, "i");
150 MODULE_PARM(debughtc, "i");
151 MODULE_PARM(debugbmi, "i");
152 MODULE_PARM(debughif, "i");
153 MODULE_PARM(resetok, "i");
154 MODULE_PARM(txcreditsavailable, "0-3i");
155 MODULE_PARM(txcreditsconsumed, "0-3i");
156 MODULE_PARM(txcreditintrenable, "0-3i");
157 MODULE_PARM(txcreditintrenableaggregate, "0-3i");
158 #endif
159
160 #endif /* DEBUG */
161
162 unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0};
163 unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0};
164 unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0};
165 unsigned int hifBusRequestNumMax = 40;
166 unsigned int war23838_disabled = 0;
167 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
168 unsigned int enableAPTCHeuristics = 1;
169 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
170 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
171 module_param_array(tx_attempt, int, mboxnum, 0644);
172 module_param_array(tx_post, int, mboxnum, 0644);
173 module_param_array(tx_complete, int, mboxnum, 0644);
174 module_param(hifBusRequestNumMax, int, 0644);
175 module_param(war23838_disabled, int, 0644);
176 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
177 module_param(enableAPTCHeuristics, int, 0644);
178 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
179 #else
180 MODULE_PARM(tx_attempt, "0-3i");
181 MODULE_PARM(tx_post, "0-3i");
182 MODULE_PARM(tx_complete, "0-3i");
183 MODULE_PARM(hifBusRequestNumMax, "i");
184 MODULE_PARM(war23838_disabled, "i");
185 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
186 MODULE_PARM(enableAPTCHeuristics, "i");
187 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
188 #endif
189
190 #ifdef BLOCK_TX_PATH_FLAG
191 int blocktx = 0;
192 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
193 module_param(blocktx, int, 0644);
194 #else
195 MODULE_PARM(blocktx, "i");
196 #endif
197 #endif /* BLOCK_TX_PATH_FLAG */
198
199 // TODO move to arsoft_c
200 USER_RSSI_THOLD rssi_map[12];
201
202 int reconnect_flag = 0;
203
204 DECLARE_WAIT_QUEUE_HEAD(ar6000_scan_queue);
205
206 /* Function declarations */
207 static int ar6000_init_module(void);
208 static void ar6000_cleanup_module(void);
209
210 int ar6000_init(struct net_device *dev);
211 static int ar6000_open(struct net_device *dev);
212 static int ar6000_close(struct net_device *dev);
213 static int ar6000_cleanup(struct net_device *dev);
214 static void ar6000_init_control_info(AR_SOFTC_T *ar);
215 static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev);
216
217 static void ar6000_destroy(struct net_device *dev, unsigned int unregister);
218 static void ar6000_detect_error(unsigned long ptr);
219 static struct net_device_stats *ar6000_get_stats(struct net_device *dev);
220 static struct iw_statistics *ar6000_get_iwstats(struct net_device * dev);
221
222 /*
223 * HTC service connection handlers
224 */
225 static void ar6000_avail_ev(HTC_HANDLE HTCHandle);
226
227 static void ar6000_unavail_ev(void *Instance);
228
229 static void ar6000_target_failure(void *Instance, A_STATUS Status);
230
231 static void ar6000_rx(void *Context, HTC_PACKET *pPacket);
232
233 static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint);
234
235 static void ar6000_tx_complete(void *Context, HTC_PACKET *pPacket);
236
237 static void ar6000_tx_queue_full(void *Context, HTC_ENDPOINT_ID Endpoint);
238
239 static void ar6000_tx_queue_avail(void *Context, HTC_ENDPOINT_ID Endpoint);
240
241 /*
242 * Static variables
243 */
244
245 static struct net_device *ar6000_devices[MAX_AR6000];
246 extern struct iw_handler_def ath_iw_handler_def;
247 DECLARE_WAIT_QUEUE_HEAD(arEvent);
248 static void ar6000_cookie_init(AR_SOFTC_T *ar);
249 static void ar6000_cookie_cleanup(AR_SOFTC_T *ar);
250 static void ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie);
251 static struct ar_cookie *ar6000_alloc_cookie(AR_SOFTC_T *ar);
252 static void ar6000_TxDataCleanup(AR_SOFTC_T *ar);
253
254 #ifdef USER_KEYS
255 static A_STATUS ar6000_reinstall_keys(AR_SOFTC_T *ar,A_UINT8 key_op_ctrl);
256 #endif
257
258
259 static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM];
260
261 #define HOST_INTEREST_ITEM_ADDRESS(ar, item) \
262 ((ar->arTargetType == TARGET_TYPE_AR6001) ? \
263 AR6001_HOST_INTEREST_ITEM_ADDRESS(item) : \
264 AR6002_HOST_INTEREST_ITEM_ADDRESS(item))
265
266
267 /* Debug log support */
268
269 /*
270 * Flag to govern whether the debug logs should be parsed in the kernel
271 * or reported to the application.
272 */
273 #ifdef DEBUG
274 #define REPORT_DEBUG_LOGS_TO_APP
275 #endif
276
277 A_STATUS
278 ar6000_set_host_app_area(AR_SOFTC_T *ar)
279 {
280 A_UINT32 address, data;
281 struct host_app_area_s host_app_area;
282
283 /* Fetch the address of the host_app_area_s instance in the host interest area */
284 address = HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest);
285 if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != A_OK) {
286 return A_ERROR;
287 }
288 address = data;
289 host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION;
290 if (ar6000_WriteDataDiag(ar->arHifDevice, address,
291 (A_UCHAR *)&host_app_area,
292 sizeof(struct host_app_area_s)) != A_OK)
293 {
294 return A_ERROR;
295 }
296
297 return A_OK;
298 }
299
300 A_UINT32
301 dbglog_get_debug_hdr_ptr(AR_SOFTC_T *ar)
302 {
303 A_UINT32 param;
304 A_UINT32 address;
305 A_STATUS status;
306
307 address = HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbglog_hdr);
308 if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address,
309 (A_UCHAR *)&param, 4)) != A_OK)
310 {
311 param = 0;
312 }
313
314 return param;
315 }
316
317 /*
318 * The dbglog module has been initialized. Its ok to access the relevant
319 * data stuctures over the diagnostic window.
320 */
321 void
322 ar6000_dbglog_init_done(AR_SOFTC_T *ar)
323 {
324 ar->dbglog_init_done = TRUE;
325 }
326
327 A_UINT32
328 dbglog_get_debug_fragment(A_INT8 *datap, A_UINT32 len, A_UINT32 limit)
329 {
330 A_INT32 *buffer;
331 A_UINT32 count;
332 A_UINT32 numargs;
333 A_UINT32 length;
334 A_UINT32 fraglen;
335
336 count = fraglen = 0;
337 buffer = (A_INT32 *)datap;
338 length = (limit >> 2);
339
340 if (len <= limit) {
341 fraglen = len;
342 } else {
343 while (count < length) {
344 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
345 fraglen = (count << 2);
346 count += numargs + 1;
347 }
348 }
349
350 return fraglen;
351 }
352
353 void
354 dbglog_parse_debug_logs(A_INT8 *datap, A_UINT32 len)
355 {
356 A_INT32 *buffer;
357 A_UINT32 count;
358 A_UINT32 timestamp;
359 A_UINT32 debugid;
360 A_UINT32 moduleid;
361 A_UINT32 numargs;
362 A_UINT32 length;
363
364 count = 0;
365 buffer = (A_INT32 *)datap;
366 length = (len >> 2);
367 while (count < length) {
368 debugid = DBGLOG_GET_DBGID(buffer[count]);
369 moduleid = DBGLOG_GET_MODULEID(buffer[count]);
370 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
371 timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]);
372 switch (numargs) {
373 case 0:
374 AR_DEBUG_PRINTF("%d %d (%d)\n", moduleid, debugid, timestamp);
375 break;
376
377 case 1:
378 AR_DEBUG_PRINTF("%d %d (%d): 0x%x\n", moduleid, debugid,
379 timestamp, buffer[count+1]);
380 break;
381
382 case 2:
383 AR_DEBUG_PRINTF("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid,
384 timestamp, buffer[count+1], buffer[count+2]);
385 break;
386
387 default:
388 AR_DEBUG_PRINTF("Invalid args: %d\n", numargs);
389 }
390 count += numargs + 1;
391 }
392 }
393
394 int
395 ar6000_dbglog_get_debug_logs(AR_SOFTC_T *ar)
396 {
397 struct dbglog_hdr_s debug_hdr;
398 struct dbglog_buf_s debug_buf;
399 A_UINT32 address;
400 A_UINT32 length;
401 A_UINT32 dropped;
402 A_UINT32 firstbuf;
403 A_UINT32 debug_hdr_ptr;
404
405 if (!ar->dbglog_init_done) return A_ERROR;
406
407 #ifndef CONFIG_AR6000_WLAN_DEBUG
408 return 0;
409 #endif
410
411 AR6000_SPIN_LOCK(&ar->arLock, 0);
412
413 if (ar->dbgLogFetchInProgress) {
414 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
415 return A_EBUSY;
416 }
417
418 /* block out others */
419 ar->dbgLogFetchInProgress = TRUE;
420
421 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
422
423 debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar);
424 printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr);
425
426 /* Get the contents of the ring buffer */
427 if (debug_hdr_ptr) {
428 address = debug_hdr_ptr;
429 length = sizeof(struct dbglog_hdr_s);
430 ar6000_ReadDataDiag(ar->arHifDevice, address,
431 (A_UCHAR *)&debug_hdr, length);
432 address = (A_UINT32)debug_hdr.dbuf;
433 firstbuf = address;
434 dropped = debug_hdr.dropped;
435 length = sizeof(struct dbglog_buf_s);
436 ar6000_ReadDataDiag(ar->arHifDevice, address,
437 (A_UCHAR *)&debug_buf, length);
438
439 do {
440 address = (A_UINT32)debug_buf.buffer;
441 length = debug_buf.length;
442 if ((length) && (debug_buf.length <= debug_buf.bufsize)) {
443 /* Rewind the index if it is about to overrun the buffer */
444 if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) {
445 ar->log_cnt = 0;
446 }
447 if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address,
448 (A_UCHAR *)&ar->log_buffer[ar->log_cnt], length))
449 {
450 break;
451 }
452 ar6000_dbglog_event(ar, dropped, &ar->log_buffer[ar->log_cnt], length);
453 ar->log_cnt += length;
454 } else {
455 AR_DEBUG_PRINTF("Length: %d (Total size: %d)\n",
456 debug_buf.length, debug_buf.bufsize);
457 }
458
459 address = (A_UINT32)debug_buf.next;
460 length = sizeof(struct dbglog_buf_s);
461 if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address,
462 (A_UCHAR *)&debug_buf, length))
463 {
464 break;
465 }
466
467 } while (address != firstbuf);
468 }
469
470 ar->dbgLogFetchInProgress = FALSE;
471
472 return A_OK;
473 }
474
475 void
476 ar6000_dbglog_event(AR_SOFTC_T *ar, A_UINT32 dropped,
477 A_INT8 *buffer, A_UINT32 length)
478 {
479 #ifdef REPORT_DEBUG_LOGS_TO_APP
480 #define MAX_WIRELESS_EVENT_SIZE 252
481 /*
482 * Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages.
483 * There seems to be a limitation on the length of message that could be
484 * transmitted to the user app via this mechanism.
