sync ath9k with latest git code
[openwrt/staging/florian.git] / package / ath9k / src / drivers / net / wireless / ath9k / recv.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 /*
18 * Implementation of receive path.
19 */
20
21 #include "core.h"
22
23 /*
24 * Setup and link descriptors.
25 *
26 * 11N: we can no longer afford to self link the last descriptor.
27 * MAC acknowledges BA status as long as it copies frames to host
28 * buffer (or rx fifo). This can incorrectly acknowledge packets
29 * to a sender if last desc is self-linked.
30 *
31 * NOTE: Caller should hold the rxbuf lock.
32 */
33
34 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
35 {
36 struct ath_hal *ah = sc->sc_ah;
37 struct ath_desc *ds;
38 struct sk_buff *skb;
39
40 ATH_RXBUF_RESET(bf);
41
42 ds = bf->bf_desc;
43 ds->ds_link = 0; /* link to null */
44 ds->ds_data = bf->bf_buf_addr;
45
46 /* XXX For RADAR?
47 * virtual addr of the beginning of the buffer. */
48 skb = bf->bf_mpdu;
49 ASSERT(skb != NULL);
50 ds->ds_vdata = skb->data;
51
52 /* setup rx descriptors */
53 ath9k_hw_setuprxdesc(ah,
54 ds,
55 skb_tailroom(skb), /* buffer size */
56 0);
57
58 if (sc->sc_rxlink == NULL)
59 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
60 else
61 *sc->sc_rxlink = bf->bf_daddr;
62
63 sc->sc_rxlink = &ds->ds_link;
64 ath9k_hw_rxena(ah);
65 }
66
67 /* Process received BAR frame */
68
69 static int ath_bar_rx(struct ath_softc *sc,
70 struct ath_node *an,
71 struct sk_buff *skb)
72 {
73 struct ieee80211_bar *bar;
74 struct ath_arx_tid *rxtid;
75 struct sk_buff *tskb;
76 struct ath_recv_status *rx_status;
77 int tidno, index, cindex;
78 u_int16_t seqno;
79
80 /* look at BAR contents */
81
82 bar = (struct ieee80211_bar *)skb->data;
83 tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M)
84 >> IEEE80211_BAR_CTL_TID_S;
85 seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
86
87 /* process BAR - indicate all pending RX frames till the BAR seqno */
88
89 rxtid = &an->an_aggr.rx.tid[tidno];
90
91 spin_lock_bh(&rxtid->tidlock);
92
93 /* get relative index */
94
95 index = ATH_BA_INDEX(rxtid->seq_next, seqno);
96
97 /* drop BAR if old sequence (index is too large) */
98
99 if ((index > rxtid->baw_size) &&
100 (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
101 /* discard frame, ieee layer may not treat frame as a dup */
102 goto unlock_and_free;
103
104 /* complete receive processing for all pending frames upto BAR seqno */
105
106 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
107 while ((rxtid->baw_head != rxtid->baw_tail) &&
108 (rxtid->baw_head != cindex)) {
109 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
110 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
111 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
112
113 if (tskb != NULL)
114 ath_rx_subframe(an, tskb, rx_status);
115
116 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
117 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
118 }
119
120 /* ... and indicate rest of the frames in-order */
121
122 while (rxtid->baw_head != rxtid->baw_tail &&
123 rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
124 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
125 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
126 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
127
128 ath_rx_subframe(an, tskb, rx_status);
129
130 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
131 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
132 }
133
134 unlock_and_free:
135 spin_unlock_bh(&rxtid->tidlock);
136 /* free bar itself */
137 dev_kfree_skb(skb);
138 return IEEE80211_FTYPE_CTL;
139 }
140
141 /* Function to handle a subframe of aggregation when HT is enabled */
142
143 static int ath_ampdu_input(struct ath_softc *sc,
144 struct ath_node *an,
145 struct sk_buff *skb,
146 struct ath_recv_status *rx_status)
147 {
148 struct ieee80211_hdr *hdr;
149 struct ath_arx_tid *rxtid;
150 struct ath_rxbuf *rxbuf;
151 u_int8_t type, subtype;
152 u_int16_t rxseq;
153 int tid = 0, index, cindex, rxdiff;
154 __le16 fc;
155 u8 *qc;
156
157 hdr = (struct ieee80211_hdr *)skb->data;
158 fc = hdr->frame_control;
159
160 /* collect stats of frames with non-zero version */
161
162 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
163 dev_kfree_skb(skb);
164 return -1;
165 }
166
167 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
168 subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
169
170 if (ieee80211_is_back_req(fc))
171 return ath_bar_rx(sc, an, skb);
172
173 /* special aggregate processing only for qos unicast data frames */
174
175 if (!ieee80211_is_data(fc) ||
176 !ieee80211_is_data_qos(fc) ||
177 is_multicast_ether_addr(hdr->addr1))
178 return ath_rx_subframe(an, skb, rx_status);
179
180 /* lookup rx tid state */
181
182 if (ieee80211_is_data_qos(fc)) {
183 qc = ieee80211_get_qos_ctl(hdr);
184 tid = qc[0] & 0xf;
185 }
186
187 if (sc->sc_opmode == HAL_M_STA) {
188 /* Drop the frame not belonging to me. */
189 if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
190 dev_kfree_skb(skb);
191 return -1;
192 }
193 }
194
195 rxtid = &an->an_aggr.rx.tid[tid];
196
197 spin_lock(&rxtid->tidlock);
198
199 rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
200 (ATH_TID_MAX_BUFS - 1);
201
202 /*
203 * If the ADDBA exchange has not been completed by the source,
