cns3xxx: ethernet: use circular queue checks consistently
[openwrt/staging/chunkeey.git] / target / linux / cns3xxx / files / drivers / net / ethernet / cavium / cns3xxx_eth.c
1 /*
2 * Cavium CNS3xxx Gigabit driver for Linux
3 *
4 * Copyright 2011 Gateworks Corporation
5 * Chris Lang <clang@gateworks.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of version 2 of the GNU General Public License
9 * as published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/platform_data/cns3xxx.h>
24 #include <linux/skbuff.h>
25
26 #define DRV_NAME "cns3xxx_eth"
27
28 #define RX_DESCS 256
29 #define TX_DESCS 128
30 #define TX_DESC_RESERVE 20
31
32 #define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
33 #define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
34 #define REGS_SIZE 336
35
36 #define RX_BUFFER_ALIGN 64
37 #define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
38
39 #define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
40 #define RX_SEGMENT_ALLOC_SIZE 2048
41 #define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
42 #define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
43 #define MAX_MTU 9500
44
45 #define NAPI_WEIGHT 64
46
47 /* MDIO Defines */
48 #define MDIO_CMD_COMPLETE 0x00008000
49 #define MDIO_WRITE_COMMAND 0x00002000
50 #define MDIO_READ_COMMAND 0x00004000
51 #define MDIO_REG_OFFSET 8
52 #define MDIO_VALUE_OFFSET 16
53
54 /* Descritor Defines */
55 #define END_OF_RING 0x40000000
56 #define FIRST_SEGMENT 0x20000000
57 #define LAST_SEGMENT 0x10000000
58 #define FORCE_ROUTE 0x04000000
59 #define UDP_CHECKSUM 0x00020000
60 #define TCP_CHECKSUM 0x00010000
61
62 /* Port Config Defines */
63 #define PORT_BP_ENABLE 0x00020000
64 #define PORT_DISABLE 0x00040000
65 #define PORT_LEARN_DIS 0x00080000
66 #define PORT_BLOCK_STATE 0x00100000
67 #define PORT_BLOCK_MODE 0x00200000
68
69 #define PROMISC_OFFSET 29
70
71 /* Global Config Defines */
72 #define UNKNOWN_VLAN_TO_CPU 0x02000000
73 #define ACCEPT_CRC_PACKET 0x00200000
74 #define CRC_STRIPPING 0x00100000
75
76 /* VLAN Config Defines */
77 #define NIC_MODE 0x00008000
78 #define VLAN_UNAWARE 0x00000001
79
80 /* DMA AUTO Poll Defines */
81 #define TS_POLL_EN 0x00000020
82 #define TS_SUSPEND 0x00000010
83 #define FS_POLL_EN 0x00000002
84 #define FS_SUSPEND 0x00000001
85
86 /* DMA Ring Control Defines */
87 #define QUEUE_THRESHOLD 0x000000f0
88 #define CLR_FS_STATE 0x80000000
89
90 /* Interrupt Status Defines */
91 #define MAC0_STATUS_CHANGE 0x00004000
92 #define MAC1_STATUS_CHANGE 0x00008000
93 #define MAC2_STATUS_CHANGE 0x00010000
94 #define MAC0_RX_ERROR 0x00100000
95 #define MAC1_RX_ERROR 0x00200000
96 #define MAC2_RX_ERROR 0x00400000
97
98 struct tx_desc
99 {
100 u32 sdp; /* segment data pointer */
101
102 union {
103 struct {
104 u32 sdl:16; /* segment data length */
105 u32 tco:1;
106 u32 uco:1;
107 u32 ico:1;
108 u32 rsv_1:3; /* reserve */
109 u32 pri:3;
110 u32 fp:1; /* force priority */
111 u32 fr:1;
112 u32 interrupt:1;
113 u32 lsd:1;
114 u32 fsd:1;
115 u32 eor:1;
116 u32 cown:1;
117 };
118 u32 config0;
119 };
120
121 union {
122 struct {
123 u32 ctv:1;
124 u32 stv:1;
125 u32 sid:4;
126 u32 inss:1;
127 u32 dels:1;
128 u32 rsv_2:9;
129 u32 pmap:5;
130 u32 mark:3;
131 u32 ewan:1;
132 u32 fewan:1;
133 u32 rsv_3:5;
134 };
135 u32 config1;
136 };
137
138 union {
139 struct {
140 u32 c_vid:12;
141 u32 c_cfs:1;
142 u32 c_pri:3;
143 u32 s_vid:12;
144 u32 s_dei:1;
145 u32 s_pri:3;
146 };
147 u32 config2;
148 };
149
150 u8 alignment[16]; /* for 32 byte */
151 };
152
153 struct rx_desc
154 {
155 u32 sdp; /* segment data pointer */
156
157 union {
158 struct {
159 u32 sdl:16; /* segment data length */
160 u32 l4f:1;
161 u32 ipf:1;
162 u32 prot:4;
163 u32 hr:6;
164 u32 lsd:1;
165 u32 fsd:1;
166 u32 eor:1;
167 u32 cown:1;
168 };
169 u32 config0;
170 };
171
172 union {
173 struct {
174 u32 ctv:1;
175 u32 stv:1;
176 u32 unv:1;
177 u32 iwan:1;
178 u32 exdv:1;
179 u32 e_wan:1;
180 u32 rsv_1:2;
181 u32 sp:3;
182 u32 crc_err:1;
183 u32 un_eth:1;
184 u32 tc:2;
185 u32 rsv_2:1;
186 u32 ip_offset:5;
187 u32 rsv_3:11;
188 };
189 u32 config1;
190 };
191
192 union {
193 struct {
194 u32 c_vid:12;
195 u32 c_cfs:1;