485 */
486 A_UINT32 send, sent;
487
488 sent = 0;
489 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
490 MAX_WIRELESS_EVENT_SIZE);
491 while (send) {
492 ar6000_send_event_to_app(ar, WMIX_DBGLOG_EVENTID, &buffer[sent], send);
493 sent += send;
494 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
495 MAX_WIRELESS_EVENT_SIZE);
496 }
497 #else
498 AR_DEBUG_PRINTF("Dropped logs: 0x%x\nDebug info length: %d\n",
499 dropped, length);
500
501 /* Interpret the debug logs */
502 dbglog_parse_debug_logs(buffer, length);
503 #endif /* REPORT_DEBUG_LOGS_TO_APP */
504 }
505
506
507
508 static int __init
509 ar6000_init_module(void)
510 {
511 static int probed = 0;
512 A_STATUS status;
513 HTC_INIT_INFO initInfo;
514
515 A_MEMZERO(&initInfo,sizeof(initInfo));
516 initInfo.AddInstance = ar6000_avail_ev;
517 initInfo.DeleteInstance = ar6000_unavail_ev;
518 initInfo.TargetFailure = ar6000_target_failure;
519
520
521 #ifdef DEBUG
522 /* Set the debug flags if specified at load time */
523 if(debugflags != 0)
524 {
525 g_dbg_flags = debugflags;
526 }
527 #endif
528
529 if (probed) {
530 return -ENODEV;
531 }
532 probed++;
533
534 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
535 memset(&aptcTR, 0, sizeof(APTC_TRAFFIC_RECORD));
536 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
537
538 #ifdef CONFIG_HOST_GPIO_SUPPORT
539 ar6000_gpio_init();
540 #endif /* CONFIG_HOST_GPIO_SUPPORT */
541
542 status = HTCInit(&initInfo);
543 if(status != A_OK)
544 return -ENODEV;
545
546 return 0;
547 }
548
549 static void __exit
550 ar6000_cleanup_module(void)
551 {
552 int i = 0;
553 struct net_device *ar6000_netdev;
554
555 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
556 /* Delete the Adaptive Power Control timer */
557 if (timer_pending(&aptcTimer)) {
558 del_timer_sync(&aptcTimer);
559 }
560 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
561
562 for (i=0; i < MAX_AR6000; i++) {
563 if (ar6000_devices[i] != NULL) {
564 ar6000_netdev = ar6000_devices[i];
565 ar6000_devices[i] = NULL;
566 ar6000_destroy(ar6000_netdev, 1);
567 }
568 }
569
570 /* shutting down HTC will cause the HIF layer to detach from the
571 * underlying bus driver which will cause the subsequent deletion of
572 * all HIF and HTC instances */
573 HTCShutDown();
574
575 AR_DEBUG_PRINTF("ar6000_cleanup: success\n");
576 }
577
578 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
579 void
580 aptcTimerHandler(unsigned long arg)
581 {
582 A_UINT32 numbytes;
583 A_UINT32 throughput;
584 AR_SOFTC_T *ar;
585 A_STATUS status;
586
587 ar = (AR_SOFTC_T *)arg;
588 A_ASSERT(ar != NULL);
589 A_ASSERT(!timer_pending(&aptcTimer));
590
591 AR6000_SPIN_LOCK(&ar->arLock, 0);
592
593 /* Get the number of bytes transferred */
594 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
595 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
596
597 /* Calculate and decide based on throughput thresholds */
598 throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */
599 if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) {
600 /* Enable Sleep and delete the timer */
601 A_ASSERT(ar->arWmiReady == TRUE);
602 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
603 status = wmi_powermode_cmd(ar->arWmi, REC_POWER);
604 AR6000_SPIN_LOCK(&ar->arLock, 0);
605 A_ASSERT(status == A_OK);
606 aptcTR.timerScheduled = FALSE;
607 } else {
608 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
609 }
610
611 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
612 }
613 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
614
615
616
617 /* set HTC block size, assume BMI is already initialized */
618 A_STATUS ar6000_SetHTCBlockSize(AR_SOFTC_T *ar)
619 {
620 A_STATUS status;
621 A_UINT32 blocksizes[HTC_MAILBOX_NUM_MAX];
622
623 do {
624 /* get the block sizes */
625 status = HIFConfigureDevice(ar->arHifDevice, HIF_DEVICE_GET_MBOX_BLOCK_SIZE,
626 blocksizes, sizeof(blocksizes));
627
628 if (A_FAILED(status)) {
629 AR_DEBUG_PRINTF("Failed to get block size info from HIF layer...\n");
630 break;
631 }
632 /* note: we actually get the block size for mailbox 1, for SDIO the block
633 * size on mailbox 0 is artificially set to 1 */
634 /* must be a power of 2 */
635 A_ASSERT((blocksizes[1] & (blocksizes[1] - 1)) == 0);
636
637 /* set the host interest area for the block size */
638 status = BMIWriteMemory(ar->arHifDevice,
639 HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_io_block_sz),
640 (A_UCHAR *)&blocksizes[1],
641 4);
642
643 if (A_FAILED(status)) {
644 AR_DEBUG_PRINTF("BMIWriteMemory for IO block size failed \n");
645 break;
646 }
647
648 AR_DEBUG_PRINTF("Block Size Set: %d (target address:0x%X)\n",
649 blocksizes[1], HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_io_block_sz));
650
651 /* set the host interest area for the mbox ISR yield limit */
652 status = BMIWriteMemory(ar->arHifDevice,
653 HOST_INTEREST_ITEM_ADDRESS(ar, hi_mbox_isr_yield_limit),
654 (A_UCHAR *)&mbox_yield_limit,
655 4);
656
657 if (A_FAILED(status)) {
658 AR_DEBUG_PRINTF("BMIWriteMemory for yield limit failed \n");
659 break;
660 }
661
662 } while (FALSE);
663
664 return status;
665 }
666
667 static void free_raw_buffers(AR_SOFTC_T *ar)
668 {
669 int i, j;
670
671 for (i = 0; i != HTC_RAW_STREAM_NUM_MAX; i++) {
672 for (j = 0; j != RAW_HTC_READ_BUFFERS_NUM; j++)
673 kfree(ar->raw_htc_read_buffer[i][j]);
674 for (j = 0; j != RAW_HTC_WRITE_BUFFERS_NUM; j++)
675 kfree(ar->raw_htc_write_buffer[i][j]);
676 }
677 }
678
679 static int alloc_raw_buffers(AR_SOFTC_T *ar)
680 {
681 int i, j;
682 raw_htc_buffer *b;
683
684 for (i = 0; i != HTC_RAW_STREAM_NUM_MAX; i++) {
685 for (j = 0; j != RAW_HTC_READ_BUFFERS_NUM; j++) {
686 b = kzalloc(sizeof(*b), GFP_KERNEL);
687 if (!b)
688 return -ENOMEM;
689 ar->raw_htc_read_buffer[i][j] = b;
690 }
691 for (j = 0; j != RAW_HTC_WRITE_BUFFERS_NUM; j++) {
692 b = kzalloc(sizeof(*b), GFP_KERNEL);
693 if (!b)
694 return -ENOMEM;
695 ar->raw_htc_write_buffer[i][j] = b;
696 }
697 }
698 return 0;
699 }
700
701 static const struct net_device_ops ar6000_netdev_ops = {
702 .ndo_init = &ar6000_init,
703 .ndo_open = &ar6000_open,
704 .ndo_stop = &ar6000_close,
705 .ndo_start_xmit = &ar6000_data_tx,
706 .ndo_get_stats = &ar6000_get_stats,
707 .ndo_do_ioctl = &ar6000_ioctl,
708 };
709 /*
710 * HTC Event handlers
711 */
712 static void
713 ar6000_avail_ev(HTC_HANDLE HTCHandle)
714 {
715 int i;
716 struct net_device *dev;
717 AR_SOFTC_T *ar;
718 int device_index = 0;
719
720 AR_DEBUG_PRINTF("ar6000_available\n");
721
722 for (i=0; i < MAX_AR6000; i++) {
723 if (ar6000_devices[i] == NULL) {
724 break;
725 }
726 }
727
728 if (i == MAX_AR6000) {
729 AR_DEBUG_PRINTF("ar6000_available: max devices reached\n");
730 return;
731 }
732
733 /* Save this. It gives a bit better readability especially since */
734 /* we use another local "i" variable below. */
735 device_index = i;
736
737 A_ASSERT(HTCHandle != NULL);
738
739 dev = alloc_etherdev(sizeof(AR_SOFTC_T));
740 if (dev == NULL) {
741 AR_DEBUG_PRINTF("ar6000_available: can't alloc etherdev\n");
742 return;
743 }
744
745 ether_setup(dev);
746
747 if (netdev_priv(dev) == NULL) {
748 printk(KERN_CRIT "ar6000_available: Could not allocate memory\n");
749 return;
750 }
751
752 A_MEMZERO(netdev_priv(dev), sizeof(AR_SOFTC_T));
753
754 ar = (AR_SOFTC_T *)netdev_priv(dev);
755 ar->arNetDev = dev;
756 ar->arHtcTarget = HTCHandle;
757 ar->arHifDevice = HTCGetHifDevice(HTCHandle);
758 ar->arWlanState = WLAN_ENABLED;
759 ar->arRadioSwitch = WLAN_ENABLED;
760 ar->arDeviceIndex = device_index;
761
762 A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, dev);
763 ar->arHBChallengeResp.seqNum = 0;
764 ar->arHBChallengeResp.outstanding = FALSE;
765 ar->arHBChallengeResp.missCnt = 0;
766 ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT;
767 ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT;
768
769 ar6000_init_control_info(ar);
770 init_waitqueue_head(&arEvent);
771 sema_init(&ar->arSem, 1);
772
773 if (alloc_raw_buffers(ar)) {
774 free_raw_buffers(ar);
775 /*
776 * @@@ Clean up our own mess, but for anything else, cheerfully mimick
777 * the beautiful error non-handling of the rest of this function.
778 */
779 return;
780 }
781
782 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
783 A_INIT_TIMER(&aptcTimer, aptcTimerHandler, ar);
784 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
785
786 /*
787 * If requested, perform some magic which requires no cooperation from
788 * the Target. It causes the Target to ignore flash and execute to the
789 * OS from ROM.
790 *
791 * This is intended to support recovery from a corrupted flash on Targets
792 * that support flash.
793 */
794 if (skipflash)
795 {
796 ar6000_reset_device_skipflash(ar->arHifDevice);
797 }
798
799 BMIInit();
800 {
801 struct bmi_target_info targ_info;
802
803 if (BMIGetTargetInfo(ar->arHifDevice, &targ_info) != A_OK) {
804 return;
805 }
806
807 ar->arVersion.target_ver = targ_info.target_ver;
808 ar->arTargetType = targ_info.target_type;
809 }
810
811 if (enableuartprint) {
812 A_UINT32 param;
813 param = 1;
814 if (BMIWriteMemory(ar->arHifDevice,
815 HOST_INTEREST_ITEM_ADDRESS(ar, hi_serial_enable),
816 (A_UCHAR *)&param,
817 4)!= A_OK)
818 {
819 AR_DEBUG_PRINTF("BMIWriteMemory for enableuartprint failed \n");
820 return ;
821 }
822 AR_DEBUG_PRINTF("Serial console prints enabled\n");
823 }
824 #ifdef CONFIG_HOST_TCMD_SUPPORT
825 if(testmode) {
826 ar->arTargetMode = AR6000_TCMD_MODE;
827 }else {
828 ar->arTargetMode = AR6000_WLAN_MODE;
829 }
830 #endif
831 if (enabletimerwar) {
832 A_UINT32 param;
833
834 if (BMIReadMemory(ar->arHifDevice,
835 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
836 (A_UCHAR *)&param,
837 4)!= A_OK)
838 {
839 AR_DEBUG_PRINTF("BMIReadMemory for enabletimerwar failed \n");
840 return;
841 }
842
843 param |= HI_OPTION_TIMER_WAR;
844
845 if (BMIWriteMemory(ar->arHifDevice,
846 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
847 (A_UCHAR *)&param,
848 4) != A_OK)
849 {
850 AR_DEBUG_PRINTF("BMIWriteMemory for enabletimerwar failed \n");
851 return;
852 }
853 AR_DEBUG_PRINTF("Timer WAR enabled\n");
854 }
855
856
857 /* since BMIInit is called in the driver layer, we have to set the block
858 * size here for the target */
859
860 if (A_FAILED(ar6000_SetHTCBlockSize(ar))) {
861 return;
862 }
863
864 spin_lock_init(&ar->arLock);
865
866 dev->netdev_ops = &ar6000_netdev_ops;
867 dev->watchdog_timeo = AR6000_TX_TIMEOUT;
868 ar6000_ioctl_iwsetup(&ath_iw_handler_def);
869 dev->wireless_handlers = &ath_iw_handler_def;
870 ath_iw_handler_def.get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */
871
872 /*
873 * We need the OS to provide us with more headroom in order to
874 * perform dix to 802.3, WMI header encap, and the HTC header
875 */
876 dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) +
877 sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN;
878
879 /* This runs the init function */
880 SET_NETDEV_DEV(dev, HIFGetOSDevice(ar->arHifDevice));
881 if (register_netdev(dev)) {
882 AR_DEBUG_PRINTF("ar6000_avail: register_netdev failed\n");
883 ar6000_destroy(dev, 0);
884 return;
885 }
886
887 HTCSetInstance(ar->arHtcTarget, ar);
888
889 /* We only register the device in the global list if we succeed. */
890 /* If the device is in the global list, it will be destroyed */
891 /* when the module is unloaded. */
892 ar6000_devices[device_index] = dev;
893
894 AR_DEBUG_PRINTF("ar6000_avail: name=%s htcTarget=0x%x, dev=0x%x (%d), ar=0x%x\n",
895 dev->name, (A_UINT32)HTCHandle, (A_UINT32)dev, device_index,
896 (A_UINT32)ar);
897 }
898
899 static void ar6000_target_failure(void *Instance, A_STATUS Status)
900 {
901 AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance;
902 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
903 static A_BOOL sip = FALSE;
904
905 if (Status != A_OK) {
906 if (timer_pending(&ar->arHBChallengeResp.timer)) {
907 A_UNTIMEOUT(&ar->arHBChallengeResp.timer);
908 }
909
910 /* try dumping target assertion information (if any) */
911 ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType);
912
913 /*
914 * Fetch the logs from the target via the diagnostic
915 * window.
916 */
917 ar6000_dbglog_get_debug_logs(ar);
918
919 /* Report the error only once */
920 if (!sip) {
921 sip = TRUE;
922 errEvent.errorVal = WMI_TARGET_COM_ERR |
923 WMI_TARGET_FATAL_ERR;
924 #ifdef SEND_EVENT_TO_APP
925 ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID,
926 (A_UINT8 *)&errEvent,
927 sizeof(WMI_TARGET_ERROR_REPORT_EVENT));
928 #endif
929 }
930 }
931 }
932
933 static void
934 ar6000_unavail_ev(void *Instance)
935 {
936 AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance;
937 /* NULL out it's entry in the global list */
938 ar6000_devices[ar->arDeviceIndex] = NULL;
939 ar6000_destroy(ar->arNetDev, 1);
940 }
941
942 /*
943 * We need to differentiate between the surprise and planned removal of the
944 * device because of the following consideration:
945 * - In case of surprise removal, the hcd already frees up the pending
946 * for the device and hence there is no need to unregister the function
947 * driver inorder to get these requests. For planned removal, the function
948 * driver has to explictly unregister itself to have the hcd return all the
949 * pending requests before the data structures for the devices are freed up.