204 * process via legacy path (i.e. no reordering buffer is needed)
205 */
206 if (!rxtid->addba_exchangecomplete) {
207 spin_unlock(&rxtid->tidlock);
208 return ath_rx_subframe(an, skb, rx_status);
209 }
210
211 /* extract sequence number from recvd frame */
212
213 rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
214
215 if (rxtid->seq_reset) {
216 rxtid->seq_reset = 0;
217 rxtid->seq_next = rxseq;
218 }
219
220 index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
221
222 /* drop frame if old sequence (index is too large) */
223
224 if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
225 /* discard frame, ieee layer may not treat frame as a dup */
226 spin_unlock(&rxtid->tidlock);
227 dev_kfree_skb(skb);
228 return IEEE80211_FTYPE_DATA;
229 }
230
231 /* sequence number is beyond block-ack window */
232
233 if (index >= rxtid->baw_size) {
234
235 /* complete receive processing for all pending frames */
236
237 while (index >= rxtid->baw_size) {
238
239 rxbuf = rxtid->rxbuf + rxtid->baw_head;
240
241 if (rxbuf->rx_wbuf != NULL) {
242 ath_rx_subframe(an, rxbuf->rx_wbuf,
243 &rxbuf->rx_status);
244 rxbuf->rx_wbuf = NULL;
245 }
246
247 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
248 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
249
250 index--;
251 }
252 }
253
254 /* add buffer to the recv ba window */
255
256 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
257 rxbuf = rxtid->rxbuf + cindex;
258
259 if (rxbuf->rx_wbuf != NULL) {
260 spin_unlock(&rxtid->tidlock);
261 /* duplicate frame */
262 dev_kfree_skb(skb);
263 return IEEE80211_FTYPE_DATA;
264 }
265
266 rxbuf->rx_wbuf = skb;
267 rxbuf->rx_time = get_timestamp();
268 rxbuf->rx_status = *rx_status;
269
270 /* advance tail if sequence received is newer
271 * than any received so far */
272
273 if (index >= rxdiff) {
274 rxtid->baw_tail = cindex;
275 INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
276 }
277
278 /* indicate all in-order received frames */
279
280 while (rxtid->baw_head != rxtid->baw_tail) {
281 rxbuf = rxtid->rxbuf + rxtid->baw_head;
282 if (!rxbuf->rx_wbuf)
283 break;
284
285 ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
286 rxbuf->rx_wbuf = NULL;
287
288 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
289 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
290 }
291
292 /*
293 * start a timer to flush all received frames if there are pending
294 * receive frames
295 */
296 if (rxtid->baw_head != rxtid->baw_tail)
297 mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
298 else
299 del_timer_sync(&rxtid->timer);
300
301 spin_unlock(&rxtid->tidlock);
302 return IEEE80211_FTYPE_DATA;
303 }
304
305 /* Timer to flush all received sub-frames */
306
307 static void ath_rx_timer(unsigned long data)
308 {
309 struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
310 struct ath_node *an = rxtid->an;
311 struct ath_rxbuf *rxbuf;
312 int nosched;
313
314 spin_lock_bh(&rxtid->tidlock);
315 while (rxtid->baw_head != rxtid->baw_tail) {
316 rxbuf = rxtid->rxbuf + rxtid->baw_head;
317 if (!rxbuf->rx_wbuf) {
318 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
319 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
320 continue;
321 }
322
323 /*
324 * Stop if the next one is a very recent frame.
325 *
326 * Call get_timestamp in every iteration to protect against the
327 * case in which a new frame is received while we are executing
328 * this function. Using a timestamp obtained before entering
329 * the loop could lead to a very large time interval
330 * (a negative value typecast to unsigned), breaking the
331 * function's logic.
332 */
333 if ((get_timestamp() - rxbuf->rx_time) <
334 (ATH_RX_TIMEOUT * HZ / 1000))
335 break;
336
337 ath_rx_subframe(an, rxbuf->rx_wbuf,
338 &rxbuf->rx_status);
339 rxbuf->rx_wbuf = NULL;
340
341 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
342 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
343 }
344
345 /*
346 * start a timer to flush all received frames if there are pending
347 * receive frames
348 */
349 if (rxtid->baw_head != rxtid->baw_tail)
350 nosched = 0;
351 else
352 nosched = 1; /* no need to re-arm the timer again */
353
354 spin_unlock_bh(&rxtid->tidlock);
355 }
356
357 /* Free all pending sub-frames in the re-ordering buffer */
358
359 static void ath_rx_flush_tid(struct ath_softc *sc,
360 struct ath_arx_tid *rxtid, int drop)
361 {
362 struct ath_rxbuf *rxbuf;
363
364 spin_lock_bh(&rxtid->tidlock);
365 while (rxtid->baw_head != rxtid->baw_tail) {
366 rxbuf = rxtid->rxbuf + rxtid->baw_head;
367 if (!rxbuf->rx_wbuf) {
368 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
369 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
370 continue;
371 }
372
373 if (drop)
374 dev_kfree_skb(rxbuf->rx_wbuf);
375 else
376 ath_rx_subframe(rxtid->an,
377 rxbuf->rx_wbuf,
378 &rxbuf->rx_status);
379
380 rxbuf->rx_wbuf = NULL;
381
382 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
383 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
384 }
385 spin_unlock_bh(&rxtid->tidlock);
386 }
387
388 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
389 u_int32_t len)
390 {
391 struct sk_buff *skb;
392 u_int off;
393
394 /*
395 * Cache-line-align. This is important (for the
396 * 5210 at least) as not doing so causes bogus data
397 * in rx'd frames.
