c44e8154fde3529e7a298d4f8680e46649eb636a
[project/opkg-lede.git] / libopkg / md5.c
1 /* Functions to compute MD5 message digest of files or memory blocks.
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995,1996,1997,1999,2000,2001,2005,2006,2008
4 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
22
23 #include "md5.h"
24
25 #include <stddef.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/types.h>
29
30 #if USE_UNLOCKED_IO
31 #include "unlocked-io.h"
32 #endif
33
34 #ifdef _LIBC
35 #include <endian.h>
36 #if __BYTE_ORDER == __BIG_ENDIAN
37 #define WORDS_BIGENDIAN 1
38 #endif
39 /* We need to keep the namespace clean so define the MD5 function
40 protected using leading __ . */
41 #define md5_init_ctx __md5_init_ctx
42 #define md5_process_block __md5_process_block
43 #define md5_process_bytes __md5_process_bytes
44 #define md5_finish_ctx __md5_finish_ctx
45 #define md5_read_ctx __md5_read_ctx
46 #define md5_stream __md5_stream
47 #define md5_buffer __md5_buffer
48 #endif
49
50 #ifdef WORDS_BIGENDIAN
51 #define SWAP(n) \
52 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
53 #else
54 #define SWAP(n) (n)
55 #endif
56
57 #define BLOCKSIZE 4096
58 #if BLOCKSIZE % 64 != 0
59 #error "invalid BLOCKSIZE"
60 #endif
61
62 /* This array contains the bytes used to pad the buffer to the next
63 64-byte boundary. (RFC 1321, 3.1: Step 1) */
64 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
65
66 /* Initialize structure containing state of computation.
67 (RFC 1321, 3.3: Step 3) */
68 void md5_init_ctx(struct md5_ctx *ctx)
69 {
70 ctx->A = 0x67452301;
71 ctx->B = 0xefcdab89;
72 ctx->C = 0x98badcfe;
73 ctx->D = 0x10325476;
74
75 ctx->total[0] = ctx->total[1] = 0;
76 ctx->buflen = 0;
77 }
78
79 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
80 If your architecture allows unaligned access this is equivalent to
81 * (uint32_t *) cp = v */
82 static inline void set_uint32(char *cp, uint32_t v)
83 {
84 memcpy(cp, &v, sizeof v);
85 }
86
87 /* Put result from CTX in first 16 bytes following RESBUF. The result
88 must be in little endian byte order. */
89 void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
90 {
91 char *r = resbuf;
92 set_uint32(r + 0 * sizeof ctx->A, SWAP(ctx->A));
93 set_uint32(r + 1 * sizeof ctx->B, SWAP(ctx->B));
94 set_uint32(r + 2 * sizeof ctx->C, SWAP(ctx->C));
95 set_uint32(r + 3 * sizeof ctx->D, SWAP(ctx->D));
96
97 return resbuf;
98 }
99
100 /* Process the remaining bytes in the internal buffer and the usual
101 prolog according to the standard and write the result to RESBUF. */
102 void *md5_finish_ctx(struct md5_ctx *ctx, void *resbuf)
103 {
104 /* Take yet unprocessed bytes into account. */
105 uint32_t bytes = ctx->buflen;
106 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
107
108 /* Now count remaining bytes. */
109 ctx->total[0] += bytes;
110 if (ctx->total[0] < bytes)
111 ++ctx->total[1];
112
113 /* Put the 64-bit file length in *bits* at the end of the buffer. */
114 ctx->buffer[size - 2] = SWAP(ctx->total[0] << 3);
115 ctx->buffer[size - 1] =
116 SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
117
118 memcpy(&((char *)ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
119
120 /* Process last bytes. */
121 md5_process_block(ctx->buffer, size * 4, ctx);
122
123 return md5_read_ctx(ctx, resbuf);
124 }
125
126 /* Compute MD5 message digest for bytes read from STREAM. The
127 resulting message digest number will be written into the 16 bytes
128 beginning at RESBLOCK. */
129 int md5_stream(FILE * stream, void *resblock)
130 {
131 struct md5_ctx ctx;
132 char buffer[BLOCKSIZE + 72];
133 size_t sum;
134
135 /* Initialize the computation context. */
136 md5_init_ctx(&ctx);
137
138 /* Iterate over full file contents. */
139 while (1) {
140 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
141 computation function processes the whole buffer so that with the
142 next round of the loop another block can be read. */
143 size_t n;
144 sum = 0;
145
146 /* Read block. Take care for partial reads. */
147 while (1) {
148 n = fread(buffer + sum, 1, BLOCKSIZE - sum, stream);
149
150 sum += n;
151
152 if (sum == BLOCKSIZE)
153 break;
154
155 if (n == 0) {
156 /* Check for the error flag IFF N == 0, so that we don't
157 exit the loop after a partial read due to e.g., EAGAIN
158 or EWOULDBLOCK. */
159 if (ferror(stream))
160 return 1;
161 goto process_partial_block;
162 }
163
164 /* We've read at least one byte, so ignore errors. But always
165 check for EOF, since feof may be true even though N > 0.