196 u32 c_pri:3;
197 u32 s_vid:12;
198 u32 s_dei:1;
199 u32 s_pri:3;
200 };
201 u32 config2;
202 };
203
204 u8 alignment[16]; /* for 32 byte alignment */
205 };
206
207
208 struct switch_regs {
209 u32 phy_control;
210 u32 phy_auto_addr;
211 u32 mac_glob_cfg;
212 u32 mac_cfg[4];
213 u32 mac_pri_ctrl[5], __res;
214 u32 etype[2];
215 u32 udp_range[4];
216 u32 prio_etype_udp;
217 u32 prio_ipdscp[8];
218 u32 tc_ctrl;
219 u32 rate_ctrl;
220 u32 fc_glob_thrs;
221 u32 fc_port_thrs;
222 u32 mc_fc_glob_thrs;
223 u32 dc_glob_thrs;
224 u32 arl_vlan_cmd;
225 u32 arl_ctrl[3];
226 u32 vlan_cfg;
227 u32 pvid[2];
228 u32 vlan_ctrl[3];
229 u32 session_id[8];
230 u32 intr_stat;
231 u32 intr_mask;
232 u32 sram_test;
233 u32 mem_queue;
234 u32 farl_ctrl;
235 u32 fc_input_thrs, __res1[2];
236 u32 clk_skew_ctrl;
237 u32 mac_glob_cfg_ext, __res2[2];
238 u32 dma_ring_ctrl;
239 u32 dma_auto_poll_cfg;
240 u32 delay_intr_cfg, __res3;
241 u32 ts_dma_ctrl0;
242 u32 ts_desc_ptr0;
243 u32 ts_desc_base_addr0, __res4;
244 u32 fs_dma_ctrl0;
245 u32 fs_desc_ptr0;
246 u32 fs_desc_base_addr0, __res5;
247 u32 ts_dma_ctrl1;
248 u32 ts_desc_ptr1;
249 u32 ts_desc_base_addr1, __res6;
250 u32 fs_dma_ctrl1;
251 u32 fs_desc_ptr1;
252 u32 fs_desc_base_addr1;
253 u32 __res7[109];
254 u32 mac_counter0[13];
255 };
256
257 struct _tx_ring {
258 struct tx_desc *desc;
259 dma_addr_t phys_addr;
260 struct tx_desc *cur_addr;
261 struct sk_buff *buff_tab[TX_DESCS];
262 unsigned int phys_tab[TX_DESCS];
263 u32 free_index;
264 u32 count_index;
265 u32 cur_index;
266 int num_used;
267 int num_count;
268 bool stopped;
269 };
270
271 struct _rx_ring {
272 struct rx_desc *desc;
273 dma_addr_t phys_addr;
274 struct rx_desc *cur_addr;
275 void *buff_tab[RX_DESCS];
276 unsigned int phys_tab[RX_DESCS];
277 u32 cur_index;
278 u32 alloc_index;
279 int alloc_count;
280 };
281
282 struct sw {
283 struct switch_regs __iomem *regs;
284 struct napi_struct napi;
285 struct cns3xxx_plat_info *plat;
286 struct _tx_ring tx_ring;
287 struct _rx_ring rx_ring;
288 struct sk_buff *frag_first;
289 struct sk_buff *frag_last;
290 struct device *dev;
291 int rx_irq;
292 int stat_irq;
293 };
294
295 struct port {
296 struct net_device *netdev;
297 struct phy_device *phydev;
298 struct sw *sw;
299 int id; /* logical port ID */
300 int speed, duplex;
301 };
302
303 static spinlock_t mdio_lock;
304 static DEFINE_SPINLOCK(tx_lock);
305 static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
306 struct mii_bus *mdio_bus;
307 static int ports_open;
308 static struct port *switch_port_tab[4];
309 struct net_device *napi_dev;
310
311 static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
312 int write, u16 cmd)
313 {
314 int cycles = 0;
315 u32 temp = 0;
316
317 temp = __raw_readl(&mdio_regs->phy_control);
318 temp |= MDIO_CMD_COMPLETE;
319 __raw_writel(temp, &mdio_regs->phy_control);
320 udelay(10);
321
322 if (write) {
323 temp = (cmd << MDIO_VALUE_OFFSET);
324 temp |= MDIO_WRITE_COMMAND;
325 } else {
326 temp = MDIO_READ_COMMAND;
327 }
328
329 temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
330 temp |= (phy_id & 0x1f);
331
332 __raw_writel(temp, &mdio_regs->phy_control);
333
334 while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
335 && cycles < 5000) {
336 udelay(1);
337 cycles++;
338 }
339
340 if (cycles == 5000) {
341 printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name, phy_id);
342 return -1;
343 }
344
345 temp = __raw_readl(&mdio_regs->phy_control);
346 temp |= MDIO_CMD_COMPLETE;
347 __raw_writel(temp, &mdio_regs->phy_control);
348
349 if (write)
350 return 0;
351
352 return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
353 }
354
355 static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
356 {
357 unsigned long flags;
358 int ret;
359
360 spin_lock_irqsave(&mdio_lock, flags);
361 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
362 spin_unlock_irqrestore(&mdio_lock, flags);
363 return ret;
364 }
365
366 static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location, u16 val)
367 {
368 unsigned long flags;
369 int ret;
370
371 spin_lock_irqsave(&mdio_lock, flags);
372 ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