398 */
399
400 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
401 if (skb != NULL) {
402 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
403 if (off != 0)
404 skb_reserve(skb, sc->sc_cachelsz - off);
405 } else {
406 DPRINTF(sc, ATH_DBG_FATAL,
407 "%s: skbuff alloc of size %u failed\n",
408 __func__, len);
409 return NULL;
410 }
411
412 return skb;
413 }
414
415 static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
416 {
417 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
418
419 ASSERT(bf != NULL);
420
421 spin_lock_bh(&sc->sc_rxbuflock);
422 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
423 /*
424 * This buffer is still held for hw acess.
425 * Mark it as free to be re-queued it later.
426 */
427 bf->bf_status |= ATH_BUFSTATUS_FREE;
428 } else {
429 /* XXX: we probably never enter here, remove after
430 * verification */
431 list_add_tail(&bf->list, &sc->sc_rxbuf);
432 ath_rx_buf_link(sc, bf);
433 }
434 spin_unlock_bh(&sc->sc_rxbuflock);
435 }
436
437 /*
438 * The skb indicated to upper stack won't be returned to us.
439 * So we have to allocate a new one and queue it by ourselves.
440 */
441 static int ath_rx_indicate(struct ath_softc *sc,
442 struct sk_buff *skb,
443 struct ath_recv_status *status,
444 u_int16_t keyix)
445 {
446 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
447 struct sk_buff *nskb;
448 int type;
449
450 /* indicate frame to the stack, which will free the old skb. */
451 type = ath__rx_indicate(sc, skb, status, keyix);
452
453 /* allocate a new skb and queue it to for H/W processing */
454 nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
455 if (nskb != NULL) {
456 bf->bf_mpdu = nskb;
457 bf->bf_buf_addr = ath_skb_map_single(sc,
458 nskb,
459 PCI_DMA_FROMDEVICE,
460 /* XXX: Remove get_dma_mem_context() */
461 get_dma_mem_context(bf, bf_dmacontext));
462 ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
463
464 /* queue the new wbuf to H/W */
465 ath_rx_requeue(sc, nskb);
466 }
467
468 return type;
469 }
470
471 static void ath_opmode_init(struct ath_softc *sc)
472 {
473 struct ath_hal *ah = sc->sc_ah;
474 u_int32_t rfilt, mfilt[2];
475
476 /* configure rx filter */
477 rfilt = ath_calcrxfilter(sc);
478 ath9k_hw_setrxfilter(ah, rfilt);
479
480 /* configure bssid mask */
481 if (ah->ah_caps.halBssIdMaskSupport)
482 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
483
484 /* configure operational mode */
485 ath9k_hw_setopmode(ah);
486
487 /* Handle any link-level address change. */
488 ath9k_hw_setmac(ah, sc->sc_myaddr);
489
490 /* calculate and install multicast filter */
491 mfilt[0] = mfilt[1] = ~0;
492
493 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
494 DPRINTF(sc, ATH_DBG_CONFIG ,
495 "%s: RX filter 0x%x, MC filter %08x:%08x\n",
496 __func__, rfilt, mfilt[0], mfilt[1]);
497 }
498
499 int ath_rx_init(struct ath_softc *sc, int nbufs)
500 {
501 struct sk_buff *skb;
502 struct ath_buf *bf;
503 int error = 0;
504
505 do {
506 spin_lock_init(&sc->sc_rxflushlock);
507 sc->sc_rxflush = 0;
508 spin_lock_init(&sc->sc_rxbuflock);
509
510 /*
511 * Cisco's VPN software requires that drivers be able to
512 * receive encapsulated frames that are larger than the MTU.
513 * Since we can't be sure how large a frame we'll get, setup
514 * to handle the larges on possible.