166 Otherwise, we could end up calling fread after EOF. */
167 if (feof(stream))
168 goto process_partial_block;
169 }
170
171 /* Process buffer with BLOCKSIZE bytes. Note that
172 BLOCKSIZE % 64 == 0
173 */
174 md5_process_block(buffer, BLOCKSIZE, &ctx);
175 }
176
177 process_partial_block:
178
179 /* Process any remaining bytes. */
180 if (sum > 0)
181 md5_process_bytes(buffer, sum, &ctx);
182
183 /* Construct result in desired memory. */
184 md5_finish_ctx(&ctx, resblock);
185 return 0;
186 }
187
188 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
189 result is always in little endian byte order, so that a byte-wise
190 output yields to the wanted ASCII representation of the message
191 digest. */
192 void *md5_buffer(const char *buffer, size_t len, void *resblock)
193 {
194 struct md5_ctx ctx;
195
196 /* Initialize the computation context. */
197 md5_init_ctx(&ctx);
198
199 /* Process whole buffer but last len % 64 bytes. */
200 md5_process_bytes(buffer, len, &ctx);
201
202 /* Put result in desired memory area. */
203 return md5_finish_ctx(&ctx, resblock);
204 }
205
206 void md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx)
207 {
208 /* When we already have some bits in our internal buffer concatenate
209 both inputs first. */
210 if (ctx->buflen != 0) {
211 size_t left_over = ctx->buflen;
212 size_t add = 128 - left_over > len ? len : 128 - left_over;
213
214 memcpy(&((char *)ctx->buffer)[left_over], buffer, add);
215 ctx->buflen += add;
216
217 if (ctx->buflen > 64) {
218 md5_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
219
220 ctx->buflen &= 63;
221 /* The regions in the following copy operation cannot overlap. */
222 memcpy(ctx->buffer,
223 &((char *)ctx->buffer)[(left_over + add) & ~63],
224 ctx->buflen);
225 }
226
227 buffer = (const char *)buffer + add;
228 len -= add;
229 }
230
231 /* Process available complete blocks. */
232 if (len >= 64) {
233 #if !_STRING_ARCH_unaligned
234 #define alignof(type) offsetof (struct { char c; type x; }, x)
235 #define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
236 if (UNALIGNED_P(buffer))
237 while (len > 64) {
238 md5_process_block(memcpy
239 (ctx->buffer, buffer, 64), 64,
240 ctx);
241 buffer = (const char *)buffer + 64;
242 len -= 64;
243 } else
244 #endif
245 {
246 md5_process_block(buffer, len & ~63, ctx);
247 buffer = (const char *)buffer + (len & ~63);
248 len &= 63;
249 }
250 }
251
252 /* Move remaining bytes in internal buffer. */
253 if (len > 0) {
254 size_t left_over = ctx->buflen;
255
256 memcpy(&((char *)ctx->buffer)[left_over], buffer, len);
257 left_over += len;
258 if (left_over >= 64) {
259 md5_process_block(ctx->buffer, 64, ctx);
260 left_over -= 64;
261 memcpy(ctx->buffer, &ctx->buffer[16], left_over);
262 }
263 ctx->buflen = left_over;
264 }
265 }
266
267 /* These are the four functions used in the four steps of the MD5 algorithm
268 and defined in the RFC 1321. The first function is a little bit optimized
269 (as found in Colin Plumbs public domain implementation). */
270 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
271 #define FF(b, c, d) (d ^ (b & (c ^ d)))
272 #define FG(b, c, d) FF (d, b, c)
273 #define FH(b, c, d) (b ^ c ^ d)
274 #define FI(b, c, d) (c ^ (b | ~d))
275
276 /* Process LEN bytes of BUFFER, accumulating context into CTX.