950 * Note that as per the current implementation, the function driver will
951 * end up releasing all the devices since there is no API to selectively
952 * release a particular device.
953 * - Certain commands issued to the target can be skipped for surprise
954 * removal since they will anyway not go through.
955 */
956 static void
957 ar6000_destroy(struct net_device *dev, unsigned int unregister)
958 {
959 AR_SOFTC_T *ar;
960
961 AR_DEBUG_PRINTF("+ar6000_destroy \n");
962
963 if((dev == NULL) || ((ar = netdev_priv(dev)) == NULL))
964 {
965 AR_DEBUG_PRINTF("%s(): Failed to get device structure.\n", __func__);
966 return;
967 }
968
969 /* Clear the tx counters */
970 memset(tx_attempt, 0, sizeof(tx_attempt));
971 memset(tx_post, 0, sizeof(tx_post));
972 memset(tx_complete, 0, sizeof(tx_complete));
973
974 /* Free up the device data structure */
975 if (unregister) {
976 unregister_netdev(dev);
977 } else {
978 ar6000_close(dev);
979 ar6000_cleanup(dev);
980 }
981
982 free_raw_buffers(ar);
983
984 #ifndef free_netdev
985 kfree(dev);
986 #else
987 free_netdev(dev);
988 #endif
989
990 AR_DEBUG_PRINTF("-ar6000_destroy \n");
991 }
992
993 static void ar6000_detect_error(unsigned long ptr)
994 {
995 struct net_device *dev = (struct net_device *)ptr;
996 AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
997 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
998
999 AR6000_SPIN_LOCK(&ar->arLock, 0);
1000
1001 if (ar->arHBChallengeResp.outstanding) {
1002 ar->arHBChallengeResp.missCnt++;
1003 } else {
1004 ar->arHBChallengeResp.missCnt = 0;
1005 }
1006
1007 if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) {
1008 /* Send Error Detect event to the application layer and do not reschedule the error detection module timer */
1009 ar->arHBChallengeResp.missCnt = 0;
1010 ar->arHBChallengeResp.seqNum = 0;
1011 errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR;
1012 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1013 #ifdef SEND_EVENT_TO_APP
1014 ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID,
1015 (A_UINT8 *)&errEvent,
1016 sizeof(WMI_TARGET_ERROR_REPORT_EVENT));
1017 #endif
1018 return;
1019 }
1020
1021 /* Generate the sequence number for the next challenge */
1022 ar->arHBChallengeResp.seqNum++;
1023 ar->arHBChallengeResp.outstanding = TRUE;
1024
1025 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1026
1027 /* Send the challenge on the control channel */
1028 if (wmi_get_challenge_resp_cmd(ar->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != A_OK) {
1029 AR_DEBUG_PRINTF("Unable to send heart beat challenge\n");
1030 }
1031
1032
1033 /* Reschedule the timer for the next challenge */
1034 A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0);
1035 }
1036
1037 void ar6000_init_profile_info(AR_SOFTC_T *ar)
1038 {
1039 ar->arSsidLen = 0;
1040 A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
1041 ar->arNetworkType = INFRA_NETWORK;
1042 ar->arDot11AuthMode = OPEN_AUTH;
1043 ar->arAuthMode = NONE_AUTH;
1044 ar->arPairwiseCrypto = NONE_CRYPT;
1045 ar->arPairwiseCryptoLen = 0;
1046 ar->arGroupCrypto = NONE_CRYPT;
1047 ar->arGroupCryptoLen = 0;
1048 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
1049 A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid));
1050 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
1051 ar->arBssChannel = 0;
1052 }
1053
1054 static void
1055 ar6000_init_control_info(AR_SOFTC_T *ar)
1056 {
1057 ar->arWmiEnabled = FALSE;
1058 ar6000_init_profile_info(ar);
1059 ar->arDefTxKeyIndex = 0;
1060 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
1061 ar->arChannelHint = 0;
1062 ar->arListenInterval = MAX_LISTEN_INTERVAL;
1063 ar->arVersion.host_ver = AR6K_SW_VERSION;
1064 ar->arRssi = 0;
1065 ar->arTxPwr = 0;
1066 ar->arTxPwrSet = FALSE;
1067 ar->arSkipScan = 0;
1068 ar->arBeaconInterval = 0;
1069 ar->arBitRate = 0;
1070 ar->arMaxRetries = 0;
1071 ar->arWmmEnabled = TRUE;
1072 }
1073
1074 static int
1075 ar6000_open(struct net_device *dev)
1076 {
1077 /* Wake up the queues */
1078 netif_start_queue(dev);
1079
1080 return 0;
1081 }
1082
1083 static int
1084 ar6000_close(struct net_device *dev)
1085 {
1086 /* Stop the transmit queues */
1087 netif_stop_queue(dev);
1088 return 0;
1089 }
1090
1091 static int
1092 ar6000_cleanup(struct net_device *dev)
1093 {
1094 AR_SOFTC_T *ar = netdev_priv(dev);
1095
1096 /* Stop the transmit queues */
1097 netif_stop_queue(dev);
1098
1099 /* Disable the target and the interrupts associated with it */
1100 if (ar->arWmiReady == TRUE)
1101 {
1102 if (!bypasswmi)
1103 {
1104 if (ar->arConnected == TRUE || ar->arConnectPending == TRUE)
1105 {
1106 AR_DEBUG_PRINTF("%s(): Disconnect\n", __func__);
1107 AR6000_SPIN_LOCK(&ar->arLock, 0);
1108 ar6000_init_profile_info(ar);
1109 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1110 wmi_disconnect_cmd(ar->arWmi);
1111 }
1112
1113 ar6000_dbglog_get_debug_logs(ar);
1114 ar->arWmiReady = FALSE;
1115 ar->arConnected = FALSE;
1116 ar->arConnectPending = FALSE;
1117 wmi_shutdown(ar->arWmi);
1118 ar->arWmiEnabled = FALSE;
1119 ar->arWmi = NULL;
1120 ar->arWlanState = WLAN_ENABLED;
1121 #ifdef USER_KEYS
1122 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
1123 ar->user_key_ctrl = 0;
1124 #endif
1125 }
1126
1127 AR_DEBUG_PRINTF("%s(): WMI stopped\n", __func__);
1128 }
1129 else
1130 {
1131 AR_DEBUG_PRINTF("%s(): WMI not ready 0x%08x 0x%08x\n",
1132 __func__, (unsigned int) ar, (unsigned int) ar->arWmi);
1133
1134 /* Shut down WMI if we have started it */
1135 if(ar->arWmiEnabled == TRUE)
1136 {
1137 AR_DEBUG_PRINTF("%s(): Shut down WMI\n", __func__);
1138 wmi_shutdown(ar->arWmi);
1139 ar->arWmiEnabled = FALSE;
1140 ar->arWmi = NULL;
1141 }
1142 }
1143
1144 /* stop HTC */
1145 HTCStop(ar->arHtcTarget);
1146
1147 /* set the instance to NULL so we do not get called back on remove incase we
1148 * we're explicity destroyed by module unload */
1149 HTCSetInstance(ar->arHtcTarget, NULL);
1150
1151 if (resetok) {
1152 /* try to reset the device if we can
1153 * The driver may have been configure NOT to reset the target during
1154 * a debug session */
1155 AR_DEBUG_PRINTF(" Attempting to reset target on instance destroy.... \n");
1156 ar6000_reset_device(ar->arHifDevice, ar->arTargetType);
1157 } else {
1158 AR_DEBUG_PRINTF(" Host does not want target reset. \n");
1159 }
1160
1161 /* Done with cookies */
1162 ar6000_cookie_cleanup(ar);
1163
1164 /* Cleanup BMI */
1165 BMIInit();
1166
1167 return 0;
1168 }
1169
1170 /* connect to a service */
1171 static A_STATUS ar6000_connectservice(AR_SOFTC_T *ar,
1172 HTC_SERVICE_CONNECT_REQ *pConnect,
1173 WMI_PRI_STREAM_ID WmiStreamID,
1174 char *pDesc)
1175 {
1176 A_STATUS status;
1177 HTC_SERVICE_CONNECT_RESP response;
1178
1179 do {
1180
1181 A_MEMZERO(&response,sizeof(response));
1182
1183 status = HTCConnectService(ar->arHtcTarget,
1184 pConnect,
1185 &response);
1186
1187 if (A_FAILED(status)) {
1188 AR_DEBUG_PRINTF(" Failed to connect to %s service status:%d \n", pDesc, status);
1189 break;
1190 }
1191
1192 if (WmiStreamID == WMI_NOT_MAPPED) {
1193 /* done */
1194 break;
1195 }
1196
1197 /* set endpoint mapping for the WMI stream in the driver layer */
1198 arSetWMIStream2EndpointIDMap(ar,WmiStreamID,response.Endpoint);
1199
1200 } while (FALSE);
1201
1202 return status;
1203 }
1204
1205 static void ar6000_TxDataCleanup(AR_SOFTC_T *ar)
1206 {
1207 /* flush all the data (non-control) streams
1208 * we only flush packets that are tagged as data, we leave any control packets that
1209 * were in the TX queues alone */
1210 HTCFlushEndpoint(ar->arHtcTarget,
1211 arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI),
1212 AR6K_DATA_PKT_TAG);
1213 HTCFlushEndpoint(ar->arHtcTarget,
1214 arWMIStream2EndpointID(ar,WMI_LOW_PRI),
1215 AR6K_DATA_PKT_TAG);
1216 HTCFlushEndpoint(ar->arHtcTarget,
1217 arWMIStream2EndpointID(ar,WMI_HIGH_PRI),
1218 AR6K_DATA_PKT_TAG);
1219 HTCFlushEndpoint(ar->arHtcTarget,
1220 arWMIStream2EndpointID(ar,WMI_HIGHEST_PRI),
1221 AR6K_DATA_PKT_TAG);
1222 }
1223
1224 /* This function does one time initialization for the lifetime of the device */
1225 int ar6000_init(struct net_device *dev)
1226 {
1227 AR_SOFTC_T *ar;
1228 A_STATUS status;
1229 A_INT32 timeleft;
1230
1231 if((ar = netdev_priv(dev)) == NULL)
1232 {
1233 return(-EIO);
1234 }
1235
1236 /* Do we need to finish the BMI phase */
1237 if(BMIDone(ar->arHifDevice) != A_OK)
1238 {
1239 return -EIO;
1240 }
1241
1242 if (!bypasswmi)
1243 {
1244 #if 0 /* TBDXXX */
1245 if (ar->arVersion.host_ver != ar->arVersion.target_ver) {
1246 A_PRINTF("WARNING: Host version 0x%x does not match Target "
1247 " version 0x%x!\n",
1248 ar->arVersion.host_ver, ar->arVersion.target_ver);
1249 }
1250 #endif
1251
1252 /* Indicate that WMI is enabled (although not ready yet) */
1253 ar->arWmiEnabled = TRUE;
1254 if ((ar->arWmi = wmi_init((void *) ar)) == NULL)
1255 {
1256 AR_DEBUG_PRINTF("%s() Failed to initialize WMI.\n", __func__);
1257 return(-EIO);
1258 }
1259
1260 AR_DEBUG_PRINTF("%s() Got WMI @ 0x%08x.\n", __func__,
1261 (unsigned int) ar->arWmi);
1262 }
1263
1264 do {
1265 HTC_SERVICE_CONNECT_REQ connect;
1266
1267 /* the reason we have to wait for the target here is that the driver layer
1268 * has to init BMI in order to set the host block size,
1269 */
1270 status = HTCWaitTarget(ar->arHtcTarget);
1271
1272 if (A_FAILED(status)) {
1273 break;
1274 }
1275
1276 A_MEMZERO(&connect,sizeof(connect));
1277 /* meta data is unused for now */
1278 connect.pMetaData = NULL;
1279 connect.MetaDataLength = 0;
1280 /* these fields are the same for all service endpoints */
1281 connect.EpCallbacks.pContext = ar;
1282 connect.EpCallbacks.EpTxComplete = ar6000_tx_complete;
1283 connect.EpCallbacks.EpRecv = ar6000_rx;
1284 connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill;
1285 connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full;
1286 connect.EpCallbacks.EpSendAvail = ar6000_tx_queue_avail;
1287 /* set the max queue depth so that our ar6000_tx_queue_full handler gets called.
1288 * Linux has the peculiarity of not providing flow control between the
1289 * NIC and the network stack. There is no API to indicate that a TX packet
1290 * was sent which could provide some back pressure to the network stack.
1291 * Under linux you would have to wait till the network stack consumed all sk_buffs
1292 * before any back-flow kicked in. Which isn't very friendly.