515 */
516 sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
517 min(sc->sc_cachelsz,
518 (u_int16_t)64));
519
520 DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
521 __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
522
523 /* Initialize rx descriptors */
524
525 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
526 "rx", nbufs, 1);
527 if (error != 0) {
528 DPRINTF(sc, ATH_DBG_FATAL,
529 "%s: failed to allocate rx descriptors: %d\n",
530 __func__, error);
531 break;
532 }
533
534 /* Pre-allocate a wbuf for each rx buffer */
535
536 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
537 skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
538 if (skb == NULL) {
539 error = -ENOMEM;
540 break;
541 }
542
543 bf->bf_mpdu = skb;
544 bf->bf_buf_addr =
545 ath_skb_map_single(sc, skb, PCI_DMA_FROMDEVICE,
546 get_dma_mem_context(bf, bf_dmacontext));
547 ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
548 }
549 sc->sc_rxlink = NULL;
550
551 } while (0);
552
553 if (error)
554 ath_rx_cleanup(sc);
555
556 return error;
557 }
558
559 /* Reclaim all rx queue resources */
560
561 void ath_rx_cleanup(struct ath_softc *sc)
562 {
563 struct sk_buff *skb;
564 struct ath_buf *bf;
565
566 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
567 skb = bf->bf_mpdu;
568 if (skb)
569 dev_kfree_skb(skb);
570 }
571
572 /* cleanup rx descriptors */
573
574 if (sc->sc_rxdma.dd_desc_len != 0)
575 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
576 }
577
578 /*
579 * Calculate the receive filter according to the
580 * operating mode and state:
581 *
582 * o always accept unicast, broadcast, and multicast traffic
583 * o maintain current state of phy error reception (the hal
584 * may enable phy error frames for noise immunity work)
585 * o probe request frames are accepted only when operating in
586 * hostap, adhoc, or monitor modes
587 * o enable promiscuous mode according to the interface state
588 * o accept beacons:
589 * - when operating in adhoc mode so the 802.11 layer creates
590 * node table entries for peers,
591 * - when operating in station mode for collecting rssi data when
592 * the station is otherwise quiet, or
593 * - when operating as a repeater so we see repeater-sta beacons
594 * - when scanning
595 */
596
597 u_int32_t ath_calcrxfilter(struct ath_softc *sc)
598 {
599 #define RX_FILTER_PRESERVE (HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
600 u_int32_t rfilt;
601
602 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
603 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST
604 | HAL_RX_FILTER_MCAST;
605
606 /* If not a STA, enable processing of Probe Requests */
607 if (sc->sc_opmode != HAL_M_STA)
608 rfilt |= HAL_RX_FILTER_PROBEREQ;
609
610 /* Can't set HOSTAP into promiscous mode */
611 if (sc->sc_opmode == HAL_M_MONITOR) {
612 rfilt |= HAL_RX_FILTER_PROM;
613 /* ??? To prevent from sending ACK */
614 rfilt &= ~HAL_RX_FILTER_UCAST;
615 }
616
617 if (sc->sc_opmode == HAL_M_STA || sc->sc_opmode == HAL_M_IBSS ||
618 sc->sc_scanning)
619 rfilt |= HAL_RX_FILTER_BEACON;
620
621 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
622 & beacon frames */
623 if (sc->sc_opmode == HAL_M_HOSTAP)
624 rfilt |= (HAL_RX_FILTER_BEACON | HAL_RX_FILTER_PSPOLL);
625 return rfilt;
626 #undef RX_FILTER_PRESERVE
627 }
628
629 /* Enable the receive h/w following a reset. */
630
631 int ath_startrecv(struct ath_softc *sc)
632 {
633 struct ath_hal *ah = sc->sc_ah;
634 struct ath_buf *bf, *tbf;
635
636 spin_lock_bh(&sc->sc_rxbuflock);
637 if (list_empty(&sc->sc_rxbuf))
638 goto start_recv;
639
640 sc->sc_rxlink = NULL;
641 list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
642 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
643 /* restarting h/w, no need for holding descriptors */
644 bf->bf_status &= ~ATH_BUFSTATUS_STALE;
645 /*
646 * Upper layer may not be done with the frame yet so
647 * we can't just re-queue it to hardware. Remove it
648 * from h/w queue. It'll be re-queued when upper layer
649 * returns the frame and ath_rx_requeue_mpdu is called.
650 */
651 if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
652 list_del(&bf->list);
653 continue;
654 }
655 }
656 /* chain descriptors */
657 ath_rx_buf_link(sc, bf);
658 }
659
660 /* We could have deleted elements so the list may be empty now */
661 if (list_empty(&sc->sc_rxbuf))
662 goto start_recv;
663
664 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
665 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
666 ath9k_hw_rxena(ah); /* enable recv descriptors */
667
668 start_recv:
669 spin_unlock_bh(&sc->sc_rxbuflock);
670 ath_opmode_init(sc); /* set filters, etc. */
671 ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
672 return 0;
673 }
674
675 /* Disable the receive h/w in preparation for a reset. */
676
677 bool ath_stoprecv(struct ath_softc *sc)
678 {
679 struct ath_hal *ah = sc->sc_ah;
680 u_int64_t tsf;
681 bool stopped;
682
683 ath9k_hw_stoppcurecv(ah); /* disable PCU */
684 ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
685 stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
686 mdelay(3); /* 3ms is long enough for 1 frame */
687 tsf = ath9k_hw_gettsf64(ah);
688 sc->sc_rxlink = NULL; /* just in case */
689 return stopped;
690 }
691
692 /* Flush receive queue */
693
694 void ath_flushrecv(struct ath_softc *sc)
695 {
696 /*
697 * ath_rx_tasklet may be used to handle rx interrupt and flush receive
698 * queue at the same time. Use a lock to serialize the access of rx
699 * queue.
700 * ath_rx_tasklet cannot hold the spinlock while indicating packets.