373 spin_unlock_irqrestore(&mdio_lock, flags);
374 return ret;
375 }
376
377 static int cns3xxx_mdio_register(void __iomem *base)
378 {
379 int err;
380
381 if (!(mdio_bus = mdiobus_alloc()))
382 return -ENOMEM;
383
384 mdio_regs = base;
385
386 spin_lock_init(&mdio_lock);
387 mdio_bus->name = "CNS3xxx MII Bus";
388 mdio_bus->read = &cns3xxx_mdio_read;
389 mdio_bus->write = &cns3xxx_mdio_write;
390 strcpy(mdio_bus->id, "0");
391
392 if ((err = mdiobus_register(mdio_bus)))
393 mdiobus_free(mdio_bus);
394
395 return err;
396 }
397
398 static void cns3xxx_mdio_remove(void)
399 {
400 mdiobus_unregister(mdio_bus);
401 mdiobus_free(mdio_bus);
402 }
403
404 static void enable_tx_dma(struct sw *sw)
405 {
406 __raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
407 }
408
409 static void enable_rx_dma(struct sw *sw)
410 {
411 __raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
412 }
413
414 static void cns3xxx_adjust_link(struct net_device *dev)
415 {
416 struct port *port = netdev_priv(dev);
417 struct phy_device *phydev = port->phydev;
418
419 if (!phydev->link) {
420 if (port->speed) {
421 port->speed = 0;
422 printk(KERN_INFO "%s: link down\n", dev->name);
423 }
424 return;
425 }
426
427 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
428 return;
429
430 port->speed = phydev->speed;
431 port->duplex = phydev->duplex;
432
433 printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
434 dev->name, port->speed, port->duplex ? "full" : "half");
435 }
436
437 static void eth_schedule_poll(struct sw *sw)
438 {
439 if (unlikely(!napi_schedule_prep(&sw->napi)))
440 return;
441
442 disable_irq_nosync(sw->rx_irq);
443 __napi_schedule(&sw->napi);
444 }
445
446 irqreturn_t eth_rx_irq(int irq, void *pdev)
447 {
448 struct net_device *dev = pdev;
449 struct sw *sw = netdev_priv(dev);
450 eth_schedule_poll(sw);
451 return (IRQ_HANDLED);
452 }
453
454 irqreturn_t eth_stat_irq(int irq, void *pdev)
455 {
456 struct net_device *dev = pdev;
457 struct sw *sw = netdev_priv(dev);
458 u32 cfg;
459 u32 stat = __raw_readl(&sw->regs->intr_stat);
460 __raw_writel(0xffffffff, &sw->regs->intr_stat);
461
462 if (stat & MAC2_RX_ERROR)
463 switch_port_tab[3]->netdev->stats.rx_dropped++;
464 if (stat & MAC1_RX_ERROR)
465 switch_port_tab[1]->netdev->stats.rx_dropped++;
466 if (stat & MAC0_RX_ERROR)
467 switch_port_tab[0]->netdev->stats.rx_dropped++;
468
469 if (stat & MAC0_STATUS_CHANGE) {
470 cfg = __raw_readl(&sw->regs->mac_cfg[0]);
471 switch_port_tab[0]->phydev->link = (cfg & 0x1);
472 switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
473 if (((cfg >> 2) & 0x3) == 2)
474 switch_port_tab[0]->phydev->speed = 1000;
475 else if (((cfg >> 2) & 0x3) == 1)
476 switch_port_tab[0]->phydev->speed = 100;
477 else
478 switch_port_tab[0]->phydev->speed = 10;
479 cns3xxx_adjust_link(switch_port_tab[0]->netdev);
480 }
481
482 if (stat & MAC1_STATUS_CHANGE) {
483 cfg = __raw_readl(&sw->regs->mac_cfg[1]);
484 switch_port_tab[1]->phydev->link = (cfg & 0x1);
485 switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
486 if (((cfg >> 2) & 0x3) == 2)
487 switch_port_tab[1]->phydev->speed = 1000;
488 else if (((cfg >> 2) & 0x3) == 1)
489 switch_port_tab[1]->phydev->speed = 100;
490 else
491 switch_port_tab[1]->phydev->speed = 10;
492 cns3xxx_adjust_link(switch_port_tab[1]->netdev);
493 }
494
495 if (stat & MAC2_STATUS_CHANGE) {
496 cfg = __raw_readl(&sw->regs->mac_cfg[3]);
497 switch_port_tab[3]->phydev->link = (cfg & 0x1);
498 switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
499 if (((cfg >> 2) & 0x3) == 2)
500 switch_port_tab[3]->phydev->speed = 1000;
501 else if (((cfg >> 2) & 0x3) == 1)
502 switch_port_tab[3]->phydev->speed = 100;
503 else
504 switch_port_tab[3]->phydev->speed = 10;
505 cns3xxx_adjust_link(switch_port_tab[3]->netdev);
506 }
507
508 return (IRQ_HANDLED);
509 }
510
511
512 static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
513 {
514 struct _rx_ring *rx_ring = &sw->rx_ring;
515 unsigned int i = rx_ring->alloc_index;
516 struct rx_desc *desc = &(rx_ring)->desc[i];
517 void *buf;
518 unsigned int phys;
519
520 for (received += rx_ring->alloc_count; received > 0; received--) {