1293 * So we have to manage this ourselves */
1294 connect.MaxSendQueueDepth = 32;
1295
1296 /* connect to control service */
1297 connect.ServiceID = WMI_CONTROL_SVC;
1298 status = ar6000_connectservice(ar,
1299 &connect,
1300 WMI_CONTROL_PRI,
1301 "WMI CONTROL");
1302 if (A_FAILED(status)) {
1303 break;
1304 }
1305
1306 /* for the remaining data services set the connection flag to reduce dribbling,
1307 * if configured to do so */
1308 if (reduce_credit_dribble) {
1309 connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE;
1310 /* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value
1311 * of 0-3 */
1312 connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
1313 connect.ConnectionFlags |=
1314 ((A_UINT16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
1315 }
1316 /* connect to best-effort service */
1317 connect.ServiceID = WMI_DATA_BE_SVC;
1318
1319 status = ar6000_connectservice(ar,
1320 &connect,
1321 WMI_BEST_EFFORT_PRI,
1322 "WMI DATA BE");
1323 if (A_FAILED(status)) {
1324 break;
1325 }
1326
1327 /* connect to back-ground
1328 * map this to WMI LOW_PRI */
1329 connect.ServiceID = WMI_DATA_BK_SVC;
1330 status = ar6000_connectservice(ar,
1331 &connect,
1332 WMI_LOW_PRI,
1333 "WMI DATA BK");
1334 if (A_FAILED(status)) {
1335 break;
1336 }
1337
1338 /* connect to Video service, map this to
1339 * to HI PRI */
1340 connect.ServiceID = WMI_DATA_VI_SVC;
1341 status = ar6000_connectservice(ar,
1342 &connect,
1343 WMI_HIGH_PRI,
1344 "WMI DATA VI");
1345 if (A_FAILED(status)) {
1346 break;
1347 }
1348
1349 /* connect to VO service, this is currently not
1350 * mapped to a WMI priority stream due to historical reasons.
1351 * WMI originally defined 3 priorities over 3 mailboxes
1352 * We can change this when WMI is reworked so that priorities are not
1353 * dependent on mailboxes */
1354 connect.ServiceID = WMI_DATA_VO_SVC;
1355 status = ar6000_connectservice(ar,
1356 &connect,
1357 WMI_HIGHEST_PRI,
1358 "WMI DATA VO");
1359 if (A_FAILED(status)) {
1360 break;
1361 }
1362
1363 A_ASSERT(arWMIStream2EndpointID(ar,WMI_CONTROL_PRI) != 0);
1364 A_ASSERT(arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI) != 0);
1365 A_ASSERT(arWMIStream2EndpointID(ar,WMI_LOW_PRI) != 0);
1366 A_ASSERT(arWMIStream2EndpointID(ar,WMI_HIGH_PRI) != 0);
1367 A_ASSERT(arWMIStream2EndpointID(ar,WMI_HIGHEST_PRI) != 0);
1368 } while (FALSE);
1369
1370 if (A_FAILED(status)) {
1371 return (-EIO);
1372 }
1373
1374 /*
1375 * give our connected endpoints some buffers
1376 */
1377 ar6000_rx_refill(ar, arWMIStream2EndpointID(ar,WMI_CONTROL_PRI));
1378
1379 ar6000_rx_refill(ar, arWMIStream2EndpointID(ar,WMI_BEST_EFFORT_PRI));
1380
1381 /*
1382 * We will post the receive buffers only for SPE testing and so we are
1383 * making it conditional on the 'bypasswmi' flag.
1384 */
1385 if (bypasswmi) {
1386 ar6000_rx_refill(ar,arWMIStream2EndpointID(ar,WMI_LOW_PRI));
1387 ar6000_rx_refill(ar,arWMIStream2EndpointID(ar,WMI_HIGH_PRI));
1388 }
1389
1390 /* setup credit distribution */
1391 ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo);
1392
1393 /* Since cookies are used for HTC transports, they should be */
1394 /* initialized prior to enabling HTC. */
1395 ar6000_cookie_init(ar);
1396
1397 /* start HTC */
1398 status = HTCStart(ar->arHtcTarget);
1399
1400 if (status != A_OK) {
1401 if (ar->arWmiEnabled == TRUE) {
1402 wmi_shutdown(ar->arWmi);
1403 ar->arWmiEnabled = FALSE;
1404 ar->arWmi = NULL;
1405 }
1406 ar6000_cookie_cleanup(ar);
1407 return -EIO;
1408 }
1409
1410 if (!bypasswmi) {
1411 /* Wait for Wmi event to be ready */
1412 timeleft = wait_event_interruptible_timeout(arEvent,
1413 (ar->arWmiReady == TRUE), wmitimeout * HZ);
1414
1415 if(!timeleft || signal_pending(current))
1416 {
1417 AR_DEBUG_PRINTF("WMI is not ready or wait was interrupted\n");
1418 #if defined(DWSIM) /* TBDXXX */
1419 AR_DEBUG_PRINTF(".....but proceed anyway.\n");
1420 #else
1421 return -EIO;
1422 #endif
1423 }
1424
1425 AR_DEBUG_PRINTF("%s() WMI is ready\n", __func__);
1426
1427 /* Communicate the wmi protocol verision to the target */
1428 if ((ar6000_set_host_app_area(ar)) != A_OK) {
1429 AR_DEBUG_PRINTF("Unable to set the host app area\n");
1430 }
1431 }
1432
1433 ar->arNumDataEndPts = 1;
1434
1435 return(0);
1436 }
1437
1438
1439 void
1440 ar6000_bitrate_rx(void *devt, A_INT32 rateKbps)
1441 {
1442 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
1443
1444 ar->arBitRate = rateKbps;
1445 wake_up(&arEvent);
1446 }
1447
1448 void
1449 ar6000_ratemask_rx(void *devt, A_UINT16 ratemask)
1450 {
1451 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
1452
1453 ar->arRateMask = ratemask;
1454 wake_up(&arEvent);
1455 }
1456
1457 void
1458 ar6000_txPwr_rx(void *devt, A_UINT8 txPwr)
1459 {
1460 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
1461
1462 ar->arTxPwr = txPwr;
1463 wake_up(&arEvent);
1464 }
1465
1466
1467 void
1468 ar6000_channelList_rx(void *devt, A_INT8 numChan, A_UINT16 *chanList)
1469 {
1470 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
1471
1472 A_MEMCPY(ar->arChannelList, chanList, numChan * sizeof (A_UINT16));
1473 ar->arNumChannels = numChan;
1474
1475 wake_up(&arEvent);
1476 }
1477
1478 A_UINT8
1479 ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, A_UINT32 * mapNo)
1480 {
1481 AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
1482 A_UINT8 *datap;
1483 ATH_MAC_HDR *macHdr;
1484 A_UINT32 i, eptMap;
1485
1486 (*mapNo) = 0;
1487 datap = A_NETBUF_DATA(skb);
1488 macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR));
1489 if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) {
1490 return ENDPOINT_2;
1491 }
1492
1493 eptMap = -1;
1494 for (i = 0; i < ar->arNodeNum; i ++) {
1495 if (IEEE80211_ADDR_EQ(macHdr->dstMac, ar->arNodeMap[i].macAddress)) {
1496 (*mapNo) = i + 1;
1497 ar->arNodeMap[i].txPending ++;
1498 return ar->arNodeMap[i].epId;
1499 }
1500
1501 if ((eptMap == -1) && !ar->arNodeMap[i].txPending) {
1502 eptMap = i;
1503 }
1504 }
1505
1506 if (eptMap == -1) {
1507 eptMap = ar->arNodeNum;
1508 ar->arNodeNum ++;
1509 A_ASSERT(ar->arNodeNum <= MAX_NODE_NUM);
1510 }
1511
1512 A_MEMCPY(ar->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN);
1513
1514 for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) {
1515 if (!ar->arTxPending[i]) {
1516 ar->arNodeMap[eptMap].epId = i;
1517 break;
1518 }
1519 // No free endpoint is available, start redistribution on the inuse endpoints.
1520 if (i == ENDPOINT_5) {
1521 ar->arNodeMap[eptMap].epId = ar->arNexEpId;
1522 ar->arNexEpId ++;
1523 if (ar->arNexEpId > ENDPOINT_5) {
1524 ar->arNexEpId = ENDPOINT_2;
1525 }
1526 }
1527 }
1528
1529 (*mapNo) = eptMap + 1;
1530 ar->arNodeMap[eptMap].txPending ++;
1531
1532 return ar->arNodeMap[eptMap].epId;
1533 }
1534
1535 #ifdef DEBUG
1536 static void ar6000_dump_skb(struct sk_buff *skb)
1537 {
1538 u_char *ch;
1539 for (ch = A_NETBUF_DATA(skb);
1540 (A_UINT32)ch < ((A_UINT32)A_NETBUF_DATA(skb) +
1541 A_NETBUF_LEN(skb)); ch++)
1542 {
1543 AR_DEBUG_PRINTF("%2.2x ", *ch);
1544 }
1545 AR_DEBUG_PRINTF("\n");
1546 }
1547 #endif
1548
1549 static int
1550 ar6000_data_tx(struct sk_buff *skb, struct net_device *dev)
1551 {
1552 AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
1553 WMI_PRI_STREAM_ID streamID = WMI_NOT_MAPPED;
1554 A_UINT32 mapNo = 0;
1555 int len;
1556 struct ar_cookie *cookie;
1557 A_BOOL checkAdHocPsMapping = FALSE;
1558
1559 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,13)
1560 skb->list = NULL;
1561 #endif
1562
1563 AR_DEBUG2_PRINTF("ar6000_data_tx start - skb=0x%x, data=0x%x, len=0x%x\n",
1564 (A_UINT32)skb, (A_UINT32)A_NETBUF_DATA(skb),
1565 A_NETBUF_LEN(skb));
1566 #ifdef CONFIG_HOST_TCMD_SUPPORT
1567 /* TCMD doesnt support any data, free the buf and return */
1568 if(ar->arTargetMode == AR6000_TCMD_MODE) {
1569 A_NETBUF_FREE(skb);
1570 return 0;
1571 }
1572 #endif
1573 do {
1574
1575 if (ar->arWmiReady == FALSE && bypasswmi == 0) {
1576 break;
1577 }
1578
1579 #ifdef BLOCK_TX_PATH_FLAG
1580 if (blocktx) {
1581 break;
1582 }
1583 #endif /* BLOCK_TX_PATH_FLAG */
1584
1585 if (ar->arWmiEnabled) {
1586 if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len) {
1587 struct sk_buff *newbuf;
1588 /*
1589 * We really should have gotten enough headroom but sometimes
1590 * we still get packets with not enough headroom. Copy the packet.