701 * Instead, do not claim the spinlock but check for a flush in
702 * progress (see references to sc_rxflush)
703 */
704 spin_lock_bh(&sc->sc_rxflushlock);
705 sc->sc_rxflush = 1;
706
707 ath_rx_tasklet(sc, 1);
708
709 sc->sc_rxflush = 0;
710 spin_unlock_bh(&sc->sc_rxflushlock);
711 }
712
713 /* Process an individual frame */
714
715 int ath_rx_input(struct ath_softc *sc,
716 struct ath_node *an,
717 int is_ampdu,
718 struct sk_buff *skb,
719 struct ath_recv_status *rx_status,
720 enum ATH_RX_TYPE *status)
721 {
722 if (is_ampdu && sc->sc_rxaggr) {
723 *status = ATH_RX_CONSUMED;
724 return ath_ampdu_input(sc, an, skb, rx_status);
725 } else {
726 *status = ATH_RX_NON_CONSUMED;
727 return -1;
728 }
729 }
730
731 /* Process receive queue, as well as LED, etc. */
732
733 int ath_rx_tasklet(struct ath_softc *sc, int flush)
734 {
735 #define PA2DESC(_sc, _pa) \
736 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
737 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
738
739 struct ath_buf *bf, *bf_held = NULL;
740 struct ath_desc *ds;
741 struct ieee80211_hdr *hdr;
742 struct sk_buff *skb = NULL;
743 struct ath_recv_status rx_status;
744 struct ath_hal *ah = sc->sc_ah;
745 int type, rx_processed = 0;
746 u_int phyerr;
747 u_int8_t chainreset = 0;
748 enum hal_status retval;
749 __le16 fc;
750
751 do {
752 /* If handling rx interrupt and flush is in progress => exit */
753 if (sc->sc_rxflush && (flush == 0))
754 break;
755
756 spin_lock_bh(&sc->sc_rxbuflock);
757 if (list_empty(&sc->sc_rxbuf)) {
758 sc->sc_rxlink = NULL;
759 spin_unlock_bh(&sc->sc_rxbuflock);
760 break;
761 }
762
763 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
764
765 /*
766 * There is a race condition that BH gets scheduled after sw
767 * writes RxE and before hw re-load the last descriptor to get
768 * the newly chained one. Software must keep the last DONE
769 * descriptor as a holding descriptor - software does so by
770 * marking it with the STALE flag.
771 */
772 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
773 bf_held = bf;
774 if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
775 /*
776 * The holding descriptor is the last
777 * descriptor in queue. It's safe to
778 * remove the last holding descriptor
779 * in BH context.
780 */
781 list_del(&bf_held->list);
782 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
783 sc->sc_rxlink = NULL;
784
785 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
786 list_add_tail(&bf_held->list,
787 &sc->sc_rxbuf);
788 ath_rx_buf_link(sc, bf_held);
789 }
790 spin_unlock_bh(&sc->sc_rxbuflock);
791 break;
792 }
793 bf = list_entry(bf->list.next, struct ath_buf, list);
794 }
795
796 ds = bf->bf_desc;
797 ++rx_processed;
798
799 /*
800 * Must provide the virtual address of the current
801 * descriptor, the physical address, and the virtual
802 * address of the next descriptor in the h/w chain.
803 * This allows the HAL to look ahead to see if the
804 * hardware is done with a descriptor by checking the
805 * done bit in the following descriptor and the address
806 * of the current descriptor the DMA engine is working
807 * on. All this is necessary because of our use of
808 * a self-linked list to avoid rx overruns.
809 */
810 retval = ath9k_hw_rxprocdesc(ah,
811 ds,
812 bf->bf_daddr,
813 PA2DESC(sc, ds->ds_link),
814 0);
815 if (HAL_EINPROGRESS == retval) {
816 struct ath_buf *tbf;
817 struct ath_desc *tds;
818
819 if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
820 spin_unlock_bh(&sc->sc_rxbuflock);
821 break;
822 }
823
824 tbf = list_entry(bf->list.next, struct ath_buf, list);
825
826 /*
827 * On some hardware the descriptor status words could
828 * get corrupted, including the done bit. Because of
829 * this, check if the next descriptor's done bit is
830 * set or not.
831 *
832 * If the next descriptor's done bit is set, the current
833 * descriptor has been corrupted. Force s/w to discard
834 * this descriptor and continue...
835 */
836
837 tds = tbf->bf_desc;
838 retval = ath9k_hw_rxprocdesc(ah,
839 tds, tbf->bf_daddr,
840 PA2DESC(sc, tds->ds_link), 0);
841 if (HAL_EINPROGRESS == retval) {
842 spin_unlock_bh(&sc->sc_rxbuflock);
843 break;
844 }
845 }
846
847 /* XXX: we do not support frames spanning
848 * multiple descriptors */
849 bf->bf_status |= ATH_BUFSTATUS_DONE;
850
851 skb = bf->bf_mpdu;
852 if (skb == NULL) { /* XXX ??? can this happen */
853 spin_unlock_bh(&sc->sc_rxbuflock);
854 continue;
855 }
856 /*
857 * Now we know it's a completed frame, we can indicate the
858 * frame. Remove the previous holding descriptor and leave
859 * this one in the queue as the new holding descriptor.