521 buf = napi_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
522 if (!buf)
523 break;
524
525 phys = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
526 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
527 if (dma_mapping_error(sw->dev, phys)) {
528 skb_free_frag(buf);
529 break;
530 }
531
532 desc->sdl = RX_SEGMENT_MRU;
533 desc->sdp = phys;
534
535 wmb();
536
537 /* put the new buffer on RX-free queue */
538 rx_ring->buff_tab[i] = buf;
539 rx_ring->phys_tab[i] = phys;
540
541 if (i == RX_DESCS - 1) {
542 desc->config0 = FIRST_SEGMENT | LAST_SEGMENT | RX_SEGMENT_MRU | END_OF_RING;
543 i = 0;
544 desc = &(rx_ring)->desc[i];
545 } else {
546 desc->config0 = FIRST_SEGMENT | LAST_SEGMENT | RX_SEGMENT_MRU;
547 i++;
548 desc++;
549 }
550 }
551
552 rx_ring->alloc_count = received;
553 rx_ring->alloc_index = i;
554 }
555
556 static void eth_check_num_used(struct _tx_ring *tx_ring)
557 {
558 bool stop = false;
559 int i;
560
561 if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
562 stop = true;
563
564 if (tx_ring->stopped == stop)
565 return;
566
567 tx_ring->stopped = stop;
568
569 for (i = 0; i < 4; i++) {
570 struct port *port = switch_port_tab[i];
571 struct net_device *dev;
572
573 if (!port)
574 continue;
575
576 dev = port->netdev;
577
578 if (stop)
579 netif_stop_queue(dev);
580 else
581 netif_wake_queue(dev);
582 }
583 }
584
585 static void eth_complete_tx(struct sw *sw)
586 {
587 struct _tx_ring *tx_ring = &sw->tx_ring;
588 struct tx_desc *desc;
589 int i;
590 int index;
591 int num_used = tx_ring->num_used;
592 struct sk_buff *skb;
593
594 index = tx_ring->free_index;
595 desc = &(tx_ring)->desc[index];
596
597 for (i = 0; i < num_used; i++) {
598 if (!desc->cown)
599 break;
600
601 skb = tx_ring->buff_tab[index];
602 tx_ring->buff_tab[index] = 0;
603
604 if (skb)
605 dev_kfree_skb_any(skb);
606
607 dma_unmap_single(sw->dev, tx_ring->phys_tab[index], desc->sdl, DMA_TO_DEVICE);
608
609 if (index == TX_DESCS - 1) {
610 index = 0;
611 desc = &(tx_ring)->desc[index];
612 } else {
613 index++;
614 desc++;
615 }
616 }
617
618 tx_ring->free_index = index;
619 tx_ring->num_used -= i;
620 eth_check_num_used(tx_ring);
621 }
622
623 static int eth_poll(struct napi_struct *napi, int budget)
624 {
625 struct sw *sw = container_of(napi, struct sw, napi);
626 struct _rx_ring *rx_ring = &sw->rx_ring;
627 int received = 0;
628 unsigned int length;
629 unsigned int i = rx_ring->cur_index;
630 struct rx_desc *desc = &(rx_ring)->desc[i];
631 unsigned int alloc_count = rx_ring->alloc_count;
632
633 while (desc->cown && alloc_count + received < RX_DESCS - 1) {
634 struct sk_buff *skb;
635 int reserve = SKB_HEAD_ALIGN;
636
637 if (received >= budget)
638 break;
639
640 /* process received frame */
641 dma_unmap_single(sw->dev, rx_ring->phys_tab[i], RX_SEGMENT_MRU, DMA_FROM_DEVICE);
642
643 skb = build_skb(rx_ring->buff_tab[i], RX_SEGMENT_ALLOC_SIZE);
644 if (!skb)
645 break;
646
647 skb->dev = switch_port_tab[desc->sp]->netdev;
648
649 length = desc->sdl;
650 if (desc->fsd && !desc->lsd)
651 length = RX_SEGMENT_MRU;
652
653 if (!desc->fsd) {
654 reserve -= NET_IP_ALIGN;
655 if (!desc->lsd)
656 length += NET_IP_ALIGN;
657 }
658
659 skb_reserve(skb, reserve);
660 skb_put(skb, length);
661
662 if (!sw->frag_first)
663 sw->frag_first = skb;
664 else {
665 if (sw->frag_first == sw->frag_last)
666 skb_shinfo(sw->frag_first)->frag_list = skb;
667 else
668 sw->frag_last->next = skb;
669 sw->frag_first->len += skb->len;
670 sw->frag_first->data_len += skb->len;
671 sw->frag_first->truesize += skb->truesize;
672 }
673 sw->frag_last = skb;
674
675 if (desc->lsd) {
676 struct net_device *dev;
677
678 skb = sw->frag_first;
679 dev = skb->dev;
680 skb->protocol = eth_type_trans(skb, dev);
681
682 dev->stats.rx_packets++;
683 dev->stats.rx_bytes += skb->len;
684
685 /* RX Hardware checksum offload */
686 skb->ip_summed = CHECKSUM_NONE;
687 switch (desc->prot) {
688 case 1:
689 case 2:
690 case 5:
691 case 6:
692 case 13:
693 case 14:
694 if (!desc->l4f) {
695 skb->ip_summed = CHECKSUM_UNNECESSARY;
696 napi_gro_receive(napi, skb);
697 break;
698 }
699 /* fall through */
700 default:
701 netif_receive_skb(skb);
702 break;