1591 */
1592 len = A_NETBUF_LEN(skb);
1593 newbuf = A_NETBUF_ALLOC(len);
1594 if (newbuf == NULL) {
1595 break;
1596 }
1597 A_NETBUF_PUT(newbuf, len);
1598 A_MEMCPY(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len);
1599 A_NETBUF_FREE(skb);
1600 skb = newbuf;
1601 /* fall through and assemble header */
1602 }
1603
1604 if (wmi_dix_2_dot3(ar->arWmi, skb) != A_OK) {
1605 AR_DEBUG_PRINTF("ar6000_data_tx - wmi_dix_2_dot3 failed\n");
1606 break;
1607 }
1608
1609 if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE) != A_OK) {
1610 AR_DEBUG_PRINTF("ar6000_data_tx - wmi_data_hdr_add failed\n");
1611 break;
1612 }
1613
1614 if ((ar->arNetworkType == ADHOC_NETWORK) &&
1615 ar->arIbssPsEnable && ar->arConnected) {
1616 /* flag to check adhoc mapping once we take the lock below: */
1617 checkAdHocPsMapping = TRUE;
1618
1619 } else {
1620 /* get the stream mapping */
1621 if (ar->arWmmEnabled) {
1622 streamID = wmi_get_stream_id(ar->arWmi,
1623 wmi_implicit_create_pstream(ar->arWmi, skb, UPLINK_TRAFFIC, UNDEFINED_PRI));
1624 } else {
1625 streamID = WMI_BEST_EFFORT_PRI;
1626 }
1627 }
1628
1629 } else {
1630 struct iphdr *ipHdr;
1631 /*
1632 * the endpoint is directly based on the TOS field in the IP
1633 * header **** only for testing ******
1634 */
1635 ipHdr = A_NETBUF_DATA(skb) + sizeof(ATH_MAC_HDR);
1636 /* here we map the TOS field to an endpoint number, this is for
1637 * the endpointping test application */
1638 streamID = IP_TOS_TO_WMI_PRI(ipHdr->tos);
1639 }
1640
1641 } while (FALSE);
1642
1643 /* did we succeed ? */
1644 if ((streamID == WMI_NOT_MAPPED) && !checkAdHocPsMapping) {
1645 /* cleanup and exit */
1646 A_NETBUF_FREE(skb);
1647 AR6000_STAT_INC(ar, tx_dropped);
1648 AR6000_STAT_INC(ar, tx_aborted_errors);
1649 return 0;
1650 }
1651
1652 cookie = NULL;
1653
1654 /* take the lock to protect driver data */
1655 AR6000_SPIN_LOCK(&ar->arLock, 0);
1656
1657 do {
1658
1659 if (checkAdHocPsMapping) {
1660 streamID = ar6000_ibss_map_epid(skb, dev, &mapNo);
1661 }
1662
1663 A_ASSERT(streamID != WMI_NOT_MAPPED);
1664
1665 /* validate that the endpoint is connected */
1666 if (arWMIStream2EndpointID(ar,streamID) == 0) {
1667 AR_DEBUG_PRINTF("Stream %d is NOT mapped!\n",streamID);
1668 break;
1669 }
1670 /* allocate resource for this packet */
1671 cookie = ar6000_alloc_cookie(ar);
1672
1673 if (cookie != NULL) {
1674 /* update counts while the lock is held */
1675 ar->arTxPending[streamID]++;
1676 ar->arTotalTxDataPending++;
1677 }
1678
1679 } while (FALSE);
1680
1681 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1682
1683 if (cookie != NULL) {
1684 cookie->arc_bp[0] = (A_UINT32)skb;
1685 cookie->arc_bp[1] = mapNo;
1686 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
1687 cookie,
1688 A_NETBUF_DATA(skb),
1689 A_NETBUF_LEN(skb),
1690 arWMIStream2EndpointID(ar,streamID),
1691 AR6K_DATA_PKT_TAG);
1692
1693 #ifdef DEBUG
1694 if (debugdriver >= 3) {
1695 ar6000_dump_skb(skb);
1696 }
1697 #endif
1698 /* HTC interface is asynchronous, if this fails, cleanup will happen in
1699 * the ar6000_tx_complete callback */
1700 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
1701 } else {
1702 /* no packet to send, cleanup */
1703 A_NETBUF_FREE(skb);
1704 AR6000_STAT_INC(ar, tx_dropped);
1705 AR6000_STAT_INC(ar, tx_aborted_errors);
1706 }
1707
1708 return 0;
1709 }
1710
1711 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
1712 static void
1713 tvsub(register struct timeval *out, register struct timeval *in)
1714 {
1715 if((out->tv_usec -= in->tv_usec) < 0) {
1716 out->tv_sec--;
1717 out->tv_usec += 1000000;
1718 }
1719 out->tv_sec -= in->tv_sec;
1720 }
1721
1722 void
1723 applyAPTCHeuristics(AR_SOFTC_T *ar)
1724 {
1725 A_UINT32 duration;
1726 A_UINT32 numbytes;
1727 A_UINT32 throughput;
1728 struct timeval ts;
1729 A_STATUS status;
1730
1731 AR6000_SPIN_LOCK(&ar->arLock, 0);
1732
1733 if ((enableAPTCHeuristics) && (!aptcTR.timerScheduled)) {
1734 do_gettimeofday(&ts);
1735 tvsub(&ts, &aptcTR.samplingTS);
1736 duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */
1737 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
1738
1739 if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) {
1740 /* Initialize the time stamp and byte count */
1741 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
1742 do_gettimeofday(&aptcTR.samplingTS);
1743
1744 /* Calculate and decide based on throughput thresholds */
1745 throughput = ((numbytes * 8) / duration);
1746 if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) {
1747 /* Disable Sleep and schedule a timer */
1748 A_ASSERT(ar->arWmiReady == TRUE);
1749 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1750 status = wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER);
1751 AR6000_SPIN_LOCK(&ar->arLock, 0);
1752 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
1753 aptcTR.timerScheduled = TRUE;
1754 }
1755 }
1756 }
1757
1758 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1759 }
1760 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
1761
1762 static void
1763 ar6000_tx_queue_full(void *Context, HTC_ENDPOINT_ID Endpoint)
1764 {
1765 AR_SOFTC_T *ar = (AR_SOFTC_T *) Context;
1766
1767 if (Endpoint == arWMIStream2EndpointID(ar,WMI_CONTROL_PRI)) {
1768 if (!bypasswmi) {
1769 /* under normal WMI if this is getting full, then something is running rampant
1770 * the host should not be exhausting the WMI queue with too many commands
1771 * the only exception to this is during testing using endpointping */
1772
1773 AR6000_SPIN_LOCK(&ar->arLock, 0);
1774 /* set flag to handle subsequent messages */
1775 ar->arWMIControlEpFull = TRUE;
1776 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1777 AR_DEBUG_PRINTF("WMI Control Endpoint is FULL!!! \n");
1778 }
1779 } else {
1780 /* one of the data endpoints queues is getting full..need to stop network stack
1781 * the queue will resume after credits received */
1782 netif_stop_queue(ar->arNetDev);
1783 }
1784 }
1785
1786 static void
1787 ar6000_tx_queue_avail(void *Context, HTC_ENDPOINT_ID Endpoint)
1788 {
1789 AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
1790
1791 if (Endpoint == arWMIStream2EndpointID(ar,WMI_CONTROL_PRI)) {
1792 /* FIXME: what do for it? */
1793 } else {
1794 /* Wake up interface, rescheduling prevented. */
1795 if (ar->arConnected == TRUE || bypasswmi)
1796 netif_wake_queue(ar->arNetDev);
1797 }
1798 }
1799
1800 static void
1801 ar6000_tx_complete(void *Context, HTC_PACKET *pPacket)
1802 {
1803 AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
1804 void *cookie = (void *)pPacket->pPktContext;
1805 struct sk_buff *skb = NULL;
1806 A_UINT32 mapNo = 0;
1807 A_STATUS status;
1808 struct ar_cookie * ar_cookie;
1809 WMI_PRI_STREAM_ID streamID;
1810 A_BOOL wakeEvent = FALSE;
1811
1812 status = pPacket->Status;
1813 ar_cookie = (struct ar_cookie *)cookie;
1814 skb = (struct sk_buff *)ar_cookie->arc_bp[0];
1815 streamID = arEndpoint2WMIStreamID(ar,pPacket->Endpoint);
1816 mapNo = ar_cookie->arc_bp[1];
1817
1818 A_ASSERT(skb);
1819 A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(skb));
1820
1821 if (A_SUCCESS(status)) {
1822 A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(skb));
1823 }
1824
1825 AR_DEBUG2_PRINTF("ar6000_tx_complete skb=0x%x data=0x%x len=0x%x sid=%d ",
1826 (A_UINT32)skb, (A_UINT32)pPacket->pBuffer,
1827 pPacket->ActualLength,
1828 streamID);
1829
1830 /* lock the driver as we update internal state */
1831 AR6000_SPIN_LOCK(&ar->arLock, 0);
1832
1833 ar->arTxPending[streamID]--;
1834
1835 if ((streamID != WMI_CONTROL_PRI) || bypasswmi) {
1836 ar->arTotalTxDataPending--;
1837 }
1838
1839 if (streamID == WMI_CONTROL_PRI)
1840 {
1841 if (ar->arWMIControlEpFull) {
1842 /* since this packet completed, the WMI EP is no longer full */
1843 ar->arWMIControlEpFull = FALSE;
1844 }
1845
1846 if (ar->arTxPending[streamID] == 0) {
1847 wakeEvent = TRUE;
1848 }
1849 }
1850
1851 if (A_FAILED(status)) {
1852 AR_DEBUG_PRINTF("%s() -TX ERROR, status: 0x%x\n", __func__,
1853 status);
1854 AR6000_STAT_INC(ar, tx_errors);
1855 } else {
1856 AR_DEBUG2_PRINTF("OK\n");
1857 AR6000_STAT_INC(ar, tx_packets);
1858 ar->arNetStats.tx_bytes += A_NETBUF_LEN(skb);
1859 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
1860 aptcTR.bytesTransmitted += a_netbuf_to_len(skb);
1861 applyAPTCHeuristics(ar);
1862 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
1863 }
1864
1865 // TODO this needs to be looked at
1866 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable
1867 && (streamID != WMI_CONTROL_PRI) && mapNo)
1868 {
1869 mapNo --;
1870 ar->arNodeMap[mapNo].txPending --;
1871
1872 if (!ar->arNodeMap[mapNo].txPending && (mapNo == (ar->arNodeNum - 1))) {
1873 A_UINT32 i;
1874 for (i = ar->arNodeNum; i > 0; i --) {
1875 if (!ar->arNodeMap[i - 1].txPending) {
1876 A_MEMZERO(&ar->arNodeMap[i - 1], sizeof(struct ar_node_mapping));
1877 ar->arNodeNum --;
1878 } else {
1879 break;
1880 }
1881 }
1882 }
1883 }
1884
1885 /* Freeing a cookie should not be contingent on either of */
1886 /* these flags, just if we have a cookie or not. */
1887 /* Can we even get here without a cookie? Fix later. */
1888 if (ar->arWmiReady == TRUE || (bypasswmi))
1889 {
1890 ar6000_free_cookie(ar, cookie);
1891 }
1892
1893 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1894
1895 /* lock is released, we can freely call other kernel APIs */
1896
1897 /* this indirectly frees the HTC_PACKET */
1898 A_NETBUF_FREE(skb);
1899
1900 if (wakeEvent) {
1901 wake_up(&arEvent);
1902 }
1903 }
1904
1905 /*
1906 * Receive event handler. This is called by HTC when a packet is received
1907 */
1908 int pktcount;
1909 static void
1910 ar6000_rx(void *Context, HTC_PACKET *pPacket)
1911 {
1912 AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
1913 struct sk_buff *skb = (struct sk_buff *)pPacket->pPktContext;
1914 int minHdrLen;
1915 A_STATUS status = pPacket->Status;
1916 WMI_PRI_STREAM_ID streamID = arEndpoint2WMIStreamID(ar,pPacket->Endpoint);
1917 HTC_ENDPOINT_ID ept = pPacket->Endpoint;
1918
1919 A_ASSERT((status != A_OK) || (pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN)));
1920
1921 AR_DEBUG2_PRINTF("ar6000_rx ar=0x%x sid=%d, skb=0x%x, data=0x%x, len=0x%x ",
1922 (A_UINT32)ar, streamID, (A_UINT32)skb, (A_UINT32)pPacket->pBuffer,
1923 pPacket->ActualLength);
1924 if (status != A_OK) {
1925 AR_DEBUG2_PRINTF("ERR\n");
1926 } else {
1927 AR_DEBUG2_PRINTF("OK\n");
1928 }
1929
1930 /* take lock to protect buffer counts
1931 * and adaptive power throughput state */
1932 AR6000_SPIN_LOCK(&ar->arLock, 0);
1933
1934 ar->arRxBuffers[streamID]--;
1935
1936 if (A_SUCCESS(status)) {
1937 AR6000_STAT_INC(ar, rx_packets);
1938 ar->arNetStats.rx_bytes += pPacket->ActualLength;
1939 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
1940 aptcTR.bytesReceived += a_netbuf_to_len(skb);
1941 applyAPTCHeuristics(ar);
1942 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
1943
1944 A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN);
1945 A_NETBUF_PULL(skb, HTC_HEADER_LEN);
1946
1947 #ifdef DEBUG
1948 if (debugdriver >= 2) {
1949 ar6000_dump_skb(skb);
1950 }
1951 #endif /* DEBUG */
1952 }
1953
1954 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
1955
1956 if (status != A_OK) {
1957 AR6000_STAT_INC(ar, rx_errors);
1958 A_NETBUF_FREE(skb);
1959 } else if (ar->arWmiEnabled == TRUE) {
1960 if (streamID == WMI_CONTROL_PRI) {
1961 /*
1962 * this is a wmi control msg
1963 */
1964 wmi_control_rx(ar->arWmi, skb);
1965 } else {
1966 WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb);
1967 if (WMI_DATA_HDR_IS_MSG_TYPE(dhdr, CNTL_MSGTYPE)) {
1968 /*
1969 * this is a wmi control msg
1970 */
1971 /* strip off WMI hdr */
1972 wmi_data_hdr_remove(ar->arWmi, skb);
1973 wmi_control_rx(ar->arWmi, skb);
1974 } else {
1975 /*
1976 * this is a wmi data packet
1977 */
1978 minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) +
1979 sizeof(ATH_LLC_SNAP_HDR);
1980
1981 if ((pPacket->ActualLength < minHdrLen) ||
1982 (pPacket->ActualLength > AR6000_BUFFER_SIZE))
1983 {
1984 /*
1985 * packet is too short or too long
1986 */
1987 AR_DEBUG_PRINTF("TOO SHORT or TOO LONG\n");
1988 AR6000_STAT_INC(ar, rx_errors);
1989 AR6000_STAT_INC(ar, rx_length_errors);
1990 A_NETBUF_FREE(skb);
1991 } else {
1992 if (ar->arWmmEnabled) {
1993 wmi_implicit_create_pstream(ar->arWmi, skb,
1994 DNLINK_TRAFFIC, UNDEFINED_PRI);
1995 }
1996 #if 0
1997 /* Access RSSI values here */
1998 AR_DEBUG_PRINTF("RSSI %d\n",
1999 ((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi);
2000 #endif
2001 wmi_data_hdr_remove(ar->arWmi, skb);
2002 wmi_dot3_2_dix(ar->arWmi, skb);
2003
2004 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
2005 /*
2006 * extra push and memcpy, for eth_type_trans() of 2.4 kernel
2007 * will pull out hard_header_len bytes of the skb.