277 It is assumed that LEN % 64 == 0. */
278
279 void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)
280 {
281 uint32_t correct_words[16];
282 const uint32_t *words = buffer;
283 size_t nwords = len / sizeof(uint32_t);
284 const uint32_t *endp = words + nwords;
285 uint32_t A = ctx->A;
286 uint32_t B = ctx->B;
287 uint32_t C = ctx->C;
288 uint32_t D = ctx->D;
289
290 /* First increment the byte count. RFC 1321 specifies the possible
291 length of the file up to 2^64 bits. Here we only compute the
292 number of bytes. Do a double word increment. */
293 ctx->total[0] += len;
294 if (ctx->total[0] < len)
295 ++ctx->total[1];
296
297 /* Process all bytes in the buffer with 64 bytes in each round of
298 the loop. */
299 while (words < endp) {
300 uint32_t *cwp = correct_words;
301 uint32_t A_save = A;
302 uint32_t B_save = B;
303 uint32_t C_save = C;
304 uint32_t D_save = D;
305
306 /* First round: using the given function, the context and a constant
307 the next context is computed. Because the algorithms processing
308 unit is a 32-bit word and it is determined to work on words in
309 little endian byte order we perhaps have to change the byte order
310 before the computation. To reduce the work for the next steps
311 we store the swapped words in the array CORRECT_WORDS. */
312
313 #define OP(a, b, c, d, s, T) \
314 do \
315 { \
316 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
317 ++words; \
318 CYCLIC (a, s); \
319 a += b; \
320 } \
321 while (0)
322
323 /* It is unfortunate that C does not provide an operator for
324 cyclic rotation. Hope the C compiler is smart enough. */
325 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
326
327 /* Before we start, one word to the strange constants.
328 They are defined in RFC 1321 as
329
330 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
331
332 Here is an equivalent invocation using Perl:
333
334 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
335 */
336
337 /* Round 1. */
338 OP(A, B, C, D, 7, 0xd76aa478);
339 OP(D, A, B, C, 12, 0xe8c7b756);
340 OP(C, D, A, B, 17, 0x242070db);
341 OP(B, C, D, A, 22, 0xc1bdceee);
342 OP(A, B, C, D, 7, 0xf57c0faf);
343 OP(D, A, B, C, 12, 0x4787c62a);
344 OP(C, D, A, B, 17, 0xa8304613);
345 OP(B, C, D, A, 22, 0xfd469501);
346 OP(A, B, C, D, 7, 0x698098d8);
347 OP(D, A, B, C, 12, 0x8b44f7af);
348 OP(C, D, A, B, 17, 0xffff5bb1);
349 OP(B, C, D, A, 22, 0x895cd7be);
350 OP(A, B, C, D, 7, 0x6b901122);
351 OP(D, A, B, C, 12, 0xfd987193);
352 OP(C, D, A, B, 17, 0xa679438e);
353 OP(B, C, D, A, 22, 0x49b40821);
354
355 /* For the second to fourth round we have the possibly swapped words
356 in CORRECT_WORDS. Redefine the macro to take an additional first
357 argument specifying the function to use. */
358 #undef OP
359 #define OP(f, a, b, c, d, k, s, T) \
360 do \
361 { \
362 a += f (b, c, d) + correct_words[k] + T; \
363 CYCLIC (a, s); \
364 a += b; \
365 } \
366 while (0)
367
368 /* Round 2. */
369 OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
370 OP(FG, D, A, B, C, 6, 9, 0xc040b340);
371 OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
372 OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
373 OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
374 OP(FG, D, A, B, C, 10, 9, 0x02441453);
375 OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
376 OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
377 OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
378 OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
379 OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
380 OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
381 OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
382 OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
383 OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
384 OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
385
386 /* Round 3. */
387 OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
388 OP(FH, D, A, B, C, 8, 11, 0x8771f681);
389 OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
390 OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
391 OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
392 OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
393 OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
394 OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
395 OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
396 OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
397 OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
398 OP(FH, B, C, D, A, 6, 23, 0x04881d05);
399 OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
400 OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
401 OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
402 OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
403
404 /* Round 4. */
405 OP(FI, A, B, C, D, 0, 6, 0xf4292244);
406 OP(FI, D, A, B, C, 7, 10, 0x432aff97);
407 OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
408 OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
409 OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
410 OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
411 OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
412 OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
413 OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
414 OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
415 OP(FI, C, D, A, B, 6, 15, 0xa3014314);
416 OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
417 OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
418 OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
419 OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
420 OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
421
422 /* Add the starting values of the context. */
423 A += A_save;
424 B += B_save;
425 C += C_save;
426 D += D_save;
427 }
428
429 /* Put checksum in context given as argument. */
430 ctx->A = A;
431 ctx->B = B;
432 ctx->C = C;
433 ctx->D = D;
434 }