703 }
704
705 sw->frag_first = NULL;
706 sw->frag_last = NULL;
707 }
708
709 received++;
710 if (i == RX_DESCS - 1) {
711 i = 0;
712 desc = &(rx_ring)->desc[i];
713 } else {
714 i++;
715 desc++;
716 }
717 }
718
719 rx_ring->cur_index = i;
720
721 cns3xxx_alloc_rx_buf(sw, received);
722 wmb();
723 enable_rx_dma(sw);
724
725 if (received < budget && napi_complete_done(napi, received)) {
726 enable_irq(sw->rx_irq);
727 }
728
729 spin_lock_bh(&tx_lock);
730 eth_complete_tx(sw);
731 spin_unlock_bh(&tx_lock);
732
733 return received;
734 }
735
736 static void eth_set_desc(struct sw *sw, struct _tx_ring *tx_ring, int index,
737 int index_last, void *data, int len, u32 config0,
738 u32 pmap)
739 {
740 struct tx_desc *tx_desc = &(tx_ring)->desc[index];
741 unsigned int phys;
742
743 phys = dma_map_single(sw->dev, data, len, DMA_TO_DEVICE);
744 tx_desc->sdp = phys;
745 tx_desc->pmap = pmap;
746 tx_ring->phys_tab[index] = phys;
747
748 config0 |= len;
749
750 if (index == TX_DESCS - 1)
751 config0 |= END_OF_RING;
752
753 if (index == index_last)
754 config0 |= LAST_SEGMENT;
755
756 wmb();
757 tx_desc->config0 = config0;
758 }
759
760 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
761 {
762 struct port *port = netdev_priv(dev);
763 struct sw *sw = port->sw;
764 struct _tx_ring *tx_ring = &sw->tx_ring;
765 struct sk_buff *skb1;
766 char pmap = (1 << port->id);
767 int nr_frags = skb_shinfo(skb)->nr_frags;
768 int nr_desc = nr_frags;
769 int index0, index, index_last;
770 int len0;
771 int i;
772 u32 config0;
773
774 if (pmap == 8)
775 pmap = (1 << 4);
776
777 skb_walk_frags(skb, skb1)
778 nr_desc++;
779
780 eth_schedule_poll(sw);
781 spin_lock_bh(&tx_lock);
782
783 if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
784 spin_unlock_bh(&tx_lock);
785 return NETDEV_TX_BUSY;
786 }
787
788 index = index0 = tx_ring->cur_index;
789 index_last = (index0 + nr_desc) % TX_DESCS;
790 tx_ring->cur_index = (index_last + 1) % TX_DESCS;
791
792 spin_unlock_bh(&tx_lock);
793
794 config0 = FORCE_ROUTE;
795 if (skb->ip_summed == CHECKSUM_PARTIAL)
796 config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
797
798 len0 = skb->len;
799
800 /* fragments */
801 for (i = 0; i < nr_frags; i++) {
802 struct skb_frag_struct *frag;
803 void *addr;
804
805 index = (index + 1) % TX_DESCS;
806
807 frag = &skb_shinfo(skb)->frags[i];
808 addr = page_address(skb_frag_page(frag)) + frag->page_offset;
809
810 eth_set_desc(sw, tx_ring, index, index_last, addr, frag->size,
811 config0, pmap);
812 }
813
814 if (nr_frags)
815 len0 = skb->len - skb->data_len;
816
817 skb_walk_frags(skb, skb1) {
818 index = (index + 1) % TX_DESCS;
819 len0 -= skb1->len;
820
821 eth_set_desc(sw, tx_ring, index, index_last, skb1->data,
822 skb1->len, config0, pmap);
823 }
824
825 tx_ring->buff_tab[index0] = skb;
826 eth_set_desc(sw, tx_ring, index0, index_last, skb->data, len0,
827 config0 | FIRST_SEGMENT, pmap);
828
829 wmb();
830
831 spin_lock(&tx_lock);
832 tx_ring->num_used += nr_desc + 1;
833 spin_unlock(&tx_lock);
834
835 dev->stats.tx_packets++;
836 dev->stats.tx_bytes += skb->len;
837
838 enable_tx_dma(sw);
839
840 return NETDEV_TX_OK;
841 }
842
843 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
844 {
845 struct port *port = netdev_priv(dev);
846
847 if (!netif_running(dev))
848 return -EINVAL;
849 return phy_mii_ioctl(port->phydev, req, cmd);
850 }
851
852 /* ethtool support */
853
854 static void cns3xxx_get_drvinfo(struct net_device *dev,
855 struct ethtool_drvinfo *info)
856 {
857 strcpy(info->driver, DRV_NAME);
858 strcpy(info->bus_info, "internal");
859 }
860
861 static int cns3xxx_nway_reset(struct net_device *dev)
862 {
863 struct port *port = netdev_priv(dev);
864 return phy_start_aneg(port->phydev);
865 }
866
867 static struct ethtool_ops cns3xxx_ethtool_ops = {
868 .get_drvinfo = cns3xxx_get_drvinfo,
869 .get_link_ksettings = phy_ethtool_get_link_ksettings,
870 .set_link_ksettings = phy_ethtool_set_link_ksettings,
871 .nway_reset = cns3xxx_nway_reset,
872 .get_link = ethtool_op_get_link,
873 };
874
875
876 static int init_rings(struct sw *sw)
877 {
878 int i;
879 struct _rx_ring *rx_ring = &sw->rx_ring;