2008 */
2009 A_NETBUF_PUSH(skb, sizeof(WMI_DATA_HDR) + sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN);
2010 A_MEMCPY(A_NETBUF_DATA(skb), A_NETBUF_DATA(skb) + sizeof(WMI_DATA_HDR) +
2011 sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN, sizeof(ATH_MAC_HDR));
2012 #endif
2013 if ((ar->arNetDev->flags & IFF_UP) == IFF_UP)
2014 {
2015 skb->dev = ar->arNetDev;
2016 skb->protocol = eth_type_trans(skb, ar->arNetDev);
2017 netif_rx(skb);
2018 }
2019 else
2020 {
2021 A_NETBUF_FREE(skb);
2022 }
2023 }
2024 }
2025 }
2026 } else {
2027 if ((ar->arNetDev->flags & IFF_UP) == IFF_UP)
2028 {
2029 skb->dev = ar->arNetDev;
2030 skb->protocol = eth_type_trans(skb, ar->arNetDev);
2031 netif_rx(skb);
2032 }
2033 else
2034 {
2035 A_NETBUF_FREE(skb);
2036 }
2037 }
2038
2039 if (status != A_ECANCELED) {
2040 /*
2041 * HTC provides A_ECANCELED status when it doesn't want to be refilled
2042 * (probably due to a shutdown)
2043 */
2044 ar6000_rx_refill(Context, ept);
2045 }
2046
2047
2048 }
2049
2050 static void
2051 ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint)
2052 {
2053 AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
2054 void *osBuf;
2055 int RxBuffers;
2056 int buffersToRefill;
2057 HTC_PACKET *pPacket;
2058 WMI_PRI_STREAM_ID streamId = arEndpoint2WMIStreamID(ar,Endpoint);
2059
2060 buffersToRefill = (int)AR6000_MAX_RX_BUFFERS -
2061 (int)ar->arRxBuffers[streamId];
2062
2063 if (buffersToRefill <= 0) {
2064 /* fast return, nothing to fill */
2065 return;
2066 }
2067
2068 AR_DEBUG2_PRINTF("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n",
2069 buffersToRefill, Endpoint);
2070
2071 for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) {
2072 osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE);
2073 if (NULL == osBuf) {
2074 break;
2075 }
2076 /* the HTC packet wrapper is at the head of the reserved area
2077 * in the skb */
2078 pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf));
2079 /* set re-fill info */
2080 SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint);
2081 /* add this packet */
2082 HTCAddReceivePkt(ar->arHtcTarget, pPacket);
2083 }
2084
2085 /* update count */
2086 AR6000_SPIN_LOCK(&ar->arLock, 0);
2087 ar->arRxBuffers[streamId] += RxBuffers;
2088 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2089 }
2090
2091 static struct net_device_stats *
2092 ar6000_get_stats(struct net_device *dev)
2093 {
2094 AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
2095 return &ar->arNetStats;
2096 }
2097
2098 static struct iw_statistics *
2099 ar6000_get_iwstats(struct net_device * dev)
2100 {
2101 AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
2102 TARGET_STATS *pStats = &ar->arTargetStats;
2103 struct iw_statistics * pIwStats = &ar->arIwStats;
2104
2105 if ((ar->arWmiReady == FALSE)
2106 /*
2107 * The in_atomic function is used to determine if the scheduling is
2108 * allowed in the current context or not. This was introduced in 2.6
2109 * From what I have read on the differences between 2.4 and 2.6, the
2110 * 2.4 kernel did not support preemption and so this check might not
2111 * be required for 2.4 kernels.
2112 */
2113 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
2114 || (in_atomic())
2115 #endif
2116 )
2117 {
2118 pIwStats->status = 0;
2119 pIwStats->qual.qual = 0;
2120 pIwStats->qual.level =0;
2121 pIwStats->qual.noise = 0;
2122 pIwStats->discard.code =0;
2123 pIwStats->discard.retries=0;
2124 pIwStats->miss.beacon =0;
2125 return pIwStats;
2126 }
2127 if (down_interruptible(&ar->arSem)) {
2128 pIwStats->status = 0;
2129 return pIwStats;
2130 }
2131
2132
2133 ar->statsUpdatePending = TRUE;
2134
2135 if(wmi_get_stats_cmd(ar->arWmi) != A_OK) {
2136 up(&ar->arSem);
2137 pIwStats->status = 0;
2138 return pIwStats;
2139 }
2140
2141 wait_event_interruptible_timeout(arEvent, ar->statsUpdatePending == FALSE, wmitimeout * HZ);
2142
2143 if (signal_pending(current)) {
2144 AR_DEBUG_PRINTF("ar6000 : WMI get stats timeout \n");
2145 up(&ar->arSem);
2146 pIwStats->status = 0;
2147 return pIwStats;
2148 }
2149 pIwStats->status = 1 ;
2150 pIwStats->qual.qual = pStats->cs_aveBeacon_rssi;
2151 pIwStats->qual.level =pStats->cs_aveBeacon_rssi + 161; /* noise is -95 dBm */
2152 pIwStats->qual.noise = pStats->noise_floor_calibation;
2153 pIwStats->discard.code = pStats->rx_decrypt_err;
2154 pIwStats->discard.retries = pStats->tx_retry_cnt;
2155 pIwStats->miss.beacon = pStats->cs_bmiss_cnt;
2156 up(&ar->arSem);
2157 return pIwStats;
2158 }
2159
2160 void
2161 ar6000_ready_event(void *devt, A_UINT8 *datap, A_UINT8 phyCap)
2162 {
2163 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
2164 struct net_device *dev = ar->arNetDev;
2165
2166 ar->arWmiReady = TRUE;
2167 wake_up(&arEvent);
2168 A_MEMCPY(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN);
2169 AR_DEBUG_PRINTF("mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
2170 dev->dev_addr[0], dev->dev_addr[1],
2171 dev->dev_addr[2], dev->dev_addr[3],
2172 dev->dev_addr[4], dev->dev_addr[5]);
2173
2174 ar->arPhyCapability = phyCap;
2175 }
2176
2177 A_UINT8
2178 ar6000_iptos_to_userPriority(A_UINT8 *pkt)
2179 {
2180 struct iphdr *ipHdr = (struct iphdr *)pkt;
2181 A_UINT8 userPriority;
2182
2183 /*
2184 * IP Tos format :
2185 * (Refer Pg 57 WMM-test-plan-v1.2)
2186 * IP-TOS - 8bits
2187 * : DSCP(6-bits) ECN(2-bits)
2188 * : DSCP - P2 P1 P0 X X X
2189 * where (P2 P1 P0) form 802.1D
2190 */
2191 userPriority = ipHdr->tos >> 5;
2192 return (userPriority & 0x7);
2193 }
2194
2195 void
2196 ar6000_connect_event(AR_SOFTC_T *ar, A_UINT16 channel, A_UINT8 *bssid,
2197 A_UINT16 listenInterval, A_UINT16 beaconInterval,
2198 NETWORK_TYPE networkType, A_UINT8 beaconIeLen,
2199 A_UINT8 assocReqLen, A_UINT8 assocRespLen,
2200 A_UINT8 *assocInfo)
2201 {
2202 union iwreq_data wrqu;
2203 int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos;
2204 static const char *tag1 = "ASSOCINFO(ReqIEs=";
2205 static const char *tag2 = "ASSOCRESPIE=";
2206 static const char *beaconIetag = "BEACONIE=";
2207 char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + sizeof(tag1)];
2208 char *pos;
2209 A_UINT8 key_op_ctrl;
2210
2211 A_MEMCPY(ar->arBssid, bssid, sizeof(ar->arBssid));
2212 ar->arBssChannel = channel;
2213
2214 A_PRINTF("AR6000 connected event on freq %d ", channel);
2215 A_PRINTF("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
2216 " listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d"
2217 " assocRespLen =%d\n",
2218 bssid[0], bssid[1], bssid[2],
2219 bssid[3], bssid[4], bssid[5],
2220 listenInterval, beaconInterval,
2221 beaconIeLen, assocReqLen, assocRespLen);
2222 if (networkType & ADHOC_NETWORK) {
2223 if (networkType & ADHOC_CREATOR) {
2224 A_PRINTF("Network: Adhoc (Creator)\n");
2225 } else {
2226 A_PRINTF("Network: Adhoc (Joiner)\n");
2227 }
2228 } else {
2229 A_PRINTF("Network: Infrastructure\n");
2230 }
2231
2232 if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) {
2233 AR_DEBUG_PRINTF("\nBeaconIEs= ");
2234
2235 beacon_ie_pos = 0;
2236 A_MEMZERO(buf, sizeof(buf));
2237 sprintf(buf, "%s", beaconIetag);
2238 pos = buf + 9;
2239 for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) {
2240 AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]);
2241 sprintf(pos, "%2.2x", assocInfo[i]);
2242 pos += 2;
2243 }
2244 AR_DEBUG_PRINTF("\n");
2245
2246 A_MEMZERO(&wrqu, sizeof(wrqu));
2247 wrqu.data.length = strlen(buf);
2248 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2249 }
2250
2251 if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2))))
2252 {
2253 assoc_resp_ie_pos = beaconIeLen + assocReqLen +
2254 sizeof(A_UINT16) + /* capinfo*/
2255 sizeof(A_UINT16) + /* status Code */
2256 sizeof(A_UINT16) ; /* associd */
2257 A_MEMZERO(buf, sizeof(buf));
2258 sprintf(buf, "%s", tag2);
2259 pos = buf + 12;
2260 AR_DEBUG_PRINTF("\nAssocRespIEs= ");
2261 /*
2262 * The Association Response Frame w.o. the WLAN header is delivered to
2263 * the host, so skip over to the IEs
2264 */
2265 for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++)
2266 {
2267 AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]);
2268 sprintf(pos, "%2.2x", assocInfo[i]);
2269 pos += 2;
2270 }
2271 AR_DEBUG_PRINTF("\n");
2272
2273 A_MEMZERO(&wrqu, sizeof(wrqu));
2274 wrqu.data.length = strlen(buf);
2275 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2276 }
2277
2278 if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) {
2279 /*
2280 * assoc Request includes capability and listen interval. Skip these.
2281 */
2282 assoc_req_ie_pos = beaconIeLen +
2283 sizeof(A_UINT16) + /* capinfo*/
2284 sizeof(A_UINT16); /* listen interval */
2285
2286 A_MEMZERO(buf, sizeof(buf));
2287 sprintf(buf, "%s", tag1);
2288 pos = buf + 17;
2289 AR_DEBUG_PRINTF("AssocReqIEs= ");
2290 for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) {
2291 AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]);
2292 sprintf(pos, "%2.2x", assocInfo[i]);
2293 pos += 2;;
2294 }
2295 AR_DEBUG_PRINTF("\n");
2296
2297 A_MEMZERO(&wrqu, sizeof(wrqu));
2298 wrqu.data.length = strlen(buf);
2299 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2300 }
2301
2302 #ifdef USER_KEYS
2303 if (ar->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN &&
2304 ar->user_saved_keys.keyOk == TRUE)
2305 {
2306
2307 key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC;
2308 if (ar->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) {
2309 key_op_ctrl &= ~KEY_OP_INIT_RSC;
2310 } else {
2311 key_op_ctrl |= KEY_OP_INIT_RSC;
2312 }
2313 ar6000_reinstall_keys(ar, key_op_ctrl);
2314 }
2315 #endif /* USER_KEYS */
2316
2317 /* flush data queues */
2318 ar6000_TxDataCleanup(ar);
2319
2320 netif_start_queue(ar->arNetDev);
2321
2322 if ((OPEN_AUTH == ar->arDot11AuthMode) &&
2323 (NONE_AUTH == ar->arAuthMode) &&
2324 (WEP_CRYPT == ar->arPairwiseCrypto))
2325 {
2326 if (!ar->arConnected) {
2327 ar6000_install_static_wep_keys(ar);
2328 }
2329 }
2330
2331 ar->arConnected = TRUE;
2332 ar->arConnectPending = FALSE;
2333
2334 reconnect_flag = 0;
2335
2336 A_MEMZERO(&wrqu, sizeof(wrqu));
2337 A_MEMCPY(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN);
2338 wrqu.addr.sa_family = ARPHRD_ETHER;
2339 wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL);
2340 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable) {
2341 A_MEMZERO(ar->arNodeMap, sizeof(ar->arNodeMap));
2342 ar->arNodeNum = 0;
2343 ar->arNexEpId = ENDPOINT_2;
2344 }
2345
2346 }
2347
2348 void ar6000_set_numdataendpts(AR_SOFTC_T *ar, A_UINT32 num)
2349 {
2350 A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1));
2351 ar->arNumDataEndPts = num;
2352 }
2353
2354 void
2355 ar6000_disconnect_event(AR_SOFTC_T *ar, A_UINT8 reason, A_UINT8 *bssid,
2356 A_UINT8 assocRespLen, A_UINT8 *assocInfo, A_UINT16 protocolReasonStatus)
2357 {
2358 A_UINT8 i;
2359
2360 A_PRINTF("AR6000 disconnected");
2361 if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) {
2362 A_PRINTF(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
2363 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]);
2364 }
2365 A_PRINTF("\n");
2366
2367 AR_DEBUG_PRINTF("\nDisconnect Reason is %d", reason);
2368 AR_DEBUG_PRINTF("\nProtocol Reason/Status Code is %d", protocolReasonStatus);
2369 AR_DEBUG_PRINTF("\nAssocResp Frame = %s",
2370 assocRespLen ? " " : "NULL");
2371 for (i = 0; i < assocRespLen; i++) {
2372 if (!(i % 0x10)) {
2373 AR_DEBUG_PRINTF("\n");
2374 }
2375 AR_DEBUG_PRINTF("%2.2x ", assocInfo[i]);
2376 }
2377 AR_DEBUG_PRINTF("\n");
2378 /*
2379 * If the event is due to disconnect cmd from the host, only they the target
2380 * would stop trying to connect. Under any other condition, target would
2381 * keep trying to connect.