860 */
861 if (bf_held) {
862 list_del(&bf_held->list);
863 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
864 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
865 list_add_tail(&bf_held->list, &sc->sc_rxbuf);
866 /* try to requeue this descriptor */
867 ath_rx_buf_link(sc, bf_held);
868 }
869 }
870
871 bf->bf_status |= ATH_BUFSTATUS_STALE;
872 bf_held = bf;
873 /*
874 * Release the lock here in case ieee80211_input() return
875 * the frame immediately by calling ath_rx_mpdu_requeue().
876 */
877 spin_unlock_bh(&sc->sc_rxbuflock);
878
879 if (flush) {
880 /*
881 * If we're asked to flush receive queue, directly
882 * chain it back at the queue without processing it.
883 */
884 goto rx_next;
885 }
886
887 hdr = (struct ieee80211_hdr *)skb->data;
888 fc = hdr->frame_control;
889 memzero(&rx_status, sizeof(struct ath_recv_status));
890
891 if (ds->ds_rxstat.rs_more) {
892 /*
893 * Frame spans multiple descriptors; this
894 * cannot happen yet as we don't support
895 * jumbograms. If not in monitor mode,
896 * discard the frame.
897 */
898 #ifndef ERROR_FRAMES
899 /*
900 * Enable this if you want to see
901 * error frames in Monitor mode.
902 */
903 if (sc->sc_opmode != HAL_M_MONITOR)
904 goto rx_next;
905 #endif
906 /* fall thru for monitor mode handling... */
907 } else if (ds->ds_rxstat.rs_status != 0) {
908 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
909 rx_status.flags |= ATH_RX_FCS_ERROR;
910 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
911 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
912 goto rx_next;
913 }
914
915 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
916 /*
917 * Decrypt error. We only mark packet status
918 * here and always push up the frame up to let
919 * mac80211 handle the actual error case, be
920 * it no decryption key or real decryption
921 * error. This let us keep statistics there.
922 */
923 rx_status.flags |= ATH_RX_DECRYPT_ERROR;
924 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
925 /*
926 * Demic error. We only mark frame status here
927 * and always push up the frame up to let
928 * mac80211 handle the actual error case. This
929 * let us keep statistics there. Hardware may
930 * post a false-positive MIC error.
931 */
932 if (ieee80211_is_ctl(fc))
933 /*
934 * Sometimes, we get invalid
935 * MIC failures on valid control frames.
936 * Remove these mic errors.
937 */
938 ds->ds_rxstat.rs_status &=
939 ~ATH9K_RXERR_MIC;
940 else
941 rx_status.flags |= ATH_RX_MIC_ERROR;
942 }
943 /*
944 * Reject error frames with the exception of
945 * decryption and MIC failures. For monitor mode,
946 * we also ignore the CRC error.
947 */
948 if (sc->sc_opmode == HAL_M_MONITOR) {
949 if (ds->ds_rxstat.rs_status &
950 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
951 ATH9K_RXERR_CRC))
952 goto rx_next;
953 } else {
954 if (ds->ds_rxstat.rs_status &
955 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
956 goto rx_next;
957 }
958 }
959 }
960 /*
961 * The status portion of the descriptor could get corrupted.
962 */
963 if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
964 goto rx_next;
965 /*
966 * Sync and unmap the frame. At this point we're
967 * committed to passing the sk_buff somewhere so
968 * clear buf_skb; this means a new sk_buff must be
969 * allocated when the rx descriptor is setup again
970 * to receive another frame.
971 */
972 skb_put(skb, ds->ds_rxstat.rs_datalen);
973 skb->protocol = cpu_to_be16(ETH_P_CONTROL);
974 rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
975 rx_status.rateieee =
976 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
977 rx_status.rateKbps =
978 sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
979 rx_status.ratecode = ds->ds_rxstat.rs_rate;
980
981 /* HT rate */
982 if (rx_status.ratecode & 0x80) {
983 /* TODO - add table to avoid division */
984 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
985 rx_status.flags |= ATH_RX_40MHZ;
986 rx_status.rateKbps =
987 (rx_status.rateKbps * 27) / 13;
988 }
989 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
990 rx_status.rateKbps =
991 (rx_status.rateKbps * 10) / 9;
992 else
993 rx_status.flags |= ATH_RX_SHORT_GI;
994 }
995
996 /* sc->sc_noise_floor is only available when the station
997 attaches to an AP, so we use a default value
998 if we are not yet attached. */
999
1000 /* XXX we should use either sc->sc_noise_floor or
1001 * ath_hal_getChanNoise(ah, &sc->sc_curchan)
1002 * to calculate the noise floor.
1003 * However, the value returned by ath_hal_getChanNoise
1004 * seems to be incorrect (-31dBm on the last test),
1005 * so we will use a hard-coded value until we
1006 * figure out what is going on.