880 struct _tx_ring *tx_ring = &sw->tx_ring;
881
882 __raw_writel(0, &sw->regs->fs_dma_ctrl0);
883 __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
884 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
885 __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
886 __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
887
888 rx_ring->desc = dmam_alloc_coherent(sw->dev, RX_POOL_ALLOC_SIZE,
889 &rx_ring->phys_addr, GFP_KERNEL);
890 if (!rx_ring->desc)
891 return -ENOMEM;
892
893 /* Setup RX buffers */
894 memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
895
896 for (i = 0; i < RX_DESCS; i++) {
897 struct rx_desc *desc = &(rx_ring)->desc[i];
898 void *buf;
899
900 buf = netdev_alloc_frag(RX_SEGMENT_ALLOC_SIZE);
901 if (!buf)
902 return -ENOMEM;
903
904 desc->sdl = RX_SEGMENT_MRU;
905
906 if (i == (RX_DESCS - 1))
907 desc->eor = 1;
908
909 desc->fsd = 1;
910 desc->lsd = 1;
911
912 desc->sdp = dma_map_single(sw->dev, buf + SKB_HEAD_ALIGN,
913 RX_SEGMENT_MRU, DMA_FROM_DEVICE);
914
915 if (dma_mapping_error(sw->dev, desc->sdp))
916 return -EIO;
917
918 rx_ring->buff_tab[i] = buf;
919 rx_ring->phys_tab[i] = desc->sdp;
920 desc->cown = 0;
921 }
922 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
923 __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
924
925 tx_ring->desc = dmam_alloc_coherent(sw->dev, TX_POOL_ALLOC_SIZE,
926 &tx_ring->phys_addr, GFP_KERNEL);
927 if (!tx_ring->desc)
928 return -ENOMEM;
929
930 /* Setup TX buffers */
931 memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
932
933 for (i = 0; i < TX_DESCS; i++) {
934 struct tx_desc *desc = &(tx_ring)->desc[i];
935 tx_ring->buff_tab[i] = 0;
936
937 if (i == (TX_DESCS - 1))
938 desc->eor = 1;
939
940 desc->cown = 1;
941 }
942 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
943 __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
944
945 return 0;
946 }
947
948 static void destroy_rings(struct sw *sw)
949 {
950 int i;
951
952 for (i = 0; i < RX_DESCS; i++) {
953 struct _rx_ring *rx_ring = &sw->rx_ring;
954 struct rx_desc *desc = &(rx_ring)->desc[i];
955 void *buf = sw->rx_ring.buff_tab[i];
956
957 if (!buf)
958 continue;
959
960 dma_unmap_single(sw->dev, desc->sdp, RX_SEGMENT_MRU, DMA_FROM_DEVICE);
961 skb_free_frag(buf);
962 }
963
964 for (i = 0; i < TX_DESCS; i++) {
965 struct _tx_ring *tx_ring = &sw->tx_ring;
966 struct tx_desc *desc = &(tx_ring)->desc[i];
967 struct sk_buff *skb = sw->tx_ring.buff_tab[i];
968
969 if (!skb)
970 continue;
971
972 dma_unmap_single(sw->dev, desc->sdp, skb->len, DMA_TO_DEVICE);
973 dev_kfree_skb(skb);
974 }
975 }
976
977 static int eth_open(struct net_device *dev)
978 {
979 struct port *port = netdev_priv(dev);
980 struct sw *sw = port->sw;
981 u32 temp;
982
983 port->speed = 0; /* force "link up" message */
984 phy_start(port->phydev);
985
986 netif_start_queue(dev);
987
988 if (!ports_open) {
989 request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
990 request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
991 napi_enable(&sw->napi);
992 netif_start_queue(napi_dev);
993
994 __raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
995 MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
996
997 temp = __raw_readl(&sw->regs->mac_cfg[2]);
998 temp &= ~(PORT_DISABLE);
999 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1000
1001 temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
1002 temp &= ~(TS_SUSPEND | FS_SUSPEND);
1003 __raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
1004
1005 enable_rx_dma(sw);
1006 }
1007 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1008 temp &= ~(PORT_DISABLE);
1009 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1010
1011 ports_open++;
1012 netif_carrier_on(dev);
1013
1014 return 0;
1015 }
1016
1017 static int eth_close(struct net_device *dev)
1018 {
1019 struct port *port = netdev_priv(dev);
1020 struct sw *sw = port->sw;
1021 u32 temp;
1022
1023 ports_open--;
1024
1025 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1026 temp |= (PORT_DISABLE);
1027 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1028
1029 netif_stop_queue(dev);
1030
1031 phy_stop(port->phydev);
1032
1033 if (!ports_open) {