2382 *
2383 */
2384 if( reason == DISCONNECT_CMD)
2385 {
2386 ar->arConnectPending = FALSE;
2387 } else {
2388 ar->arConnectPending = TRUE;
2389 if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) ||
2390 ((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) {
2391 ar->arConnected = TRUE;
2392 return;
2393 }
2394 }
2395 ar->arConnected = FALSE;
2396
2397 if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) {
2398 reconnect_flag = 0;
2399 }
2400
2401 #ifdef USER_KEYS
2402 if (reason != CSERV_DISCONNECT)
2403 {
2404 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
2405 ar->user_key_ctrl = 0;
2406 }
2407 #endif /* USER_KEYS */
2408
2409 netif_stop_queue(ar->arNetDev);
2410 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
2411 ar->arBssChannel = 0;
2412 ar->arBeaconInterval = 0;
2413
2414 ar6000_TxDataCleanup(ar);
2415 }
2416
2417 void
2418 ar6000_regDomain_event(AR_SOFTC_T *ar, A_UINT32 regCode)
2419 {
2420 A_PRINTF("AR6000 Reg Code = 0x%x\n", regCode);
2421 ar->arRegCode = regCode;
2422 }
2423
2424 void
2425 ar6000_neighborReport_event(AR_SOFTC_T *ar, int numAps, WMI_NEIGHBOR_INFO *info)
2426 {
2427 static const char *tag = "PRE-AUTH";
2428 char buf[128];
2429 union iwreq_data wrqu;
2430 int i;
2431
2432 AR_DEBUG_PRINTF("AR6000 Neighbor Report Event\n");
2433 for (i=0; i < numAps; info++, i++) {
2434 AR_DEBUG_PRINTF("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
2435 info->bssid[0], info->bssid[1], info->bssid[2],
2436 info->bssid[3], info->bssid[4], info->bssid[5]);
2437 if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) {
2438 AR_DEBUG_PRINTF("preauth-cap");
2439 }
2440 if (info->bssFlags & WMI_PMKID_VALID_BSS) {
2441 AR_DEBUG_PRINTF(" pmkid-valid\n");
2442 continue; /* we skip bss if the pmkid is already valid */
2443 }
2444 AR_DEBUG_PRINTF("\n");
2445 snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x",
2446 tag,
2447 info->bssid[0], info->bssid[1], info->bssid[2],
2448 info->bssid[3], info->bssid[4], info->bssid[5],
2449 i, info->bssFlags);
2450 A_MEMZERO(&wrqu, sizeof(wrqu));
2451 wrqu.data.length = strlen(buf);
2452 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2453 }
2454 }
2455
2456 void
2457 ar6000_tkip_micerr_event(AR_SOFTC_T *ar, A_UINT8 keyid, A_BOOL ismcast)
2458 {
2459 static const char *tag = "MLME-MICHAELMICFAILURE.indication";
2460 char buf[128];
2461 union iwreq_data wrqu;
2462
2463 A_PRINTF("AR6000 TKIP MIC error received for keyid %d %scast\n",
2464 keyid, ismcast ? "multi": "uni");
2465 snprintf(buf, sizeof(buf), "%s(keyid=%d %scat)", tag, keyid,
2466 ismcast ? "multi" : "uni");
2467 memset(&wrqu, 0, sizeof(wrqu));
2468 wrqu.data.length = strlen(buf);
2469 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2470 }
2471
2472 void
2473 ar6000_scanComplete_event(AR_SOFTC_T *ar, A_STATUS status)
2474 {
2475 AR_DEBUG_PRINTF("AR6000 scan complete: %d\n", status);
2476
2477 ar->scan_complete = 1;
2478 wake_up_interruptible(&ar6000_scan_queue);
2479 }
2480
2481 void
2482 ar6000_targetStats_event(AR_SOFTC_T *ar, WMI_TARGET_STATS *pTarget)
2483 {
2484 TARGET_STATS *pStats = &ar->arTargetStats;
2485 A_UINT8 ac;
2486
2487 /*A_PRINTF("AR6000 updating target stats\n");*/
2488 pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets;
2489 pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes;
2490 pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts;
2491 pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes;
2492 pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts;
2493 pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes;
2494 pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts;
2495 pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes;
2496 pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt;
2497 for(ac = 0; ac < WMM_NUM_AC; ac++)
2498 pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac];
2499 pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors;
2500 pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt;
2501 pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt;
2502 pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt;
2503 pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate);
2504
2505 pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets;
2506 pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes;
2507 pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts;
2508 pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes;
2509 pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts;
2510 pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes;
2511 pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts;
2512 pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes;
2513 pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt;
2514 pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors;
2515 pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr;
2516 pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss;
2517 pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err;
2518 pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames;
2519 pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate);
2520
2521
2522 pStats->tkip_local_mic_failure
2523 += pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure;
2524 pStats->tkip_counter_measures_invoked
2525 += pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked;
2526 pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays;
2527 pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors;
2528 pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors;
2529 pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays;
2530
2531
2532 pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt;
2533 pStats->noise_floor_calibation = pTarget->noise_floor_calibation;
2534
2535 pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt;
2536 pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt;
2537 pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt;
2538 pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt;
2539 pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr;
2540 pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
2541 pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec;
2542 pStats->cs_snr = pTarget->cservStats.cs_snr;
2543 pStats->cs_rssi = pTarget->cservStats.cs_rssi;
2544
2545 pStats->lq_val = pTarget->lqVal;
2546
2547 pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped;
2548 pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups;
2549 pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups;
2550 pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded;
2551
2552 ar->statsUpdatePending = FALSE;
2553 wake_up(&arEvent);
2554 }
2555
2556 void
2557 ar6000_rssiThreshold_event(AR_SOFTC_T *ar, WMI_RSSI_THRESHOLD_VAL newThreshold, A_INT16 rssi)
2558 {
2559 USER_RSSI_THOLD userRssiThold;
2560
2561 userRssiThold.tag = rssi_map[newThreshold].tag;
2562 userRssiThold.rssi = rssi;
2563 AR_DEBUG2_PRINTF("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold, userRssiThold.tag, rssi);
2564 #ifdef SEND_EVENT_TO_APP
2565 ar6000_send_event_to_app(ar, WMI_RSSI_THRESHOLD_EVENTID,(A_UINT8 *)&userRssiThold, sizeof(USER_RSSI_THOLD));
2566 #endif
2567 }
2568
2569
2570 void
2571 ar6000_hbChallengeResp_event(AR_SOFTC_T *ar, A_UINT32 cookie, A_UINT32 source)
2572 {
2573 if (source == APP_HB_CHALLENGE) {
2574 /* Report it to the app in case it wants a positive acknowledgement */
2575 #ifdef SEND_EVENT_TO_APP
2576 ar6000_send_event_to_app(ar, WMIX_HB_CHALLENGE_RESP_EVENTID,
2577 (A_UINT8 *)&cookie, sizeof(cookie));
2578 #endif
2579 } else {
2580 /* This would ignore the replys that come in after their due time */
2581 if (cookie == ar->arHBChallengeResp.seqNum) {
2582 ar->arHBChallengeResp.outstanding = FALSE;
2583 }
2584 }
2585 }
2586
2587
2588 void
2589 ar6000_reportError_event(AR_SOFTC_T *ar, WMI_TARGET_ERROR_VAL errorVal)
2590 {
2591 char *errString[] = {
2592 [WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL",
2593 [WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND",
2594 [WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR",
2595 [WMI_TARGET_BMISS] "WMI_TARGET_BMISS",
2596 [WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN"
2597 };
2598
2599 A_PRINTF("AR6000 Error on Target. Error = 0x%x\n", errorVal);
2600
2601 /* One error is reported at a time, and errorval is a bitmask */
2602 if(errorVal & (errorVal - 1))
2603 return;
2604
2605 A_PRINTF("AR6000 Error type = ");
2606 switch(errorVal)
2607 {
2608 case WMI_TARGET_PM_ERR_FAIL:
2609 case WMI_TARGET_KEY_NOT_FOUND:
2610 case WMI_TARGET_DECRYPTION_ERR:
2611 case WMI_TARGET_BMISS:
2612 case WMI_PSDISABLE_NODE_JOIN:
2613 A_PRINTF("%s\n", errString[errorVal]);
2614 break;
2615 default:
2616 A_PRINTF("INVALID\n");
2617 break;
2618 }
2619
2620 }
2621
2622
2623 void
2624 ar6000_cac_event(AR_SOFTC_T *ar, A_UINT8 ac, A_UINT8 cacIndication,
2625 A_UINT8 statusCode, A_UINT8 *tspecSuggestion)
2626 {
2627 WMM_TSPEC_IE *tspecIe;
2628
2629 /*
2630 * This is the TSPEC IE suggestion from AP.
2631 * Suggestion provided by AP under some error
2632 * cases, could be helpful for the host app.
2633 * Check documentation.
2634 */
2635 tspecIe = (WMM_TSPEC_IE *)tspecSuggestion;
2636
2637 /*
2638 * What do we do, if we get TSPEC rejection? One thought
2639 * that comes to mind is implictly delete the pstream...