1007 */
1008 rx_status.abs_rssi =
1009 ds->ds_rxstat.rs_rssi + ATH_DEFAULT_NOISE_FLOOR;
1010
1011 pci_dma_sync_single_for_cpu(sc->pdev,
1012 bf->bf_buf_addr,
1013 skb_tailroom(skb),
1014 PCI_DMA_FROMDEVICE);
1015 pci_unmap_single(sc->pdev,
1016 bf->bf_buf_addr,
1017 sc->sc_rxbufsize,
1018 PCI_DMA_FROMDEVICE);
1019
1020 /* XXX: Ah! make me more readable, use a helper */
1021 if (ah->ah_caps.halHTSupport) {
1022 if (ds->ds_rxstat.rs_moreaggr == 0) {
1023 rx_status.rssictl[0] =
1024 ds->ds_rxstat.rs_rssi_ctl0;
1025 rx_status.rssictl[1] =
1026 ds->ds_rxstat.rs_rssi_ctl1;
1027 rx_status.rssictl[2] =
1028 ds->ds_rxstat.rs_rssi_ctl2;
1029 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1030 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
1031 rx_status.rssiextn[0] =
1032 ds->ds_rxstat.rs_rssi_ext0;
1033 rx_status.rssiextn[1] =
1034 ds->ds_rxstat.rs_rssi_ext1;
1035 rx_status.rssiextn[2] =
1036 ds->ds_rxstat.rs_rssi_ext2;
1037 rx_status.flags |=
1038 ATH_RX_RSSI_EXTN_VALID;
1039 }
1040 rx_status.flags |= ATH_RX_RSSI_VALID |
1041 ATH_RX_CHAIN_RSSI_VALID;
1042 }
1043 } else {
1044 /*
1045 * Need to insert the "combined" rssi into the
1046 * status structure for upper layer processing
1047 */
1048 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1049 rx_status.flags |= ATH_RX_RSSI_VALID;
1050 }
1051
1052 /* Pass frames up to the stack. */
1053
1054 type = ath_rx_indicate(sc, skb,
1055 &rx_status, ds->ds_rxstat.rs_keyix);
1056
1057 /*
1058 * change the default rx antenna if rx diversity chooses the
1059 * other antenna 3 times in a row.
1060 */
1061 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
1062 if (++sc->sc_rxotherant >= 3)
1063 ath_setdefantenna(sc,
1064 ds->ds_rxstat.rs_antenna);
1065 } else {
1066 sc->sc_rxotherant = 0;
1067 }
1068
1069 #ifdef CONFIG_SLOW_ANT_DIV
1070 if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
1071 ieee80211_is_beacon(fc)) {
1072 ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
1073 }
1074 #endif
1075 /*
1076 * For frames successfully indicated, the buffer will be
1077 * returned to us by upper layers by calling
1078 * ath_rx_mpdu_requeue, either synchronusly or asynchronously.
1079 * So we don't want to do it here in this loop.
1080 */
1081 continue;
1082
1083 rx_next:
1084 bf->bf_status |= ATH_BUFSTATUS_FREE;
1085 } while (TRUE);
1086
1087 if (chainreset) {
1088 DPRINTF(sc, ATH_DBG_CONFIG,
1089 "%s: Reset rx chain mask. "
1090 "Do internal reset\n", __func__);
1091 ASSERT(flush == 0);
1092 ath_internal_reset(sc);
1093 }
1094
1095 return 0;
1096 #undef PA2DESC
1097 }
1098
1099 /* Process ADDBA request in per-TID data structure */
1100
1101 int ath_rx_aggr_start(struct ath_softc *sc,
1102 const u8 *addr,
1103 u16 tid,
1104 u16 *ssn)
1105 {
1106 struct ath_arx_tid *rxtid;
1107 struct ath_node *an;
1108 struct ieee80211_hw *hw = sc->hw;
1109 struct ieee80211_supported_band *sband;
1110 u16 buffersize = 0;
1111
1112 spin_lock_bh(&sc->node_lock);
1113 an = ath_node_find(sc, (u8 *) addr);
1114 spin_unlock_bh(&sc->node_lock);
1115
1116 if (!an) {
1117 DPRINTF(sc, ATH_DBG_AGGR,
1118 "%s: Node not found to initialize RX aggregation\n",
1119 __func__);
1120 return -1;
1121 }
1122
1123 sband = hw->wiphy->bands[hw->conf.channel->band];
1124 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1125 sband->ht_info.ampdu_factor; /* FIXME */
1126
1127 rxtid = &an->an_aggr.rx.tid[tid];
1128
1129 spin_lock_bh(&rxtid->tidlock);
1130 if (sc->sc_rxaggr) {
1131 /* Allow aggregation reception
1132 * Adjust rx BA window size. Peer might indicate a
1133 * zero buffer size for a _dont_care_ condition.
1134 */
1135 if (buffersize)
1136 rxtid->baw_size = min(buffersize, rxtid->baw_size);
1137
1138 /* set rx sequence number */
1139 rxtid->seq_next = *ssn;
1140
1141 /* Allocate the receive buffers for this TID */
1142 DPRINTF(sc, ATH_DBG_AGGR,
1143 "%s: Allcating rxbuffer for TID %d\n", __func__, tid);
1144
1145 if (rxtid->rxbuf == NULL) {
1146 /*
1147 * If the rxbuff is not NULL at this point, we *probably*
1148 * already allocated the buffer on a previous ADDBA,
1149 * and this is a subsequent ADDBA that got through.
1150 * Don't allocate, but use the value in the pointer,
1151 * we zero it out when we de-allocate.