1034 disable_irq(sw->rx_irq);
1035 free_irq(sw->rx_irq, napi_dev);
1036 disable_irq(sw->stat_irq);
1037 free_irq(sw->stat_irq, napi_dev);
1038 napi_disable(&sw->napi);
1039 netif_stop_queue(napi_dev);
1040 temp = __raw_readl(&sw->regs->mac_cfg[2]);
1041 temp |= (PORT_DISABLE);
1042 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1043
1044 __raw_writel(TS_SUSPEND | FS_SUSPEND,
1045 &sw->regs->dma_auto_poll_cfg);
1046 }
1047
1048 netif_carrier_off(dev);
1049 return 0;
1050 }
1051
1052 static void eth_rx_mode(struct net_device *dev)
1053 {
1054 struct port *port = netdev_priv(dev);
1055 struct sw *sw = port->sw;
1056 u32 temp;
1057
1058 temp = __raw_readl(&sw->regs->mac_glob_cfg);
1059
1060 if (dev->flags & IFF_PROMISC) {
1061 if (port->id == 3)
1062 temp |= ((1 << 2) << PROMISC_OFFSET);
1063 else
1064 temp |= ((1 << port->id) << PROMISC_OFFSET);
1065 } else {
1066 if (port->id == 3)
1067 temp &= ~((1 << 2) << PROMISC_OFFSET);
1068 else
1069 temp &= ~((1 << port->id) << PROMISC_OFFSET);
1070 }
1071 __raw_writel(temp, &sw->regs->mac_glob_cfg);
1072 }
1073
1074 static int eth_set_mac(struct net_device *netdev, void *p)
1075 {
1076 struct port *port = netdev_priv(netdev);
1077 struct sw *sw = port->sw;
1078 struct sockaddr *addr = p;
1079 u32 cycles = 0;
1080
1081 if (!is_valid_ether_addr(addr->sa_data))
1082 return -EADDRNOTAVAIL;
1083
1084 /* Invalidate old ARL Entry */
1085 if (port->id == 3)
1086 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1087 else
1088 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1089 __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
1090 (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
1091 &sw->regs->arl_ctrl[1]);
1092
1093 __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
1094 (1 << 1)),
1095 &sw->regs->arl_ctrl[2]);
1096 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1097
1098 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1099 && cycles < 5000) {
1100 udelay(1);
1101 cycles++;
1102 }
1103
1104 cycles = 0;
1105 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1106
1107 if (port->id == 3)
1108 __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1109 else
1110 __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
1111 __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
1112 (addr->sa_data[2] << 8) | (addr->sa_data[3])),
1113 &sw->regs->arl_ctrl[1]);
1114
1115 __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
1116 (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
1117 __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
1118
1119 while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
1120 && cycles < 5000) {
1121 udelay(1);
1122 cycles++;
1123 }
1124 return 0;
1125 }
1126
1127 static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
1128 {
1129 if (new_mtu > MAX_MTU)
1130 return -EINVAL;
1131
1132 dev->mtu = new_mtu;
1133 return 0;
1134 }
1135
1136 static const struct net_device_ops cns3xxx_netdev_ops = {
1137 .ndo_open = eth_open,
1138 .ndo_stop = eth_close,
1139 .ndo_start_xmit = eth_xmit,
1140 .ndo_set_rx_mode = eth_rx_mode,
1141 .ndo_do_ioctl = eth_ioctl,
1142 .ndo_change_mtu = cns3xxx_change_mtu,
1143 .ndo_set_mac_address = eth_set_mac,
1144 .ndo_validate_addr = eth_validate_addr,
1145 };
1146
1147 static int eth_init_one(struct platform_device *pdev)
1148 {
1149 int i;
1150 struct port *port;
1151 struct sw *sw;
1152 struct net_device *dev;
1153 struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
1154 char phy_id[MII_BUS_ID_SIZE + 3];
1155 int err;
1156 u32 temp;
1157 struct resource *res;
1158 void __iomem *regs;
1159
1160 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1161 regs = devm_ioremap_resource(&pdev->dev, res);
1162 if (IS_ERR(regs))
1163 return PTR_ERR(regs);
1164
1165 err = cns3xxx_mdio_register(regs);
1166 if (err)
1167 return err;
1168
1169 if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
1170 err = -ENOMEM;
1171 goto err_remove_mdio;
1172 }
1173
1174 strcpy(napi_dev->name, "cns3xxx_eth");
1175 napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1176
1177 SET_NETDEV_DEV(napi_dev, &pdev->dev);
1178 sw = netdev_priv(napi_dev);
1179 memset(sw, 0, sizeof(struct sw));