2640 */
2641 A_PRINTF("AR6000 CAC notification. "
2642 "AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n",
2643 ac, cacIndication, statusCode);
2644 }
2645
2646 #define AR6000_PRINT_BSSID(_pBss) do { \
2647 A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\
2648 (_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\
2649 (_pBss)[4],(_pBss)[5]); \
2650 } while(0)
2651
2652 void
2653 ar6000_roam_tbl_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_TBL *pTbl)
2654 {
2655 A_UINT8 i;
2656
2657 A_PRINTF("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n",
2658 pTbl->numEntries, pTbl->roamMode);
2659 for (i= 0; i < pTbl->numEntries; i++) {
2660 A_PRINTF("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i,
2661 pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1],
2662 pTbl->bssRoamInfo[i].bssid[2],
2663 pTbl->bssRoamInfo[i].bssid[3],
2664 pTbl->bssRoamInfo[i].bssid[4],
2665 pTbl->bssRoamInfo[i].bssid[5]);
2666 A_PRINTF("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d"
2667 " BIAS %d\n",
2668 pTbl->bssRoamInfo[i].rssi,
2669 pTbl->bssRoamInfo[i].rssidt,
2670 pTbl->bssRoamInfo[i].last_rssi,
2671 pTbl->bssRoamInfo[i].util,
2672 pTbl->bssRoamInfo[i].roam_util,
2673 pTbl->bssRoamInfo[i].bias);
2674 }
2675 }
2676
2677 void
2678 ar6000_wow_list_event(struct ar6_softc *ar, A_UINT8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply)
2679 {
2680 A_UINT8 i,j;
2681
2682 /*Each event now contains exactly one filter, see bug 26613*/
2683 A_PRINTF("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters);
2684 A_PRINTF("wow mode = %s host mode = %s\n",
2685 (wow_reply->wow_mode == 0? "disabled":"enabled"),
2686 (wow_reply->host_mode == 1 ? "awake":"asleep"));
2687
2688
2689 /*If there are no patterns, the reply will only contain generic
2690 WoW information. Pattern information will exist only if there are
2691 patterns present. Bug 26716*/
2692
2693 /* If this event contains pattern information, display it*/
2694 if (wow_reply->this_filter_num) {
2695 i=0;
2696 A_PRINTF("id=%d size=%d offset=%d\n",
2697 wow_reply->wow_filters[i].wow_filter_id,
2698 wow_reply->wow_filters[i].wow_filter_size,
2699 wow_reply->wow_filters[i].wow_filter_offset);
2700 A_PRINTF("wow pattern = ");
2701 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
2702 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]);
2703 }
2704
2705 A_PRINTF("\nwow mask = ");
2706 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
2707 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]);
2708 }
2709 A_PRINTF("\n");
2710 }
2711 }
2712
2713 /*
2714 * Report the Roaming related data collected on the target
2715 */
2716 void
2717 ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p)
2718 {
2719 A_PRINTF("Disconnect Data : BSSID: ");
2720 AR6000_PRINT_BSSID(p->disassoc_bssid);
2721 A_PRINTF(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n",
2722 p->disassoc_bss_rssi,p->disassoc_time,
2723 p->no_txrx_time);
2724 A_PRINTF("Connect Data: BSSID: ");
2725 AR6000_PRINT_BSSID(p->assoc_bssid);
2726 A_PRINTF(" RSSI %d ASSOC Time %d TXRX_TIME %d\n",
2727 p->assoc_bss_rssi,p->assoc_time,
2728 p->allow_txrx_time);
2729 A_PRINTF("Last Data Tx Time (b4 Disassoc) %d "\
2730 "First Data Tx Time (after Assoc) %d\n",
2731 p->last_data_txrx_time, p->first_data_txrx_time);
2732 }
2733
2734 void
2735 ar6000_roam_data_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_DATA *p)
2736 {
2737 switch (p->roamDataType) {
2738 case ROAM_DATA_TIME:
2739 ar6000_display_roam_time(&p->u.roamTime);
2740 break;
2741 default:
2742 break;
2743 }
2744 }
2745
2746 void
2747 ar6000_bssInfo_event_rx(AR_SOFTC_T *ar, A_UINT8 *datap, int len)
2748 {
2749 struct sk_buff *skb;
2750 WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap;
2751
2752
2753 if (!ar->arMgmtFilter) {
2754 return;
2755 }
2756 if (((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) &&
2757 (bih->frameType != BEACON_FTYPE)) ||
2758 ((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) &&
2759 (bih->frameType != PROBERESP_FTYPE)))
2760 {
2761 return;
2762 }
2763
2764 if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) {
2765
2766 A_NETBUF_PUT(skb, len);
2767 A_MEMCPY(A_NETBUF_DATA(skb), datap, len);
2768 skb->dev = ar->arNetDev;
2769 printk("MAC RAW...\n");
2770 // skb->mac.raw = A_NETBUF_DATA(skb);
2771 skb->ip_summed = CHECKSUM_NONE;
2772 skb->pkt_type = PACKET_OTHERHOST;
2773 skb->protocol = __constant_htons(0x0019);
2774 netif_rx(skb);
2775 }
2776 }
2777
2778 A_UINT32 wmiSendCmdNum;
2779
2780 A_STATUS
2781 ar6000_control_tx(void *devt, void *osbuf, WMI_PRI_STREAM_ID streamID)
2782 {
2783 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
2784 A_STATUS status = A_OK;
2785 struct ar_cookie *cookie = NULL;
2786 int i;
2787
2788 /* take lock to protect ar6000_alloc_cookie() */
2789 AR6000_SPIN_LOCK(&ar->arLock, 0);
2790
2791 do {
2792
2793 AR_DEBUG2_PRINTF("ar_contrstatus = ol_tx: skb=0x%x, len=0x%x, sid=%d\n",
2794 (A_UINT32)osbuf, A_NETBUF_LEN(osbuf), streamID);
2795
2796 if ((streamID == WMI_CONTROL_PRI) && (ar->arWMIControlEpFull)) {
2797 /* control endpoint is full, don't allocate resources, we
2798 * are just going to drop this packet */
2799 cookie = NULL;
2800 AR_DEBUG_PRINTF(" WMI Control EP full, dropping packet : 0x%X, len:%d \n",
2801 (A_UINT32)osbuf, A_NETBUF_LEN(osbuf));
2802 } else {
2803 cookie = ar6000_alloc_cookie(ar);
2804 }
2805
2806 if (cookie == NULL) {
2807 status = A_NO_MEMORY;
2808 break;
2809 }
2810
2811 if(logWmiRawMsgs) {
2812 A_PRINTF("WMI cmd send, msgNo %d :", wmiSendCmdNum);
2813 for(i = 0; i < a_netbuf_to_len(osbuf); i++)
2814 A_PRINTF("%x ", ((A_UINT8 *)a_netbuf_to_data(osbuf))[i]);
2815 A_PRINTF("\n");
2816 }
2817
2818 wmiSendCmdNum++;
2819
2820 } while (FALSE);
2821
2822 if (cookie != NULL) {
2823 /* got a structure to send it out on */
2824 ar->arTxPending[streamID]++;
2825
2826 if (streamID != WMI_CONTROL_PRI) {
2827 ar->arTotalTxDataPending++;
2828 }
2829 }
2830
2831 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2832
2833 if (cookie != NULL) {
2834 cookie->arc_bp[0] = (A_UINT32)osbuf;
2835 cookie->arc_bp[1] = 0;
2836 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
2837 cookie,
2838 A_NETBUF_DATA(osbuf),
2839 A_NETBUF_LEN(osbuf),
2840 arWMIStream2EndpointID(ar,streamID),
2841 AR6K_CONTROL_PKT_TAG);
2842 /* this interface is asynchronous, if there is an error, cleanup will happen in the
2843 * TX completion callback */
2844 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
2845 status = A_OK;
2846 }
2847
2848 return status;
2849 }
2850
2851 /* indicate tx activity or inactivity on a WMI stream */
2852 void ar6000_indicate_tx_activity(void *devt, A_UINT8 TrafficClass, A_BOOL Active)
2853 {
2854 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
2855 WMI_PRI_STREAM_ID streamid;
2856
2857 if (ar->arWmiEnabled) {
2858 streamid = wmi_get_stream_id(ar->arWmi, TrafficClass);
2859 } else {
2860 /* for mbox ping testing, the traffic class is mapped directly as a stream ID,
2861 * see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c */
2862 streamid = (WMI_PRI_STREAM_ID)TrafficClass;
2863 }
2864
2865 /* notify HTC, this may cause credit distribution changes */
2866
2867 HTCIndicateActivityChange(ar->arHtcTarget,
2868 arWMIStream2EndpointID(ar,streamid),
2869 Active);
2870
2871 }
2872
2873 module_init(ar6000_init_module);
2874 module_exit(ar6000_cleanup_module);
2875
2876 /* Init cookie queue */
2877 static void
2878 ar6000_cookie_init(AR_SOFTC_T *ar)
2879 {
2880 A_UINT32 i;
2881
2882 ar->arCookieList = NULL;
2883 A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem));
2884
2885 for (i = 0; i < MAX_COOKIE_NUM; i++) {
2886 ar6000_free_cookie(ar, &s_ar_cookie_mem[i]);
2887 }
2888 }
2889
2890 /* cleanup cookie queue */
2891 static void
2892 ar6000_cookie_cleanup(AR_SOFTC_T *ar)
2893 {
2894 /* It is gone .... */
2895 ar->arCookieList = NULL;
2896 }
2897
2898 /* Init cookie queue */
2899 static void
2900 ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie)
2901 {
2902 /* Insert first */
2903 A_ASSERT(ar != NULL);
2904 A_ASSERT(cookie != NULL);
2905 cookie->arc_list_next = ar->arCookieList;
2906 ar->arCookieList = cookie;
2907 }
2908
2909 /* cleanup cookie queue */
2910 static struct ar_cookie *
2911 ar6000_alloc_cookie(AR_SOFTC_T *ar)
2912 {
2913 struct ar_cookie *cookie;
2914
2915 cookie = ar->arCookieList;
2916 if(cookie != NULL)
2917 {
2918 ar->arCookieList = cookie->arc_list_next;
2919 }
2920
2921 return cookie;
2922 }
2923
2924 #ifdef SEND_EVENT_TO_APP
2925 /*
2926 * This function is used to send event which come from taget to
2927 * the application. The buf which send to application is include
2928 * the event ID and event content.
2929 */
2930 #define EVENT_ID_LEN 2
2931 void ar6000_send_event_to_app(AR_SOFTC_T *ar, A_UINT16 eventId,
2932 A_UINT8 *datap, int len)
2933 {
2934
2935 #if (WIRELESS_EXT >= 15)
2936
2937 /* note: IWEVCUSTOM only exists in wireless extensions after version 15 */
2938
2939 char *buf;
2940 A_UINT16 size;
2941 union iwreq_data wrqu;
2942
2943 size = len + EVENT_ID_LEN;
2944
2945 if (size > IW_CUSTOM_MAX) {
2946 AR_DEBUG_PRINTF("WMI event ID : 0x%4.4X, len = %d too big for IWEVCUSTOM (max=%d) \n",
2947 eventId, size, IW_CUSTOM_MAX);
2948 return;
2949 }
2950
2951 buf = A_MALLOC_NOWAIT(size);
2952 A_MEMZERO(buf, size);
2953 A_MEMCPY(buf, &eventId, EVENT_ID_LEN);
2954 A_MEMCPY(buf+EVENT_ID_LEN, datap, len);
2955
2956 //AR_DEBUG_PRINTF("event ID = %d,len = %d\n",*(A_UINT16*)buf, size);
2957 A_MEMZERO(&wrqu, sizeof(wrqu));
2958 wrqu.data.length = size;
2959 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
2960
2961 A_FREE(buf);
2962 #endif
2963
2964
2965 }
2966 #endif
2967
2968
2969 void
2970 ar6000_tx_retry_err_event(void *devt)
2971 {
2972 AR_DEBUG2_PRINTF("Tx retries reach maximum!\n");
2973 }
2974
2975 void
2976 ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, A_UINT8 snr)
2977 {
2978 AR_DEBUG2_PRINTF("snr threshold range %d, snr %d\n", newThreshold, snr);
2979 }
2980
2981 void
2982 ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, A_UINT8 lq)
2983 {
2984 AR_DEBUG2_PRINTF("lq threshold range %d, lq %d\n", newThreshold, lq);
2985 }
2986
2987
2988
2989 A_UINT32
2990 a_copy_to_user(void *to, const void *from, A_UINT32 n)
2991 {
2992 return(copy_to_user(to, from, n));
2993 }
2994
2995 A_UINT32
2996 a_copy_from_user(void *to, const void *from, A_UINT32 n)
2997 {
2998 return(copy_from_user(to, from, n));
2999 }
3000
3001
3002 A_STATUS
3003 ar6000_get_driver_cfg(struct net_device *dev,
3004 A_UINT16 cfgParam,
3005 void *result)
3006 {
3007
3008 A_STATUS ret = 0;
3009
3010 switch(cfgParam)
3011 {
3012 case AR6000_DRIVER_CFG_GET_WLANNODECACHING:
3013 *((A_UINT32 *)result) = wlanNodeCaching;
3014 break;
3015 case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS:
3016 *((A_UINT32 *)result) = logWmiRawMsgs;
3017 break;
3018 default:
3019 ret = EINVAL;
3020 break;
3021 }
3022
3023 return ret;
3024 }
3025
3026 void
3027 ar6000_keepalive_rx(void *devt, A_UINT8 configured)
3028 {
3029 AR_SOFTC_T *ar = (AR_SOFTC_T *)devt;
3030
3031 ar->arKeepaliveConfigured = configured;
3032 wake_up(&arEvent);
3033 }
3034
3035 void
3036 ar6000_pmkid_list_event(void *devt, A_UINT8 numPMKID, WMI_PMKID *pmkidList)
3037 {
3038 A_UINT8 i, j;
3039
3040 A_PRINTF("Number of Cached PMKIDs is %d\n", numPMKID);
3041
3042 for (i = 0; i < numPMKID; i++) {
3043 A_PRINTF("\nPMKID %d ", i);
3044 for (j = 0; j < WMI_PMKID_LEN; j++) {
3045 A_PRINTF("%2.2x", pmkidList->pmkid[j]);
3046 }
3047 pmkidList++;
3048 }
3049 }
3050
3051 #ifdef USER_KEYS
3052 static A_STATUS
3053
3054 ar6000_reinstall_keys(AR_SOFTC_T *ar, A_UINT8 key_op_ctrl)
3055 {
3056 A_STATUS status = A_OK;
3057 struct ieee80211req_key *uik = &ar->user_saved_keys.ucast_ik;
3058 struct ieee80211req_key *bik = &ar->user_saved_keys.bcast_ik;
3059 CRYPTO_TYPE keyType = ar->user_saved_keys.keyType;
3060
3061 if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) {
3062 if (NONE_CRYPT == keyType) {
3063 goto _reinstall_keys_out;
3064 }
3065
3066 if (uik->ik_keylen) {
3067 status = wmi_addKey_cmd(ar->arWmi, uik->ik_keyix,
3068 ar->user_saved_keys.keyType, PAIRWISE_USAGE,
3069 uik->ik_keylen, (A_UINT8 *)&uik->ik_keyrsc,
3070 uik->ik_keydata, key_op_ctrl, SYNC_BEFORE_WMIFLAG);
3071 }
3072
3073 } else {
3074 status = wmi_add_krk_cmd(ar->arWmi, uik->ik_keydata);
3075 }
3076
3077 if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) {
3078 if (NONE_CRYPT == keyType) {
3079 goto _reinstall_keys_out;
3080 }
3081
3082 if (bik->ik_keylen) {
3083 status = wmi_addKey_cmd(ar->arWmi, bik->ik_keyix,
3084 ar->user_saved_keys.keyType, GROUP_USAGE,
3085 bik->ik_keylen, (A_UINT8 *)&bik->ik_keyrsc,
3086 bik->ik_keydata, key_op_ctrl, NO_SYNC_WMIFLAG);
3087 }
3088 } else {
3089 status = wmi_add_krk_cmd(ar->arWmi, bik->ik_keydata);
3090 }
3091
3092 _reinstall_keys_out:
3093 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
3094 ar->user_key_ctrl = 0;
3095
3096 return status;
3097 }
3098 #endif /* USER_KEYS */
3099
3100
3101 void
3102 ar6000_dset_open_req(
3103 void *context,
3104 A_UINT32 id,
3105 A_UINT32 targHandle,
3106 A_UINT32 targReplyFn,
3107 A_UINT32 targReplyArg)
3108 {
3109 }
3110
3111 void
3112 ar6000_dset_close(
3113 void *context,
3114 A_UINT32 access_cookie)
3115 {
3116 return;
3117 }
3118
3119 void
3120 ar6000_dset_data_req(
3121 void *context,
3122 A_UINT32 accessCookie,
3123 A_UINT32 offset,
3124 A_UINT32 length,
3125 A_UINT32 targBuf,
3126 A_UINT32 targReplyFn,
3127 A_UINT32 targReplyArg)
3128 {
3129 }