1152 */
1153 rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
1154 sizeof(struct ath_rxbuf), GFP_ATOMIC);
1155 }
1156 if (rxtid->rxbuf == NULL) {
1157 DPRINTF(sc, ATH_DBG_AGGR,
1158 "%s: Unable to allocate RX buffer, "
1159 "refusing ADDBA\n", __func__);
1160 } else {
1161 /* Ensure the memory is zeroed out (all internal
1162 * pointers are null) */
1163 memzero(rxtid->rxbuf, ATH_TID_MAX_BUFS *
1164 sizeof(struct ath_rxbuf));
1165 DPRINTF(sc, ATH_DBG_AGGR,
1166 "%s: Allocated @%p\n", __func__, rxtid->rxbuf);
1167
1168 /* Allow aggregation reception */
1169 rxtid->addba_exchangecomplete = 1;
1170 }
1171 }
1172 spin_unlock_bh(&rxtid->tidlock);
1173
1174 return 0;
1175 }
1176
1177 /* Process DELBA */
1178
1179 int ath_rx_aggr_stop(struct ath_softc *sc,
1180 const u8 *addr,
1181 u16 tid)
1182 {
1183 struct ath_node *an;
1184
1185 spin_lock_bh(&sc->node_lock);
1186 an = ath_node_find(sc, (u8 *) addr);
1187 spin_unlock_bh(&sc->node_lock);
1188
1189 if (!an) {
1190 DPRINTF(sc, ATH_DBG_AGGR,
1191 "%s: RX aggr stop for non-existent node\n", __func__);
1192 return -1;
1193 }
1194
1195 ath_rx_aggr_teardown(sc, an, tid);
1196 return 0;
1197 }
1198
1199 /* Rx aggregation tear down */
1200
1201 void ath_rx_aggr_teardown(struct ath_softc *sc,
1202 struct ath_node *an, u_int8_t tid)
1203 {
1204 struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
1205
1206 if (!rxtid->addba_exchangecomplete)
1207 return;
1208
1209 del_timer_sync(&rxtid->timer);
1210 ath_rx_flush_tid(sc, rxtid, 0);
1211 rxtid->addba_exchangecomplete = 0;
1212
1213 /* De-allocate the receive buffer array allocated when addba started */
1214
1215 if (rxtid->rxbuf) {
1216 DPRINTF(sc, ATH_DBG_AGGR,
1217 "%s: Deallocating TID %d rxbuff @%p\n",
1218 __func__, tid, rxtid->rxbuf);
1219 kfree(rxtid->rxbuf);
1220
1221 /* Set pointer to null to avoid reuse*/
1222 rxtid->rxbuf = NULL;
1223 }
1224 }
1225
1226 /* Initialize per-node receive state */
1227
1228 void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
1229 {
1230 if (sc->sc_rxaggr) {
1231 struct ath_arx_tid *rxtid;
1232 int tidno;
1233
1234 /* Init per tid rx state */
1235 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1236 tidno < WME_NUM_TID;
1237 tidno++, rxtid++) {
1238 rxtid->an = an;
1239 rxtid->seq_reset = 1;
1240 rxtid->seq_next = 0;
1241 rxtid->baw_size = WME_MAX_BA;
1242 rxtid->baw_head = rxtid->baw_tail = 0;
1243
1244 /*
1245 * Ensure the buffer pointer is null at this point
1246 * (needs to be allocated when addba is received)
1247 */
1248
1249 rxtid->rxbuf = NULL;
1250 setup_timer(&rxtid->timer, ath_rx_timer,
1251 (unsigned long)rxtid);
1252 spin_lock_init(&rxtid->tidlock);
1253
1254 /* ADDBA state */
1255 rxtid->addba_exchangecomplete = 0;
1256 }
1257 }
1258 }
1259
1260 void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
1261 {
1262 if (sc->sc_rxaggr) {
1263 struct ath_arx_tid *rxtid;
1264 int tidno, i;
1265
1266 /* Init per tid rx state */
1267 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1268 tidno < WME_NUM_TID;
1269 tidno++, rxtid++) {
1270
1271 if (!rxtid->addba_exchangecomplete)
1272 continue;
1273
1274 /* must cancel timer first */
1275 del_timer_sync(&rxtid->timer);
1276
1277 /* drop any pending sub-frames */
1278 ath_rx_flush_tid(sc, rxtid, 1);
1279
1280 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
1281 ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
1282
1283 rxtid->addba_exchangecomplete = 0;
1284 }
1285 }
1286
1287 }
1288
1289 /* Cleanup per-node receive state */
1290
1291 void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
1292 {
1293 ath_rx_node_cleanup(sc, an);
1294 }
1295
1296 dma_addr_t ath_skb_map_single(struct ath_softc *sc,
1297 struct sk_buff *skb,
1298 int direction,
1299 dma_addr_t *pa)
1300 {
1301 /*
1302 * NB: do NOT use skb->len, which is 0 on initialization.
1303 * Use skb's entire data area instead.
1304 */
1305 *pa = pci_map_single(sc->pdev, skb->data,
1306 skb_end_pointer(skb) - skb->head, direction);
1307 return *pa;
1308 }
1309
1310 void ath_skb_unmap_single(struct ath_softc *sc,
1311 struct sk_buff *skb,
1312 int direction,
1313 dma_addr_t *pa)
1314 {
1315 /* Unmap skb's entire data area */
1316 pci_unmap_single(sc->pdev, *pa,
1317 skb_end_pointer(skb) - skb->head, direction);
1318 }