1180 sw->regs = regs;
1181 sw->dev = &pdev->dev;
1182
1183 sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
1184 sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
1185
1186 temp = __raw_readl(&sw->regs->phy_auto_addr);
1187 temp |= (3 << 30); /* maximum frame length: 9600 bytes */
1188 __raw_writel(temp, &sw->regs->phy_auto_addr);
1189
1190 for (i = 0; i < 4; i++) {
1191 temp = __raw_readl(&sw->regs->mac_cfg[i]);
1192 temp |= (PORT_DISABLE);
1193 __raw_writel(temp, &sw->regs->mac_cfg[i]);
1194 }
1195
1196 temp = PORT_DISABLE;
1197 __raw_writel(temp, &sw->regs->mac_cfg[2]);
1198
1199 temp = __raw_readl(&sw->regs->vlan_cfg);
1200 temp |= NIC_MODE | VLAN_UNAWARE;
1201 __raw_writel(temp, &sw->regs->vlan_cfg);
1202
1203 __raw_writel(UNKNOWN_VLAN_TO_CPU |
1204 CRC_STRIPPING, &sw->regs->mac_glob_cfg);
1205
1206 if ((err = init_rings(sw)) != 0) {
1207 err = -ENOMEM;
1208 goto err_free;
1209 }
1210 platform_set_drvdata(pdev, napi_dev);
1211
1212 netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
1213
1214 for (i = 0; i < 3; i++) {
1215 if (!(plat->ports & (1 << i))) {
1216 continue;
1217 }
1218
1219 if (!(dev = alloc_etherdev(sizeof(struct port)))) {
1220 goto free_ports;
1221 }
1222
1223 port = netdev_priv(dev);
1224 port->netdev = dev;
1225 if (i == 2)
1226 port->id = 3;
1227 else
1228 port->id = i;
1229 port->sw = sw;
1230
1231 temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
1232 temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
1233 __raw_writel(temp, &sw->regs->mac_cfg[port->id]);
1234
1235 SET_NETDEV_DEV(dev, &pdev->dev);
1236 dev->netdev_ops = &cns3xxx_netdev_ops;
1237 dev->ethtool_ops = &cns3xxx_ethtool_ops;
1238 dev->tx_queue_len = 1000;
1239 dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
1240
1241 switch_port_tab[port->id] = port;
1242 memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
1243
1244 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
1245 port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
1246 PHY_INTERFACE_MODE_RGMII);
1247 if ((err = IS_ERR(port->phydev))) {
1248 switch_port_tab[port->id] = 0;
1249 free_netdev(dev);
1250 goto free_ports;
1251 }
1252
1253 port->phydev->irq = PHY_IGNORE_INTERRUPT;
1254
1255 if ((err = register_netdev(dev))) {
1256 phy_disconnect(port->phydev);
1257 switch_port_tab[port->id] = 0;
1258 free_netdev(dev);
1259 goto free_ports;
1260 }
1261
1262 printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
1263 netif_carrier_off(dev);
1264 dev = 0;
1265 }
1266
1267 return 0;
1268
1269 free_ports:
1270 err = -ENOMEM;
1271 for (--i; i >= 0; i--) {
1272 if (switch_port_tab[i]) {
1273 port = switch_port_tab[i];
1274 dev = port->netdev;
1275 unregister_netdev(dev);
1276 phy_disconnect(port->phydev);
1277 switch_port_tab[i] = 0;
1278 free_netdev(dev);
1279 }
1280 }
1281 err_free:
1282 free_netdev(napi_dev);
1283 err_remove_mdio:
1284 cns3xxx_mdio_remove();
1285 return err;
1286 }
1287
1288 static int eth_remove_one(struct platform_device *pdev)
1289 {
1290 struct net_device *dev = platform_get_drvdata(pdev);
1291 struct sw *sw = netdev_priv(dev);
1292 int i;
1293
1294 destroy_rings(sw);
1295 for (i = 3; i >= 0; i--) {
1296 if (switch_port_tab[i]) {
1297 struct port *port = switch_port_tab[i];
1298 struct net_device *dev = port->netdev;
1299 unregister_netdev(dev);
1300 phy_disconnect(port->phydev);
1301 switch_port_tab[i] = 0;
1302 free_netdev(dev);
1303 }
1304 }
1305
1306 free_netdev(napi_dev);
1307 cns3xxx_mdio_remove();
1308
1309 return 0;
1310 }
1311
1312 static struct platform_driver cns3xxx_eth_driver = {
1313 .driver.name = DRV_NAME,
1314 .probe = eth_init_one,
1315 .remove = eth_remove_one,
1316 };
1317
1318 static int __init eth_init_module(void)
1319 {
1320 return platform_driver_register(&cns3xxx_eth_driver);
1321 }
1322
1323 static void __exit eth_cleanup_module(void)
1324 {
1325 platform_driver_unregister(&cns3xxx_eth_driver);
1326 }
1327
1328 module_init(eth_init_module);
1329 module_exit(eth_cleanup_module);
1330
1331 MODULE_AUTHOR("Chris Lang");
1332 MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
1333 MODULE_LICENSE("GPL v2");
1334 MODULE_ALIAS("platform:cns3xxx_eth");